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Lüscher’s recent formulation of Abelian chiral gauge theories on the lattice, in the vacuum
(or perturbative) sector in infinite volume, is reinterpreted in terms of the lattice covariant
regularization. The gauge invariance of the effective action and the integrability of the gauge
current in anomaly-free cases become transparent. The real part of the effective action is
simply one-half that of the Dirac fermion and, when the Dirac operator behaves properly in
the continuum limit, the imaginary part in this limit reproduces the η-invariant.

We have gained a new perspective on chiral symmetries on the lattice, after the
recent discovery 1) - 3) of gauge covariant Dirac operators which satisfy the Ginsparg-
Wilson relation. 4) When the Dirac operator is applied to lattice QCD, in which
the chiral symmetries are global, the action can be made invariant under all the
flavor U(Nf ) axial symmetries. Quantum mechanically, on the other hand, the
flavor-singlet U(1) symmetry suffers from the axial anomaly, due to the non-trivial
Jacobian factor. 5), 6) The desired breaking pattern of the Ward-Takahashi identities
in vectorial gauge theories is thus restored. In this context, one can even formulate
the (analytic) index theorem with finite lattice spacing. 2), 5)

Quite recently, Lüscher 7) formulated (Abelian) chiral gauge theories on the lat-
tice, on the basis of the chirality separation with respect to the Ginsparg-Wilson
chiral matrix. 8) - 10) He proved there exists a gauge invariant effective action of
Weyl fermions, when (and only when) the anomaly cancellation condition in the
continuum field theory is fulfilled. (Neuberger 11) made a similar observation in the
overlap formalism 12), 13) for a particular kind of gauge field configuration.) The cru-
cial ingredient in Lüscher’s proof is the complete clarification of the structure of the
axial anomaly with finite lattice spacing. 14)

In the present note, we give a reinterpretation of Lüscher’s formulation in Ref. 7)
in terms of the “lattice covariant regularization” proposed in the past by the present
author and a collaborator. 15), 16) This reinterpretation is possible at least in the
vacuum sector (implying that the Dirac operator has no zero modes and the inverse
of the Dirac operator exists) in infinite lattice volume (for which the results of Ref. 14)
can be used straightforwardly). Although the most interesting part of Ref. 7) is the
analysis of the topological sector in a finite lattice volume, we will clarify some of
properties of the formulation in this simpler situation, by giving a one parameter
integral representation of Lüscher’s effective action.

Now, in the scheme of Refs. 15) and 16), the primarily-defined quantity is the
variation of the effective action with respect to the gauge field, “the gauge current”.
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1148 H. Suzuki

The effective action is regarded as the secondary object, which is deduced from the
gauge current. The basic idea is that using the vectorial gauge covariant Dirac
propagator (without species doublers) with an appropriate chirality projection, one
may always preserve the gauge covariance of the gauge current of the Weyl fermion.
In this way, the gauge symmetry is maximally preserved even in anomalous cases,
and the gauge invariance is automatically restored (in the continuum limit) when
the gauge representation is anomaly-free.

According to this scheme, we temporarily identify a variation of the effective
action W with (see, Eq. (9) of Ref. 16))

δW ∼ Tr δDPHD
−1. (1)

We use a gauge covariant Dirac operator D that is assumed to satisfy the
Ginsparg-Wilson relation, 4)

γ5D +Dγ5 = aDγ5D, (2)

with the lattice spacing a. We will also assume the Hermitian conjugate of the
Dirac operator satisfies D† = γ5Dγ5. In Eq. (1), H = ± denotes the chirality of the
Weyl fermion, and the projection operator in Eq. (1) is defined with respect to the
modified chiral matrix, 8) - 10)

Γ5 = γ5(1− aD) = γ5 − aD, P± =
1
2
(1± Γ5). (3)

Here P± is in fact the projection operator, because Γ 2
5 = 1 due to the relation (2).

(Γ5 is Hermitian: Γ
†
5 = Γ5.) For convenience, we introduce the Hermitian operator

D = γ5D and D−1 = D−1γ5. The following relations, which are the consequence
of Eq. (2), are also useful:

Γ5D−1 = −D−1Γ5 − a = −D−1γ5, {Γ5, δD} = 0. (4)

We restrict ourselves to the case of the Abelian gauge group. In this case, and
if the lattice volume is infinite, one may always associate 14) the gauge potential Aµ

with the link variable through

Uµ(x, t) = exp[iatTAµ(x)], (5)

where T denotes the generator of the Abelian gauge group, Tαβ = eαδα,β. Here
eα is the U(1) charge of the flavor α. In Eq. (5), we have introduced the “gauge
coupling parameter” t. We denote the dependence on t in five-dimensional notation
as Aµ(x, t) = tAµ(x) (where the original link variable and the gauge potential are
given by the value at t = 1), but the argument t will often be omitted when there is
no danger of confusion.

In the Abelian case, we may differentiate the effective action with respect to the
parameter t and then integrate it over this parameter. The identification (1) then
motivates the following definition of the effective action W ′:

W ′ =
∫ 1

0
dt ∂tW

′

≡
∫ 1

0
dt Tr ∂tDPHD

−1 =
∫ 1

0
dt Tr ∂tDPHD−1. (6)
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Gauge Invariant Effective Action in Abelian Chiral Gauge Theory 1149

In the continuum field theory, the corresponding definition of the effective action of
the Weyl fermion is known to have interesting properties. 17)

The property of the would-be effective action (6) under the gauge transformation
is the central point of our discussion. (The following analysis is analogous to that
in Ref. 16) with the Wilson propagator.) We first split the functional (6) into real and
imaginary parts. By noting that the operators ∂tD, PH and D−1 are all Hermitian,
we find from Eq. (4),

W ′∗ =
∫ 1

0
dt Tr ∂tDP̃HD−1 =

∫ 1

0
dt Tr ∂tDP̃HD

−1, (7)

with P̃± = P∓. The real part is therefore given by

ReW ′ =
1
2

∫ 1

0
dt Tr ∂tDD−1 =

1
2
lnDetD. (8)

This is simply one-half the effective action of the Dirac fermion in vectorial gauge
theories. Equation (8) is manifestly gauge invariant, because the Dirac operator is
gauge covariant.

The imaginary part, on the other hand, is given by

i ImW ′ =
εH
2

∫ 1

0
dt Tr ∂tDΓ5D−1 = −εH

2

∫ 1

0
dt Tr γ5∂tDD−1, (9)

where ε± = ±1. Let us quickly verify that the imaginary part vanishes identi-
cally when the representation is “vector-like”, i.e., when there exists a unitary ma-
trix u such that∗) uTu† = −T . We assume the Dirac operator D transforms in
the same way as the conventional lattice covariant derivative under charge conjuga-
tion. 7) This implies, in the functional notation, CuDu†C−1 = DT , with the charge
conjugation matrix C, CγµC−1 = −γµT and Cγ5C

−1 = γT
5 . Consequently, we have

Cu∂tDΓ5D−1u†C−1 = γT
5 ∂tDTΓ T

5 D−1TγT
5 = (γ5D−1Γ5∂tDγ5)T and

Tr ∂tDΓ5D−1 = TrCu∂tDΓ5D−1u†C−1

= TrD−1Γ5∂tD
= −Tr ∂tDΓ5D−1 = 0. (10)

It is thus seen that ImW ′ = 0 for vector-like cases. This is certainly the desired
property, because in this case it is possible to arrange the fermions so that the
theory is left-right symmetric.

In general, the imaginary part (9) neither vanishes nor is gauge invariant. Its
variation under the gauge transformation can be determined by noting that the
infinitesimal gauge transformation on a gauge covariant object is represented by the
commutator as δλD = −it[λT,D]. We have

iδλ ImW ′ = −i
εH
2

∫ 1

0
dt Tr

{
∂t(t[λT,D])Γ5D−1 + t∂tD[λT, Γ5D−1]

}

= iεH

∫ 1

0
dt TrλTγ5

(
1− 1

2
aD

)
≡ iεH

∫ 1

0
dt a4

∑
x

λ(x)A(x, t). (11)

∗) For example, when the U(1) charges come in pairs of opposite sign, the unitary matrix

uαβ = δα,β−1 − δα,β+1 is sufficient.
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From the first line to the second line, use of relation (4) has been made. In the last
expression, we have defined the covariant gauge anomaly as

A(x) = trTγ5

[
1− 1

2
aD(x)

]
δ(x, x)

a→0→ 1
32π2

∑
α

e3
α εµνρσFµνFρσ(x), (12)

where the field strength has been defined by Fµν(x) = ∂µAν(x) − ∂νAµ(x). The
anomaly in the continuum limit was perturbatively computed 6) by using the overlap-
Dirac operator introduced in Ref. 3) (see also Refs. 18) and 19)) and we have used the
result in Eq. (12). One can even prove 20) that the expression in Eq. (12) is insensitive
to the choice of the Dirac operator, as long as this operator behaves properly in the
continuum limit. Substituting the covariant anomaly (12) into Eq. (11), we have a
consistent (Abelian) gauge anomaly (because

∫ 1
0 dt t2 = 1/3), as should be the case.

In continuum field theory, the prescription (6) provides a general recipe to produce
the consistent anomaly from the covariant anomaly. 17)

Not only about its non-invariance under the gauge transformation, we can see
more directly the validity of the prescription (9) in the continuum limit. The argu-
ment proceeds as follows:

i ImW ′ = −εH
2

∫ 1

0
dt Tr γ5∂tDD−1

= − lim
Λ→∞

εH
2

∫ 1

0
dt Tr γ5∂tDD−1f(D2/Λ2)

a→0→ − lim
Λ→∞

εH
2

∫ 1

0
dt Tr γ5∂tD/D/−1f(D/ 2/Λ2)

= −iεHπη(0) +
iεH
3 · 8π2

∑
α

e3
α

∫
M4×R

AdAdA. (13)

In the first step, we have introduced the regulator f(x), which rapidly goes to zero
as x increases and satisfies f(0) = 1. In the second step, we have exchanged the two
limits a → 0 and Λ → ∞ by assuming the lattice integrals without the regulator f(x)
are finite in the a → 0 limit. Since the corresponding expression in the continuum
field theory is UV finite, once the gauge covariance is imposed, this is a reasonable
assumption. Next, we have assumed the Dirac operator D is free of species doubling
and thus that it diverges rapidly ∼ 1/a in the momentum region corresponding to
species doublers. These momentum regions do not contribute in the a → 0 limit,
because of the existence of f(x): f(1/a2Λ2) a→0→ 0. In the physical momentum region,
we have assumed

D(x) a→0→ icD/ (x), c: real constant, (14)

where D/ (x) is the covariant derivative in continuum field theory, D/ (x) = γµ(∂µ +
iTAµ). (Equation (14) is consistent with the assumed Hermiticity.) Our manipu-
lation is quite similar to that in the general analysis of the continuum limit of the
chiral Jacobian. 20) A detailed account of its justification can be found in Ref. 20).

D
ow

nloaded from
 https://academ

ic.oup.com
/ptp/article/101/5/1147/1821670 by guest on 20 August 2022
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In the final step of Eq. (13), we have appealed to a well-known result in con-
tinuum field theory: 21) - 23) The imaginary part of the effective action is given by
the Atiyah-Patodi-Singer η-invariant (the spectral asymmetry) η(0) plus the Chern-
Simons 5-form. (See, for example, the first reference in Ref. 23) for a heuristic proof
with f(x) = (1 + x)−1/2. Note that the imaginary part is independent of the choice
of f(x).) Equation (13) in fact reproduces the consistent gauge anomaly in the
continuum limit, Eq. (11) with Eq. (12).∗)

We have seen that the prescription (6) is satisfactory in the sense that the
real part is always gauge invariant and, in the continuum limit, the imaginary part
reproduces the correct result of the continuum field theory. In particular, the gauge
invariance of the imaginary part is automatically restored in the continuum limit
when the anomaly is canceled, i.e., when

∑
α e

3
α = 0. However, at this stage, we

cannot say anything regarding the gauge invariant property of the imaginary part (9)
with finite lattice spacing: This was the main reason that the formulation of Ref. 16)
could not be pursued.

Now, Lüscher has given a remarkable proof 14) that the gauge anomaly (12) with
finite lattice spacing has the following structure:∗∗)

A(x) = 1
32π2

∑
α

e3
α εµνρσFµν(x)Fρσ(x+ aµ + aν) + ∂∗

µkµ(x). (15)

(We have used the coefficient in Eq. (12).) In this expression, ∂∗
µ is the backward

difference operator (see Ref. 14)) and kµ(x) is a gauge invariant current that depends
locally on the gauge potential. The proof in Ref. 14) also gives an explicit method
to construct kµ(x). Although the current kµ(x) is not unique, we can fix (partially)
its form by requiring it to transform like the axial vector current under the lattice
transformation. 14), 7)

Once having observed Eq. (15), we may improve the effective action (6) as W =
W ′ +K where

K = iεH

∫ 1

0
dt a4

∑
x

Aµ(x)kµ(x, t). (16)

Since the gauge transformation of the gauge potential is given by δλAµ(x) = ∂µλ(x),
the gauge variation of Eq. (16) is given by

δλK = −iεH

∫ 1

0
dt a4

∑
x

λ(x)∂∗
µkµ(x, t), (17)

∗) The η-invariant is defined by η(0) ≡ ∑
n
signλn from the eigenvalue of the five-dimensional

Hermitian operator H = iγ5∂/∂x5 + D/ . The boundary condition for the gauge field is specified as

Aµ(x, x5 = ∞) = Aµ(x) and Aµ(x, x5 = −∞) = 0, and A5(x, x5) = 0. The four-dimensional gauge

transformation at the plane x5 = ∞ can be regarded as a five-dimensional gauge transformation that

is independent of x5. Under such a gauge transformation, the eigenvalue λn is clearly gauge invariant,

and thus is the η-invariant. On the other hand, the Chern-Simons 5-form in Eq. (13) is not invariant,

and it reproduces the consistent gauge anomaly (11) with Eq. (12) on the boundary x5 = ∞. The

gauge-invariant information of the imaginary part is therefore carried by the η-invariant. 23)

∗∗) The author is grateful to Professor T. Inami for an informative discussion and for pointing

out the importance of this proof in our approach, prior to the publication of Ref. 7).
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because kµ is gauge invariant, i.e., δλkµ = 0. Since ∂∗
µkµ(x) = A(x) from Eq. (15) for

anomaly-free cases, the gauge variation of K (17) in fact cancels the gauge variation
of W ′, Eq. (11). Namely, when the anomaly cancellation condition in the continuum
field theory is fulfilled, the improved effective action W =W ′+K is gauge invariant
even with finite lattice spacing. The improvement term K does not spoil the desired
properties of W ′, because K contributes only the imaginary part of W (kµ(x) trans-
forms like the axial current), and because the current kµ(x) is higher order in a, i.e.,
K

a→0→ 0.
In the remainder of this paper, we show that the above expression of the im-

proved effective actionW =W ′+K corresponds to the formulation of Ref. 7), in the
vacuum sector for an infinite lattice volume. To see this, we consider a variation of
the gauge potential Aµ(x), δηAµ(x) = ηµ(x) and δηAµ(x, t) = tηµ(x). The variation
of the functional (6) is then given by

δηW
′ =

∫ 1

0
dt Tr

(
∂tδηDPHD−1 − εH

2
a∂tDδηDD−1 − ∂tDPHD−1δηDD−1

)
. (18)

The relation (4) follows PHD−1δηD = D−1δηDPH − εHaδηD/2. Therefore we have

δηW
′ =

∫ 1

0
dt (∂tTr δηDPHD−1 − Tr δηD∂tPHD−1)

= Tr δηDPHD−1 + εH

∫ 1

0
dt
1
2
aTr δηD∂tDD−1. (19)

The second term here can be written from Eq. (4) as

1
2
aTr δηD∂tDD−1 = −1

2
aTr δηD∂tDΓ5D−1Γ5 − 1

2
a2Tr δηD∂tDΓ5

= −1
4
a2TrΓ5δηD∂tD

= εHTrPH[∂tPH, δηPH]. (20)

Therefore the variation of W ′ is given by

δηW
′ = Tr δηDPHD−1 +

∫ 1

0
dt TrPH[∂tPH, δηPH]. (21)

Combined with the variation of K (16), the variation of the total effective action
may be expressed as

δηW = δηW
′ + δηK

≡ Tr δηDPHD
−1 + iεHL�

η, (22)

where

L�
η ≡ a4

∑
x

ηµ(x)j�
µ(x)

= −iεH

∫ 1

0
dt TrPH[∂tPH, δηPH] +

∫ 1

0
dt a4

∑
x

[
ηµ(x)kµ(x, t) +Aµ(x)δηkµ(x, t)

]
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= a4
∑
x

ηµ(x)kµ(x)− iεH

∫ 1

0
dt TrPH[∂tPH, δηPH]

+
∫ 1

0
dt a4

∑
x

[
Aµ(x)δηkµ(x, t)− ηµ(x)t∂tkµ(x, t)

]
. (23)

In deriving the last expression, we have performed a partial integration by insert-
ing 1 = ∂t/∂t. It is also easy to see from Eq. (8) that L�

η arises entirely
∗) from K

and the imaginary part of W ′.
Equation (23) is identically the linear functional L�

η in Eq. (5.8) of Ref. 7).
When the lattice volume is infinite and the Dirac operator has no zero modes, the
variation of the effective action in Ref. 7) is given by Eq. (22). (See Eq. (3.8)
of Ref. 7).) Therefore, under the above conditions, the effective action formulated
by Lüscher can be represented as W = W ′ + K, i.e., Eq. (6) plus Eq. (16). The
content of Theorem 5.3 of Ref. 7) also immediately follows in view of Eq. (22):
(a) When the gauge group is Abelian, the variation δη and the gauge variation δλ

commute if η does not depend on the gauge potential. From this, we see that δηW is
gauge invariant because W is gauge invariant. The quantity Tr δηDPHD

−1 is gauge
covariant by construction. This is equivalent to the gauge invariance in the Abelian
case. Therefore L�

η is gauge invariant. (b) L�
η arises from the imaginary part of W .

Thus it is consistent to assume j�
µ(x) (and kµ(x)) transforms like the axial vector

current. (c) (δηδζ − δζδη)W = 0 for the Aµ-independent parameters η and ζ. Using
a calculation that is almost the same as that producing Eq. (20) from Eq. (18)
immediately shows

δη Tr δζDPHD
−1 − δζ Tr δηDPHD

−1 = −TrPH[δηPH, δζPH]. (24)

Therefore L�
η satisfies the integrability condition Eq. (5.9) of Ref. 7). (d) The anoma-

lous conservation law ∂∗
µj

�
µ(x) = A(x) holds (when ∑

α e
3
α = 0) because W is gauge

invariant, and the first term of Eq. (22) produces the gauge anomaly under the gauge
variation δλD = −i[λT,D], as in Eq. (11).

The last line of Eq. (23) implies a difference between the “covariant gauge cur-
rent”, Tr δηDPHD

−1 + iεHa
4 ∑

x ηµkµ, and the “consistent gauge current”,
Tr δηDPHD

−1 + iεHa
4 ∑

x ηµj
�
µ. This quantity is analogous to the quantity in the

continuum field theory that relates the covariant anomaly and the consistent anoma-
ly. 24) - 26), 17) Interestingly, the difference does not contribute to the integral (16),
as can easily be verified. 17) Thus we may use j�

µ(x) instead of kµ(x) in Eq. (16).
Of course, the structure of kµ(x) is simpler and the expression of j�

µ(x) (23) is not
needed in our representationW =W ′+K. The existence of the “integrable current”
j�
µ(x) is important in ensuring

7) the existence of the path integral expression that
corresponds to the effective action W .

It is certainly desirable to perform the present analysis in finite volume.∗∗) The
representation (9) might be useful in identifying a possible lattice counterpart of

∗) For vector-like cases, the imaginary part of the effective action W ′ vanishes identically, and

thus W ′ is gauge invariant. Therefore A = K = 0, and consequently L�
η = 0 in these cases. 7)

∗∗) Some steps of our discussion may be formal due to possible IR divergences. This also prompts

us to pursue an analysis on a finite volume lattice.
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1154 H. Suzuki

the η-invariant. Obtaining a lattice implementation of the t-integrals in Eqs. (6)
and (16) is also an interesting problem. We postpone these for future projects.
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7) M. Lüscher, hep-lat/9811032.
8) R. Narayanan, Phys. Rev. D58 (1998), 097501.
9) F. Niedermayer, talk given at the International Symposium on Lattice Field Theory, Boul-

der 1998, hep-lat/9810026.
10) Y. Kikukawa and A. Yamada, hep-lat/9808026.
11) H. Neuberger, hep-lat/9802033.
12) R. Narayanan and H. Neuberger, Nucl. Phys. B412 (1994), 574; B443 (1995), 305.
13) S. Randjbar-Daemi and J. Strathdee, Phys. Lett. B402 (1997), 134.
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