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Abstract. We develop further our extension of the Ellis–Bruni covariant and gauge-invariant
formalism to the general relativistic treatment of density perturbations in the presence of
cosmological magnetic fields. We present a detailed analysis of the kinematical and dynamical
behaviour of perturbed magnetized FRW cosmologies containing fluid with non-zero pressure.
We study the magnetohydrodynamical effects on the growth of density irregularities during the
radiation era. Solutions are found for the evolution of density inhomogeneities on small and
large scales in the presence of pressure, and some new physical effects are identified.

PACS numbers: 9880H, 0440N, 4775, 9530Q, 9862E, 0420

1. Introduction

In a recent article [1] we examined the behaviour of cosmological density perturbations in
a universe containing a large-scale primordial magnetic field, by means of the Ellis and
Bruni covariant and gauge-invariant approach [2]. Our assumptions were: first, that the
conductivity of the medium is infinite; and second, that the background universe, though
permeated by a coherent magnetic field, remains spatially isotropic to leading order. The
first approximation is a standard simplification of Maxwell’s equations, ignoring any large-
scale electric field, while preserving the desired coupling between matter and the magnetic
field. The second approximation was introduced at a later stage of our analysis, to allow
the direct comparison between our results and those from previous Newtonian treatments.
Starting from a general, inhomogeneous and anisotropic, cosmological model we provided
the exact, fully nonlinear, evolution formulae for all the basic gauge-invariant variables.
These equations are valid irrespective of the field’s strength and can be linearized about
a ‘variety’ of smooth background universes. In [1], the main objective was to establish a
fully relativistic treatment of magnetized density perturbations. To achieve this, we focused
upon the dust era and compared our results to those obtained earlier by the Newtonian
treatments of Ruzmaikina and Ruzmaikin [3] and Wasserman [4]. In addition to the desired
agreement with the non-relativistic analysis, our method suggested weak corrections to
the evolution of density disturbances. These are generated by both the isotropic and the
anisotropic pressure that the magnetic field introduces into the cosmological model. Our
results confirmed the relative unimportance of the field for the evolution of superhorizon-
sized density disturbances.
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This paper extends our study to the radiation era by including the isotropic pressure
of a perfect fluid in the calculations. During this period the kinematic evolution of the
universe follows more complicated patterns than in the dust era. The sources of the
extra complexities are changes in the fluid motion due to its non-vanishing pressure, which
manifest themselves in a number of ways. For instance, the acceleration of the fluid depends
now on pressure gradients as well as on the spatial variations of the magnetic field, with
the two of them not necessarily acting in the same sense. So, unlike the pressure-free case,
the field vector and the fluid acceleration are generally not orthogonal. Moreover, the time
derivative of the magnetic field is no longer a spacelike 3-vector. All these factors leave
their trace on the kinematics of the universe and further complicate its dynamic evolution.
It should be emphasized that we do not consider plasma-physics complexities induced by
dissipative stresses in the energy–momentum tensor of the fluid. A separate study of this
magnetohydrodynamical problem, both at linear and nonlinear level, is possible due to the
conformal invariance of the stress tensor and can be found in Subramanian and Barrow
[5]. These studies provide a mathematical and physical basis for the evaluation of the
observational effects of cosmological magnetohydrodynamics. The existence of magnetic
fluctuations can have observable effects on the structure of the microwave background
on small angular scales and these can be seen by future microwave background satellite
missions if the magnetic field is strong enough to influence the formation of large-scale
structure. Subramanian and Barrow [6] have shown that in general for a tangled magnetic
field with a strengthB0 ∼ 3× 10−9 G, one can expect a RMS microwave background
anisotropy signal of the order of 5µK or larger, depending on the angular scale. The
anisotropy in hot or cold spots could be several times larger. The formalism we have
developed can also be used to trace the effects of the damping of magnetic field fluctuations
on the photon and neutrino spectra emerging from the radiation era. On superhorizon scales
the field evolves as though quasi-homogeneous and will create small expansion anisotropies
which will produce anisotropies in the microwave background temperature distribution. The
existing observational data allows us to place upper limits of 6.8× 10−9(�0h

2)1/2 G on
the present strength of anyuniform (spatially homogeneous) component of the magnetic
field [7, 8] (�0 is the present density parameter andh the Hubble constant in units of
100 km s−1 Mpc−1).

In this report we examine the case of a perturbed spatially flat Friedmann–Robertson–
Walker (FFRW) magnetized universe filled with a single barotropic perfect fluid and derive
the linear equations that determine its evolution. We consider the evolution of the basic
kinematic and dynamic quantities and the magnetohydrodynamical effects upon them. We
show that, in regions of subhorizon size, gradients in the energy density of the field, together
with those in the fluid, decelerate the universal expansion and act as sources of positive
spatial curvature. It also appears that the field tends to smooth out the curvature of the
underlying 3-surfaces and, depending on the spatial curvature, it can act as a source of
slightly accelerated expansion.

Given the current interest in structure formation, we provide a set of four linear first-
order differential equations that governs the linear evolution of1, the scalar variable that
determines the gravitational clumping of matter and describes the formation of structure
directly. During the radiation epoch the energy density of the fluid and that of the magnetic
field fall as the inverse fourth power of the scale factor. As a result, the Alfvén velocity
is time independent and our system of four differential equations becomes easier to handle.
We provide analytic solutions at both limits of the wavelength spectrum and compare them
to those of a non-magnetic universe. We show that although the density inhomogeneities
retain their basic evolutionary patterns, the role of the field as an agent opposing their
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growth is clear. In particular, large-scale perturbations undergo a power-law evolution,
similar to that of the non-magnetized case, but their growth rate is reduced by an amount
proportional to the field’s relative strength. At the opposite end of the spectrum the density
contrast continues to oscillate. Here, the extra magnetic pressure has simply reduced the
oscillation period. The conclusion is that during the radiation era the magnetic effects
are just supplementary to those induced by the pressure of the relativistic fluid. After the
radiation era ends, the field becomes the sole source of pressure in regions exceeding the
Jeans length associated at the time. We find, in agreement with our earlier conclusions (see
[1]), that any large-scale magnetic influence ceases completely by the later stages of the
dust era, although at earlier times it could have forced the density contrast to enter a brief
oscillatory phase. The negative role of the field is also confirmed in the subhorizon regions.
On scales between the Jeans length and the horizon, the magnetic field slows the power-law
growth of the inhomogeneities by an amount depending on its relative strength.

In [1] we considered a general FRW universe, allowing for spatially open and closed
unperturbed backgrounds. However, it is important to recognize that the gauge invariance of
the magnetic field perturbations holds if and only if the underlying spatial sections are flat.
Accordingly, all equations in [1] must be linearized about an FFRW universe and every
variable representing spatial curvature should be treated as a perturbation. As a result,
terms in the linearized formulae of [1] that contain the background 3-curvature constant are
nonlinear and can be dropped at first order. This does not affect the results presented there
but restricts their validity to almost-FFRW models. Notice that the gauge invariance of the
magnetic field gradients still holds within a perturbed Bianchi-I universe due to the latter’s
spatial flatness. In appendix A we give a full account of this question.

2. Preliminaries

2.1. Kinematic variables

Following [9, 10], we assume that the average motion of matter in the universe defines a
future-directed velocity 4-vector,ui , corresponding to afundamental observer(uiui = −c2),
and generates a unique splitting of spacetime into ‘time’ and ‘space’ (1+3 decomposition).
For any tensorial quantityT , the directional derivativeṪ = T;iui = ui∇iT denotes
differentiation along the fluid-flow lines. The second-order symmetric tensorhij =
gij + uiuj/c2 projects orthogonal toui onto what is known as the observer’sinstantaneous
3D rest space6⊥†. We also introduce(3)∇i , the covariant derivative operator orthogonal to
ui ((3)∇ihjk = 0), by totally projecting the corresponding 4D operator. This is not, however,
a derivative on a hypersurface unless the fluid flow is irrotational. Nevertheless, we will
call the 3-gradient(3)∇i ‘spatial’ for simplicity.

The kinematic variables are established by decomposing the covariant derivative ofui
into its spatial and temporal parts. In particular, we have

∇jui = σij + ωij + 2
3
hij − 1

c2
aiuj , (1)

whereσij = (3)∇(j ui)−2hij /3 is the shear (σijui = σijuj = 0, σ i
i = 0), ωij = (3)∇[jui] is

the vorticity (ωijui = ωijuj = 0),2 = ∇iui is the volume expansion andai = u̇i = uj∇jui
is the acceleration (aiui = 0). The magnitudes of the shear and the vorticity are
σ 2 = σijσ

ij /2 and ω2 = ωijω
ij /2, respectively. The expansion scalar,2, defines a

† At every event along the worldline of a fundamental observer,6⊥ is the normal toui 3D subspace of the 4D
space tangent to that event.
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representative length scale (S) along the fluid flow by means oḟS/S = 2/3. In a non-
rotating universe (i.e. whenωij = 0), ui is a hypersurface orthogonal field and6⊥ becomes
a 3-surface, namely the instantaneous rest space of all the fundamental observers.

2.2. Spacetime geometry

The global geometry of the spacetime is determined by the Riemann curvature tensor,
conveniently expressed by the decomposition

Rijkq = Cijkq + 1
2(gikRjq + gjqRik − gjkRiq − giqRjk)− 1

6(gikgjq − giqgjk)R, (2)

whereCijkq is the Weyl conformal curvature tensor,Rij ≡ R k
i jk is the Ricci tensor and

R ≡ Rii is the Ricci scalar. Both the Ricci tensor and the Ricci scalar are determined
locally by matter through the Einstein field equations. Conversely, the Weyl tensor describes
long-range gravitational effects, such as those of tidal forces and gravitational waves. By
definitionCijkq satisfies all the symmetries of the Riemann tensor and is also trace-free. It
decomposes into an electric and a magnetic part according to [11]

Cijkq = 1

c2
(gijsrgkqpt − ηijsrηkqpt )usupErt − 1

c2
(ηijsrgkqpt + gijsrηkqpt )usupHrt , (3)

where

gijkq ≡ gikgjq − giqgjk, (4)

ηijkq is the totally antisymmetric spacetime permutation tensor andEij ,Hij are, respectively,
the electric and the magnetic components of the Weyl tensor. The latter have nothing to do
with actual electric or magnetic fields but derive their name from the Maxwell-like equations
they comply with [12]. Also notice that

Cijkq = 0 ⇔
{
Eij = 0,

Hij = 0.
(5)

2.3. The electromagnetic field

The electromagnetic field is represented by the antisymmetric Maxwell tensorFij . This
splits into an electric and a magnetic 4-vector, respectively defined by [10]

Ei = Fijuj , and Hi = 1

2c
ηijkqu

jF kq . (6)

The above confirm thatEiui = Hiui = 0, which in turn mean that both fields lie on6⊥;
E2 ≡ EiEi andH 2 ≡ HiH i , respectively, denote the magnitudes of the electric and the
magnetic fields.

2.4. The material component

As in [1], we consider a universe filled with a single perfect fluid of infinite conductivity
(i.e. σ = cEiJ i/E2→∞, with Ji representing the current density). We can now drop the
electric field from Maxwell’s equations, which reduce to†

2ωiHi = εc, (7)

ηijkquj (akHq − c2∇qHk) = c2hijJ
j , (8)

† The merit of the infinite conductivity assumption is that, based on Ohm’s law, it can accommodate a zero
electric field with non-vanishing spatial currents (i.e.h

j

i Jj 6= 0). The latter condition is essential if one wishes to
preserve the coupling between matter and magnetic field (see appendix B in [1]).
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∇ iHi − 1

c2
aiHi = 0, (9)(

σ ij + ωij − 2
32h

i
j

)
Hj = hij Ḣ j , (10)

whereωi ≡ ηijkqujωkq/2c is the vorticity vector andε ≡ −Jiui/c2 is the charge density.
For our purposes the last two equations are the important ones. More specifically, (9)
provides the familiar vanishing 3-divergence law for the magnetic field (i.e.(3)∇iH i = 0),
whereas (10), when contracted with the magnetic field vector, givesσijH

iHj = 22H 2/3+
(H 2)̇/2 and simplifies the expression for the energy density conservation law [1].

The energy–momentum tensor for a magnetized single perfect fluid of infinite
conductivity has the form [1]

Tij =
(
µ+ H

2

2c2

)
uiuj +

(
p + 1

6H
2
)
hij +5ij (11)

with the pressure (p) and the mass density (µ), the latter including contributions from the
internal thermal energy, related by a suitable equation of state. The symmetric, traceless
and completely spacelike tensor5ij = H 2hij /3−HiHj describes the anisotropic pressure
induced by the magnetic field†.

2.5. Inhomogeneity variables

In an FFRW universe all physical quantities are functions of cosmic-time only, while the
shear, the vorticity, the acceleration, all the anisotropic stresses, the curvature of the spatial
sections and the electric and magnetic components of the Weyl tensor vanish. Within
a nearly FFRW universe, spatial perturbations in the energy density and the pressure of
the fluid, in the expansion and in the magnetic field are described by four key variables
defined covariantly in [1, 2]. These are: the comoving fractional orthogonal spatial gradient
of the energy density,Di ≡ S(3)∇iµ/µ; the orthogonal spatial gradient of the pressure,
Yi ≡ κ(3)∇ip, whereκ = 8πG/c4 is the Einstein gravitational constant; the comoving
orthogonal spatial gradient of the expansion,Z ≡ S(3)∇i2; and the comoving orthogonal
spatial gradient of the magnetic field,Mij ≡ κS(3)∇jHi , with M i

i = 0, as (9) requires.
Each one of these 3-gradients vanishes in a perfect FFRW model (see also appendix A),
thus satisfying the criterion for gauge invariance [13]. Three additional gauge-invariant
variables, which play a crucial role in our analysis, are the divergence of the acceleration
(i.e. A ≡ ∇iai), its spatial gradient (i.e.Ai ≡ (3)∇iA), and the spatial gradient of the
curvature scalarK associated with6⊥ (i.e.Ki ≡ (3)∇iK).

It is convenient to introduce the following local decomposition for the spatial gradient
of Di [14]:

1ij ≡ S(3)∇jDi = Wij +6ij + 1
31hij , (12)

whereWij ≡ 1[ij ] contains information about the rotational behaviour ofDi , 6ij ≡
1(ij) − 1 i

i hij /3 describes the formation of anisotropies (e.g. pancakes or cigar-like
structures) and1 ≡ 1 i

i is related to the spherically symmetric gravitational clumping
of matter. Although in a general perturbation pattern we expect turbulence (i.e.Wij 6= 0)
and anisotropic structures (i.e.6ij 6= 0), as well as material aggregation (i.e.1 > 0), it is
the latter scalar which is crucial for the structure formation purposes.

† In [1] we represented the anisotropic magnetic stresses byMij instead of5ij . Other changes relative to that
article are;ai has replaceḋui as the acceleration vector; the 3-Ricci scalar has changed fromK into K, while
now K ≡ S2K; the gradient(3)∇iH 2 is represented byHi and not byBi as in [1] and the scalarB is no longer
the Laplacian(3)∇2H 2 but equals the dimensionless ratioS2(3)∇2H 2/H 2.
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3. The linear regime

In reality µ, p, 2 and Hi must have a spatial dependence as well as a temporal one.
Moreover,K, ai , σij , ωij , 5ij , Eij andHij will generally take non-zero values. Assuming
that the observed universe is close to an FFRW spacetime, we can linearize the evolution
equations by treating all the gauge-invariant quantities, along with their derivatives, as first-
order variables. The exact, fully nonlinear formulae have already been derived in [1]. Here
we give their linearized versions only.

3.1. Evolution equations

The linear regime is monitored through the following combination of propagation formulae
and constraint equations.

(i) The conservation laws of the energy and the momentum densities of the fluid,
respectively, expressed by

µ̇

µ
+ (1+ w)2 = 0, (13)

and

κµ(1+ w)ai + Yi − 2

S
M[ij ]H

j = 0, (14)

where the ratiow ≡ p/µc2 evolves according to

ẇ = −(1+ w)
(
c2
s

c2
− w

)
2, (15)

with c2
s ≡ ṗ/µ̇ representing the adiabatic sound speed. Although generallyw is allowed to

vary, when it remains constant along the fluid-flow lines (i.e. whenẇ = 0) equation (15)
suggests thatw = c2

s /c
2 = constant, provided of course that2 6= 0.

(ii) The propagation equations that determine the kinematics of the universe. These are
Raychaudhuri’s formula,

2̇+ 1
32

2+ 1
2κµc

4(1+ 3w)− A−3c2 = 0, (16)

where3 is the cosmological constant, and the propagation formulae of the vorticity† and
the shear tensors, respectively, given by

ω̇ij + 2
32ωij = (3)∇[j ai], (17)

and

σ̇ij + 2
32σij = (3)∇(j ai) − 1

3Ahij + 1
2κc

25ij − c2Eij , (18)

whereEij ≡ Cikjqukuq/c2 is the ‘electric’ part of the Weyl tensor. To first order, the scalar
A is given by the 3-divergence of the fluid acceleration (i.e.A = (3)∇ iai).

(iii) The linear propagation equations ofDi , Zi andMij , respectively, governing the
growth of spatial inhomogeneities in the energy density of the fluid,

Ḋi = w2Di − (1+ w)Zi − 22

κµc2
M[ij ]H

j + 2S2H 2

3µc4
ai, (19)

† Equation (17) monitors the model’s rotational behaviour through the vorticity tensor, as opposed to the vorticity
vector used in [1] (see equation (89) therein). Recalling thatωi = ηijkqu

jωkq/2c, the equivalence of the two
formulae becomes evident.



Gauge-invariant magnetic perturbations 3529

in the expansion scalar†,

Żi = − 2
32Zi − 1

2κµc
4Di − 3c2M[ij ]H

j − c2MjiH
j + SAi, (20)

and in the magnetic field vector,

Ṁij = −22

3
Mij − 2κ

3
HiZj + κSHk(3)∇j (σik + ωik)− κ2S

3c2
(2Hiaj + aiHj )

+κ2S
3c2

akH
khij + κh k

i RkqjsH
qus, (21)

recalling thatAi = (3)∇iA by definition.
(iv) The evolution of the magnetic field is governed by the four decomposed Maxwell’s

equations (see equations (7)–(10)), of which only

∇iH i = 1

c2
aiH

i, (22)

and

h
j

i Ḣj =
(
σ ij + ωij − 2

32h
i
j

)
Hj, (23)

are crucial for our analysis. The former verifies that the magnetic field is a ‘solenoidal’ (i.e.
(3)∇iH i = 0), and the latter, when contracted with the field vector, provides a radiation-like
linear evolution law for the magnetic energy density

H 2 = H
S4
, (24)

whereḢ = 0.
(v) We close this section with a brief discussion on the geometry of6⊥, the observer’s

instantaneous rest space. Its curvature is characterized by the scalar

K = 2

(
κµc2− 22

3c2
+3

)
, (25)

so that22/3 = κµc4 + 3c2 to zero order. When there is no vorticity and only then,K

coincides with the 3-Ricci scalar of the spacelike hypersurfaces that define the instantaneous
rest space of all the fundamental observers. Its propagation formula,

K̇ = −22

3

(
K + 2

c2
A

)
, (26)

suggests that in the linear regime the fluid acceleration acts as the sole source of spatial
curvature through its 3-divergence. Following [14], we describe the spatial variations of the
3-curvature by the gauge-invariant vectorCi ≡ S3Ki and provide a supplementary relation
betweenDi , Zi andMij ,

Ci = 2κµc2S2Di + 2S2MjiH
j − 42S2

3c2
Zi , (27)

† In [1], based on the weakness of the magnetic field, we ignored the linear effects on the evolution of the
expansion and the 3-curvature gradients resulting from the field’s contribution to the active gravitational mass of
the universe. Here we fully incorporate these effects via the second to last terms in the right-hand side of (20)
and (27) (compare them to equations (91) and (99) in [1]). Notice that these quantities provide all the coupling
between the magnetic and the matter inhomogeneities that is left, once the infinite conductivity approximation
is abandoned in favour of a pure source-free magnetic field (see appendix B in [1]). Although they make no
qualitative difference and introduce negligible quantitative changes, both terms are included here for completeness.
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which, by means of (19)–(21), leads to

Ċi = −42S3

3c2
Ai. (28)

The above propagation formula is consistent with equation (26) and, together with (42),
confirms the interdependence between the spatial curvature and the acceleration of the fluid
flow. The advantages of choosingCi , instead ofKi , to describe the spatial variations in the
3-curvature, will become clear later.

4. The case of a barotropic perfect fluid

Among the propagation formulae given above, which refer to a general perfect fluid with
pressure, there is no equation for the evolution of 3-gradients in the pressure. The reason is
that the propagation ofYi will be determined directly from (19), once the material content
of the universe has been specified.

4.1. Equation of state

Here, we extend the analysis presented in [1] by considering a universe filled with a single
barotropic perfect fluid. Its equation of state is†

p = p(µ), (29)

suggesting that∇[ip∇j ]µ = 0. Consequently, the relation between pressure and energy
density gradients becomes

SYi = κµc2
sDi, (30)

sincec2
s = dp/dµ relative to the observer’s rest frame.

4.2. Kinematic evolution

4.2.1. The acceleration.The energy density conservation law of the barotropic fluid is
still expressed by (13). However, the momentum density conservation law (14), together
with (30), gives

ai = 1

(1+ w)S
(

2

κµ
M[ij ]H

j − c2
sDi

)
, (31)

for the acceleration of a fundamental observer. It depends both on gradients in the energy
density of the fluid and on gradients in the magnetic field. Thus, the geodesic flow can still be
preserved provided that the field gradients counterbalance those of the material component.
The necessary and sufficient condition for this to occur is‡ Di = 2M[ij ]H

j/κµc2
s .

Unlike the pressure-free case (see [1]), the acceleration of the barotropic fluid is not
always normal to the magnetic-field vector. Alternatively, one might say that, whenp 6= 0,
the time derivativeḢi no longer lies on6⊥. We verify these statements by simply
contracting (31) withHi . We find that

aiH
i = uiḢ i = − c2

s

(1+ w)SH
iDi, (32)

† From now on, all our results will refer to a barotropic fluid unless otherwise stated. We will also ignore the
entropy contribution to the fluid pressure.
‡ The geodesic flow condition can simplify the evolutionary relations of section 3.1 considerably. However, it
does not appear to be consistent and we will not pursue the matter any further here.



Gauge-invariant magnetic perturbations 3531

where generallyHiDi 6= 0. Obviously,ai andHi remain orthogonal ifHiDi = 0. We can
modify this condition by settingE ≡ H 2/µc2, taking its 3-gradient and then contracting
with the magnetic field vector. The result,

HiDi = − S
E
Hi(3)∇iE, (33)

suggests that the acceleration of the fluid flow remains normal to the magnetic field if and
only if the directional derivativeHi(3)∇iE vanishes (i.e. when the energy density ratio
E does not change along the magnetic field lines). In this case, the time derivative of the
magnetic field lies on the observer’s instantaneous rest space. This fact can simplify, among
other, calculations involving commutations between the spatial gradients ofḢi .

Spatial gradients in the fluid acceleration affect the expansion dynamics directly (see
equations (16)–(18)), as well as the spatial geometry (see equation (26)). Consequently the
following new decomposition of the acceleration’s 3-gradient is of major importance. It is
obtained directly from equation (31) via the commutation laws for the 3-gradients of scalars
and spacelike vectors (see equations (B1) and (B2) in appendix B), relations (12), (23) and
the relativistic expression5ij = H 2hij /3−HiHj for the magnetic anisotropic stresses (see
section 7.4.1 in [15] for more details),

(3)∇j ai = − c2
s

(1+ w)S2

(
6ij +Wij + 1

31hij
)− 42H 2

9µc2(1+ w)ωij +
H 2

3µ(1+ w)
(3)Rij

− 1

2µ(1+ w)
(3)∇j (3)∇iH 2+ 1

κµ(1+ w)SH
k(3)∇kMij , (34)

where(3)Rij is the 3-Ricci tensor of the spacelike regions (given by equation (83) in [1]). In
what follows, the trace, the skew part and the symmetric part of the above will be employed
to analyse the magnetohydrodynamical effects upon the kinematics and the spatial geometry
of our cosmological model.

4.2.2. The deceleration parameter.To begin with, the trace of (34),

A = (3)∇ iai = − c2
s

(1+ w)S2
1+ H 2

3µ(1+ w)K −
H 2

2µ(1+ w)S2
B, (35)

whereB ≡ S2(3)∇2H 2/H 2, is substituted into (16) to produce Raychaudhuri’s equation for
a magnetized universe filled with a single barotropic perfect fluid of infinite conductivity.
This formula is recast into the following alternative expression:

22

3c2
q = κµc2

2
(1+ 3w)− H 2

3µc2(1+ w)K +
1

(1+ w)S2

(
c2
s

c2
1+ H 2

2µc2
B
)
−3, (36)

where q ≡ −S̈S/Ṡ2 is the ‘deceleration parameter’ (note that1 = S2(3)∇2µ/µ to first
order). Clearly, the sign of the quantity on the right-hand side of (36) determines whether the
expansion slows down or continues unimpeded. Not surprisingly, a spherically symmetric
increase in the energy density of the field (i.e.B > 0), together with any material aggregation
(i.e. 1 > 0), slows the expansion down. Their combined effect is of first order and, as
the Laplacians verify, it is confined to regions well within the horizon. However, while
the energy density of ordinary matter (i.e.w > − 1

3) always adds a positive value to the
deceleration parameter, the contribution of the magnetic energy density depends on the
geometry of6⊥. According to (36), the coupling between the field and the 3-curvature
slows down the expansion of spatially open almost-FRW universe (i.e. whenK < 0) but
accelerates perturbed Friedmannian cosmologies with positive spatial curvature (i.e.K > 0).
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This rather unconventional magnetic effect is global, though still first order in magnitude
sinceK = 0 in the background. It vanishes when the perturbed universe retains its spatial
flatness.

4.2.3. The vorticity tensor. According to (17), only the antisymmetric part of (34) affects
the vorticity propagation. SinceWij = −(1 + w)2S2ωij /c

2 to first order (see [14])
and (3)∇[i

(3)∇j ]H
2 = 42H 2ωij /3c2, as the commutator of the 3-gradients of scalars (see

equation (B1) in appendix B) and the last of Maxwell’s equations (see equation (23)) imply,
we obtain

ω̇ij + 22

3

(
1− 3c2

s

2c2

)
ωij = 1

κµ(1+ w)SH
k(3)∇kM[ij ] . (37)

Notice that a cosmic magnetic field influences the vorticity of the universe solely through the
antisymmetric part of the gradient fieldMij , which itself describes the rotational behaviour
of the magnetic field vector (see appendix C.1 in [1]). Also, according to (37), the field has
no effect at all when the directional derivativeHk(3)∇kM[ij ] vanishes, that is when curlHi
does not change along the magnetic field lines.

4.2.4. The shear tensor.The symmetric part of (34) together with its trace allows us to
recast equation (18), for the linear evolution of the shear tensor, into the following form:

σ̇ij + 22

3
σij = − c2

s

(1+ w)S2
6ij − 1

2µ(1+ w)
(
(3)∇(i (3)∇j) − 1

3hij
(3)∇2

)
H 2

+ H 2

3µ(1+ w)
(
(3)R(ij) − 1

3Khij )+
κc2

2
5ij

+ 1

κµ(1+ w)SH
k(3)∇kM(ij) − c2Eij . (38)

Clearly, the shear anisotropies evolve in a rather complicated way under the simultaneous
influence of a number of sources. According to (38) such sources are: the fluid; the
magnetic field; the geometry of the observer’s 3D rest space and the long-range source-free
gravitational field. The magnetic influence is multi-faceted. In particular, anisotropic spatial
variations in the energy density of the field have a similar effect to those in the energy density
of the fluid (the latter represented by6ij ). Also, the magnetic energy density couples with
anisotropies in the spatial curvature to create an additional effect. Notice that any anisotropic
patterns in the distribution of the magnetic field vector (described byM(ij) sinceM i

i = 0)
exert no influence at all if the directional derivativeHk(3)∇kM(ij) vanishes.

4.2.5. The 3-curvature scalar.In the linear regime, the curvature scalar of the observer’s
instantaneous 3D rest space evolves according to equation (26). Substituting the trace of
(34) into the latter we obtain

K̇ + 22

3

(
1+ 2H 2

3µc2(1+ w)
)
K = 42

3(1+ w)S2

(
c2
s

c2
1+ H 2

2µc2
B
)
, (39)

or, sinceH 2/µc2(1+ w)� 1,

K̇ + 22

3
K = 42

3(1+ w)S2

(
c2
s

c2
1+ H 2

2µc2
B
)
. (40)
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Therefore, on regions of subhorizon size, any spherically symmetric spatial increase in
the energy density of the fluid (i.e.1 > 0), or of the magnetic field (i.e.B > 0), acts
as a source of positive curvature. This is a first-order effect similar to the small-scale
magnetohydrodynamical impact on the expansion of the universe (see the last term in the
right-hand side of equation (36)). The magnetic influence also results in a global effect of the
opposite type. As (39) reveals, the field tends to smooth out the curvature of the spacelike
regions through its coupling with the background expansion. This ‘magnetic smoothing’,
which here is of negligible magnitude, is analogous to the field’s global magneto-geometrical
impact upon the universal expansion (compare to the second term in the right-hand side of
(36)) both qualitatively and quantitatively.

We close this section with a comment on the non-local magnetic effects illustrated in
equations (36) and (39). We attribute such behaviour to the vectorial nature of the field,
as opposed to the scalar nature of quantities such as the energy density of the fluid or its
isotropic pressure. Being a vector, the field interacts with the curvature of the spacelike
regions (e.g. through the 3-Ricci identity) and this dependence creates the aforementioned
effects. However, we do not suggest that any perturbed spacelike vector would have a
similar impact. The magnetic influence outlined above depends crucially upon the specific
properties of the field, as these are reflected in Maxwell’s equations, and also in the unique
way general relativity describes the magnetic anisotropic stresses (see comments on the
derivation of equation (34)).

4.3. Dynamic evolution

4.3.1. The growth of the inhomogeneities.The introduction of a barotropic fluid modifies
the key linear propagation equations (19)–(21) and (28). More specifically, by means of
(31), the former becomes

Ḋi = w2Di − (1+ w)Zi − 22

κµc2
M[ij ]H

j . (41)

The direct barotropic influence on the evolution of the expansion gradients comes through
the spatial gradient ofA†,

Ai = − c2
s

(1+ w)S
(3)∇2Di + H 2

3µ(1+ w)S3
Ci − 1

2µ(1+ w)
(3)∇2Hi − 2c2

s2

c2
(3)∇jω j

j , (42)

whereHi ≡ (3)∇iH 2. Substituting the above into (20) and using (27) we obtain

Żi = −22

3
Zi − κµc

4

2
Di − 3c2M[ij ]H

j − c2MjiH
j − c2

s

1+ w
(3)∇2Di

− S

2µ(1+ w)
(3)∇2Hi − 2c2

s2S

c2
(3)∇jω j

i . (43)

By means of (2) and the fact thath j

i Rjku
k = 0 (see equation (63) in [1]), the last term

in (21), which describes the effects of spacetime curvature upon the evolution of magnetic
inhomogeneities, becomes

κh k
i RkqjsH

qus = κh k
i CkqjsH

qus. (44)

† In deriving (42) we have treated(3)∇iw and(3)∇i c2
s as first-order gauge-invariant quantities. Though the former

is straightforward to prove, the latter requires the gauge independence of(3)∇i ṗ and (3)∇i µ̇ to be shown first.
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Moreover, using decomposition (3) of the Weyl tensor we may recast the above into

κh k
i CkqjsH

qus = −κη qs

ik H kuqHsj , (45)

showing that only spacetime ripples caused by the long-range gravitational forces, here
represented by the magnetic partHij ≡ η kq

ip Ckqjsu
pus/2c2 of the Weyl tensor, affect the

propagation of spatial inhomogeneities in the cosmic magnetic field. The above result
together with equations (31) and (32) allows us to transform (21) into

Ṁij = −22

3
Mij − 2κ

3
HiZj + κSHk(3)∇j (σik + ωik)+ 22H 2

9µc2(1+ w)M[ij ]

+ κc2
s2

3c2(1+ w)(2HiDj +HjDi −HkDkhij )+ κSη qs

ik H kuqHsj . (46)

According to (41) it is only the contractionMijH
j that contributes to the linear growth of

spatial inhomogeneities in the energy density of the medium. Therefore, taking the skew
part of (46) and then contracting with the magnetic field vector, we obtain†

Ṁ[ij ]H
j = − 2

32M[ij ]H
j − 2

3κH[iZj ]H
j + κSh k

[i h
q

j ] (σks + ωks);qH sHj

+ κc2
s2

3c2(1+ w)H[iDj ]H
j, (47)

which will prove useful later. Notice the absence of the spacetime curvature term from the
right-hand side of equation (47). As a result, long-range gravitational forces have no linear
effect on the evolution of magnetized density perturbations.

As far as spatial inhomogeneities in the curvature scalar are concerned, equations (30),
(31) and (42) reshape their propagation formula (28), into the following:

Ċi = 4c2
s2S

2

3c2(1+ w)
(3)∇2Di + 22S3

3µc2(1+ w)
(3)∇2Hi + 8c2

s2
2S3

3c4
(3)∇jω j

i , (48)

implying that the gradient fieldCi is invariant on large scales (i.e. when the Laplacian terms
are negligible) if(3)∇jω j

i = 0. Finally, under the barotropic fluid assumption, reflected in
(32), Maxwell’s equations become

∇iH i = − c2
s

c2(1+ w)SH
iDi (49)

and

Ḣi =
(
σij + ωij − 2

32hij
)
Hj − c2

s

c2(1+ w)SH
jDjui, (50)

with the non-zero right-hand side of (49) and the last term of (50) being direct results of
the changes in the fluid motion relative to the pressureless case.

4.3.2. The growth of the density gradient.The dynamics of the inhomogeneity variableDi

is governed by (41), together with equations (43)‡ and (47), or by the linear second-order

† See sections 5.4 and 7.5 in [15] for a detailed derivation of the complete set of the exact and linear propagation
equations.
‡ Alternatively, one can use (48) instead of (43), on substitutingZi by Ci in (41) from (27).
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differential equation, which follows from (41), by means of (13), (15), (16), (43), (47) and
(50). This equation is

D̈i = −
(

2

3
+ c

2
s

c2
− 2w

)
2Ḋi +

((
1

2
− 3c2

s

c2
+ 4w − 3w2

2

)
κµc4−

(
3c2
s

c2
− 5w

)
3c2

)
Di

+c2
s
(3)∇2Di + 2c2

s2S(1+ w)
c2

(3)∇jω j

i

−
((

c2
s

c2
− w

)
6c2+

(
1+ c

2
s

c2

)
63

κµ

)
M[ij ]H

j

+ S

2µ
(3)∇2Hi − 22S

µc2
(3)∇[j Ḣi]H

j . (51)

This is the generalization of formula (26) in [14] for a magnetized almost-FFRW universe. It
has the form of a wave equation with extra terms due to the universal expansion, gravity, the
cosmological constant, the magnetic field and the vorticity. The difference in the vorticity
terms between equation (51) above, and its corresponding formula (115) in [1], is due to
the residual coupling between the divergence of the vorticity tensor and the energy density
of the field that remains whenp = 0.

5. The scalar variables

So far we have considered the evolution of gauge-invariant vector variables and in particular
the propagation ofDi , the gradient field that describes orthogonal to the fluid flow variations
of the energy density. However, regarding the growth (or decay) of density inhomogeneities,
the vector fieldDi contains more information than actually required. We can extract the
information we need by adopting the local decomposition (12). Of the three additional
variables mentioned there, the scalar1 ≡ S(3)∇ iDi (alternatively1 = (S2/µ)(3)∇2µ to
first order) is the most important one when addressing the problem of structure formation.

5.1. Definitions

Focusing upon1, which describes spherically symmetric spatial variations in the energy
density of the matter, we also consider the following complementary scalar variables:

Z ≡ S(3)∇ iZi , B ≡ S2

H 2
(3)∇2H 2, (52)

respectively related to spatial gradients in the expansion and the energy density of the
magnetic field, and

K = S2K, (53)

representing perturbations in the spatial curvature. Notice that all butZ are dimensionless
variables. Also,B describes spherically symmetric spatial variations in the energy density
of the magnetic field and it will be treated as the magnetic analogue of1.
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5.2. Evolutionary equations

The propagation equations associated with the above-defined scalars (see section 7.6 in [15]
for details on their derivation) are

1̇ = w21− (1+ w)Z − 2H
2

3µc2
K + 2H

2

2µc2
B, (54)

Ż = −22

3
Z − κµc

4

2
1− c2

s

1+ w
(3)∇21− κc

2H 2

2
K + κc

2H 2

4
B − H 2

2µ(1+ w)
(3)∇2B,

(55)

Ḃ = 4c2
s2

3c2(1+ w)1−
4

3
Z − 42H 2

9µc2(1+ w)K, (56)

and

K̇ = 4c2
s2

3c2(1+ w)1+
22H 2

3µc2(1+ w)B. (57)

The first two are obtained by linearizing the 3-divergence of their corresponding vector
equations (41) and (43). The third results directly from definition (52) via the laws governing
commutations between time derivatives and spatial gradients of scalars and spacelike vectors
(see equations (B3) and (B4) or equation (B5) in appendix B). Finally, the last is a simple
rearrangement of (40)†.

By combining equations (54)–(56), or by linearizing the 3-divergence of (51), we obtain
the following second-order differential equation for the evolution of the spatial matter
aggregations

1̈ = −
(

2

3
+ c

2
s

c2
− 2w

)
21̇+

((
1

2
− 3c2

s

c2
+ 4w − 3w2

2

)
κµc4−

(
3c2
s

c2
− 5w

)
3c2

)
1

+c2
s
(3)∇21+

((
2

3
− c

2
s

c2
+ w

)
κµc2−

(
1

3
+ c

2
s

c2

)
3

)
H 2

µ
K

−
((

1

2
− 3c2

s

2c2
+ w

)
κµc2−

(
1

2
+ 3c2

s

2c2

)
3

)
H 2

µ
B + H

2

2µ
(3)∇2B. (59)

The rest of the variables evolve in accordance with the propagation formulae,

K̇ = 4c2
s2

3c2(1+ w)1+
22H 2

3µc2(1+ w)B, (60)

and

Ḃ = 4

3(1+ w)1̇+
42

3(1+ w)
(
c2
s

c2
− w

)
1, (61)

where the latter is obtained by substitutingZ in (56) from (54)‡. This is the system that
governs the evolution of spatial matter aggregations in a perturbed FFRW universe that

† The 3-divergence of (48) provides the evolution formula ofC ≡ S(3)∇ iCi , the scalar associated with spatial
inhomogeneities in the curvature of the spacelike regions. Its form,

Ċ = 4c2
s 2S

2

3c2(1+ w)
(3)∇21+ 22S2H 2

3µc2(1+ w)
(3)∇2B, (58)

verifies thatC is time invariant on large scales irrespective of the model’s rotational behaviour. Notice that one
immediately recovers (57) from (58) on using definition (53) and the commutation law (B5) in appendix B.
‡ Equations (15) and (61) suggest that whenẇ = 0, as is the case in the dust era for example, then
Ḃ = 41̇/3(1+ w). So, during these periods spherically symmetric spatial variations in the energy density of
the magnetic field grow (or decay) proportionally to those in the energy density of the matter.
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contains a single barotropic perfect fluid of infinite conductivity and is permeated by a
weak cosmological magnetic field.

The equations obtained here are significantly simpler and more transparent than their
vector counterparts of section 4.3, especially as far as the role of the magnetic field is
concerned. The field no longer exerts its influence through some complicated combinations
of curl’s and vector products, but simply via the spatial gradients of its energy density.
Moreover, these are exactly the quantities that matter for structure formation purposes.

6. Particular solutions

In [1] we considered the evolution of density inhomogeneities during the post-equilibrium
era, when the universe is filled with a non-relativistic perfect fluid (i.e.p = 0⇒ w, c2

s = 0).
There, based on the nature of the evolution equation for1, we argued that the magnetic
effects on the growth of large-scale material aggregations are relatively unimportant. Here,
the existence of formulae (60) and (61) will enable us to confirm, refine and extend these
conclusions as well as to study the behaviour of the density contrast in the radiation era.

6.1. Harmonic analysis

Following [16–18], we harmonically decompose the inhomogeneity variable1 by writing
it in the form of the sum

1 =
∑
n

1(n)Q(n), (62)

with (3)∇i1(n) = 0, Q̇(n) = 0 and (3)∇2Q(n) = −n2Q(n)/S2. Similarly, K andB may be
written as

K =
∑
n

K(n)Q(n), and B =
∑
n

B(n)Q(n), (63)

where (3)∇iK = (3)∇iB = 0. Notice that the harmonic eigenvalue (n) coincides with the
comoving wavenumber (ν) because of the spatial flatness of the background universe†.

Substituting results (62) and (63) into equations (59)–(61), the harmonics decouple to
provide the following autonomous system:

1̈(ν) = −
(

2

3
+ c

2
s

c2
− 2w

)
21̇(ν) +

((
1

2
− 3c2

s

c2
+ 4w − 3w2

2

)
κµc4− ν

2c2
s

S2

−
(

3c2
s

c2
− 5w

)
3c2

)
1(ν) +

((
2

3
− c

2
s

c2
+ w

)
κµc2−

(
1

3
+ c

2
s

c2

)
3

)
c2
AK(ν)

−
((

1

2
− 3c2

s

2c2
+ w

)
κµc2+ ν2

2S2
−
(

1

2
+ 3c2

s

c2

)
3

)
c2
AB(ν), (64)

K̇(ν) = 4c2
s2

3c2(1+ w)1
(ν) + 22c2

A

3c2(1+ w)B
(ν), (65)

and

Ḃ(ν) = 4

3(1+ w)1̇
(ν) + 42

3(1+ w)
(
c2
s

c2
− w

)
1(ν), (66)

† If the unperturbed universe has open spatial sections (i.e.k = −1) thenn2 = ν2+ 1, with ν2 > 0. Conversely,
when the background model is spatially closed (i.e.k = +1) the associated relation isn2 = ν(ν + 2), where now
ν = 1, 2, 3, . . . , and the fundamental mode corresponds toν = 1 [19, 20].
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where c2
A ≡ H 2/µ is the Alfvén speed characterizing the propagation of hydromagnetic

waves.

6.2. The radiation era

When radiation dominatesw = c2
s /c

2 = 1
3 and the energy density of the matter falls as

µ = MR/S
4 (see equation (13)), suggesting, together with equation (24), that the Alfvén

velocity remains constant along the fluid-flow lines (i.e.ċ2
A = 0). Ignoring the cosmological

constant (i.e.3 = 0), it is preferable to express equations (64)–(66) with respect to the
scale factor,S(t),

S2 d21(ν)

dS2
= 2

(
1− ν2S2

2κMRc2

)
1(ν) + 2c2

A

c2
K(ν) − c

2
A

c2

(
1+ 3ν2S2

2κMRc2

)
B(ν), (67)

S
dK(ν)

dS
= 1(ν) + 3c2

A

2c2
B(ν), (68)

dB(ν)
dS
= d1(ν)

dS
. (69)

In the long-wavelength limit (i.e.ν → 0, or equivalentlyν2S2/κMRc
2� 1)† the above

system reduces to

S2 d21(ν)

dS2
= 21(ν) + 2c2

A

c2
K(ν) − c

2
A

c2
B(ν), (70)

S
dK(ν)

dS
= 1(ν) + 3c2

A

2c2
B(ν), (71)

dB(ν)
dS
= d1(ν)

dS
, (72)

and accepts a power-law solution of the form

1(ν)(S) =
∑
z

1(ν)
z zS

z, (73)

where1(ν)
z are arbitrary positive constants. The parameterz satisfies the cubic equation

z3− z2+
(
c2
A

c2
− 2

)
z− 2c2

A

c2

(
1+ 3c2

A

2c2

)
= 0, (74)

which has three real roots provided thatc2
A/c

2 < 3
11 [21] given in trigonometric form by

[22]

z ' 1

3

[
1+ 2

√
7

(
1− 3c2

A

14c2

)
cos

(
θ + 2kπ

3

)]
, (75)

with k = 0, 1, 2, and

cosθ ' 10

7
√

7

1+ 9c2
A/4c

2

1− 9c2
A/4c

2
. (76)

In the absence of a magnetic field (i.e.c2
A = 0), expressions (75) and (76) provide the

standard solutionsz = 0, 2,−1 associated with a magnetic-free universe (see, for example,

† During the radiation epoch the scale factor evolves asS ≡ βt1/2, with β = (4κMRc
4/3)1/4. Considering

a physical scale much larger than the horizon (i.e.λphys � dH ), and taking into account thatλphys ∼ Sλcom,
λcom ∼ 1/ν and dH ∼ ct , we find thatν2S2/κMRc

2 � 1 on large scales. Clearly, subhorizon scales are
characterized by the reverse inequality.
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[23] or [17]). However, the coupling between the field and the 3-curvature obscures the
overall magnetic effect upon the growth of the density contrast. As (76) reveals the field
increases the cosine term in (75) but at the same time decreases this term’s coefficient, with
the net effect depending on the field’s relative strength. To clarify the magnetic impact we
consider the case of a spatially flat (i.e.K(ν) = 0) perturbed universe. Then the system
(70)–(72) reduces to

S2 d21(ν)

dS2
= 21(ν) − c

2
A

c2
B(ν), (77)

dB(ν)

dS
= d1(ν)

dS
, (78)

while the density contrast evolves as

1(ν)(S) = 1(ν)

1 Sz1 +1(ν)

2 Sz2, (79)

where1(ν)

1 , 1(ν)

2 are constants and

z1,2 = 1

2

(
1± 3

√
1− 4c2

A

9c2

)
. (80)

When the field is absent we recover the familiar evolution law (i.e.z1 = 2, z2 = −1) of
a magnetic-free universe. Generally, however, the large-scale magnetic effect is to reduce
the growth rate of the density contrast in proportion to its relative strength.

Conversely, the evolution of short-wavelength (i.e.ν → ∞, or equivalently
ν2S2/κMRc

2� 1) density aggregations is governed by the following set of equations:

S2 d21(ν)

dS2
= − ν2S2

κMRc2
1(ν) + 2c2

A

c2
K(ν) − 3ν2c2

AS
2

2κMRc4
B(ν), (81)

S
dK(ν)

dS
= 1(ν) + 3c2

A

2c2
B(ν), (82)

dB(ν)
dS
= d1(ν)

dS
. (83)

The lack of a general analytic solution forces us to ignore the effects of the spatial curvature.
In this case the remaining equations accept the solution

1(ν)(S) = 1(ν)

1 sin

(
νS

c
√
κMR

√
1+ 3c2

A

2c2

)
+1(ν)

2 cos

(
νS

c
√
κMR

√
1+ 3c2

A

2c2

)
. (84)

So, small-scale matter aggregations oscillate with period 2πc
√
κMR/ν

√
1+ 3c2

A/2c
2.

Relative to the non-magnetized case (see [23] for example), the excess pressure supplied
by the field has simply increased the oscillation frequency of the density contrast.

Conclusively, the presence of a cosmological magnetic field during the radiation era
does not cause significant changes in the evolutionary patterns of the density gradients.
However, as far as their actual growth is concerned, the field impact is evidently negative,
although still secondary to the effects induced by the pressure of the relativistic matter,
which still dominates their evolution.
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6.3. The dust era

After the radiation era ends, dust dominates and the energy density evolves asµ =MD/S
3

with ṀD = 0. Thus, for vanishing cosmological constant the scale factor changes as
S = αt2/3, wheret measures the observer’s time andα ≡ (3κMDc

4/4)1/3. Also,2 = 2/t
andµ = 4/3κc4t2. During this period the Alfv́en velocity falls asc2

A = E/αt2/3, with Ė = 0,
reflecting the fact that the magnetic energy density drops faster than that of the matter. So,
relative to a reference frame comoving with the expanding fluid, equations (64)–(66) become

d21(ν)

dt2
= − 4

3t

d1(ν)

dt
+ 2

3t2
1(ν) + 8E

9c2αt8/3
K(ν) − 2E

3c2αt8/3

(
1+ 3ν2c2t2/3

4α2

)
B(ν), (85)

dK(ν)
dt
= 4E

3c2αt5/3
B(ν), (86)

dB(ν)
dt
= 4

3

d1(ν)

dt
. (87)

On superhorizon scales (i.e.ν → 0, or equivalentlyν2c2t2/3/α2� 1)† the above system
simplifies into

d21(ν)

dt2
= − 4

3t

d1(ν)

dt
+ 2

3t2
1(ν) + 8E

9c2αt8/3
K(ν) − 2E

3c2αt8/3
B(ν), (88)

dK(ν)
dt
= 4E

3c2αt5/3
B(ν), (89)

dB(ν)
dt
= 4

3

d1(ν)

dt
. (90)

To obtain an analytic solution, we assume that the perturbed universe has flat spatial sections
(i.e. K = 0) and also consider the special case whereB(ν) = 41(ν)/3. Then, we are left
with the following differential equation‡:

d21(ν)

dt2
= − 4

3t

d1(ν)

dt
+ 2

3t2

(
1− 4E

3c2αt2/3

)
1(ν). (91)

Notice that at later times (i.e.t → ∞) the magnetic term in the parenthesis becomes
completely irrelevant. So, in agreement with [1], we recover the power-law evolution

1(ν) = 1(ν)
− t
−1+1(ν)

+ t
2/3, (92)

also familiar from the study of a non-magnetized cosmological model. The alternative early
time solution

1(ν)(t) =
[
1
(ν)

1 sin

(
ε

t1/3

)
+1(ν)

2 cos

(
ε

t1/3

)]
εt1/3

+
[
1
(ν)

1 cos

(
ε

t1/3

)
−1(ν)

2 sin

(
ε

t1/3

)](
t2/3− 1

3ε
2
)
, (93)

where ε ≡ 2
√

2E/c
√
α, suggests that under the magnetic influence the long-wavelength

aggregations of the material component oscillate with an amplitude that increases ast2/3.

† The post-equilibrium evolution of the scale factor implies that the long-wavelength conditionλphys � dH
translates intoν2c2t2/3/α2 � 1.
‡ According to equation (90), the conditionB(ν)/1(ν) = 4

3 requires that the same ratio holds at the initial moment
too. In other words, solutions (92) and (93) presume that, as the large-scale spatial variations in the magnetic
and the fluid energy densities enter the post-equilibrium era, their ratio equals 4/3. Such a simplifying step is not
unreasonable at all since, as equation (69) suggests,B(ν) ∼ 1(ν) by the end of the radiation era.



Gauge-invariant magnetic perturbations 3541

On scales well below the horizon (i.e.ν → ∞, or equivalentlyν2c2t2/3/α2 � 1),
equations (85)–(87) become

d21(ν)

dt2
= − 4

3t

d1(ν)

dt
+ 2

3t2
1(ν) + 8E

9c2αt8/3
K(ν) − ν2E

2α3t2
B(ν), (94)

dK(ν)
dt
= 4E

3c2αt5/3
B(ν), (95)

dB(ν)
dt
= 4

3

d1(ν)

dt
. (96)

Again, by ignoring any effects from the spatial curvature we obtain the following power-law
evolution for the density contrast

1(ν)(t) = 1(ν)

1 t z1 +1(ν)

2 t z2, (97)

with

z1,2 = −1

6

(
1± 5

√
1− 24ν2E

25α3

)
. (98)

Notice that in the absence of the magnetic field (i.e. whenE = 0) we are left with the well
known solution (i.e.z1,2 = 2

3, −1) of the magnetic-free case. In quantitative agreement
with Ruzmaikina and Ruzmaikin we find that the field presence reduces the growth rate of
the inhomogeneities proportionally to the ratiot2/3H 2/µc2.

We conclude by arguing that the presence of a cosmological magnetic field always
opposes the growth of matter aggregations, either by forcing them to oscillate or by reducing
their growth rate. The magnetic influence ceases only at the later stages of the dust era,
when the relative strength of the field becomes negligibly small. It should be emphasized
that result (97) refers to wavelengths that lie within the horizon but are much larger than
the Jeans length at the time. Otherwise the pressure effects of the ordinary non-relativistic
matter become important, preventing the density gradients from growing. This fact, together
with the oscillatory nature of solution (93), suggests that earlier in the dust era any actual
growth is confined to scales comparable to the horizon size at the time.

7. Conclusions

We have explored the influence of a primordial magnetic field upon the kinematical and the
dynamical evolution of perturbed cosmological models containing perfect fluids with non-
vanishing pressure. We employed the Ellis–Bruni covariant and gauge-invariant formalism,
first applied to the analysis of magnetized cosmologies in [1], to derive the full set
of equations determining the linear evolution of an almost-FFRW universe containing a
perfectly conducting medium. Relative to the dust era examined in [1], the principal new
complexities are due to changes in the observer’s motion under the simultaneous action
of the perturbed medium and the magnetic field. These changes are best seen in the
different form of the momentum density conservation law (see equation (14)), which in
turn implies a modified acceleration for the fluid. In fact, this is the reason for essentially
all the extra complications in the evolutionary patterns of the pre-equilibrium era. We have
quantified the magnetohydrodynamical effects upon the kinematics and the dynamics of a
universe dominated by a barotropic perfect fluid. We found an acceleration that depends
on density gradients as well as on the gradients of the field. It is no longer normal to the
field vector and can have subtle effects upon the evolution of fundamental cosmological
parameters. Of particular interest is the first-order magneto-geometrical contribution to
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the deceleration parameter. We show that, unlike ordinary matter which always slows the
expansion down, the magnetic field can act as a driving force through its interaction with
the geometry of the spatial sections. An analogous effect is found upon the Ricci scalar of
the observer’s instantaneous rest space. On large scales, the magnetic field tends to smooth
out the curvature of the spacelike surfaces and restore their initial flatness.

As in [1], we were primarily interested in studying the growth of density inhomogeneities
in a magnetized environment. Here, we have defined four scalar variables that measure
spatial variations in the energy densities of the medium (1) and the magnetic field (B),
spatial inhomogeneities in the expansion (Z) and deviations from the spatial flatness of
the background universe (K). We provide a system of four linear first-order differential
equations that describes the evolution of these disturbances and ultimately dictates the
behaviour of spatial matter aggregations. We have obtained analytic solutions both at the
long- and at the short-wavelength limit during the radiation and the dust eras. In [1] we
argued for the relative unimportance of the field during the dust era and on scales that
exceed the horizon at the time. Here, we were able to confirm and also refine those results.
More specifically, we have found that any magnetic effects upon long-wavelength matter
aggregations cease completely as the dust era enters its later stages. During this period the
inhomogeneities grow exactly as those in a non-magnetized universe. Soon after equilibrium
however, the extra pressure of the field could have forced the density gradients to oscillate,
thus preventing them from growing. Nevertheless, the weakness of the field means that
such large-scale oscillations are short-lived and that the epoch of unimpeded growth begins
almost immediately after equilibrium. On scales smaller than the horizon, but larger than
the Jeans length associated at the time, the disturbances undergo a power-law growth but
at a slower pace relative to the magnetic-free case. The field pressure also affects the
evolution of the density contrast during the radiation era. Here, it adds to the pressure of
the relativistic matter and impedes any further gravitational clumping of the medium. On
large scales we have found that the field inhibits the growth of the inhomogeneities by
an amount proportional to its relative strength, whereas on subhorizon regions it increases
the frequency of their oscillations. In the radiation era the magnetic effect supplements
that from the pressure of the relativistic matter. During this period, the fate of small-scale
inhomogeneities is affected by plasma processes [5].
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Appendix A. Gauge invariance for the 3-gradients of spatial vectors

In [1] (see appendix A therein) it was stated that the metric of an exact FRW or Bianchi-I
spacetime can always be brought into the diagonal form

gij = diag(g00, g11, g22, g33), (A1)

with its components being functions of proper-time only (i.e.gii = gii(t), no summation
over i). Based on this we then proceeded to prove the gauge invariance ofMij , the
spatial tensor that describes the variations of the magnetic field vector as seen by two
neighbouring fundamental observers. However, though our initial statement is correct within
a Bianchi-I and a spatially flat FRW cosmology (see, for example, [24] for verification),
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it cannot be extended to spatially curved FRW spacetimes. So, the gauge independence
of the magnetic 3-gradients has been established simply within perturbed FFRW and
Bianchi-I universes. What we actually showed in [1] was that the spatial flatness of the
aforementioned spacetimes (together with their zero rotation) is sufficient for the 3-gradients
of any homogeneous spacelike vector field to be gauge invariant. Next we argue that within
the limits of an FRW model such a requirement is also necessary. Indeed, in the observer’s
rest space the Ricci identity takes the form (see appendix B)

(3)∇[i
(3)∇j ]vk = − 1

c2
ωijh

q

k v̇q +
1

2
(3)Rqkjiv

q, (A2)

whereviui = 0. The above equation, which is presented here in its exact form, clearly states
that in a non-rotating spacetime (i.e.ωij = 0) the 3-gradients of any spacelike vector vanish
(i.e. (3)∇ivj = 0) only when(3)Rijkqvi = 0. Contracting the latter over the indicesj andq
we obtain the new restriction(3)Rij vj = 0. In an FRW spacetime(3)Rij = (3)Rhij /3, which
means that the gauge invariance of(3)∇ivj requires(3)R to vanish. This in turn ensures
that (3)Rijkq = 0 and therefore the spatial flatness of the model. Clearly, the introduction of
3-vectors into the spatially isotropic Friedmannian cosmologies is only an approximation.
Nevertheless, the 3-gradients of such a homogeneous spacelike vector, cannot be treated as
gauge-independent variables unless the FRW cosmology is spatially flat.

Appendix B. Auxiliary relations

Following [14] we point out that generally the operator(3)∇i cannot be treated as the standard
covariant derivative of a three-dimensional hypersurface because in a rotating spacetime the
defect tensordoes not vanish. Thus one cannot assume the usual commutation relations but
should use expressions that include possible rotational terms. A selection of such formulae
can be found in [14] (see appendix A therein). Here we present only those essential to our
analysis.

Commutations between the spatial gradients of scalars and spacelike vectors are given
by, respectively,

(3)∇[i
(3)∇j ]f = − 1

c2
ωij ḟ , (B1)

and

(3)∇[i
(3)∇j ]vk = − 1

c2
ωijh

q

k v̇q +
1

2
(3)Rqkjiv

q, (B2)

wheref can be any scalar andvi is a spatial vector (i.e.viui = 0). Equation (B2) is
also regarded as the general expression of the 3-Ricci identity. Commutations between the
spatial gradients and the time derivatives of these quantities are governed by

(3)∇i ḟ − h j

i

(
(3)∇j f

)· = − 1

c2
ḟ ai + 1

3
2(3)∇if + (3)∇j f

(
σ
j

i + ωji
)
, (B3)

and
(3)∇i v̇j − h k

i h
q

j

(
(3)∇kvq

)· = 1
32

(3)∇ivj , (B4)

where the latter appears here in its linearized form and applies only to first order (i.e.vi ≡ 0
in the background) spacelike vectors. Commutator (B4) provides an additional first-order
relation, which plays an important role in our analysis. In particular, assuming that(3)∇if
vanishes in the background, we may linearize the 3-divergence of (B3) to obtain(

(3)∇2f
)· − (3)∇2ḟ = 1

c2
ḟ A− 22

3
(3)∇2f, (B5)
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recalling thatA = (3)∇iai to first order. The above is used to derive the evolution formula
of B, the scalar that describes spherically symmetric changes in the energy density of the
magnetic field.
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