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Gauge-invariant formalism with a Dirac-mode expansion for confinement
and chiral symmetry breaking
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(Received 19 February 2012; published 31 August 2012)

Using the eigenmode of the Dirac operator 6D ¼ ��D� in quantum chromodynamics (QCD), we

develop a manifestly gauge-covariant expansion and projection of the QCD operators such as the Wilson

loop and the Polyakov loop. With this method, we perform a direct analysis of the correlation between

confinement and chiral symmetry breaking in lattice QCD Monte Carlo calculation on 64 at � ¼ 5:6.

Even after removing the low-lying Dirac modes, which are responsible for chiral symmetry breaking, we

find that the Wilson loop obeys the area law, and the slope parameter corresponding to the string tension,

or confinement force, is almost unchanged. We find also that the Polyakov loop remains to be almost zero

even without the low-lying Dirac modes, which indicates the Z3-unbroken confinement phase. These

results indicate that one-to-one correspondence does not hold between confinement and chiral symmetry

breaking in QCD.

DOI: 10.1103/PhysRevD.86.034510 PACS numbers: 12.38.Gc, 12.38.Aw, 14.70.Dj

I. INTRODUCTION

These days, quantum chromodynamics (QCD) has been

established as the fundamental gauge theory of the strong

interaction. However, nonperturbative properties of low-

energy QCD such as color confinement and chiral symme-

try breaking [1] are not yet well understood, which poses

one of the most difficult problems in theoretical physics.

The nonperturbative QCD has been studied in lattice QCD

[2–6] and various analytical frameworks [7–12].

In particular, it is rather interesting and important to

examine the correlation between confinement and chiral

symmetry breaking [12–19], since a direct relation is not

yet shown between them in QCD. A strong correlation

between them has been suggested by the almost simulta-

neous phase transitions of deconfinement and chiral resto-

ration in lattice QCD both at finite temperature [5,20] and

in a small-volume box [5].

The close relation between confinement and chiral sym-

metry breaking has also been suggested in terms of the

monopole degrees of freedom [12–14]. Here, the monopole

topologically appears in QCD by taking the maximally

Abelian (MA) gauge [21–25]. For example, by removing

the monopoles in the MA gauge, confinement and chiral

symmetry breaking are simultaneously lost in lattice QCD

[13,14] (The instantons also disappear without monopoles

[23]). This indicates an important role of the monopole to

both confinement and chiral symmetry breaking, and these

two nonperturbative QCD phenomena seem to be related

via the monopole. However, as a possibility, removing the

monopoles may be ‘‘too fatal’’ for most nonperturbative

properties. If this is the case, nonperturbative QCD phe-

nomena are simultaneously lost by their cut.

In fact, there remains an important question: ‘‘if only the

relevant ingredient of chiral symmetry breaking is care-

fully removed, how will confinement be in QCD?’’

Considering this question in this paper, we perform a direct

investigation between color confinement and chiral sym-

metry breaking in lattice QCD, using the Dirac-mode

expansion in a gauge-invariant manner [26].

The organization of this paper is as follows. In Sec. II, we

introduce the gauge-invariant formalismwith theDirac-mode

expansion. In Sec. III, we present the operator formalism in

lattice QCD. In Sec. IV, we formulate the Dirac-mode expan-

sion and projection. In Sec. V, we show the lattice results on

the analysis of confinement in terms of the Dirac modes in

QCD. Section VI is devoted to summary and discussions.

II. GAUGE-INVARIANT FORMALISM WITH

DIRAC-MODE EXPANSION

We newly develop a manifestly gauge-covariant expan-

sion of the QCD operator, e.g., the Wilson loop, using the

eigenmode of the QCD Dirac operator 6D ¼ ��D�, and

investigate the relation between confinement and chiral

symmetry breaking.

A. Gauge-covariant expansion in QCD instead

of Fourier expansion

In the previous studies [27,28], we investigated the

relevant gluon momentum region for confinement in lattice

QCD, and found that the string tension �, i.e., the confin-
ing force, is almost unchanged even after removing the

high momentum gluon component above 1.5 GeV in the

Landau gauge. In fact, the confinement property originates

from the low momentum gluon component below 1.5 GeV,

which is the upper limit to contribute to �.
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The previous study on the relevant gluonic modes was

based on the Fourier expansion, i.e., the eigenmode expan-

sion of the momentum operator p�. Because of the com-

mutable nature of ½p�; p�� ¼ 0, all the momentum p� can

be simultaneously diagonalized, which is one of the strong

merits of the Fourier expansion. Also, it keeps Lorentz

covariance.

However, the Fourier expansion does not keep gauge

invariance in gauge theories. Therefore, for the use of the

Fourier expansion in QCD, one has to select a suitable

gauge such as the Landau gauge [27–29], where the gauge

field fluctuation is strongly suppressed in Euclidean QCD.

As the next challenge, we consider a gauge-invariant

method, using a gauge-covariant expansion in QCD in-

stead of the Fourier expansion. In fact, we consider a

generalization of the Fourier expansion or an alternative

expansion with keeping the gauge symmetry.

A straight generalization is to use the covariant derivative

operatorD� instead of the derivative operator @�. However,
due to the noncommutable nature of ½D�; D�� � 0, one

cannot diagonalize all the covariant derivative D� (� ¼ 1,

2, 3, 4) simultaneously, instead only one of them can be

diagonalized. For example, the eigenmode expansion of D4

keeps gauge covariance and is rather interesting, but this type

of expansion inevitably breaks the Lorentz covariance. Thus,

we consider the eigenmode expansion of the Dirac operator

6D ¼ ��D� or D2 ¼ D�D� [30], since such an expansion

keeps both gauge symmetry and Lorentz covariance.

In particular, the Dirac-mode expansion is rather inter-

esting because the Dirac operator 6D directly connects with

chiral symmetry breaking via the Banks-Casher relation

[8] and its zero modes are related to the topological charge

via the Atiyah-Singer index theorem [31]. Here, we mainly

consider the manifestly gauge-invariant new method using

the Dirac-mode expansion. Thus, the Dirac-mode expan-

sion has some important merits:

(i) The Dirac-mode expansion method manifestly keeps

both gauge and Lorentz invariance.

(ii) Each QCD phenomenon can be directly investigated

in terms of chiral symmetry breaking.

B. Eigenmode of Dirac operator in lattice QCD

Now, we consider the Dirac operator and its eigenmodes

in lattice QCD formalism with spacing a in the Euclidean

metric. On the lattice, each site is labeled by x ¼
ðx1; x2; x3; x4Þ with x� being an integer. In lattice QCD,

the gauge field is described by the link variable U�ðxÞ ¼

eiagA�ðxÞ 2 SUðNcÞ, where g is the QCD gauge coupling

and A�ðxÞ 2 suðNcÞ corresponds to the gluon field.

In lattice QCD, the Dirac operator 6D ¼ ��D� is ex-

pressed with U�ðxÞ as

6Dx;y ¼
1

2a

X

4

�¼1

��½U�ðxÞ�xþ�̂;y �U��ðxÞ�x��̂;y�; (1)

where the convenient notation U��ðxÞ � Uy
�ðx� �̂Þ is

used. Here, �̂ denotes the unit vector on the lattice in

�-direction [5].

In this paper, we adopt the hermite definition of the

�-matrix, �y
� ¼ ��. Thus, 6D is anti-hermite and satisfies

6D y
y;x ¼ �6Dx;y: (2)

The normalized eigenstate jni of the Dirac operator 6D is

introduced as

6Djni ¼ i�njni; (3)

with �n 2 R. Because of f�5; 6Dg ¼ 0, the state �5jni is
also an eigenstate of 6D with the eigenvalue �i�n. The

Dirac eigenfunction

c nðxÞ � hxjni; (4)

obeys 6Dc nðxÞ ¼ i�nc nðxÞ, and its explicit form of the

eigenvalue equation in lattice QCD is

1

2a

X

4

�¼1

��½U�ðxÞc nðxþ �̂Þ �U��ðxÞc nðx� �̂Þ�

¼ i�nc nðxÞ: (5)

The Dirac eigenfunction c nðxÞ can be numerically

obtained in lattice QCD apart from a phase factor.

According toU�ðxÞ ! VðxÞU�ðxÞV
yðxþ �̂Þ, the gauge

transformation of c nðxÞ is found to be

c nðxÞ ! VðxÞc nðxÞ; (6)

which is the same as that of the quark field. To be precise,

for the Dirac eigenfunction, an irrelevant n-dependent

global phase factor ei’n½V� appears, according to the arbi-

trariness of the definition of c nðxÞ.
It is notable that the quark condensate h �qqi, the order

parameter of chiral symmetry breaking, is given by the

zero eigenvalue density �ð0Þ of the Dirac operator, via the
Banks-Casher relation [8],

h �qqi ¼ � lim
m!0

lim
V!1

	�ð0Þ: (7)

Here, the spectral density of the Dirac operator is

defined by

�ð�Þ �
1

V

X

n

h�ð�� �nÞi; (8)

with the four-dimensional volume V. Also, the zero-mode

number asymmetry of the Dirac operator 6D is equal to the

topological charge (the instanton number) Q � g2

16	2 �
R

d4x TrðG��
~G��Þ, which is known as the Atiyah-Singer

index theorem, Index ð 6DÞ ¼ Q [31].

In calculating the eigenvalue of the Dirac operator 6D, we

use the Kogut-Susskind (KS) formalism [3,5], which is

often used to remove the redundant doublers of lattice

fermions. Here, the use of the KS formalism is just the
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practical reason to reduce the calculation of the Dirac

eigenvalues. In fact, the result of the Dirac-mode projec-

tion, which will be shown in Sec. IV, is unchanged, when

the Dirac operator is directly diagonalized.

In the KS method, using TðxÞ � �x1
1
�x2
2
�
x3
3
�x4
4

with

��k
� � ð��1

� Þk (k ¼ 1; 2; . . . ), all the gamma matrices ��

are diagonalized as TyðxÞ��Tðx� �̂Þ ¼ 
�ðxÞ1 with the

staggered phase 
�ðxÞ defined by


1ðxÞ � 1; 
�ðxÞ ¼ ð�1Þx1þ���þx��1ð� � 2Þ: (9)

For�nðxÞ � TyðxÞc nðxÞ, theDirac eigenvalue equation has
no spinor index, and the spinor degrees of freedom can be

dropped off, which reduces the lattice-fermion species from

16 to 4 [5]. In the KS method, the Dirac operator ��D� is

replaced by the KS Dirac operator 
�D�,

ð
�D�Þx;y¼
1

2a

X

4

�¼1


�ðxÞ½U�ðxÞ�xþ�̂;y�U��ðxÞ�x��̂;y�;

(10)

and the spinless eigenfunction �nðxÞ satisfies

1

2a

X

4

�¼1


�ðxÞ½U�ðxÞ�nðxþ �̂Þ �U��ðxÞ�nðx� �̂Þ�

¼ i�n�nðxÞ: (11)

In the KS formalism, the chiral partner �5c nðxÞ reduces
into 
5ðxÞ�nðxÞ ¼ ð�1Þx1þx2þx3þx4�nðxÞ, which is an

eigenfunction of 
�D� with the eigenvalue �i�n.

Using the KS formalism [3,5], the Dirac-mode number

L4 � Nc � 4 is reduced to be L4 � Nc on the L4 lattice.

The actual number of the independent Dirac eigenvalue �n

is about L4 � Nc=2, due to the chiral property of the Dirac
operator, i.e., pairwise appearance of ��n.

III. OPERATOR FORMALISM IN LATTICE QCD

To keep the gauge symmetry, careful treatments are

necessary, since naive approximations may break the

gauge symmetry. Here, we take the ‘‘operator formalism’’

[26], as explained below.

We define the link variable operator Û�� by the matrix

element of

hxjÛ��jyi ¼ U��ðxÞ�x��̂;y: (12)

Note that Û� and Û�� are Hermitian conjugate as the

operator in Hilbert space in the sense that

hyjÛy
�jxi ¼ Uy

�ðyÞ�yþ�̂;x ¼ Uy
�ðx� �̂Þ�x��̂;y

¼ U��ðxÞ�x��̂;y ¼ hxjÛ��jyi: (13)

In the operator formalism, Eq. (5) for the Dirac eigenstate

is simply expressed as

1

2a

X

4

�¼1

��ðÛ� � Û��Þjni ¼ i�njni: (14)

In the KS method, where the spinor index is dropped off,

one identifies �nðxÞ ¼ hxjni, and then Eq. (11) for the KS

Dirac eigenstate is expressed as

1

2a

X

4

�¼1


̂�ðÛ� � Û��Þjni ¼ i�njni; (15)

where 
̂� is defined by hxj
̂�jyi ¼ 
�ðxÞ�x;y. Owing to


�ðx� �̂Þ ¼ 
�ðxÞ, one finds 
̂�Û�� ¼ Û��
̂�, so that

there is no ordering uncertainty in the KS Dirac operator in

Eq. (15). In the KS method, the chiral partner �5jni cor-
responds to 
̂5jni, where 
̂5 is defined by the matrix

element hxj
̂5jyi ¼ 
5ðxÞ�x;y ¼ ð�1Þx1þx2þx3þx4�x;y. Due

to 
5ðx� �̂Þ ¼ �
5ðxÞ, we note 
̂5Û�� ¼ �Û��
̂5.

In the following, we mainly use the ordinary Dirac

operator ��D� and the spinor eigenfunction c nðxÞ ¼

hxjni. When the KS method is applied, one only has to

use the identification of �nðxÞ ¼ hxjni in the following

arguments. The final results are the same between both

calculations based on ��D� and 
�D�.

The Wilson loop operator Ŵ is defined as the product of

Û� along a rectangular loop,

Ŵ �
Y

N

k¼1

Û�k
¼ Û�1

Û�2
� � � Û�N

: (16)

For arbitrary loops, one finds
P

N
k¼1

�̂k ¼ 0. We note that

the functional trace of the Wilson loop operator Ŵ is

proportional to the ordinary vacuum expectation value

hWi of the Wilson loop:

TrŴ ¼ tr
X

x

hxjŴjxi ¼ tr
X

x

hxjÛ�1
Û�2

� � � Û�N
jxi

¼ tr
X

x1;x2;���;xN

hx1jÛ�1
jx2ihx2jÛ�2

jx3ihx3jÛ�3
jx4i � � � hxNjÛ�N

jx1i

¼ tr
X

x

hxjÛ�1
jxþ �̂1ihxþ �̂1jÛ�2

jxþ
X

2

k¼1

�̂ki � � � hxþ
X

N�1

k¼1

�̂kjÛ�N
jxi

¼
X

x

tr

�

U�1
ðxÞU�2

ðxþ �̂1ÞU�3

�

xþ
X

2

k¼1

�̂k

�

� � �U�N

�

xþ
X

N�1

k¼1

�̂k

��

¼ hWi � Tr1: (17)
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Here, ‘‘Tr’’ denotes the functional trace, and ‘‘tr’’ denotes

the trace over SU(3) color index.

The Dirac-mode matrix element of the link variable

operator Û� can be expressed with c nðxÞ:

hmjÛjni ¼
X

x

hmjxihxjÛ�jxþ �̂ihxþ �̂jni

¼
X

x

c y
mðxÞU�ðxÞc nðxþ �̂Þ: (18)

Although the total number of the matrix element is very

huge, the matrix element is calculable and gauge-invariant,

apart from an irrelevant phase factor. Using the gauge

transformation (6), we find the gauge transformation of

the matrix element as

hmjÛ�jni¼
X

x

c y
mðxÞU�ðxÞc nðxþ�̂Þ

!
X

x

c y
mðxÞVyðxÞ �VðxÞU�ðxÞ

�Vyðxþ�̂Þ �Vðxþ�̂Þc nðxþ�̂Þ

¼
X

x

c y
mðxÞU�ðxÞc nðxþ�̂Þ¼ hmjÛ�jni: (19)

To be precise, an n-dependent global phase factor appears,
corresponding to the arbitrariness of the phase in the basis

jni. However, this phase factor cancels as e�i’nei’n ¼ 1

between jni and hnj, and does not appear for QCD physical

quantities including the Wilson loop and the Polyakov

loop.

In the practical lattice-QCD calculation, we adopt the

KS formalism to reduce the computational complexity, as

mentioned in Sec. II B. In the KS method, instead of c nðxÞ,
we use the spinless eigenfunction �nðxÞ of the KS Dirac

operator 
�D�, with the identification of �nðxÞ ¼ hxjni,

and the KS-reduced matrix element of Û� is expressed as

hmjÛjni ¼
X

x

hmjxihxjÛ�jxþ �̂ihxþ �̂jni

¼
X

x

�y
mðxÞU�ðxÞ�nðxþ �̂Þ: (20)

In the arguments in the next section, the same results are

obtained between the calculations based on the original

Dirac operator ��D� and the KS Dirac operator 
�D�.

IV. DIRAC-MODE EXPANSION AND PROJECTION

A. General definition of Dirac-mode expansion

and projection

From the completeness of the Dirac-mode basis,
P

njnihnj ¼ 1, we get

Ô ¼
X

m

X

n

jmihmjÔjnihnj; (21)

for arbitrary operators. Based on this relation, the Dirac-

mode expansion and projection can be defined [26]. We

define the projection operator P̂ which restricts the Dirac-

mode space,

P̂ �
X

n2A

jnihnj; (22)

where A denotes an arbitrary set of Dirac modes. In P̂, the
arbitrary phase cancels between jni and hnj. One finds

P̂2 ¼ P̂ and P̂y ¼ P̂. The typical projections are IR cut

and UV cut of the Dirac modes:

P̂ IR �
X

j�nj��IR

jnihnj; P̂UV �
X

j�nj��UV

jnihnj: (23)

Using the projection operator P̂, we define the Dirac-

mode projected link variable operator,

Û P
� � P̂Û�P̂ ¼

X

m2A

X

n2A

jmihmjÛ�jnihnj: (24)

During this projection, there appears to be some nonlocal-

ity in general, but it would not be important for the argu-

ment of large-distance properties such as confinement.

Each lattice QCD configuration is characterized by the

set of the link variable fU�ðsÞg, or equivalently, the link

variable operator fÛ�g, and then the Dirac-mode projec-

tion is described by the replacement of fÛ�g by fÛP
�g.

In fact, the Dirac-mode projection of QCD physical

quantities hO½U�ðsÞ�i or TrÔ½Û�� can be defined by the

replacement of

Tr Ô½Û�� ! TrÔ½ÛP
��: (25)

Also in full QCD, after the integration over the quark

degrees of freedom, all the QCD physical quantities can

be written by hO½U�ðsÞ�i or TrÔ½Û��, so that the Dirac-

mode projection can be applied in the same way.

B. Dirac-mode expansion and projection

of the Wilson loop

In this subsection, we consider the Dirac-mode expan-

sion and projection of the Wilson loop hWðR; TÞi /

TrŴðR; TÞ corresponding to the R� T rectangular loop.

For the ordinary Wilson loop hWðR; TÞi, its area law

indicates the confinement phase of the QCD vacuum and

the linear arising potential between static quark and anti-

quark in the infrared region [5].

From the Wilson loop operator Ŵ �
Q

N
k¼1

Û�k
, we get

the Dirac-mode expansion of the Wilson loop as

TrŴ¼Tr
Y

N

k¼1

Û�k
¼TrðÛ�1

Û�2
���Û�N

Þ

¼ tr
X

n1;n2;���;nN

hn1jÛ�1
jn2ihn2jÛ�2

jn3i���hnNjÛ�N
jn1i:

(26)

Based on this expression, we investigate the role of specific

Dirac modes on the area law of the Wilson loop. In fact, if
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some Dirac modes are essential to reproduce the area law

of the Wilson loop or the confinement property, the re-

moval of the coupling to these modes leads to a significant

change on the area law.

In this way, we try to answer the question: ‘‘Are there

any relevant Dirac modes responsible to the area law of the

Wilson loop?’’

To this end, we define the Dirac-mode projected Wilson

loop operator,

ŴP �
Y

N

k¼1

ÛP
�k

¼ ÛP
�1
ÛP

�2
� � � ÛP

�N

¼ P̂Û�1
P̂Û�2

P̂ � � � P̂Û�N
P̂

¼
X

n1;n2;���;nNþ12A

jn1ihn1jÛ�1
jn2i

� hn2jÛ�2
jn3i � � � hnNjÛ�N

jnNþ1ihnNþ1j: (27)

Then, we obtain the functional trace of the Dirac-mode

projected Wilson loop operator,

TrŴP ¼ Tr
Y

N

k¼1

ÛP
�k

¼ TrÛP
�1
ÛP

�2
� � � ÛP

�N

¼ TrP̂Û�1
P̂Û�2

P̂ � � � P̂Û�N
P̂

¼ tr
X

n1;n2;���;nN2A

hn1jÛ�1
jn2i

� hn2jÛ�2
jn3i � � � hnNjÛ�N

jn1i; (28)

which is manifestly gauge invariant. Here, the arbitrary

phase factor cancels between jnki and hnkj. Its gauge

invariance is also numerically checked in the lattice QCD

Monte Carlo calculation.

The original Wilson loop operator ŴðR; TÞ couples to all

the Dirac modes, and TrŴðR; TÞ obeys the area law,

Tr ŴðR; TÞ / hWðR; TÞi / e��RT ; (29)

for large R and T. Here, the slope parameter � corresponds

to the string tension, or confinement force. For the restric-

tion of the Dirac-mode space to be A, we investigate the

Dirac-mode projected Wilson loop operator ŴPðR; TÞ,
which couples to the restricted Dirac modes. If the re-

moved Dirac modes are essential for the confinement

property or the area-law behavior of the Wilson loop, a

large change is expected on the behavior of TrŴPðR; TÞ. If
not, no significant change is expected on the behavior of

TrŴPðR; TÞ. In fact, one can investigate the role of the

removed Dirac modes to confinement by checking the

area-law behavior of TrŴPðR; TÞ and the slope parameter

�P, which is formally written as

�P � � lim
R;T!1

1

RT
lnfTrŴPðR; TÞg: (30)

C. Corresponding Dirac-mode projected

interquark potential

For the estimation of the slope parameter �P from

TrŴPðR; TÞ, we define the corresponding Dirac-mode pro-

jected interquark potential,

VPðRÞ � � lim
T!1

1

T
lnfTrŴPðR; TÞg; (31)

which is also manifestly gauge invariant. To be precise,

because of the nonlocality appearing in the Dirac-mode

projection, VPðRÞ does not have a definite meaning of the

static potential. However, it is still useful to obtain �P in

Eq. (30) from TrŴPðR; TÞ. In fact, �P is obtained from the

infrared slope of VPðRÞ. Note also that, in the unprojected

case of P̂ ¼ 1, the ordinary interquark potential is obtained

apart from an irrelevant constant,

VðRÞ ¼ � lim
T!1

1

T
lnfTrŴðR; TÞg

¼ � lim
T!1

1

T
lnhWðR; TÞi þ irrelevant const; (32)

because of TrŴ ¼ hWi � Tr1, as was derived in Eq. (17).

V. ANALYSIS OF CONFINEMENT IN TERMS

OF DIRAC MODES IN QCD

We consider various projection space A in the

Dirac-mode space, e.g., IR cut or UV cut of Dirac modes.

With this Dirac-mode expansion and projection formalism,

we calculate the Dirac-mode projected Wilson loop

TrWPðR; TÞ in a gauge-invariant manner. In particular,

using IR cut of the Dirac modes, we directly investigate

the relation between chiral symmetry breaking and con-

finement as the area-law behavior of the Wilson loop, since

the low-lying Dirac modes are responsible to chiral sym-

metry breaking.

As a technical difficulty of this formalism, we have to

deal with huge dimensional matrices and their products.

Actually, the total matrix dimension of hmjÛ�jni is

ðDirac-modenumberÞ2. On the L4 lattice, the Dirac-mode

number is L4 � Nc � 4, which can be reduced to be

L4 � Nc, using the KS formalism [3,5], as mentioned in

Sec. II B. The actual number of the independent Dirac

eigenvalue �n is about L4 � Nc=2, due to the chiral prop-

erty of 6D, i.e., pairwise appearance of ��n. Even for

the projected operators, where the Dirac-mode space is

restricted, the matrix is generally still huge. In addition,

we have to deal with the product of the huge matrices

hmjÛ�jni in calculating the Wilson loop. Thus, at present,

we use a small-size lattice in the numerical calculation.

In this paper, we perform the SU(3) lattice QCD Monte

Carlo calculation with the standard plaquette action at � ¼
5:6 on 64 at the quenched level, using the pseudo-heat-bath
algorithm. The ordinary periodic boundary condition is

used for the link variable. The gauge configurations are
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taken every 500 sweeps after 10,000 sweeps thermaliza-

tion, and 20 gauge configurations are used for each analy-

sis. At � ¼ 5:6, the lattice spacing a is estimated as

a ’ 0:25 fm, i.e., a�1 ’ 0:8 GeV, which leads to the string

tension � ’ 0:89 GeV=fm in the interquark potential (This

estimate is done also on a larger volume lattice). Then, the

total volume is V ¼ ð6aÞ4 ’ ð1:5 fmÞ4, and the momentum

cutoff is 	=a ’ 2:5 GeV.

On the 64 lattice, the Dirac-mode number is 64 � 3�
4 ¼ 15; 552, which is reduced to 64 � 3 ¼ 3; 888 using the
KS formalism. In fact, the KS Dirac operator 
�D� and

the KS-reduced matrix element hmjÛ�jni are expressed by

3; 888� 3; 888 matrix. Considering the pairwise appear-

ance of �n and��n, the actual number of the independent

Dirac eigenvalue �n is reduced to be around 64 � 3=2 ¼
1; 944.

To diagonalize the KS Dirac operator 
�D�, we use

Linear Algebra PACKage (LAPACK) [32]. For the statis-

tical error on the lattice data, we adopt the jackknife error

estimate [5].

We show in Fig. 1(a) the spectral density �ð�Þ of the
QCD Dirac operator 6D. The chiral property of 6D leads to

�ð��Þ ¼ �ð�Þ. Figure 1(b) is the IR-cut Dirac spectral

density

�IRð�Þ � �ð�Þ�ðj�j ��IRÞ (33)

with the IR cutoff �IR ¼ 0:5a�1 ’ 0:4 GeV.

Note that, using the eigenvalue �n, the quark condensate

h �qqi is obtained as

h �qqi ¼ �
1

V
Tr

1

6Dþm
¼ �

1

V

X

n

1

i�n þm

¼ �
1

V

�

X

�n>0

2m

�2
n þm2

þ
�

m

�

; (34)

where � is the total number of the zero mode of 6D. Here,

the nonzero eigenvalues appear as pairwise, which makes

h �qqi real. (In lattice QCD, one has to take account of the

doubler contribution, which can be regarded as flavor at the

quenched level.) Then, in the presence of the IR cut�IR for

the Dirac eigenmode, the quark condensate is obtained as

h �qqi�IR
¼ �

1

V

X

�n��IR

2m

�2
n þm2

: (35)

We show in Fig. 2 the lattice QCD result of the quark

condensate h �qqi�IR
as a function of the current quark mass

m in the presence of IR cut �IR.

By removing the low-lying Dirac modes, the chiral

condensate h �qqi is largely reduced, reflecting the Banks-

Casher relation. Actually, directly from lattice QCD cal-

culation, we find a large reduction of the chiral condensate

in the presence of the IR cut �IR ¼ 0:5a�1 ’ 0:4 GeV,

h �qqi�IR

h �qqi
’ 0:02; (36)

around the physical region of m ’ 0:006a�1 ’ 5 MeV

[33], as shown in Fig. 2.

Now, let us consider the removal of the coupling to the

low-lying Dirac modes from the Wilson loop hWðR; TÞi.
Figure 3 shows the Dirac-mode projected Wilson loop

hWPðR; TÞi � TrŴPðR; TÞ after removing low-lying

Dirac modes, which is obtained in lattice QCD with the

IR cut of �IRð�Þ � �ð�Þ�ðj�j ��IRÞ with the IR cutoff

�IR ¼ 0:5a�1. Even after removing the coupling to the

low-lying Dirac modes, which are responsible to chiral

symmetry breaking, the Dirac-mode projected Wilson

loop is found to obey the area law as

hWPðR; TÞi / e��PRT ; (37)

and the slope parameter �P corresponding to the string

tension, or confinement force, is almost unchanged as

�P ’ �: (38)

In fact, the confinement property seems to be kept in the

absence of the low-lying Dirac modes or the essence of
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FIG. 1 (color online). (a) The spectral density �ð�Þ of the

Dirac operator in lattice QCD at � ¼ 5:6 and 64. The

negative-� region is omitted, because of �ð��Þ ¼ �ð�Þ. The
volume V is multiplied. (b) The IR-cut Dirac spectral density

�IRð�Þ � �ð�Þ�ðj�j ��IRÞ with the IR cutoff �IR ¼ 0:5a�1 ’
0:4 GeV.
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chiral symmetry breaking [26]. This result indicates that

one-to-one correspondence does not hold for confinement

and chiral symmetry breaking in QCD.

Next, to estimate the slope parameter �P, we consider

the potential VPðRÞ obtained from hWPðR; TÞi. Figure 4

shows the ‘‘effective mass’’ of the interquark potential

VeffðR; TÞ � ln½hWPðR; TÞi=hWPðR; T þ 1Þi� after remov-

ing the low-lying Dirac modes, plotted against T at each R.
One finds the ‘‘plateau’’ or the stability of the effective

mass VeffðR; TÞ against T, which means the dominance of

the ground-state component. Similarly, in the standard

procedure to obtain potentials in lattice QCD [5,34], we

determine the interquark potential VPðRÞ by the exponen-

tial fit of the Wilson loop

hWPðR; TÞi ¼ Ce�VPðRÞT (39)

for T ¼ 1, 2, 3, which corresponds to the plateau region of

T ¼ 1, 2 in VeffðR; TÞ. Figure 5 shows the Dirac-mode

projected interquark potential VPðRÞ after removing low-

lying Dirac modes below the IR cutoff �IR ¼ 0:5a�1. No

significant change is observed on the interquark potential

besides an irrelevant constant, that is, the slope parameter

�P is almost unchanged, even after removing the low-lying

Dirac modes.

 0
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FIG. 2 (color online). The lattice QCD result of the quark

condensate h �qqi�IR
as a function of the current quark mass m

in the presence of IR cut �IR ¼ 0:5a�1. The vertical axis is

normalized by the original value of h �qqi without cut. A large

reduction is found as h �qqi�IR
=h �qqi ’ 0:02 for �IR ¼ 0:5a�1 ’

0:4 GeV around the physical region of m ’ 0:006a�1 ’ 5 MeV.
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FIG. 3 (color online). The lattice QCD result of the Dirac-

mode projected Wilson loop hWPðR; TÞi � TrŴPðR; TÞ after

removing low-lying Dirac modes, plotted against the area R�
T. Circles denote the Wilson loop obtained with the IR cut of

�IRð�Þ � �ð�Þ�ðj�j ��IRÞ with the IR cutoff �IR ¼ 0:5a�1.

Squares denote the original Wilson loop hWðR; TÞi. hWPðR; TÞi
seems to obey the area law with the same slope parameter,

�P ’ �.
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FIG. 4 (color online). The effective mass plot of the interquark

potential VeffðR; TÞ � ln½hWPðR; TÞi=hWPðR; T þ 1Þi� after re-

moving the low-lying Dirac modes. VeffðR; TÞ is plotted against

T for each R. The horizontal lines denote the best-fit value in the
exponential fit of Eq (39) at each R.

 0.5

 1

 1.5

 0  1  2  3

V
(R

)[
a-1

]

R[a]

FIG. 5 (color online). The lattice QCD result (circles) of the

interquark potential VPðRÞ after removing low-lying Dirac

modes below the IR cutoff �IR ¼ 0:5a�1. Squares denote the

original interquark potential. The potential is almost unchanged

even after removing the low-lying Dirac modes, apart from an

irrelevant constant.
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On the potential argument, we comment on the non-

locality stemming from the Dirac-mode projection, which

makes the link variable extended and makes the potential

meaning vague. This nonlocality appears hypercubic sym-

metrically in the four-dimensional space-time, and its ef-

fect would be maximal for the IR-cut case. As a whole,

such a nonlocality makes the potential flat, because of the

spatial averaging. (As an extreme example, the ‘‘potential’’

between wall-like sources is completely flat.) However, our

obtained potential is almost the same as the original con-

fining one, in spite of the possible flattening effect by the

nonlocality. Therefore, regardless of the nonlocality, the

confinement is kept after cutting off the low-lying Dirac

modes (Since no flattening effect is observed in this pro-

jection, the nonlocality effect would not be significant, at

least for the argument of confinement).

As another way to clarify the confinement on the peri-

odic lattice, we also investigate the Polyakov loop hLPi �
htr

Q

L
t¼1

U4ð ~x; tÞi=3 and the center Z3-symmetry [5] in

terms of the Dirac-mode projection. The Polyakov loop

hLPi, which is usually used at finite temperature, can also

be applied to our temporally periodic system on the link

variable, and it physically relates to the quark single-

particle energy and the Z3-symmetry [5]. Note that the

nonlocality effect is less significant for the Polyakov loop

hLPi or the quark single-particle energy.

Now, we calculate the Polyakov loop with cutting off of

the low-lying Dirac modes,

hLPiIR �
1

3

1

V

�

Tr

�

Y

L

k¼1

ÛP
4

��

¼
1

3

1

V
hTrfðÛP

4 Þ
Lgi; (40)

and its scatter plot, using the same lattice (64,� ¼ 5:6) and
the same IR cutoff �IR ¼ 0:5a�1. In the use of the full

Dirac modes, i.e., P̂ ¼ 1, hLPiIR coincides with hLPi. We

show in Fig. 6 the scatter plot of the Polyakov loop hLPiIR
after cutting off the low-lying Dirac modes below �IR ¼
0:5a�1. We find that the IR-cut Polyakov loop hLPiIR
remains to be almost zero, i.e., hLPiIR ’ 0, which corre-

sponds to the Z3-unbroken phase. In fact, even after re-

moving the low-lying Dirac modes, which are responsible

to chiral symmetry breaking, the single-quark energy is

extremely large and the system is in the Z3-unbroken

confinement phase.

We also investigate the UV cut of Dirac modes in lattice

QCD, using the UV-cut Dirac spectral density �UVð�Þ �
�ð�Þ�ð�UV � j�jÞ with the UV cutoff �UV ¼ 2a�1 ’
1:6 GeV. In this case, unlike the IR cut, the chiral conden-

sate is almost unchanged, and chiral symmetry breaking is

almost kept. We show in Fig. 7 the UV-cut Wilson loop and

the corresponding interquark potential, after removing the

UV Dirac modes. We find that the area-law behavior of the

Wilson loop and the slope parameter �P are almost un-

changed by the UV cut of the Dirac modes. This result

seems consistent with the pioneering lattice study of

Synatschke-Wipf-Langfeld [17]: they found that the

confinement potential is almost reproduced only with

low-lying Dirac modes using the spectral sum of the

Polyakov loop [16,35].

Furthermore, we examine ‘‘intermediate (IM) cut’’,

where a certain part of �1 < j�nj<�2 of Dirac modes

is removed. Unfortunately, when the wide region of Dirac

modes is removed, the statistical error becomes quite large

for the Dirac-mode projected Wilson loop. Here, we

remove the IM Dirac modes of 0:5–0:8½a�1�,
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FIG. 6 (color online). The scatter plots of the Polyakov loop.

The left panel shows the original Polyakov loop hLPi. The right
panel shows the Polyakov loop hLPiIR after cutting off the low-

lying Dirac modes below the IR cutoff �IR ¼ 0:5a�1.
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0:8–1:0½a�1�, and 1:0–1:2½a�1�, respectively, and investi-

gate the corresponding IM-cut Wilson loop and the corre-

sponding interquark potential in each case, as shown in

Fig. 8. For each case, the area-law behavior of the Wilson

loop and the slope parameter �P are found to be almost

unchanged by the IM cut of the Dirac modes.

Thus, from the above lattice QCD results, we conclude

that there is no specific region of the Dirac modes respon-

sible to the confinement in QCD, unlike the chiral symme-

try breaking. Instead, we conjecture that the ‘‘seed’’ of

confinement is distributed not only in low-lying Dirac

modes, but also in a wider region of the Dirac-mode space.

VI. SUMMARYAND DISCUSSIONS

We have developed a manifestly gauge-covariant expan-

sion and projection using the eigenmode of the QCD

Dirac operator 6D ¼ ��D�. With this method, we have

performed a direct investigation of correspondence

between confinement and chiral symmetry breaking in

SU(3) lattice QCD on the 64 periodic lattice at � ¼ 5:6
at the quenched level. We have found that the Wilson loop

remains to obey the area law, and the slope parameter

corresponding to the string tension, or confinement force,

is almost unchanged, even after removing the low-lying

Dirac modes, which are responsible to chiral symmetry

breaking. We have also found that the Polyakov loop

remains to be almost zero even without the low-lying

Dirac modes, which indicates the Z3-unbroken confine-

ment phase. These results indicate that one-to-one corre-

spondence does not hold between confinement and chiral

symmetry breaking in QCD.

As a caution, we have used a coarse and small lattice,

because of the technical difficulty to diagonalize the full

Dirac operator. In particular, the box size of our lattice

volume is about 1.5 fm. In fact, to be precise, this region we

survey is the intermediate distance, of which confining

behavior is rather important for the quark-hadron physics.
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To obtain more a definite conclusion, especially on the

asymptotic confining behavior of the potential, it is desired

to perform larger-volume lattice QCD calculations and to

cut various wider regions of the Dirac modes, although it is

technically quite difficult.

Our strategy is to investigate the relation between the

nonperturbative properties of QCD, by extracting or re-

moving the essence of chiral symmetry breaking. This is

similar to the demonstration of Abelian/monopole domi-

nance [9,12–14,21–25,36] or center/vortex dominance

[15,37,38] for nonperturbative properties. However, while

the previous scenario has been done in a specific gauge, our

new method is manifestly gauge invariant. In this analysis,

we have carefully amputated only the ‘‘essence of chiral

symmetry breaking’’ by cutting off the low-lying Dirac

modes. Then, we have artificially realized the ‘‘confined

but chiral restored situation’’ in QCD.

Recently, Lang and Schrock studied the hadron spectra

after the cut of the low-lying Dirac modes [39]. Since the

quark propagator is directly expressed with the Dirac

operator 6D, the Dirac-mode projection is straightforward,

and a complicated projection procedure is not necessary in

such studies. In their study, although the confinement was

not checked, the appearance of hadronic spectra seems to

suggest the existence of the confinement force, even after

cutting the low-lying Dirac modes.

Next, we comment on the possible relation among con-

finement, chiral symmetry breaking, and monopoles in

QCD. There is a close relation between confinement and

chiral symmetry breaking through themonopoles in theMA

gauge [12–14]. Themonopolewould be essential degrees of

freedom for most nonperturbative QCD: confinement [22],

chiral symmetry breaking [13,14], and instantons [23]. In

fact, removing the monopole would be ‘‘too fatal’’ for the

nonperturbative properties, so that nonperturbative QCD

phenomena are simultaneously lost by their cut. On the

approximate coincidence of the critical temperatures of

deconfinement and chiral restoration, a large change of

monopoles may lead to both phase transitions [13], since

the global connection of the monopole current seems to be

largely changed around the QCD phase transition [24].

As for the recent finite-temperature QCD analysis, a

lattice QCD group has reported a certain difference

between the ‘‘critical temperatures’’ of deconfinement

and chiral restoration, which are determined by the sus-

ceptibility peak of the Polyakov loop and chiral conden-

sate, respectively [40]. This may also be indirect evidence

of ‘‘confinement � chiral symmetry breaking’’ in QCD.

Next, we briefly discuss the role of low-lying Dirac

modes in the viewpoint of instantons in QCD. The Dirac

zero-mode associated with an instanton is localized around

it [11]. However, the localized objects are hard to contrib-

ute to the large-distance phenomenon of confinement,

although such low-lying Dirac modes contribute to chiral

symmetry breaking. Recall that instantons contribute to

chiral symmetry breaking, but do not directly lead to

confinement [11]. Then, as a thought experiment, if only

instantons can be carefully removed from the QCD vac-

uum, confinement properties would be almost unchanged,

but the chiral condensate is largely reduced, and accord-

ingly some low-lying Dirac modes disappear. Thus, in this

case, confinement is almost unchanged, in spite of the large

reduction of low-lying Dirac modes.

If the relation between confinement and chiral symmetry

breaking is not one-to-one in QCD, richer phase structure

is expected in QCD. For example, the phase transition

point can be different between deconfinement and chiral

restoration in the presence of strong electromagnetic fields,

because of their nontrivial effect on chiral symmetry [41].

It is also interesting to investigate the similar analysis at

finite temperatures in lattice QCD. The full QCD calcula-

tion in this direction is also an interesting subject.
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