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In this paper, the gauge choices in general spherically symmetric spacetimes are explored. In
particular, we construct the gauge invariant variables and the master equations for both the De-
tweiler easy gauge and the Regge-Wheeler gauge, respectively. The particular cases for l = 0, 1
are also investigated. Our results provide analytical calculations of metric perturbations in general
spherically symmetric spacetimes, which can be applied to various cases, including the effective-one-
body problem. A simple example is presented to show how the metric perturbation components are
related to the source perturbation terms.
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I. INTRODUCTION

Metric perturbations of spacetimes are an important issue. The solution of the Einstein field equations (EFEs) for
static, vacuum and spherically symmetric spacetime is the Schwarzschild spacetime. And the metric perturbations of
the Schwarzschild black hole have been studied for a long time. To begin with, Regge, Wheeler and Vishveshwara et.al
studied the odd-parity perturbation [1, 2], while Zerilli and Moncrief investigated the even-parity perturbation [3–5].
The perturbation theory of the Schwarzschild spacetime has been well summarized in Chandrasekhar’s monograph
[6]. After decades of research and development, this theory can be applied to a variety of different physical problems.
A useful application is the quasi-normal modes of the perturbed black holes, which was initiated by Vishveshwara
[7], Chandrasekhar [8] and Mashhoon [9] et.al., and the review articles of this topic can be found in [10–15]. Another
application is studying a particle moving around the Schwarzschild black hole. One can treat this point-particle as a
perturbation of the Schwarzschild spacetime [16, 17]. In addition, studying the metric perturbation can promote the
analysis of the stability of the Schwarzschild spacetime [18–20].
In perturbation theory in general relativity, the redundant coordinate freedom can be eliminated by choosing specific

gauges. The most familiar gauge in the Schwarzschild spacetime is the Regge-Wheeler (RW) gauge, which was first
presented by Regge and Wheeler [1]. And where they also analysed the spherical harmonics and decomposed the
general perturbation in the Schwarzschild spacetime into odd-parity and even-parity sectors. The RW gauge has
the obvious advantage of algebraic simplicity, and it is widely used in the literature. Since then, the construction
and the physical meaning of the gauge-invariant properties have attracted lots of attention. Using Lagrangian and
Hamiltonian variational principles for the perturbation, Moncrief considered that the metric perturbations can be
decomposed into the gauge invariant part and the gauge dependent part [5, 21]. Gerlach and Sengupta discussed
the construction of gauge invariant properties in general spherically symmetric spacetimes [22, 23]. Thorne reviewed
and summarized various scalar, vector and tensor spherical harmonics with a uniform notation [24]. Martel and
Poisson presented a gauge-invariant and covariant formalism, and also showed that the energy or angular-momentum
radiation can be expressed in terms of gauge-invariant scalar functions [25]. Recently, Sopuerta considered that the
master functions are linear combinations of the metric perturbations and their first-order derivatives, and discussed
about the master equation for vacuum spherically symmetric spacetimes [26]. Besides the RW gauge, there exists
a variety of gauge choices. For example, the light-cone gauge, which presented by Preston and Poisson [27], can
provide geometrical meaning to the coordinates in perturbed spacetimes. Another gauge choice is named as easy (EZ)
gauge [28], which was devised by Detweiler when he considered the gravitational self-force problem in the perturbed
Schwarzschild spacetime [29]. In the EZ gauge, the metric perturbation is singular on the black-hole horizon [30].
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Generally speaking, for metric perturbation of a spherically symmetric spacetime, the standard process is to decouple
the even-parity and the odd-parity EFEs, obtain the wave equations and then solve the one dimensional Schrödinger-
like equation with an effective potential. One of the most important step is to construct the gauge-invariant variable
and obtain the master equation. When the background metric takes the form

ds2 = −f(r)dt2 + f(r)−1dr2 + r2(dθ2 + sin2 θdϕ2), (1)

the problems have been thoroughly studied for the theories of Einstein [31, 32], Einstein-Maxwell [33, 34], and Lovelock
[34–36] in higher dimensions. However, if one considers a non-vacuum spherical static black hole with hairs [37–39], the
metric in general cannot be cast in the above form. Instead, the most general spherically symmetric static spacetimes
should be described by the metric

ds2 = −A(r)dt2 +B(r)dr2 + r2(dθ2 + sin2 θdϕ2), (2)

where A · B 6= 1, for which perturbations have not been studied in detail so far. In particular, based on the
Post-Newtonian (PN) approximation, Darmour et.al investigated the gravitational radiation generated by inspiralling
compact binary systems and presented a novel approach to map the two-body problem onto an effective-one-body
(EOB) system [40, 41]. Recently, the discussions of self-consistent of radiation-reaction force in the EOB system
shows that one should first solve the gravitational perturbation in the most general shyerically symmetric spacetimes
[42]. Therefore, a natural question is how to construct gauge-invariant perturbation variables in the most general
spherically symmetric spacetimes (2), and then study the even-parity and odd-parity perturbations.
With the above considerations as our main motivations, in this paper we consider the most general spherically

symmetric background spacetimes with metric perturbations, and the construction of gauge invariant variables. For
even-parity perturbations, we find that there exist several gauge choices, including the EZ gauge and the RW gauge.
Under the EZ gauge, we construct the gauge-invariant variables and obtain a third-order master equations. However,
the third-order equation can be written as a second-order equation after the separation of radial and time variables.
Under the RW gauge, a similar situation also occurs. For the odd-parity perturbations, the master equation remains
a second-order wave equation as usual. It should be noted that such developed formulas are not only applicable to the
most general EOB system, as pointed above [42], but also to other modified theories of gravity, in which the background
is described by the most general metric (2). These include theories with high-order derivative terms [43–45]. In such
theories, the field equations can be always written as Gµµ = κT eff.

µν , where T eff.
µν represent the modifications to general

relativity (GR). Certainly, in such theories extra fields are often introduced. In the latter, we need to consider not
only the effective Einstein field equations, but also the equations for matter fields. In this paper we shall mainly focus
on the effective Einstein field equations [cf. Eq.(20) to be given below and other components given in Appendix B],
that is, the perturbations of the most general spherically symmetric metric, and leave the studies of perturbations for
matter field equations to another occasion, as the latter will be involved with specific modified theories.
Considering the general metric perturbations in static spherically symmetric spacetimes, Throne showed how to

construct a ten-spherical-harmonic basis [24]. Through this paper, we use the A-K notation [28], which dealt only
with the Schwarzschild spacetime as the background, and was first presented by Detweiler when he considered the self-
force problem. The advantage of using this notation is that one can find the relation between the metric perturbation
components and the gauge invariants. In this paper, through the gauge invariants representing different combinations
of the metric components, we show that the gauge-invariant variables have the similar structure under the EZ and
RW gauges.
The rest of this paper is organized as follows. In Sect. II, we discuss the basic framework. First, the ten orthogonal

harmonics basis are introduced. Then the decomposition of non-vacuum Einstein equations and the A-K notation
are reviewed. After the investigation of gauge freedom, we consider the EZ and RW gauges. In Sect. III, we first
consider the gauge invariant properties. Then we focus on constructing the master equations for both even-parity and
odd-parity perturbations. We also study the cases for l = 0, 1. In Sect. IV, an example that a small particle goes
around a circular orbit in spherically symmetric spacetimes is investigated. Finally, we summarize our main results
with some discussions.
Throughout this paper, we use the A-K notation similarly to [28]. Units will be chosen in which c = G = 1. In

Sect. III, the subscript, e.g., ψ0 and ψ1, always represents quantities for l = 0 and l = 1 cases, respectively. And the
superscript with Roman letters, i.e. χI and χII, represent the quantities under the EZ gauge or under the RW gauge,
respectively.
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II. BASIC FRAMEWORK

A. Orthogonal Harmonics Basis

Let us start with the most general spherically symmetric spacetimes

ds2 = g
(0)
ab dx

adxb = −e2Φ(r)dt2 + e2Λ(r)dr2 + r2(dθ2 + sin2 θdϕ2). (3)

To decompose tensor fields on the above background, we choose the orthogonal basis composed of scalar spherical
harmonics, vector harmonics and tensor harmonics. First, we define two unnormalized and orthogonal co-vectors v
and n

va = (−1, 0, 0, 0), na = (0, 1, 0, 0), (4)

the projection operator onto the sphere surface

Ωab = g
(0)
ab + e2Φvavb − e2Λnanb = r2diag(0, 0, 1, sin2 θ), (5)

and the spatial Levi-Civita tensor, ǫabc ≡ vdǫdabc, where ǫtrθφ = eΦ+Λr2 sin θ.
In general, the complete basis on the 2-sphere are constructed by 1-scalar spherical harmonic, Y lm = Y lm(θ, ϕ), 3

pure-spin vector harmonics and 6 tensor harmonics [24]. The pure-spin vector harmonics are given by

Y E,lm
a = r∇aY

lm, Y B,lm
a = rǫab

cnb∇cY
lm, Y R,lm

a = naY
lm. (6)

And the pure-spin tensor harmonics are given by

T T0,lm
ab = ΩabY

lm, TL0,lm
ab = nanbY

lm, (7)

TE1,lm
ab = rn(a∇b)Y

lm, TB1,lm
ab = rn(aǫb)c

dnc∇dY
lm, (8)

TE2,lm
ab = r2

(

Ωa
cΩb

d − 1

2
ΩabΩ

cd

)

∇c∇dY
lm, TB2,lm

ab = r2Ω(a
cǫb)e

dne∇c∇dY
lm. (9)

Note that the vector harmonics are orthogonal to each other

∮

Y A,lm
a (Y a

A′,l′m′)∗dΩ = N (vec)(A, r, l)δAA′δll′δmm′ , (10)

with {A,A′} = {E,B,R} and N (vec)(A, r, l) is the specific normalization factor for vector harmonics. The tensor
harmonics are also orthogonal to each other

∮

TA,lm
ab (T ab

A′,l′m′)∗dΩ = N (ten)(A, r, l)δAA′δll′δmm′ , (11)

with {A,A′} = {T 0, L0, E1, E2, B1, B2} and N (ten)(A, r, l) is the specific normalization factor for tensor harmonics.
The expression for these normalization functions N (vec) and N (ten) are given in Appendix A.

B. Decomposition of Linearized Einstein Equations

For perturbed spacetimes, we use hab to represent the linear perturbation of the background spacetime g
(0)
ab , i.e.,

the metric of the perturbed spacetime can be written as

gab = g
(0)
ab + hab. (12)

The background metric and the perturbed metric satisfied the Einstein Field Equations (EFEs)

Gab(g
(0)) = 8πTab, (13)

Gab(g
(0) + h) = 8π(Tab + Tab), (14)
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where Tab and Tab denote the non-vacuum background and the perturbed energy-momentum tensor, respectively.
Expanding the EFEs in terms of hab, we get

Gab(g
(0) + h) = Gab(g

(0))− 1

2
Eab(h), (15)

where Eab is the linearized Einstein operator

Eab(h) =�hab +∇a∇bh
c
c − 2∇(a∇chb)c + 2R c d

a b hcd − (Ra
chbc +Rb

chac)

+ gab(∇c∇dhcd −�hdd)− gabR
cdhcd +Rhab

=− 16πTab. (16)

Note that now the Ricci curvature Rab and the scalar curvature R of the background do not vanish in general. If Rab

and R vanish, then the background metric would reduce to the Schwarzschild metric, which is the situation discussed
in [28].
Detweiler decomposed the harmonic modes of the perturbed metric hab as

hlmab =A vavbY
lm + 2B v(aY

E,lm

b) + 2C v(aY
B,lm

b) + 2D v(aY
R,lm

b) + E T T0,lm
ab

+ F TE2,lm
ab +G TB2,lm

ab + 2H TE1,lm
ab + 2J TB1,lm

ab +K TL0,lm
ab , (17)

where all coefficients A through K are scalar functions of (t, r), which were referred to as the A-K coefficients in [28].
For even-parity (polar part) perturbations with l ≥ 2, the perturbed metric can be decomposed as

hevenab =









A Ylm −D Ylm −rB ∂θYlm −rB ∂φYlm
Sym K Ylm rH ∂θYlm rH ∂φYlm
Sym Sym r2

[

E + F
(

∂2θ + 1
2 l(l + 1)

)]

Ylm r2F [∂θ∂φ − cot θ∂φ]Ylm
Sym Sym Sym r2 sin2 θ

[

E− F
(

∂2θ + 1
2 l(l+ 1)

)]

Ylm









. (18)

And for the odd-parity (axial part) perturbations with l ≥ 2, the perturbed metric can be decomposed as

hoddab = e−Φ−Λ









0 0 r csc θC ∂φYlm −r sin θ C ∂θYlm
0 0 −r csc θJ ∂φYlm r sin θ J ∂θYlm

Sym Sym −r2 csc θG [∂θ∂φ − cot θ∂φ]Ylm − r2

2 G
[

csc θ∂2φ + cos θ∂θ − sin θ∂2θ

]

Ylm

Sym Sym Sym r2G [sin θ∂θ∂φ − cos θ∂φ]Ylm









. (19)

These A-K notations could be linearly transformed into the notation taken by Regge and Wheeler [28]. To get the
explicit expression of coefficients A-K, one can project the metric perturbation onto the tensor harmonic basis. We
present these coefficients in Appendix A.
Now, we can get the A-K components of any rank-2 tensor in the spherically symmetric background. For example,

from Eq.(16), one can write

− 16πTA = EA = e4Φ
∮

Eab(h)(v
avbY ∗

lm)dΩ, (20)

to represent the A-term of Tab or Eab(h), which along the direction of vavbY ∗
lm. The expression for EA-EK are given

in Appendix B.

C. The Gauge Transformation

Under a gauge transformation, x̃a = xa + ξa, the first-order metric perturbation hab would be transformed as

h̃ab = hab − 2∇(aξb). (21)

As a vector, ξa can be projected onto the pure-spin harmonic basis as

ξa = P vaYlm +R Y R,lm
a + S Y E,lm

a +Q Y B,lm
a , (22)
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where P, R, S and Q are scalar functions of (t, r). The functions P, R and S describe three degrees of gauge
freedom for even-parity perturbations, while the function Q describes one degree of the gauge freedom for odd-parity
perturbations. Next we use ∆ to represent the A-K projections of 2∇(aξb). For example,

∆A = A− Ã = 2e4Φ
∮

∇(aξb)(v
avbY ∗

lm)dΩ, (23)

here A and Ã correspond to the projections of hab and h̃ab, respectively. Projecting 2∇(aξb) onto the tensor harmonic
basis, we obtain the A-K components of the term 2∇(aξb),

∆A = −2
∂P

∂t
− 2e−2Λ+2Φ ∂Φ

∂r
R, ∆B = −∂S

∂t
+

1

r
P,

∆C = − ∂

∂t
Q, ∆D =

(

∂

∂r
− 2

∂Φ

∂r

)

P− ∂R

∂t
,

∆E = 2
e−2Λ

r
R− l(l + 1)

r
S, ∆F =

2

r
S,

∆G =
2

r
Q, ∆H =

1

r
R +

(

∂

∂r
− 1

r

)

S,

∆J =

(

∂

∂r
− 1

r
− ∂Φ

∂r
− ∂Λ

∂r

)

Q, ∆K =

(

2
∂

∂r
− 2

∂Λ

∂r

)

R. (24)

D. Gauge Choices

Generally speaking, ξa has four independent functions, representing four degrees of freedom in spherically symmetric
spacetimes. Hence by properly choosing these four functions we can work with different gauges. For example, under
the gauge transformation, the scalar function F(t, r) would transform as

F̃ = F−∆F = F− 2

r
S. (25)

By setting S = rF/2, one degree of the gauge freedom is fixed, and F̃ = 0. Then substituting this S back into
Eq.(24), one can move on to eliminate the next degrees of freedom. In even-parity perturbations, properly choosing
the functions P, R and S would fix three variables of the metric perturbation. In the odd-parity properly choosing
the function Q, one can fix one variable of the metric perturbation.
Note that in the odd-parity sector, ∆G is proportional to Q, but there exists some derivative relation between

∆C, ∆J and Q. If we want to eliminate G̃ under the gauge transformation, just set Q = rG/2 then G̃ = 0 and ∆C

and ∆J are uniquely determined. If we eliminate C̃ under the gauge transformation rather than G̃, then Q could
be an arbitrary function of r with some integration constant, which could not determine ∆G and ∆J completely.
Such a choice cannot completely fix the gauge freedom. Similarly, in the even-parity sector, in order to fix the gauge
completely, one may first fix S from ∆F. Afterward, there are still several choices to fix P and R via ∆A, ∆B, ∆E or
∆H. Below, we would discuss two useful gauge choices.
Regge-Wheeler Gauge. Regge and Wheeler first presented the RW gauge by setting certain RW variables to

zero [1]. In the even-parity sector of the Schwarzschild spacetime, to eliminate three gauge freedom, RW set

hRW,even
0 = hRW,even

1 = GRW = 0, (26)

which corresponds to setting B̃ = F̃ = H̃ = 0 in the A-K notation. And in the odd-parity sector, RW set hRW
2 = 0,

which corresponds to setting G̃ = 0 [28]. For general spherically symmetric spacetimes, we set

SRW =
r

2
F, PRW = rB +

r2

2

∂F

∂t
,

RRW = rH− r

2

∂F

∂r
, QRW =

r

2
G, (27)

which means

ξRW
a =

(

rB +
r2

2

∂F

∂t

)

vaYlm +

(

rH− r

2

∂F

∂r

)

Y R,lm
a +

r

2
FY E,lm

a +
r

2
GY B,lm

a . (28)
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It should note that this gauge choice is exactly the same as the gauge choice with the A-K notation in the Schwarzschild
spacetime, see, for example, Eq.(6.7) in [28].
Easy gauge. The EZ gauge was first introduced by Detweiler when he considered the self-force problem, in which

the following metric components are set to zero,

B̃ = Ẽ = F̃ = G̃ = 0. (29)

To eliminate these metric components, the components of the gauge vector are chosen as

SEZ =
r

2
F, PEZ = rB +

r2

2

∂F

∂t
,

REZ =
r

4
l(l + 1)e2ΛF +

r

2
e2ΛE, QEZ =

r

2
G, (30)

which means

ξEZ
a =

(

rB +
r2

2

∂F

∂t

)

vaYlm +
(

rl(l + 1)e2ΛF +
r

2
e2ΛE

)

Y R,lm
a +

r

2
FY E,lm

a +
r

2
GY B,lm

a . (31)

III. GAUGE INVARIANTS AND MASTER EQUATIONS

In this section, we would first introduce a general set of gauge invariants in the spherically symmetric backgrounds.
With these gauge invariants, we shall investigate how to construct the single master equation under certain gauge
choices.

A. Gauge Invariants

Generally speaking, under any arbitrary gauge transformation, the gauge invariants can be constructed from Eq.(24).
For example,

∆G =
2

r
Q, (32)

∆J =

(

∂

∂r
− 1

r
− ∂Φ

∂r
− ∂Λ

∂r

)

Q, (33)

from which, we obtain

∆J +
r

2

(

∂Φ

∂r
+
∂Λ

∂r
− ∂

∂r

)

∆G = 0. (34)

The above equation indicates that one can define

α = J +
r

2

(

∂Φ

∂r
+
∂Λ

∂r
− ∂

∂r

)

G, (35)

and α is a gauge invariant quantity. Note that there are seven even-parity metric components and three odd-
parity metric components in the metric perturbation, while there are three even-parity components and one odd-
parity component in ξa, which tell us that we can construct four independent even-parity gauge invariants and two
independent odd-parity gauge invariants for l ≥ 2 cases. Following the construction of α, we find that they can be
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constructed as

α = J +
r

2

(

∂Φ

∂r
+
∂Λ

∂r
− ∂

∂r

)

G,

β = −C− r

2

∂

∂t
G,

χ = H− 1

2
e2ΛE− l(l+ 1)

4
e2ΛF− r

2

∂

∂r
F,

ψ =
1

2
K− r

2
e2Λ

∂Λ

∂r
E− 1

2
e2ΛE− r

2
e2Λ

∂

∂r
E− r

4
l(l + 1)e2Λ

∂Λ

∂r
F− 1

4
l(l + 1)e2ΛF− r

4
l(l + 1)e2Λ

∂

∂r
F,

δ = D+
r

2
e2Λ

∂

∂t
E +

(

2r
∂Φ

∂r
− 1

)

B − r
∂

∂r
B− r2

2

∂2

∂t∂r
F−

[

r − r2
∂Φ

∂r
− r

4
l(l+ 1)e2Λ

]

∂

∂t
F,

ǫ = −1

2
A− r

2
e2Φ

∂Φ

∂r
E− r

∂

∂t
B− r

4
l(l+ 1)e2Φ

∂Φ

∂r
F− r2

2

∂2

∂t2
F. (36)

These relations are the same as Eq. (7.5) of [28] when the background is vacuum, which degenerates to the
Schwarzschild spacetime.
From now on, we shall work in the coordinates x̃a. And for the save of simplicity, all the tildes will be dropped

from now on. Note that we use the superscript I or II to denote the quantities or parameters under the EZ gauge or
the RW gauge, respectively. Adopting the specific EZ gauge, we have

B = E = F = G = 0. (37)

Then, the gauge invariants become

α = J, β = −C,

χI = H, ψI =
1

2
K,

δI = D, ǫI = −1

2
A. (38)

Here α and β are not superscripted because they are the same under the EZ and RW gauges. Similarly, adopting the
specific RW gauge, we have

B = F = H = G = 0, (39)

and the even-parity gauge invariants become

χII = −1

2
e2ΛE, ψII =

1

2
K− 1

2
(rΛ′ + 1) e2ΛE− r

2
e2Λ

∂

∂r
E,

δII = D+
r

2
e2Λ

∂

∂t
E, ǫII = −1

2
A− 1

2
rΦ′e2ΦE. (40)

Using these gauges, each A-K projection of the linearized Einstein equations, i.e. Eqs.(B1)-(B10), can be rewritten
as a combination of the gauge invariants listed in Eq.(36). The results can be found in Appendix C. It is obvious
that under the EZ gauge, the relationship between the gauge invariants and the perturbed metric components seems
simpler, hence we first study the master equation under the EZ gauge.

B. Master Equations for l ≥ 2

Assuming that the perturbation of the stress-energy Tab is known, i.e. EA-EK are known quantities, now we look
for the master equations in terms of gauge invariants.

1. Even-parity Perturbations and the EZ gauge

The Bianchi identities indicate that not all seven even-parity projection equations in Appendix C are independent.
It has been shown that there are four independent gauge invariants. Noting the specific structure of the expressions of
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EI
A, E

I
D, E

I
F, E

I
H and EI

K, we find that one can obtain ∂δI/∂t from ∂EI
D/∂t, and ǫ

I from EI
A or EI

F. Substituting these
relations into 2EI

H + EI
K, after a large but tedious calculation, we find that the coupled partial differential equations

for χI and ψI can be constructed as

∂

∂r
χI =

2e2Λ−2Φr

τ IηI

(

σI ∂
2

∂t2
χI − 2

∂2

∂t2
ψI +

1

2
e2Λr

∂

∂t
EI

D

)

+
γI

rτ I
χI +

ρI

rτ I
ψI

− e2Λr

2τ I
(

e2Λλ+ 2rΦ′ − 2
)

EI
F +

e2Λr

2τ I
(

EI
K + 2EI

H

)

, (41)

∂

∂r
ψI =

e2Λ−2Φr

τ I

(

σI ∂
2

∂t2
χI − 2

∂2

∂t2
ψI +

1

2
e2Λr

∂

∂t
EI

D

)

+
µI

rτ I
χI +

νI

rτ I
ψI

+
e2Λr

4τ I
[

κIEI
F + ηI

(

EI
K + 2EI

H

)]

− 1

4
e4Λ−2ΦrEI

A, (42)

where λ = l(l+ 1), and σI, τ I, ηI, γI, ρI, µI, νI, κI are functions determined by the background spacetime, which can
be find in Appendix D. Note that in these two equations, there are no spatial derivatives of the source terms. Now
the goal becomes to decouple the gauge invariants χI and ψI, e.g. Eqs.(41) and (42). Introducing the gauge invariant

ZI(+) = σIχI − 2ψI, (43)

we find that ZI(+) satisfies the master equation

[

2e2Λ−2Φr

N IηI

(

2r(ηI − σI)σI ∂3

∂t2∂r
+

N I
T

N IηIτ I
∂2

∂t2

)

+
2rσIτ I

N I

∂2

∂r2
+

N I
R

(N I)
2

∂

∂r
+

N I
Z

r (N I)
2
τ I

]

ZI(+) = SI
even, (44)

with the source term given by

SI
even =

e4Λ−2Φr

N I

[

N I
A

2N I
EI

A + rσIτ I
∂

∂r
EI

A +
rN I

D

N I (ηI)
2
τ I

∂

∂t
EI

D − 2r2(ηI − σI)σI

ηI
∂2

∂t∂r
EI

D

]

− 2e2Λr2M I
Fσ

I

N I

∂

∂r
EI

F

+
e2Λr

(N I)
2
τ I

[

1

2
N I

FE
I
F +N I

HK

(

EI
H +

1

2
EI

K

)]

− e2Λr2
(

ηI − σI
)

σI

N I

(

2
∂

∂r
EI

H +
∂

∂r
EI

K

)

. (45)

In the above equation, N I, N I
T, N

I
R, N

I
Z and N I

A, N
I
D, M

I
F, N

I
F, N

I
HK are functions depending only on the background.

The explicit expressions of them can be found in Appendix D. Unlike the well-known Zerilli equation, the master
equation under the EZ gauge is a third-order equation. However, rewriting Eq.(44) in the form

(

a
∂3

∂t2∂r
+ b

∂2

∂t2
+ c

∂2

∂r2
+ d

∂

∂r
+ e

)

ZI(+) = SI
even, (46)

setting ZI(+) = ZI(+)(r)eiωt and SI
even = SI

even(r)e
iωt, we obtain a second-order differential equation

[

c
∂2

∂r2
+ (d− aω2)

∂

∂r
+ (e− bω2)

]

ZI(+)(r) = SI
even(r). (47)

If the background becomes the Schwarzschild spacetime, the master equation (44) will reduce to the result given in
[28], in other words, the result of Zerilli [3]. Further discussions about the degeneration of our result could be found
in Appendix E.
Once Eq.(44) is solved, together with the definition of the master variable given by Eq.(43), the gauge invariants

χI and ψI can be solved from

χI =
1

N I

[

4e2Λ−2Φr2
(

ηI − σI
)

ηI
∂2

∂t2
ZI(+) + 2rτ I

∂

∂r
ZI(+) +M I

1Z
I(+) − e4Λ−2Φr2τ IEI

A

+
2e4Λ−2Φr3

(

ηI − σI
)

ηI
∂

∂t
EI

D + 2e2Λr2M I
FE

I
F + e2Λr2

(

ηI − σI
) (

EI
K + 2EI

H

)

]

, (48)



9

ψI =
σI

2N I

[

4e2Λ−2Φr2
(

ηI − σI
)

ηI
∂2

∂t2
ZI(+) + 2rτ I

∂

∂r
ZI(+) −M I

2Z
I(+) − e4Λ−2Φr2τ IEI

A

+
2e4Λ−2Φr3

(

ηI − σI
)

ηI
∂

∂t
EI

D + 2e2Λr2M I
FE

I
F + e2Λr2

(

ηI − σI
) (

EI
K + 2EI

H

)

]

, (49)

where M I
1 and M I

2 are given in Appendix D. Then, the remaining two even-parity gauge invariants δI and ǫI can be
obtained from Eqs.(C3) and (C5), given respectively by

δI =
1

−2− e2Λ (−2 + λ) + 4rΛ′

(

e2Λr2EI
D + e2Λλr

∂

∂t
χI − 4r

∂

∂t
ψI

)

, (50)

ǫI = e−2Λ+2Φ

[

(1− rΛ′ + rΦ′)χI − ψI + r
∂

∂r
χI +

1

2
e2Λr2EI

F

]

. (51)

From Eq.(38), the even-parity metric perturbation components A, D, H, K could be read out directly.

2. Even-parity Perturbations and the RW gauge

Similar to the development provided in the previous subsection, using the field equations EII
A to EII

K in Appendix
C, one can eliminate the gauge invariants δII and ǫII, and then obtain the following coupled equations

∂

∂r
χII =

2e2Λ−2Φr

τ IIηII

(

σII ∂
2

∂t2
χII − 2

∂2

∂t2
ψII +

1

2
e2Λr

∂

∂t
EII

D

)

+
γII

rτ II
χII +

ρII

rτ II
ψII

− e2Λr

2τ II
(e2Λλ+ 2rΦ′ − 2)EII

F +
e2Λr

2τ II
(

2EII
H + EII

K

)

, (52)

∂

∂r
ψII =

e2Λ−2Φr

τ II

(

σII ∂
2

∂t2
χII − 2

∂2

∂t2
ψII +

1

2
e2Λr

∂

∂t
EII

D

)

+
µII

rτ II
χII +

νII

rτ II
ψ

+
e2Λr

4τ II
(

κIIEII
F + 2ηIIEII

H + ηIIEII
K

)

− 1

4
e4Λ−2ΦrEII

A , (53)

where the parameters σII, τ II, ηII, κII, ρII, µII, νII depend only on the background, and the explicit expressions of
them can be found in Appendix D.
We find that the master variable can be similarly constructed as

ZII(+) = σIIχII − 2ψII, (54)

and then the master equation under the RW gauge is given by
[

2e2Λ−2Φr

N IIηII

(

4r2(Λ′ +Φ′)σII ∂3

∂t2∂r
+

N II
T

N IIηIIτ II
∂2

∂t2

)

− 2rσIIτ II

N II

∂2

∂r2
+

N II
R

(N II)
2

∂

∂r
+

N II
Z

r (N II)
2
τ II

]

ZII(+) = SII
even,

(55)
with the source term given by

SII
even =

e4Λ−2Φr

N II

[

N II
A

2N II
EII

A − rσIIτ II
∂

∂r
EII

A +
rN II

D

N II (ηII)
2
τ II

∂

∂t
EII

D − 4r3(Λ′ +Φ′)σII

ηII
∂2

∂t∂r
EII

D

]

− 2e2Λr2M II
F σ

II

N II

∂

∂r
EII

F

+
e2Λr

(N II)
2
τ II

[

1

2
N II

F E
II
F +N II

HK

(

EII
H +

1

2
EII

K

)]

− 2e2Λr3 (Λ′ +Φ′)σII

N II

(

2
∂

∂r
EII

H +
∂

∂r
EII

K

)

, (56)

where N II, N II
T , N II

R , N II
Z , N II

A , N II
D , M II

F , N II
F all depend on the background, which can be found in Appendix D.

Similarly to the case under the EZ gauge, the master equation is a third-order equation, and which can be transformed
as a second-order differential equation. Note that when the background metric takes the form

ds2 = −f(r)dt2 + f(r)−1dr2 + r2dΩ2 (57)
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The relation Λ′ + Φ′ = 0 makes the third-order terms in Eq.(55) vanishes. In the Schwarzschild case, the master
equation Eq.(55) will also reduce to the result of Zerilli, see Appendix E. Once Eq.(55) is solved, one can get χII and
ψII from

χII =
1

N II

[

8e2Λ−2Φr3 (Λ′ +Φ′)

ηII
∂2

∂t2
ZII(+) − 2rτ II

∂

∂r
ZII(+) +M II

1 Z
II(+) + e4Λ−2Φr2τ IIEII

A

+
4e4Λ−2Φr4 (Λ′ +Φ′)

ηII
∂

∂t
EII

D + 2e2Λr2M II
F E

II
F + 2e2Λr3 (Λ′ +Φ′)

(

EII
K + 2EII

H

)

]

, (58)

ψII =
σII

2N II

[

8e2Λ−2Φr3 (Λ′ +Φ′)

ηII
∂2

∂t2
ZII(+) − 2rτ II

∂

∂r
ZII(+) +

M II
2

σII
ZII(+) + e4Λ−2Φr2τ IIEII

A

+
4e4Λ−2Φr4 (Λ′ +Φ′)

ηII
∂

∂t
EII

D + 2e2Λr2M II
F E

II
F + 2e2Λr3 (Λ′ +Φ′)

(

EII
K + 2EII

H

)

]

, (59)

and the remaining two gauge invariants δII and ǫII can be obtained from EII
D and EII

F , which are given respectively by

δII =
1

−2− e2Λ (λ− 2) + 4rΛ′

[

e2Λr2EII
D + r

(

2 + e2Λ (λ− 2) + 4rΦ′) ∂

∂t
χII − 4r

∂

∂t
ψII

]

, (60)

ǫII = e−2Λ+2Φ

[

(1− rΛ′ + rΦ′)χII − ψII + r
∂

∂r
χII +

1

2
e2Λr2EII

F

]

. (61)

When χII, ψII, δII and ǫII are solved, the even-parity metric perturbation components A, D, E, K are given by

A = 2e−2Λ+2ΦrΦ′χII − 2ǫII, D = δII + r
∂

∂t
χII,

E = −2e−2ΛχII, K = 2ψII + 2(rΛ′ − 1)χII − 2r
∂

∂r
χII. (62)

Under the RW gauge, the master variable can be written as the combination of the gauge invariants χII and ψII.
Note that Zerilli constructed the master variable as the combination of KLM and RLM [3], which correspond to a
combination of χII and δII in our paper.

3. Odd-parity Perturbations

For the odd-parity perturbations, the EZ gauge and the RW gauge are identical. So, in the following we shall not
distinguish them. We construct the odd-parity master variable as

Z(−) =
(

r + r2Λ′ + r2Φ′)β − r2
∂

∂r
β + r2

∂

∂t
α, (63)

then the master equation is given by
{

− ∂2

∂t2
+ e−2Λ+2Φ

[

∂2

∂r2
−
(

X ′

X
+ 3Λ′ + 3Φ′

)

∂

∂r
+
Nodd

r2

]}

Z(−) = Sodd, (64)

with the source term given by

Sodd = e2Φr2
[(

1

r
+ Λ′ − Φ′ − X ′

X

)

EC +
∂

∂r
EC +

∂

∂t
EJ

]

, (65)

where X and Nodd are functions only depending on the background, and the explicit expressions of which can be
found in Appendix D. Once Eq.(64) is solved, together with the structure of the odd-parity master variable Eq.(63)
and the perturbed field equations Eqs.(C15) and (C17), we have

α = −e
2Λ−2Φ

X

(

e2Φr2EJ +
∂

∂t
Z(−)

)

, (66)

and

β =
1

X

[

e2Λr2EC −
(

1

r
− 2Λ′ − 2Φ′

)

Z(−) − ∂

∂r
Z(−)

]

. (67)

Then, the odd-parity metric perturbation components C and J can be read off from these expressions.
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C. Specific Cases for l = 0, 1

In the previous subsection, we have discussed the construction of master variables and master equations for even-
parity and odd-parity perturbations for the l ≥ 2 cases. However, the decomposition of the metric perturbation
would take some other forms for the specific cases of l = 0, 1. In this section, we investigate how to solve the metric
perturbation for l = 0, 1. Note that in this subsection, we use, e.g. A0 and A1, to represent the scalar functions in

the metric perturbation and the gauge vector for l = 0 and l = 1 cases, respectively. And we also use, e.g. E
(l=0)
A and

E
(l=1)
A to represent the projection function EA for l = 0 and l = 1 cases, respectively.

1. l = 0 case

For the special case l = 0, there remains one scalar spherical harmonic function Y 00 = 1
2
√
π
, which leads the metric

perturbation to

h
(l=0)
ab =

1

2
√
π
(A0vavb + 2D0v(anb) + E0σab +K0nabb), (68)

and the gauge vector takes the form

ξ(l=0)
a =

1

2
√
π
(P0va +R0na). (69)

In the l = 0 case, we only have four metric perturbation components, and all of them are even-parity. Under the
gauge transformation, the metric perturbation will be transformed as

∆A0 = −2
∂

∂t
P0 − 2e−2Λ+2ΦΦ′R0, ∆D0 =

(

∂

∂r
− 2Φ′

)

P0 −
∂

∂t
R0,

∆E0 = 2
e−2Λ

r
R0, ∆K0 =

(

2
∂

∂r
− 2Λ′

)

R0. (70)

The structure of ∆A0, ∆D0 and ∆K0 are the same as the l ≥ 2 cases, but ∆E0 is different from the expression given
in Eq.(24) since S does not exist for l = 0. From Eq.(70), we can construct two gauge invariants

ψ0 =
1

2
K0 −

r

2
e2ΛΛ′E0 −

1

2
e2ΛE0 −

r

2
e2Λ

∂

∂r
E0,

o0 =
1

2

∂

∂r
A0 − Φ′A0 +

∂

∂t
D0 +

1

2
e2Φ(Φ′ + rΦ′′)E0 +

1

2
e2ΦrΦ′ ∂

∂r
E0 +

1

2
e2Λr

∂2

∂t2
E0. (71)

Choosing the gauge D0 = E0 = 0, we find that E
(l=0)
A , E

(l=0)
D , E

(l=0)
E and E

(l=0)
K are given by

E
(l=0)
A =2r−2e−2Λ(−1 + e2Λ + 2rΛ′)A0 + 2r−2e−4Λ+2Φ(4rΛ′ − 1)K0 − 2r−1e−4Λ+2Φ ∂

∂r
K0,

E
(l=0)
D =2r−1e−2Λ ∂

∂t
K0,

E
(l=0)
E =2r−1e−2Λ−2Φ(rΛ′Φ′ − rΦ′′ − Φ′)A0 − r−1e−2Λ−2Φ(rΛ′ + 2rΦ′ − 1)

∂

∂r
A0 + e−2Λ−2Φ ∂2

∂r2
A0

+ 2r−1e−4Λ(Φ′ + rΦ′2 + rΦ′′ − 2rΛ′Φ′ − 2Λ′)K0 + r−1e−4Λ(rΦ′ + 1)
∂

∂r
K0 + e−2Λ−2Φ ∂2

∂t2
K0,

E
(l=0)
K =− 4r−1e−2ΦΦ′A0 + 2r−1e−2Φ ∂

∂r
A0 + 2r−2K0. (72)

The gauge invariants ψ0 and o0 can be constructed as

ψ0 =
1

2
K0, o0 =

1

2

∂

∂r
A0 − Φ′A0. (73)
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And then E
(l=0)
D , E

(l=0)
E and E

(l=0)
K can be written as

E
(l=0)
D =4r−1e−2Λ ∂

∂t
ψ0, (74)

E
(l=0)
E =− 2r−1e−2Λ−2Φ(rΛ′ − 1)o0 + 2e−2Λ−2Φ ∂

∂r
o0 + 4r−1e−4Λ(Φ′ − 2Λ′ + rΦ′2 + rΦ′′ − 2rΛ′Φ′)ψ0

+ 2r−1e−4Λ(rΦ′ + 1)
∂

∂r
ψ0 + 2e−2Λ−2Φ ∂2

∂t2
ψ0, (75)

E
(l=0)
K =4r−1e−2Φo0 + 4r−2ψ0. (76)

From Eq.(76), we have

o0 =
1

4
e2Φ

(

rE
(l=0)
K − 4

r
ψ0

)

. (77)

Substituting Eqs.(74) and (77) into Eq.(75), we find that ψ0 satisfied

(

ι0
∂

∂r
− σ0

)

ψ0 =
r

2
e4ΛS(l=0), (78)

where ι0 and σ0 are functions depend on background, which can be found in Appendix D, and S(l=0) is the source
term,

S(l=0) =
1

2
e−2Φr

∂

∂t
E

(l=0)
D − E

(l=0)
E +

1

2
e−2Λ

[

r
∂

∂r
E

(l=0)
K + (2− rΛ′ + 2rΦ′)E(l=0)

K

]

. (79)

2. l = 1 case

For the case l = 1, the tensor harmonic basis TE2,1m
ab and TB2,1m

ab vanish, hence the scalar functions F1 and G1

would no longer exist. The four components of the gauge vector ξa imply that there are only three gauge invariants
for even-parity and one gauge invariant for odd-parity. The remaining eight projections of 2∇(aξb) are the same as
for l ≥ 2 cases.
First, we investigate the even-parity sector. As we explain for l ≥ 2 cases, one should first determine the function

S of the gauge vector ξa to make F vanish under the gauge transformation. However, when l = 1, the lack of F1

prevents us from constructing the gauge invariants as the cases for l ≥ 2. The even-parity l = 1 metric perturbations
are related to the linear momentum of the system [4]. Note that if we take the gauge choice B1 = E1 = H1 = 0, which
was introduced by Zerilli in the Schwarzschild spacetime, the relation between EA and metric components would no
longer be a simple relationship. However, taking the gauge

A1 = E1 = H1 = 0, (80)

we find that E
(l=1)
A and the metric perturbed component K1 have a simple relation. In particular, we find

E
(l=1)
A =− 2r−1e−4Λ+2Φ

(

∂

∂r
K1 + r−1(1 + e2Λ − 4rΛ′)K1

)

, (81)

E
(l=1)
D =2r−2(1 − 2rΦ′)B1 + 2r−1 ∂

∂r
B1 + 2r−1e−2Λ ∂

∂t
K1 − 2r−2e−2Λ(1 − 2rΛ′)D1, (82)

E
(l=1)
K + 4E

(l=1)
H =2r−2e−2Λ(−2 + e2Λ − 2rΦ′)K1 + 4r−1e−2Φ(1− e2Λ)

∂

∂t
B1 − 4e−2Φ ∂2

∂t∂r
B1. (83)

From Eq.(81), the metric perturbation function K1 can be found. This solution can be used in Eq.(83) to solve B1,
and then from Eq.(82), D1 could also be solved. The remaining quantities, such as EB or EE, can be used to check
the consistency of the solutions.
Then we investigate the odd-parity sector. For l ≥ 2 cases, one should determine the function Q of the gauge vector

ξa to make G vanish under the gauge transformation. For l = 1 case, G1 no longer exists, which means that we can
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not construct the gauge invariants α and β as in the l ≥ 2 cases. However, from the components of the projection of
2∇(aξb)

∆C1 =− ∂

∂t
Q, (84)

∆J1 =

(

∂

∂r
− 1

r
− Φ′ − Λ′

)

Q, (85)

we can construct a gauge invariant property α1 as

α1 = r2
∂

∂t
J1 + r2

∂

∂r
C1 − r (1 + rΦ′ + rΛ′)C1. (86)

Then, for l = 1, the odd-parity of the projection of EFEs are

E
(l=1)
C =− r−1e−2Λ(−2 + 3rΛ′ + 3rΦ′)

∂

∂r
C1 + e−2Λ ∂2

∂r2
C1 − r−1e−2Λ(−3 + 2rΛ′ + 2rΦ′)

∂

∂t
J1 + e−2Λ ∂2

∂t∂r
J1,

− r−2e−2Λ
(

−2 + 2r2Λ′2 − 3rΦ′ + rΛ (1 + 6rΦ′)− r2Λ′′ − 3r2Φ′′
)

C1 (87)

E
(l=1)
J =− r−1e−2Λ

(

2Λ′ (1 + rΦ′)− 2(Φ′ + rΦ′2 + rΦ′′)
)

J1 − e−2Φ ∂2

∂t2
J1

+ r−1e−2Φ(1 + rΛ′ + rΦ′)
∂

∂t
C1 − e−2Φ ∂2

∂t∂r
C1. (88)

Together with Eq.(86), Eq.(87) and Eq.(88) can be decoupled, and the master equation for the odd-parity pertur-
bation is given by

{

− ∂2

∂t2
+ e−2Λ+2Φ

[

∂2

∂r2
−
(

X ′
1

X1
+ 3Λ′ + 3Φ′

)

∂

∂r
+
N

(l=1)
odd

r2

]}

α1 = S
(l=1)
odd , (89)

where S
(l=1)
odd is the source term,

S
(l=1)
odd = e2Φr2

[(

1

r
+ Λ′ − Φ′ − X ′

1

X1

)

E
(l=1)
C +

∂

∂r
E

(l=1)
C +

∂

∂t
E

(l=1)
J

]

. (90)

In the above equations, X1 and N
(l=1)
odd are all depend only on the background, which can be found in Appendix D.

Once Eq.(89) is solved, the metric perturbation components C1 and J1 can be determined by

C1 =− 1

X1

[

e2Λr2E
(l=1)
C −

(

1

r
− 2Λ′ − 2Φ′

)

α1 −
∂

∂r
α1

]

, (91)

J1 =− e2Λ−2Φ

X1

(

e2Φr2E
(l=1)
J +

∂

∂t
α1

)

. (92)

IV. A POINT PARTICLE AS THE SOURCE

In this section, we present a simple example that a small object moves along a circular orbit around the center of
a spherically symmetric spacetime. We analyse the solutions for l = 0, 1 in this section. For l ≥ 2 cases, we only
provide a general outline.
Assuming that the small object moves along the worldline z(τ) with mass µ and four velocity ua, the stress-energy

tensor of this point particle takes the form [46]

Tab =

∫

µuaub
√

−g(0)
δ4[x− z(τ)]dτ, (93)

where τ is the proper time, g(0) and δ4 are the determinant of the background and the four-dimensional Dirac delta
function, respectively. Generalizing the standard analysis from the textbook [47], the time-like geodesics in general
spherically symmetric spacetime is

− 1 = gabu
aub = −e2Φṫ2 + e2Λṙ2 + r2ϕ̇2. (94)
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Using the static Killing field ξa = (∂/∂t)a and the rotational Killing field ψa = (∂/∂ϕ)a, two conserved quantities E
and L can be defined as

E = −gabξaub = e2Φṫ, L = gabψ
aub = r2ϕ̇. (95)

Then the geodesic equation reads

1

2
ṙ2 +

1

2
e−2Λ

(

L2

r2
+ 1

)

=
1

2
e−2Λ−2ΦE2. (96)

Considering that the particle moves along a circular orbit with radio R, which is determined by ∂V/∂r = 0, the
four velocity of the particle can be written as

ua = (−E , 0, 0, L), (97)

and now E and L represent the energy and angular momentum of the particle, given respectively by,

E =
eΦ|R

√

RΛ′|R + 1
, L = R

√

−RΛ′|R
RΛ′|R + 1

. (98)

where |R denotes the corresponding function taking its value along the orbit. The orbital frequency can also be defined
as

Ω2 =

(

uϕ

ut

)2

= −e
2ΦΛ′|R
R

, (99)

which gives two useful relations

E =
e2Φ|R

ΩR2
L, ΩL = −RΛ′|R · E . (100)

Projecting the stress-energy tensor Tab to the harmonic basis, one can obtain EA-EK. The results reveal that
ED, EH, EJ and EK vanish automatically, and the non-vanishing projections of the stress-energy tensor are given as
follows. For l ≥ 0, we have

Elm
A =− 16πe−Λ+ΦµE

r2
δ(r −R)Y ∗

lm

(π

2
,Ωt
)

, (101)

Elm
E =− 8πe−Λ−ΦµLΩR

2

r4
δ(r −R)Y ∗

lm

(π

2
,Ωt
)

, (102)

where EA and EE satisfy the relation EA = − 2e2Φr2

R3Λ′
EE. For l ≥ 1, we find

Elm
B =− 16π

l(l+ 1)
e−Λ−ΦµEΩR2

r3
δ(r −R)

(

∂

∂ϕ
Y ∗
lm(θ, ϕ)

)

∣

∣

∣

θ=π

2
,ϕ=Ωt

, (103)

Elm
C =− 16π

l(l+ 1)

µEΩR2

r3
δ(r −R)

(

∂

∂θ
Y ∗
lm(θ, ϕ)

)

∣

∣

∣

θ=π

2
,ϕ=Ωt

, (104)

and for l ≥ 2,

Elm
F =

16π(l − 2)!

(l + 2)!
e−Λ−ΦµLΩR

2

r4
δ(r −R)

[

2
∂2

∂θ2
Y ∗
lm(θ, ϕ) + l(l + 1)Y ∗

lm(θ, ϕ)

]

∣

∣

∣

θ=π

2
,ϕ=Ωt

, (105)

Elm
G =− 32π(l− 2)!

(l + 2)!

µLΩR2

r4
δ(r −R)

(

∂2

∂θ∂ϕ
Y ∗
l,m(θ, ϕ)

)

∣

∣

∣

θ=π

2
,ϕ=Ωt

. (106)

A. Perturbations for l = 0

For l = 0, substituting Eqs.(102) into Eq.(78), we have
(

ι0
∂

∂r
− σ0

)

ψ0 = − r
2
e4ΛE00

E . (107)
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Using the standard method to solve the above equation, one can obtain

ψ0 =− exp

(∫ r σ0(r)

ι0(r)
dr

)∫ r
[

r′e4Λ(r′)

2ι0(r′)
exp

(

−
∫ r′ σ0(r

′′)

ι0(r′′)
dr′′
)

E00
E (r′)

]

dr′

=− exp

(

∫ r σ0
ι0
dr −

∫ R σ0
ι0
dr

)

Re4Λ|R

2ι0|R
Ē00

E Θ(r −R)

=− exp

(∫ r

R

σ0
ι0
dr

)

Re4Λ|R

2ι0|R
Ē00

E Θ(r −R), (108)

where Θ(r −R) is the unit step function, and Ē00
E denote the evaluated coefficient given by

Ē00
E = −4

√
πe−Λ|R−Φ|R µLΩ

R2
= 4

√
πe−Λ|R−Φ|R µΛ

′|R · E
R

. (109)

From Eq.(73), we have

K0 = 2ψ0 = −4
√
π
Λ′|R · µE
ι0|R

exp

(∫ r

R

σ0
ι0
dr + 3Λ|R − Φ|R

)

Θ(r −R). (110)

Using Eq.(77), we can get o0, and then solve Eq.(73) to obtain A0

A0 = 4
√
πe2Φ

Λ′|R · µE
ι0|R

· A · exp
[

−
∫ R σ0

ι0
dr + 3Λ|R − Φ|R

]

Θ(r −R), (111)

where

A =

∫

r−1 exp

[∫ r σ0(r
′)

ι0(r′)
dr′
]

dr. (112)

With A0 and K0 in hand, the metric perturbation can be directly written out. Since both A0 and K0 contain step
function, it is obvious that inside the orbit, i.e. r < R, the perturbation would vanishes. While outside the orbit, i.e.
r > R, the perturbed metric can be given by

h00ab =
1

2
√
π
(A0vavb +K0nanb)

=2e2Φ
Λ′|R · µE
ι0|R

· A · exp
[

−
∫ R σ0

ι0
dr + 3Λ|R − Φ|R

]

vavb

− 2
Λ′|R · µE
ι0|R

exp

[∫ r

R

σ0
ι0
dr + 3Λ|R − Φ|R

]

nanb. (113)

Unlike the Schwarzschild spacetime, there is no clear definition of the mass M for general spherically symmetric
spacetimes. It is obvious that the perturbation for l = 0 only affects gtt and grr. In the Schwarzschild spacetime, this
perturbation is equivalent to adding an extra mass δm to the system [4].

B. Perturbations for l = 1

1. Even-parity Perturbations

For the even-parity perturbations with l = 1, we find that we can set directly A1 = E1 = H1 = 0. From Eq.(81),
we find that K1 can be determined by EA. Note that Y ∗

1m(π2 , ϕ) would vanish for m = 0, hence

K1 = −8πR
µE
r2
Y ∗
1,±1

(π

2
,Ωt
)

exp

(

−
∫ r

R

1 + e2Λ − 4rΛ′

r
dr + 3Λ|R − Φ|R

)

Θ(r −R). (114)

Substituting K1 into Eq.(83), together with EH = EK = 0, we have

∂

∂r

(

∂

∂t
B1

)

− r−1(1− e2Λ)
∂

∂t
B1 = KK1, (115)
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where

K =
1

2
r−2e2Φ−2Λ(−2 + e2Λ − 2rΦ′). (116)

Hence, B1 can be solved by Eq.(115). Then, considering Eq.(82) with ED = 0, in principle, the metric perturbed
component D1 can also be obtained.

2. Odd-parity Perturbations

To study the metric perturbation components C1 and J1, we should first solve the master variable α1 from Eq.(89).
Then using Eqs.(91) and (92), C1 and J1 can be obtained. However, G automatically vanish for the l = 1 case, there
exists one freedom for the odd-parity. If we impose the gauge C1 = 0, the master variable becomes

α1 = r2
∂

∂t
J1. (117)

Then, Eq.(91) becomes

∂

∂r
α1 +

(

1

r
− 2Λ′ − 2Φ′

)

α1 = e2Λr2EC. (118)

The solution of this equation is

α1 =− 16π

l(l+ 1)
· µEΩR

2

r
exp(2Λ + 2Φ− 2Φ|R) ·

(

∂

∂θ
Y ∗
lm(θ, ϕ)

)

|θ=π

2
,ϕ=Ωt

=− 8π
µL

r
e2Λ+2Φ

(

∂

∂θ
Y ∗
lm(θ, ϕ)

)

|θ=π

2
,ϕ=Ωt, (119)

where we have usedamour the relation Eq.(100) and the fact l = 1. From α1, one can solve J1 with a undetermined
function that only depend on r. However, the metric perturbation component J1 yields a contribution to h1mrθ and
h1mrϕ .
Next, we impose the gauge J1 = 0, and now the gauge invariant α1 becomes

α1 = r2
∂

∂r
C1 − r (1 + rΛ′ + rΦ′) C1. (120)

Substituting this relation into Eqs.(91) and (92), we know that α1 should only be a function of r, and C1 satisfies the
second-order differential equation

r2
∂2

∂r2
C1 + r (2− 3rΛ′ − 3rΦ′)

∂

∂r
C1 −

(

2− 2r2Λ′2 + 3rΦ′ − rΛ′(1 + 6rΦ′) + r2Λ′′ + 3r2Φ′′
)

C1 = e2Λr2EC, (121)

which is Eq.(87) with J1 = 0. Considering that EC contains the delta function, we predict that the solution of C1

contain the step function Θ(r−R), with two arbitrary constants of integration. One can be determined by considering
that the background spacetime without intrinsic angular momentum, and the other can be determined by the fact
that perturbation C1 would be convergent at infinity [28]. If the background metric degenerates to the Schwarzschild
spacetime, our equation would become Eq. (10.21) of [28], which gives a non-vanishing h01tϕ outside the circular orbit
to describe the adding angular momentum of the system.

C. Perturbations For l ≥ 2

Generally speaking, for l ≥ 2 the problem is much more mathematically involved, and normally we have to seek
help from numerical computations. From the source term, Eqs.(45), (56) or (65), we know that they depend only
on Eqs.(101)-(106). All these terms are proportional to e−imΩt, which implies that our master equations, Eqs.(44),
(55) and (64), can be written as the second-order ordinary differential equations in r for each l and m. And the
distributional sources of these differential equations would be vanish everywhere except at the circular orbit radius
r = R.
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An basic outline is as follows. To solve the second-order equations, one can study two regions separately. One
region is from the circular orbit radius to infinity, i.e. r ∈ (R,∞). In this region, a naturally boundary condition is
considering an appropriate radiation at spatial infinity. In the other region there are several different situations. For
example, if the background spacetime has an event horizon, then one should determine this region from the event
horizon to the circular orbit radius, i.e., r ∈ (r+, R). Then solve the differential equation with the boundary condition
at the event horizon r+. Another example is that the background spacetime is a perfect fluid star without event
horizons, then one should determine the other region from the center of the star to the circular orbit radius, i.e.,
r ∈ (0, R). Then solve the differential equation with some boundary conditions at the center of the star. Finally,
matching the solutions obtained in the two separate regions properly across the boundary r = R, we obtain the
perturbations valid over the whole spacetime.

V. CONCLUSIONS AND DISCUSSIONS

In this paper, we systematically study the gauge invariant perturbations of a general spherically symmetric back-
ground. First, we find that, in general spherically symmetric spacetimes, for even-parity, there are several gauge
choices. One is the well-known RW gauge, and the other is the EZ gauge. For odd-parity perturbation, only one
gauge choice exists, that is, by setting G = 0. Then, we mainly focus on the construction of master equations for
l ≥ 2. For even-parity perturbation, under the EZ gauge or the RW gauge, the master equation (44) or (55) are the
third-order equations. However, after the separation of variables, the equations all reduce to a second-order equation.
For odd-parity perturbation, the master equation is also constructed as Eq.(64). Next, the cases for l = 0 and l = 1 are
discussed. For the l = 0 case, we present the equations that the gauge invariants satisfy. For even-parity perturbations
with l = 1, we find that the metric perturbation components are still determined when the source is specified. And for
odd-parity perturbations with l = 1, the master equation (89) is still a wave-like equation. Finally, using our general
results, we investigate a point particle moving along a circular orbit in general spherically symmetric spacetimes. In
particular, the form of the solutions for l = 0 and l = 1 are carefully discussed.
Our results can be applied to various modified theories of gravity, in which the background is described by the

general static metric (2), instead of the particular one (1). In particular, it can be applied to the EOB system.
Jing et. al. pointed out that one should consider the Hamilton equations for an EOB system self-consistently [42].
Specifically, considering that the EOB system takes the spinless effective metric geffµν [40, 48, 49], the Hamiltonian

H [geffµν ] and the radiation-reaction force Fcirc
ϕ [geffµν ] should be both based on the same effective metric. Under the

quasi-circular approximation, the radiation-reaction force can be obtained by the energy-loss rate,

Fcirc
ϕ [geffµν ] ≃ 1

ϕ̇

dE[geffµν ]

dt
. (122)

Considering that the perturbed Weyl tensor ψB
4 can be divided into the even-parity ψBE

4 and the odd-parity ψBO
4

parts [42], then the energy-loss rate can be calculated from ψBE
4 and ψBO

4 via the relation,

dE[geffµν ]

dt
=

c3

16πGω2

∫

{

[

Re(ψBE
4 + ψBO

4 )
]2

+
[

Im(ψBE
4 + ψBO

4 )
]2
}

r2dΩ2. (123)

So, the key step to obtain a self-consistent radiation-reaction force Fcirc
ϕ [geffµν ] is to solve the solution of ψBE

4 and

ψBO
4 . In [42], the authors constructed the decoupled equations for both even-parity ψBE

4 and odd-parity ψBO
4 in the

effective metric spacetime rather than in the Schwarzschild spacetime. Generally speaking, ψBO
4 is only related to

the odd-parity perturbation, i.e. the C and J terms defined in Eq.(17). When Eq.(64) is solved, one can determine
C and J by Eqs.(66) and (67), and then ψBO

4 can be calculated. Similar processing can be done for the even-parity
perturbation. However, Ref. [42] only considered the background effective metric that takes the form as Eq.(1), which
can be applied to the Post-Minkowskian (PM) approximation [48–50], if the undeterminated parameters di are well
constrained. While in this paper we consider the most general spherical symmetric metric, which can be applied to the
EOB theory with either the PN approximation or the PM approximation. We wish to come back to this important
issue soon.
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Appendix A: Normalization Factors And A-K Decomposition

The normalization factors N (vec)(A, r, l) and N (ten)(A, r, l) in Sec.II can be calculated as

∮

Y E,lm
a (Y a

E,l′m′)dΩ = N (vec)(E, r, l)δll′δmm′ = l(l+ 1)δll′δmm′ ,

∮

Y B,lm
a (Y a

B,l′m′)dΩ = N (vec)(B, r, l)δll′δmm′ = e−2Λ−2Φl(l+ 1)δll′δmm′ ,

∮

Y R,lm
a (Y a

R,l′m′)dΩ = N (vec)(R, r, l)δll′δmm′ = e−2Λδll′δmm′ ,

and
∮

T T0,lm
ab (T ab

T0,l′m′)∗dΩ = N (ten)(T 0, r, l)δll′δmm′ = 2δll′δmm′ ,

∮

TL0,lm
ab (T ab

L0,l′m′)∗dΩ = N (ten)(L0, r, l)δll′δmm′ = e−4Λδll′δmm′ ,

∮

TE1,lm
ab (T ab

E1,l′m′)∗dΩ = N (ten)(E1, r, l)δll′δmm′ =
1

2
e−2Λl(l + 1)δll′δmm′ ,

∮

TB1,lm
ab (T ab

B1,l′m′)∗dΩ = N (ten)(B1, r, l)δll′δmm′ =
1

2
e−4Λ−2Φl(l+ 1)δll′δmm′ ,

∮

TE2,lm
ab (T ab

E2,l′m′)∗dΩ = N (ten)(E2, r, l)δll′δmm′ =
(l + 2)!

2(l− 2)!
δll′δmm′ ,

∮

TB2,lm
ab (T ab

B2,l′m′)∗dΩ = N (ten)(B2, r, l)δll′δmm′ = e−2Λ−2Φ (l + 2)!

2(l − 2)!
δll′δmm′ .

Projecting the perturbed metric hab onto these basis, one can obtain the expressions of coefficients A-K

A = e4Φ
∮

hlmab (v
avbY ∗

lm)dΩ, B = − e2Φ

l(l+ 1)

∮

hlmab v
aY b∗

E,lmdΩ,

C = − e4Φ+2Λ

l(l+ 1)

∮

hlmab v
aY b∗

B,lmdΩ, D = −e2Φ+2Λ

∮

hlmab v
aY b∗

R,lmdΩ,

E =
1

2

∮

hlmab T
ab∗
T0,lmdΩ, F =

2(l − 2)!

(l + 2)!

∮

hlmab T
ab∗
E2,lmdΩ,

G =
2(l − 2)!

(l + 2)!
e2Φ+2Λ

∮

hlmab T
ab∗
B2,lmdΩ, H =

e2Λ

l(l + 1)

∮

hlmab T
ab∗
E1,lmdΩ,

J =
e4Λ+2Φ

l(l+ 1)

∮

hlmab T
ab∗
B1,lmdΩ, K = e4Λ

∮

hlmab T
ab∗
L0,lmdΩ.

The above results are only valid for l ≥ 2.

Appendix B: Decomposition of Linearized Einstein Equations

In this appendix, we show the decomposition of the linearized Einstein tensor into the A-K components. Note that
these expressions are only valid for l ≥ 2.
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1. Even Parity

EA =2r−2e−2Λ(−1 + e2Λ + 2rΛ′)A− r−2e2Φ(l2 + l − 2)E

− 2r−1e−2Λ+2Φ(rΛ′ − 3)
∂

∂r
E + 2e−2Λ+2Φ ∂2

∂r2
E− 1

2
r−2e2Φl(l + 2)(l + 1)(l − 1)F

− 2r−2e−2Λ+2Φl(l + 1)(rΛ′ − 2)H + 2r−1e−2Λ+2Φl(l+ 1)
∂

∂r
H

− r−2e−4Λ+2Φ
[

2 + e2Λl(l + 1)− 8rΛ′]K− 2r−1e−4Λ+2Φ ∂

∂r
K, (B1)

EB =r−2e−2Λ(−2 + 2e2Λ + 3rΛ′ − rΦ′ + 2r2Λ′Φ′ − 2r2Φ′2 − 2r2Φ′′)B

− r−1e−2Λ(−2 + rΛ′ + rΦ′)
∂

∂r
B+ e−2Λ ∂2

∂r2
B + r−1e−2Λ(Λ′ − Φ′)D− r−1e−2Λ ∂

∂r
D

− r−1 ∂

∂t
E− 1

2
r−1(l2 + l− 2)

∂

∂t
F− r−1e−2Λ(−3 + rΛ′ + rΦ′)

∂

∂t
H+ e−2Λ ∂2

∂t∂r
H

− r−1e−2Λ ∂

∂t
K, (B2)

ED =r−2l(l+ 1)(1− 2rΦ′)B + r−1l(l + 1)
∂

∂r
B+ 2r−1(−1 + rΦ′)

∂

∂t
E− 2

∂

∂t∂r
E

− r−2e−2Λ(2 − 2e2Λ + e2Λl + e2Λl2 − 4rΛ′)D− r−1l(l+ 1)
∂

∂t
H+ 2r−1e−2Λ ∂

∂t
K, (B3)

EE =− 1

2
r−2e−2Λ−2Φ(e2Λl + e2Λl2 + 4rΦ′ − 4r2Λ′Φ′ + 4r2Φ′′)A− r−1e−2Λ−2Φ(−1 + rΛ′ + 2rΦ′)

∂

∂r
A

+ e−2Λ−2Φ ∂2

∂r2
A− r−1e−2Φl(l + 1)

∂

∂t
B− 2r−1e−2Λ−2Φ(−1 + rΛ′)

∂

∂t
D+ 2e−2Λ−2Φ ∂2

∂t∂r
D

− 2r−1e−2Λ(Φ′ − Λ′ − rΛ′Φ′ + rΦ′2 + r2Φ′′)E + r−1e−2Λ(−2 + rΛ′ − rΦ′)
∂

∂r
E

− e−2Λ ∂2

∂r2
E + e−2Φ ∂2

∂t2
E + r−2e−2Λl(l + 1)(−1 + rΛ′ − rΦ′)H− r−1e−2Λl(l+ 1)

∂

∂r
H

+
1

2
r−2e−4Λ(e2Λl + e2Λl2 + 4rΦ′ − 8rΛ′ + 4r2Φ′2 − 8r2Λ′Φ′ + 4r2Φ′′)K + r−1e−4Λ(1 + rΦ′)

∂

∂r
K

+ e−2Λ−2Φ ∂2

∂t2
K, (B4)

EF =− r−2e−2ΦA− 2r−1e−2Φ ∂

∂t
B− 2r−1e−2Λ(Φ′ + rΦ′2 − Λ′(1 + rΦ′) + rΦ′′)F

− r−1e−2Λ(−2 + rΛ′ − rΦ′)
∂

∂r
F + e−2Λ ∂2

∂r2
F− e−2Φ ∂2

∂t2
F + 2r−2e−2Λ(−1 + rΛ′ − rΦ′)H

− 2r−1e−2Λ ∂

∂r
H+ r−2e−2ΛK, (B5)

EH =r−2e−2Φ(1 + rΦ′)A− r−1e−2Φ ∂

∂r
A+ r−1e−2Φ ∂

∂t
B− e−2Φ ∂2

∂t∂r
B− r−1e−2Φ ∂

∂t
D+ r−1 ∂

∂r
E

+
1

2
r−1(l + 2)(l − 1)

∂

∂r
F + 2r−2e−2Λ(e2Λ − rΦ′ − r2Φ′2 + rΛ′(1 + rΦ′)− r2Φ′′)H

− e−2Φ ∂2

∂t2
H− r−2e−2Λ(1 + rΦ′)K, (B6)
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EK =− r−2e−2Φ(e2Λl + e2Λl2 + 4rΦ′)A + 2r−1e−2Φ ∂

∂r
A− 2r−1e2Λ−2Φl(l+ 1)

∂

∂t
B + 4r−1e−2Φ ∂

∂t
D

+ r−2e2Λ(l2 + l − 2)E− 2r−1(1 + rΦ′)
∂

∂r
E + 2e2Λ−2Φ ∂2

∂t2
E +

1

2
r−2e2Λl(l + 2)(l + 1)(l − 1)F

− 2r−2l(l+ 1)(1 + rΦ′)H + 2r−2K. (B7)

2. Odd Parity

EC =− r−2e−2Λ
(

2− 2e2Λ + e2Λl + e2Λl2 − 2r2Λ′2 + 3rΦ′ − rΛ′(1 + 6rΦ′) + r2Λ′′ + 3r2Φ′′
)

C

− r−1e−2Λ(−2 + 3rΛ′ + 3rΦ′)
∂

∂r
C+ e−2Λ ∂2

∂r2
C− 1

2
r−1(l + 2)(l − 1)

∂

∂t
G

− r−1e−2Λ(−3 + 2rΛ′ + 2rΦ′)
∂

∂t
J + e−2Λ ∂2

∂t∂r
J, (B8)

EG = −2r−1e−2Φ ∂

∂t
C + r−1e−2Λ(2rΛ′2 − 4Φ′ + 4rΛ′Φ′ − 2rΦ′2 − rΛ′′ − 3rΦ′′)G

− r−1e−2Λ(−2 + 3rΛ′ + rΦ′)
∂

∂r
G+ e−2Λ ∂2

∂r2
G− e−2Φ ∂2

∂t2
G+ 2r−2e−2Λ(−1 + 2rΛ′)J− 2r−1e−2Λ ∂

∂r
J, (B9)

EJ = r−1e−2Φ(1 + rΛ′ + rΦ′)
∂

∂t
C− e−2Φ ∂2

∂t∂r
C− 1

2
r−1(l + 2)(l − 1)(Λ′ +Φ′)G +

1

2
r−1(l + 2)(l − 1)

∂

∂r
G

− r−2e−2Λ(−2e2Λ + e2Λl + e2Λl2 − 2rΛ′ + 2rΦ′ + 2r2Φ′2 + 2r2Φ′′ − 2r2Λ′Φ′)J − e−2Φ ∂2

∂t2
J. (B10)

Appendix C: Linearized Einstein Tensor In Terms of Gauge Invariants

In this appendix, we rewrite the linearized Einstein tensor in terms of the gauge invariants under the EZ gauge or
the RW gauge. Note that for even-parity perturbations, we use the superscripts to distinguish expressions under the
EZ and RW gauges, respectively. These relations are only valid for l ≥ 2 case. The relation λ = l(l+1) also has been
used in this appendix.

1. Even Parity and the EZ Gauge

EI
A =− 4r−2e−2Λ(−1 + e2Λ + 2rΛ′)ǫI − 2r−2e−2Λ+2Φλ(rΛ′ − 2)χI + 2r−1e−2Λ+2Φλ

∂

∂r
χI

− 2r−2e−4Λ+2Φ
(

2 + e2Λλ− 8rΛ′)ψI − 4r−1e−4Λ+2Φ ∂

∂r
ψI, (C1)

EI
B =r−1e−2Λ(Λ′ − Φ′)δI − r−1e−2Λ ∂

∂r
δI − r−1e−2Λ(−3 + rΛ′ + rΦ′)

∂

∂t
χI + e−2Λ ∂2

∂t∂r
χI − 2r−1e−2Λ ∂

∂t
ψI, (C2)

EI
D =− r−2e−2Λ

[

2 + e2Λ(λ− 2)− 4rΛ′] δI − r−1λ
∂

∂t
χI + 4r−1e−2Λ ∂

∂t
ψI, (C3)
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EI
E =r−2e−2Λ−2Φ

(

e2Λλ+ 4rΦ′ − 4r2Λ′Φ′ + 4r2Φ′′) ǫI + 2r−1e−2Λ−2Φ(−1 + rΛ′ + 2rΦ′)
∂

∂r
ǫI

− 2e−2Λ−2Φ ∂2

∂r2
ǫI − 2r−1e−2Λ−2Φ(−1 + rΛ′)

∂

∂t
δI + 2e−2Λ−2Φ ∂2

∂t∂r
δI + r−2e−2Λλ(−1 + rΛ′ − rΦ′)χI

− r−1e−2Λλ
∂

∂r
χI + r−2e−4Λ

(

e2Λλ+ 4rΦ′ − 8rΛ′ + 4r2Φ′2 − 8r2Λ′Φ′ + 4r2Φ′′
)

ψI

+ 2r−1e−4Λ(1 + rΦ′)
∂

∂r
ψI + 2e−2Λ−2Φ ∂2

∂t2
ψI, (C4)

EI
F =2r−2e−2ΦǫI + 2r−2e−2Λ(−1 + rΛ′ − rΦ′)χI − 2r−1e−2Λ ∂

∂r
χI + 2r−2e−2ΛψI, (C5)

EI
H =− 2r−2e−2Φ(1 + rΦ′)ǫI + 2r−1e−2Φ ∂

∂r
ǫI − r−1e−2Φ ∂

∂t
δI − 2r−2e−2Λ(1 + rΦ′)ψI

+ 2r−2e−2Λ(e2Λ − rΦ′ − r2Φ′2 + rΛ′(1 + rΦ′)− r2Φ′′)χI − e−2Φ ∂2

∂t2
χI, (C6)

EI
K =2r−2e−2Φ

(

e2Λλ+ 4rΦ′) ǫI − 4r−1e−2Φ ∂

∂r
ǫI + 4r−1e−2Φ ∂

∂t
δI − 2r−2λ(1 + rΦ′)χI + 4r−2ψI. (C7)

2. Even Parity and the RW Gauge

EII
A =− 4r−2e−2Λ

(

−1 + e2Λ + 2rΛ′) ǫII

+ r−2e−4Λ+2Φ
[

4− 4e2Λ + 4e2Λλ− 8r2Λ′2 − 2rΛ′ (e2Λλ− 4rΦ′)+ 4r2Λ′′ − 4rΦ′(1− e2Λ)
]

χII

+ 2r−1e−2Λ+2Φλ
∂

∂r
χ− 2r−2e−4Λ+2Φ(2 + e2Λλ− 8rΛ′)ψII − 4r−1e−4Λ+2Φ ∂

∂r
ψII, (C8)

EII
B = r−1e−2Λ(Λ′ − Φ′)δII − r−1e−2Λ ∂

∂r
δII − r−1e−2Λ(−3 + rΛ′ + rΦ′)

∂

∂t
χII + e−2Λ ∂2

∂t∂r
χII − 2r−1e−2Λ ∂

∂t
ψII,

(C9)

EII
D =− r−2e−2Λ

(

2− 2e2Λ + e2Λλ− 4rΛ′) δII − r−1e−2Λ
(

2− 2e2Λ + e2Λλ+ 4rΦ′) ∂

∂t
χII + 4r−1e−2Λ ∂

∂t
ψII, (C10)

EII
E =r−2e−2Λ−2Φ

(

e2Λλ+ 4rΦ′ − 4r2Λ′Φ′ + 4r2Φ′′) ǫII + 2r−1e−2Λ−2Φ(−1 + rΛ′ + 2rΦ′)
∂

∂r
ǫII

− 2e−2Λ−2Φ ∂2

∂r2
ǫII − 2r−1e−2Λ−2Φ(−1 + rΛ′)

∂

∂t
δII + 2e−2Λ−2Φ ∂2

∂t∂r
δII

+ r−2e−4Λ
[

−e2Λλ+ 4r2Φ′2 + 4r2Λ′2(1 + rΦ′)− 2r2Λ′′ + 6r2Φ′′

−rΦ′(−2 + e2Λλ+ 2r2Λ′′ − 4r2Φ′′)− rΛ′(2− e2Λλ+ 8rΦ′ + 4r2Φ′2 + 6r2Φ′′) + 2r3Φ′′′
]

χII

− r−1e−2Λλ
∂

∂r
χII + r−2e−4Λ

(

e2Λλ+ 4rΦ′ − 8rΛ′ + 4r2Φ′2 − 8r2Λ′Φ′ + 4r2Φ′′
)

ψII

+ 2r−1e−4Λ(1 + rΦ′)
∂

∂r
ψII + 2e−2Λ−2Φ ∂2

∂t2
ψII, (C11)
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EII
F =2r−2e−2ΦǫII + 2r−2e−2Λ(−1 + rΛ′ − rΦ′)χII − 2r−1e−2Λ ∂

∂r
χII + 2r−2e−2ΛψII, (C12)

EII
H =− 2r−2e−2Φ(1 + rΦ′)ǫII + 2r−1e−2Φ ∂

∂r
ǫII − r−1e−2Φ ∂

∂t
δII − 2r−2e−2Λ(1 + rΦ′)ψII

+ 2r−2e−2Λ
(

1 + rΦ′ + rΛ′ − r2Φ′2 + r2Λ′Φ′ − r2Φ′′
)

χII − e−2Φ ∂2

∂t2
χII, (C13)

EII
K =2r−2e−2Φ(e2Λλ+ 4rΦ′)ǫII − 4r−1e−2Φ ∂

∂r
ǫII + 4r−1e−2Φ ∂

∂t
δII

− 2r−2e−2Λ
[

e2Λλ+ rΦ′(e2Λλ− 2) + 2rΛ′(2 − e2Λ + 4rΦ′)− 2r2Φ′′]χII

+ 4r−1e−2Λ
(

1− e2Λ + 2rΦ′) ∂

∂r
χII + 4r−2e−2Λ

(

e2Λ + 2rΛ′ + r2Λ′Φ′ − r2Φ′2 − r2Φ′′
)

ψII. (C14)

3. Odd Parity

EC =r−2e−2Λ
[

2− 2e2Λ + e2Λλ− 2r2Λ′2 + 3rΦ′ − rΛ′(1 + 6rΦ′) + r2Λ′′ + 3r2Φ′′
]

β

+ r−1e−2Λ(−2 + 3rΛ′ + 3rΦ′)
∂

∂r
β − e−2Λ ∂2

∂r2
β − r−1e−2Λ(−3 + 2rΛ′ + 2rΦ′)

∂

∂t
α+ e−2Λ ∂2

∂t∂r
α, (C15)

EG =2r−1e−2Φ ∂

∂t
β + 2r−2e−2Λ(−1 + 2rΛ′)α− 2r−1e−2Λ ∂

∂r
α, (C16)

EJ =− r−2e−2Λ
[

e2Λλ− 2e2Λ + 2rΦ′ + 2r2Φ′2 + 2r2Φ′′ − 2rΛ′(1 + rΦ′)
]

α

− e−2Φ ∂2

∂t2
α− r−1e−2Φ(1 + rΛ′ + rΦ′)

∂

∂t
β + e−2Φ ∂2

∂t∂r
β. (C17)

Appendix D: The specific structure of the parameters

1. Even-parity and the EZ gauge for l ≥ 2

The functions σI, τ I, ηI, γI, ρI, µI, νI, κI in Eqs.(41) and (42) have the following form

σI =1 + e2Λ(λ− 1)− 2rΛ′, (D1)

τ I =− 2 + e2Λλ+ 2rΦ′, (D2)

ηI =2 + e2Λ(λ− 2)− 4rΛ′, (D3)

γI =2− 2e2Λ + r
(

e2Λλ− 4
)

Λ′ + 2rΦ′ + 2r2Φ′′, (D4)

ρI =e2Λ(λ− 2) + 4rΦ′, (D5)

µI =− 2e2Λ + 2e4Λ − 2e4Λλ+ e4Λλ2 − r
(

−2 + e2Λ(2 − 4λ) + e4Λλ
)

Φ′ − 2
(

−1 + e2Λ
)

r2Φ′2 + 4r2Λ′2 (1 + rΦ′)

+ 2r2Φ′′ − 2e2Λr2Φ′′ + e2Λr2λΦ′′ − rΛ′
(

2− 6e2Λ + 3e2Λλ+ r
(

6 + e2Λ(−2 + 3λ)
)

Φ′ + 4r2Φ′2 + 4r2Φ′′
)

,

(D6)

νI =4− 4e2Λ − e4Λ(λ− 2) + e2Λr(λ − 2)Φ′ + 4rΛ′ (−3 + e2Λ(1 + λ) + rΦ′) , (D7)

κI =− e2Λλ
(

e2Λλ− 2 + 2rΦ′) . (D8)
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To simplify the expression of NR and NZ, we first introduce two auxiliary functions M I and M II

M I
1 =− 2νI + ρIσI, (D9)

M I
2 =

2

σI

(

−2µI + γIσI + rτ I
(

σI
)′)

. (D10)

Then the functions in Eq.(44) are given by

N I = −4µI + σI(2γI − 2νI + ρIσI) + 2rτ I
(

σI
)′
, (D11)

N I
R = −

(

N I
)2 − 2rσIτ I

(

N I
)′
+N I

(

−4µI +M I
1σ

I − 2νIσI + 2σIτ I + 2rτ I
(

σI
)′
+ 2rσI

(

τ I
)′)

, (D12)

N I
T = −

(

N I
)2 (

ηI
)2

+ 2N I
(

r
(

σI
)2
τ I
(

ηI
)′
+ ηIσI

(

2µI + νIσI − 2τ I
(

r
(

σI
)′
+ σI (1 + rΛ′ − rΦ′)

))

+2rηIσI(−ηI + σI)τ I
(

N I
)′
+
(

ηI
)2
(

−2µI − νIσI + τ I
(

r
(

σI
)′
+ 2σI (1 + rΛ′ − rΦ′)

)))

, (D13)

N I
Z =N IσI

(

M I
2ν

I + rτ I
(

M I
1

)′)
+M I

1

(

−rσIτ I
(

N I
)′
+N I

(

−2µI + rτ I
(

σI
)′))

, (D14)

and the functions in Eq.(45) are given by

N I
A =−

(

N I
)2 − 2rσIτ I

(

N I
)′
+ 2N I

(

−2µI − νIσI + 2σIτ I + 4rσIτ IΛ′ + rτ I
(

σI
)′
+ rσI

(

τ I
)′ − 2rσIτ IΦ′

)

,

(D15)

N I
D =

(

N I
)2 (

ηI
)2

+ 2N I
(

−r
(

σI
)2
τ I
(

ηI
)′
+
(

ηI
)2
(

2µI + νIσI − τ I
(

r
(

σI
)′
+ σI (3 + 4rΛ′ − 2rΦ′)

))

+2rηI(ηI − σI)σIτ I
(

N I
)′
+ ηIσI

(

−2µI − νIσI + τ I
(

2r
(

σI
)′
+ σI (3 + 4rΛ′ − 2rΦ′)

)))

, (D16)

M I
F =

1

2

(

κI + σI
(

−2 + e2Λλ+ 2rΦ′)) , (D17)

N I
F =

(

N I
)2
κI + 4rM I

Fσ
Iτ I
(

N I
)′
+ 4N I

(

−rσIτ I
(

M I
F

)′
+M I

F

(

2µI + νIσI − τ I
(

2σI (1 + rΛ′) + r
(

σI
)′)))

,

(D18)

N I
HK(r) =

(

N I
)2
ηI + 2r(ηI − σI)σIτ I

(

N I
)′
+ 2N I

(

−σI
(

2µI + νIσI + τ I
(

−2σI (1 + rΛ′) + r
(

(

ηI
)′ − 2

(

σI
)′)))

+ηI
(

2µI + νIσI − τ I
(

2σI (1 + rΛ′) + r
(

σI
)′)))

. (D19)

2. Even-parity and the RW gauge for l ≥ 2

The functions σII, τ II, ηII, γII, ρII, µII, νII and κII in Eqs.(52) and (53) have the following form

σII =2− 2e2Λ + e2Λλ− 2rΛ′ + 2rΦ′, (D20)

τ II =e2Λ(−2 + λ) + 6rΦ′, (D21)

ηII =2 + e2Λ(−2 + λ)− 4rΛ′, (D22)

γII =r
(

−4Φ′ + Λ′ (e2Λ(−2 + λ) + 8rΦ′)) , (D23)

ρII =e2Λ(−2 + λ) + 4rΦ′, (D24)

µII =− 2r2Λ′2 (e2Λ(−2 + λ) + 8rΦ′)+ rΛ′ (−2e2Λ(−2 + λ) + r
(

−2 + e2Λ(−2 + λ)
)

Φ′)

+ e2Λ(−2 + λ)
(

2 + e2Λ(−2 + λ) + r2Λ′′)+ 2rΦ′ (4 + 2e2Λ(−2 + λ) + 3r2Λ′′) , (D25)

νII =− e2Λ(−2 + λ)− r
(

8 + e2Λ(−2 + λ)
)

Φ′ + 4rΛ′ (e2Λ(−2 + λ) + 7rΦ′) , (D26)

κII =4− 8e2Λ + 4e4Λ + 2e2Λλ− e4Λλ2 − 2r
(

−4 + e2Λ(4 + λ)
)

Φ′ − 8rΛ′ (1− e2Λ + 2rΦ′) . (D27)

To simplify the expressions of N II
T , N II

R and N II
Z , two auxiliary functions M II

1 and M II
2 are introduced

M II
1 =2νII − ρIIσII, (D28)

M II
2 =2

(

−2µII + γIIσII + rτ II
(

σII
)′)

. (D29)
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Then the functions in Eq.(55) are given by

N II =4µII − σII(2γII − 2νII + ρIIσII)− 2rτ II
(

σII
)′
, (D30)

N II
R =−

(

N II
)2

+ 2rσIIτ II
(

N II
)′
+N II

(

4µII +M II
1 σ

II + 2νIIσII − 2rτ II
(

σII
)′ − 2σII

(

τ II + r
(

τ II
)′))

, (D31)

N II
T =−

(

N II
)2 (

ηII
)2 − 4r2ηIIσIIτ II

(

N II
)′
(Λ′ +Φ′) + 4rN II

(

−rσIIτ II
(

ηII
)′
(Λ′ +Φ′)

+ηII
(

−2µII (Λ′ +Φ′)− νIIσII (Λ′ +Φ′) + τ II
(

r
(

σII
)′
(Λ′ +Φ′)

+σII
(

3Λ′ + 2rΛ′2 + 3Φ′ − 2rΦ′2 + r (Λ′′ +Φ′′)
))))

, (D32)

N II
Z =N II

(

−M II
2 ν

II + rσIIτ II
(

M II
1

)′)
+M II

1

(

−rσIIτ II
(

N II
)′
+N II

(

−2µII + rτ II
(

σII
)′))

. (D33)

and the functions in Eq.(56) are given by

N II
A =2N II

(

2µII + νIIσII − 2σIIτ II − 4rσIIτ IIΛ′ − rτ II
(

σII
)′ − rσII

(

τ II
)′
+ 2rσIIτ IIΦ′

)

−
(

N II
)2

+ 2rσIIτ II
(

N II
)′
, (D34)

N II
D =− 4rN II

(

−rσIIτ II
(

ηII
)′
(Λ′ +Φ′) + ηII

(

−2µII (Λ′ +Φ′)− νIIσII (Λ′ +Φ′)

+τ II
(

r
(

σII
)′
(Λ′ + Φ′) + σII

(

4rΛ′2 + 4Φ′ − 2rΦ′2 + 2Λ′ (2 + rΦ′) + r (Λ′′ +Φ′′)
)

)))

+
(

N II
)2 (

ηII
)2

+ 4r2ηIIσIIτ II
(

N II
)′
(Λ′ +Φ′) , (D35)

M II
F =− 1

2
κII − 1

2
σII
(

−2 + e2Λλ+ 2rΦ′) , (D36)

N II
F =4N II

(

−rσIIτ II
(

M II
F

)′
+M II

F

(

2µII + νIIσII − τ II
(

2σII (1 + rΛ′) + r
(

σII
)′)))

+
(

N II
)2
κII + 4rM II

F σ
IIτ II

(

N II
)′
, (D37)

N II
HK =

(

N II
)2
ηII + 4r2σIIτ II

(

N II
)′
(Λ′ +Φ′)− 4rN II

(

−2µII (Λ′ +Φ′)− νIIσII (Λ′ +Φ′)

+τ II
(

r
(

σII
)′
(Λ′ +Φ′) + σII

(

2rΛ′2 + 3Φ′ + Λ′ (3 + 2rΦ′) + r (Λ′′ +Φ′′)
)

))

. (D38)

3. Odd-parity for l ≥ 2

The function X in the Eq.(64) takes the form

X = e2Λλ− 2rΛ′ + 2rΦ′ − 2r2Λ′Φ′ + 2r2Φ′2 + 2r2Φ′′, (D39)

And the expression of Nodd is given by

Nodd = −X + r
X ′

X
(−1 + 2rΛ′ + 2rΦ′) +

(

2r2Λ′2 + rΦ′ + 2r2Φ′2 + rΛ′ (1 + 4rΦ′)− 2
(

1 + r2Λ′′ + r2Φ′′)) . (D40)

4. The case for l = 0

In this case, the functions µ0, ν0 and τ0 are given by

ι0(r) = −1 + e2Λ − rΦ′,

σ0(r) = 2
(

1− e2Λ
)

Φ′ + 2rΦ′2 + Λ′ (−4 + e2Λ − 4rΦ′)+ 2rΦ′′. (D41)

5. Odd parity for l = 1

The function X1 in the Eq.(89) takes the form

X1 = −2rΛ′ + 2rΦ′ − 2r2Λ′Φ′ + 2r2Φ′2 + 2r2Φ′′, (D42)
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And the expression of N
(l=1)
odd is given by

N
(l=1)
odd = −X1 + r

X ′
1

X1
(−1 + 2rΛ′ + 2rΦ′) +

(

2r2Λ′2 + rΦ′ + 2r2Φ′2 + rΛ′ (1 + 4rΦ′)− 2
(

1 + r2Λ′′ + r2Φ′′)) . (D43)

which is similar to the expression Eq.(D40).

Appendix E: The Degeneration Of Eqs.(44) and (55)

Considering that the metric of the background spacetime degenerates to the Schwarzschild spacetime, i.e.

ds2 = −
(

1− 2M

r

)

dt2 +

(

1− 2M

r

)−1

dr2 + r2(dθ2 + sin2 θdϕ2), (E1)

where the Riemann curvature Rab and the scalar curvature R all vanish. If we set

Z̃(+) =
(r − 2M)2

6M + rλ̃
Z(+), (E2)

The equations Eq.(44) and (55) would become

[

(r − 2M)2

r2
∂2

∂r2
− ∂2

∂t2
+

(

r − 2M

r

)

2M

r

∂

∂r
− VZ

]

Z̃(+) = Sw
Z , (E3)

where VZ is the Zerilli effective potential

VZ =

(

r − 2M

r

)

[

72M3 + 36M2rλ̃ + 6Mr2λ̃2 + r3λ̃2(λ̃ + 2)

r3(6M + rλ̃)2

]

, (E4)

with the source term

Sw
Z =

r − 2M

2(6M + rλ̃)

[

96M2r + r3λ̃(λ̃− 2) + 2Mr2(7λ̃− 18)

2(2M − r)(6M + rλ̃)
EA + r2

(

∂

∂r
EA +

∂

∂t
ED

)

−
(

2 + λ̃
)

(

(6M + rλ̃)

2
ED − (r − 2M)EH − (r − 2M)

2
EK

)]

, (E5)

where λ̃ = λ− 2 = (l + 2)(l − 1). It is obvious that our result reduces to that of the Schwarzschild spacetime [28].
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