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Gauge-invariant string field theory is constructed for the closed string compactified on a torus in
a generalizéd manner of Narain. On the basis of the observation that.the coordinates of the
compactified dimensions cannot be connected smoothly on the 3-string vertex, we show that it is
necessary to multiply the vertex functional by the two-cocycle phase factor to achieve the gauge-
invariance of the action. With this modified 3-string vertex used, all the identities concerning the
+-product of string fields (e.g., Jacobi identity) are shown to hold in the same forms as in the ordinary
non-compactified case.

§1. Introduction

We construct a gauge string field theory in this paper for the closed string
compactified on a torus. This is one of the necessary steps toward the construction
of heterotic string” field theory.

The gauge-invariant action, or its gauge-fixed BRS-invariant version, for such a
torus compactified closed string takes essentially the same form as that for the
ordinary non-compactified closed string which we have presented in our previous
papers.”~® Nevertheless there appears one very novel feature in this compactified
case. We will find it émpossible to construct a 3-string vertex realizing the smooth
connection conditions for the coordinates of the compactified dimensions. This
problem of disconnectedness occurs only for the zero-mode parts of those coordinates,
and in fact causes a trouble invalidiating the gauge-invariance proof at the order g
That is, the important Jacobi identity and the commutativity for the -product of
strings are violated. This enforces us to introduce a phase factor &(pi, pz) by which
to multiply the 3-string vertex. It turns out to be exactly the two-cocycle factor
well-known in the literature,” and we can actually prove the full gauge-invariance
of the action based on this modified 3-string vertex.

In § 2 we explain what type of torus compactifications we consider in this paper
and fix the notations and conventions concerning the string coordinates and the string
field. In § 3 we present the gauge-invariant action and the various identities for the
= -product of the same forms as in the ordinary closed string case. We explain there
how the right- and left-moving coordinates in the compactified dimensions are discon-
nected on the ordinary 3-string vertex, and how it causes the violation of the Jacobi
identity. In §4 it is proved that the modification of the 3-string vertex by multiplying
the two-cocycle phase factor actually cures all the defects and hence, in particular, the
full gauge invariance is established. The explicit form of the phase factor is also

*) Work supported in part by the Grant-in-Aid for the Scientific Research Fund from the Ministry of
Education, Science and Culture (No. 61540206).
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given there. In §5 we calculate explicitly the gauge transformation of string field in
this theory for the functional transformation parameter corresponding to the global
Yang-Mills gauge transformation and confirm that their generators indeed reproduce
the correct commutation relations of the Lie algebra. The final section is devoted to
the discussion.

§2. Closed string field on a torus

We consider the closed string in &+ D-dimensional space-time, whose first d
dimensions are “external” flat Minkowski space and the rest D dimensions are
“internal” torus space. We denote the “external” coordinates by X*“(o) (#=0,1, 2, ---,
d—1) and the “internal” ones by X'(o)}(I=1,2, -+, D), both of which are periodic
functions of ¢ with period 27. The former d-dimensional coordmates X*(o) are
expanded into the oscillator modes as usual:?"®* ‘

XHo)=fe e+ B e ),
A"'ﬂ(d) ”#VPU(O)+X#I(G)—T 2 ax /‘(+) +mo‘

a,O#(-l-): aoﬂ(—)z%p#, [anﬂ(e)’ a,mu(er)] — %3n+m,o7]#u658' , (8, &= i) (1)

where P.(0) stand for the momenta — i6/0X*(s) and prime denotes 3/do. Note that
only the non-zero mode parts have split into the right-movers @*”(n+0) and the
left-movers a.*(n#0) while the zero-modes x* or their conjugates p, are common.
On the contrary, the “internal” coordinates X’(o) should completely split into the left-
and right-moving sectors including the zero-modes, as was first recongnized by Gross
et al..V

X o)=X."(6)+ X (0),

1 :L{ ‘-‘L _l R +mo‘}
Xi (G) 1/;7.'_ X+ + 2 i 2 g an ’

I () yxing _ T r =L I
P(o)=57— ZJ_ Z @ FX."(0)="5A.'(0),

‘ a’OI(i):pi—I , [xe , p]e,] __Z(()\ 668’ R [a,nI(S), aym!(s’)]:n8n+m,oallass’ . (e, e,:i)
@

Note that we are taking the convention” that 2.’ are the translation operators of x..
We discuss the compactifications of closed string in a general scheme considered

by Narain Combining the two D-dimensional coordinates X.'(o) of left- and

right-movers, we regard the interal space (X.’, X_’) as a 2D-dimensional one and

consider its compactification on a 2D-dimensional torus R??/T", where I is a lattice

generated by 2D independent vectors ei=(el:, el-)(i=1, 2, ---,2D). [Henceforce we
*) g =diag(—1, +1, +1, -, +1).
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often denote the 2D-dimensional vectors in the internal space by bold face letters, e.g.,
x=(x:", z-").] So we identify the center-of-mass coordinate x=(z.’, z_) with its
translation by 7 in the direction e::

2D . .
xEx+7erniei. (#n:; integer) : (3)

For the center-of-mass momenta p.’ and p-’, we denote by p the 2D-dimensional
vector (p+', —p-") instead of (p.!, p-*) for convenience. Then p takes the form

2D .
p=2m:€:, (m;:;integer) (4)

since the translation operator by an amount 721:u:e; should be equal to 1, where é&:
=(é&l+, 1-)(z=1, ---,2D) are the basis vectors of the dual lattice I" in the sense of
Lorentzian metric:

e &= ek el el &l )=0y. )

The periodicity of closed string (with period 6=2x), on the other hand, demands
a constraint on the allowed momenta p:

D

2rg=n2n.e: for 3

ni, (6)

since X.'(0) in (2) contains the zero-mode in the form x—(1/2)po=(z.'—(1/2)p.’0,
z-"+(1/2)p-"0). Note that, if the description of string field in the p-representation
can be equivalent to that in the x-representation, al/ the points on the dual lattice
I (4) have to be the allowed momenta. Therefore the constraint (6) with (4) says

ij'éj=2niei 3n; for va', (7)
7 B

implying I' ST7; that is, the lattice I" must be self-dual, I'=T", or contain I" as its
sublattice.

This condition (7) is, however, satisfied automatically if we demand a constraint

3PP+ N =TS (p VN ®)

where N: are the right- and left-moving oscillator mode numbers (defined below in
(14)). [This is a constraint L+— L_=0 implying the invariance of closed string under
the shift of the origin of o-coordinate, which we impose on our string field shortly in
(13).] Since the mode number operators N: take integer numbers, the constraint (8)
demands

p’= 2] [(p+")*—(p-"*]=even integers (9)

for any momenta p. Therefore I" must be a (Lorentzian) even lattice with a metric
of signature (D, D). The even lattice I" is of course an integral lattice and hence
automatically satisfies the above condition (7): ' S(I")=I". In the present context of
constructing gauge-invariant closed-string field theory, however, we shall find no more
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constraint, in particular the self-duality of the lattice as found by Gross et al.” and
Narain.® This is not unnatural because we are working in the classical string field
theory framework and will probably find the self-duality requirement at the one-loop
level as an anomaly free” condition.

In addition to the above bosonic coordinates X*(s) and X’(0), we need further
Grassmann Faddeev-Popov (FP) ghost and anti-ghost coordinates, ¢(o) and (o), in
a covariant formulation.¥”” They have the same mode-expansions as in the ordinary
closed string:>" ‘

1 & ;
2 C”(i)eimo‘ ,
(o]

R

C:(0)=in=(0) Fc(o)=

—yaFint, a et et (0n En )= Oumad (e, €= %),
(10)

The BRS charge @5 in this compactified case also remains the same as in the érdinary
closed string and is given by the sum of two open-string’s BRS charges @Qs: of the
right- and left-moving modes:

Q=@+ + Qs
_Jz (7 AL AL T9:.9Ck =
QBi'— D) [”ddCi< Ai Ai+22 do Ci>, (11)

where the scalar product of (d + D)-dimensional vectors means x-y=v2,zx,‘y"

+2x’y". From this form (11) it is clear that Qs: and hence Qs satisfy the nilpotency
separately,

Q"= Qb= Q5-=0, (12)

provided that the total dimension d+D is 26.%
For simplicity, hereafter, we adopt the “z.’-omitted formulation”®* in this paper,
in which one of the ghost zero-modes, 7.’, is discarded by imposing a constraint

PO=0 or (L,—L_)0=0 (13)

on the string field ®. Here L.— L_ is the o-coordinate translation operator and & is

the projection operator into the L.—L_=0 sector:

@= "0 oo p—p = [TagC0PH et '),
L.= _%pﬂz—%(PtI)z“‘l —Ns,
Ni= gl{af—;)- &P+ n(cH P+ e P M)} (14)

This constraint (13) is identical with (8) as announced already. The closed-string
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field @ is a functional @[Z] of cdordinates
Z=(X"(0), X" (o0), c(é), c(o); @) (zero-mode is omitted in ¢(o))

with « being the “string-length” parameter, and is subject to a reality condition:
o'[Z]=0[Z], Z=(X"(—0), X' (~0), —c(—0), &(—0); —a). (15)

The field @ carries the (net) ghost number Ne»=—1 and hence is Grassmann-odd.
Separating out the ghost zero-mode (which is only ¢, now) explicitly and using
Dirac’s ket representation for the non-zero modes of Z, we can write it as?

|0(x, co, @)>=— Cold(x, a)>+|¢(x, a)>, z=(z* x!, 7). (16)

The physical modes of the string are contained in the bosonic ¢-component carrying
Nre=0. In the case of the gauge-invariant action, @ is further restricted to the
internal ghost number #r=—1 sector® so as for all its component (local) fields to
have vanishing ghost number.

§3. Gauge-invariant action and disconnectedness of X. (o)

Hereafter we concentrate on constructing gauge-invariant action and shall dis-
cuss the gauge-fixed action only at the final section briefly. We expect that no
changes occur in the forms of the gauge-invariant action and the gauge transforma-
tion even in the present closed string compactified on a torus, compared with the

ordinary closed string on a flat space. Hence, as in the latter, they should take thev

forms®?
S=@-Q3d)+%g@3, 0*=0-(0+ 0), 17)
SO=QuA+g(D* A=A+ D), | (18)

respectively, where / is a functional gauge-transformation parameter carrying inter-
nal and net ghost numbers zrr= Nrp= —2 and subject to the constraints $A=/ and
A'[Z]=—A[Z]. Here the dot implies an inner product -

- qr:/[dZ]a)[Z]w[Z] _ (19)

and Qs represents the BRS operator given by (11). The =-product, yielding a string

field @ * ¥ from two arbitrary fields @ and ¥, is defined by referring to a 3-string
vertex functional V as

(0« U)[Z]= f[dZIde]q)[Zl] U ZVIZ, Zo, 74, (20-2)

or equivalently, in terms of the bra-ket n'otation,‘“v

*) The internal ghost number e is the number of excited ghost modes ¢&/(721) minus that of excited
anti-ghost modes ¢(n=1) [see Ref. 4)].
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(0« BB =eses [d1dKOWKT@NIVA, 2,30, (20-D)

where 7 and d» denote a set of zero-mode variables (x*, z.’, z_!, &0, @) of the #-th
string and its integration measure d“r*d’x.'d’x-'dc«(da/2r), respectively, and &4
specifies whether @ is hermitian (e,=+1) or anti-hermitian (e,=—1), i.e., 0'[Z]
= E¢@[Z]

The gauge-invariance of the action (17) under (18), as well as the closure property
of the gauge-transformation algebra®

[6(Av), 8(A2)]=08(29/ * A2), v (21)

was assured in the ordinary closed-string case by the following identities for @» and
the »-product: '

0(g"): Q&*=0, » (nilpotency) (22)
0(g"): Q@+ W)=Qud + T+(—)°0+ Q¥ , (distributive law)  (23)
O(g): (@ B) x A+(=)PUTHA (T & ) x G+ (=) A « ) x T=0,
| (Jacobi identity) (24)

@+ U=(—)?¥"T+ @ (commutativity) (25)

_ at each order level of the coupling constant g. The nilpotency (22) holds also in this
case as noted before in (12) and hence there is no problem at O(g°).

The O(g") identity (23) (distributive law) is equivalent to the BRS invariance of
the 3-string vertex functional V: ’

(3 Qs V(1,2,3)>=0. (26)

This also can be satisfied if we simply adopt the same form of the vertex as in the
ordinary closed string:?*"*

|Vori(1, 2, 3)y = POPOPD 12y, an, @) G(a1)| Voll, 2, 3)>
Va1, 2, 3)>=exp{E(, 2, )}|0> 51, 2,3) ,

3 &
E(l, 2, 3)22 él 2 N;;(%aiin)(ﬂ.aii;g(s)_f_ iY(_i;l)(T) 77(_4_;’3(s)> ,

+ 7 n,m=0

51,2, 3)=(ry1 84S p) 8" (St) (St ) (Sar)d(Sar ™),

Yn(r)=2.7’la/rCn(T) , Yn(r): gn(r)/dr N
3 3
e, o, os)=exp(—w2l/er), w= 2 arnles], 27)

where | Vo(1, 2, 3)> is essentially a product of two open-string’s &-functionals of the
right- and left-moving modes and Ni’s are the same as defined in I and are the Fourier
components of the Neumann function for the open-string diagrams in Fig. 1 which in

*) The 8-functions for the discrete quantities p%. should of course be understood to be Kronecker’s deltas.
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Fig. 1. The open-string diagrams (or the half-portions of closed-string diagrams with 0=<0,<7) to

which the Neumann function in the 3-string vertex corresponds for the cases A)|ai|+|al=|asl, B)
|aol +|as|=|a| and C) lasl+|al=]exl.

fact stand for the half-portions of the closed-string diagram with 0 6,<7. G(o/) is
the ghost factor at the interaction point o::

Glo)=iVrams™(e:'").  (r=1,2 or 3) ' (28)

The overlapping J-functional | Vo> in (27) satisfies the connection conditions (for
instance for the case a,2>0, a3<0)

(01 ATV (01)+ @2 AP (02) — AN 0:))| Vo1, 2, 3)>=0, (29)
@1(0‘)E e(ﬂdl_lO‘I) y @2(6)5 (9(|O"‘“7fa/1) .

= =7 = Taslsgnlo)— o
m(a):%, o 6)=2 na:zgn(d)  alo)= ﬂlaslslcll’/ls(ld) o

by construction, for the_ coordinates
A:M(0)=(a'A+*(0), a A (0), aC:(0), a2C:(0)) . (30)

Since all the coordinates appearing in the expression (11) of Qs are those of (30), it is
clear that the previous proof”'? of >},Qs™|V>=0 for the ordinary case applies also
here without any changes and Eq. (26) is proved to hold for the vertex (27).

Therefore, the problem is now only the O(¢%) gauge-invariance, i.e., the Jacobi
identity (24) and the commutativity (25). First of all we should note that the connec-
tion conditions (29) imply only the connection of the o-derivatives X’(¢) of the string
coordinates X*(0) and X’(s). Indeed the “internal” coordinates X.'(¢) are not
~ connected smoothly contrary to the “external” coordinates X*(c). As is easily seen
by letting X.'(0) operate on the vertex (27), they are actually disconnected by the
following amounts, for instance, for the case @, >0, <0 with the configuration
shown in Fig. 2:

Xil(l)(dl) —X¢I(3)(O‘3)= il_zz_péi_ ,

X0~ Xe o) =F L phe= £ (st 9l on Vo1, 2,3, (D)

[Since X contains the center-of-mass coordinate z in the form (1//7)x as seen in (2)
in our convention, these equations are understood to be the equalities modulo the
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rescaled I™lattice vectors (1/vx)+(r 2 nse;) (see (3)).] It is important to note that this
disconnectedness occurs even for the genuine internal coordinates X'=X.'+ X!
since p++p- generally. These jumps of X.'-coordinates should be constants
(independent of o), since X:''(¢) are connected smoothly, and come from the presence
of the term F(1/2vx)p.+'o in X.'(0) of (2) which is characteristic to the compactified
case. .

This disconnectedness causes a violation of the O(g?) gauge-invariance, in partic-
ular, of the Jacobi identity (24). In order to see this, we should recall how the Jacobi
identity (24) held in the case of ordinary closed string. For the three terms in (24) the
relevant configurations are the diagrams P,Q and R in Fig. 3 with the time interval
T set equal to zero: (For definiteness we are considering the case a1, @, a:>0.) For
instance, the P term can be rewritten into the form?

(@0 + @®) « @‘3’)[24]=a4“‘/[lededZs]@“)[Z](D‘Z’[Zz](D‘S’[Zs]

| [ (., )20 POPOPOC(0%) G0) ViR 22, Z za},
(32)

where V&%, is the 4-string overlapping

e 0-functional corresponding to the T=0
diagram P of Fig. 3. The diagram P itself
represents the configuration at 8-=0 and

' the configuration with non-zero 6 is given

by rotating the intermediate string 6 com-

: 3 bined with the strings 1 and 2 by an angle
-7T 7T

0r as indicated in Fig. 3. G(0:'%)G(5,%)
are the ghost factors at the two 3-string
interaction points, and D(ai—4, 6r) is a cer-
tain determinant factor of a matrix consis-
ting of the Neumann functions Nz (n, m
21) of the two 3-string vertices. Similar
formulas to (32) are obtained also for the Q
and R terms by a suitable cyclic permuta-

Fig. 2. The string-configuration of the overlapping
S-functional in the 3-string vertex for the case
&, 0’2>0, a;<0.

Fig. 3. The closed-string diagrams which represent the three configurations corresponding to the first
(P), second (Q) and third (R) terms in the Jacobi identity (24), respectively, for the case @, a, a
>0. The numbers 1, 2 and 3 stand for the string fields @, ¥ and A.
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tions of the indices 1,2 and 3. The cancellations occur between the P and Q, Q and
R and R and P terms according to the regions of the twisting angles -, 8o and &k, and
the sum of the three terms vanish as a whole so that the Jacobi identity (24) holds.
Let us exemplify this cancellation by considering the P term with 8r=0 and the Q
term with f=x. For these two terms, we immediately understand the following
equality of the 4-string overlapping. é-functionals by comparing the diagrams P with
=0 and Q with f=r in Fig. 3:
D Vileol=( I ™" 5") Villlwslo (33)

The o-translation operators ¢~ ™7 %" can be dropped out owing to the presence of
POPOPEOPM i (32). In addition, the two ghost factors attached to the two 3-
string interaction points are of course common between these two coincidental 4-
string configurations of P and Q terms, i.e., from Fig. 3 we see G(6:'%)|r=G(5:™)]e
and G(0:*)|r=G(0:%)|q. However, since the ghost factors in the Q term appear in
the order G(0:”®)G(0:™) (as is understandable from the cyclic permutation (1, 2, 3)
—(2, 3,1) in Eq. (32)), the ghost factors coincide with negative sign between the P and
Q terms:

i) G(0:")G(0:)p=—G(6:**)G(6:")|e . ' (34)
Furthermore, also for the determinant factor D, we have an equality
iii) |a’0p|D(a/1, 2, A3, (s 19p:0)=|d(90|D(a'z, as, 1, O, (90277-') , (35)

if the total dimension d+D is 26, as a result of the generalized Cremmer-Gervais
identity."” These three equalities i)~iii) guarantee the cancellation of the P term
with an interval dfr around f-=0 and the Q term with an interval df; around Go=7.
In the present case also, the equalities ii) and iii) hold with no problem. (Recall
here that the determinant factor contains the Neumann functions Ni5 with #, m=1
which are relevant only to the non-zero modes parts.) However a trouble occurs in the
equality (33). In the preceding case, (33) resulted from the fact that the connection
condition was complete, i.e. they hold including the zero-modes of the X(o) coor-
dinates. But in the present case they are violated in the zero modes parts of the
“internal” coordinates X.'(0). Indeed, taking account of the “disconnectedness”
relations (31) at the 3-string vertices, we easily find from the diagram P in Fig. 3 the
following connection conditions of X.’ on the 4-string d-functional V&%.—o:

X ()= Xa ()= + Vg

2
Xi.l(z)(dz) — Xi1(4)(04) = i@(‘pii +p{i) ’ 6n I/O(,%)P=0 )
Xil(s)(o‘a) - Xi1(4)((74) = ig(ﬁii + Pfi + pé:) = iizzﬁﬁlm; . (36)

Similarly, by considering the 4-string overlapping d-functional on the RHS of (33) and
the diagram Q in Fig. 3, we find
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X 10(0) — X O(g)=F I 1,

2
Xil(z)(dz)—XiI“)(O}): i J;[_pii_ , on ( H e—zI(L+(r) Lo (r))) V(ea )
X o) = X)) = £ T (gl ph) | (37)

which coincides with the result obtained simply by a cyclic permutation (1, 2, 3)
—(2,3,1) from (36). This is understandable if we notice that since e”“*”~-") only
changes the argument o, of X' and commutes with p%+, these values of the jumps
of X.' coordinates, themselves, are in fact independent of the presence of the
o-translation operators ¢”*” - and hence they are also independent of the twist-
ing angle f,. Now Egs. (36) and (37) show that the values of the jumps of X.’
coordinates are different between on the vertices Vi%p—o and (II,-iie™ ™+ ~1-7)
X Vi8=x; that is, the connection conditions satisfied by those vertices are different
(although only in the zero-mode parts), and hence the desired equality (33) is violated
in the present case.

One might suspect that these violations of connection conditions for the zero-

mode parts of X.'(0) could be remedied by multlplylng the vertex |V of (27)
further by the factor of the form

eXp{i+§sp£‘i Clspha} . (CFx: real constants) (38)

Actually this type of factor is the unique candidate which can modify the connection
conditions only for the zero-modes of X.’ and with the amounts proportional to p.’.
Nevertheless it is impossible to realize the complete connectedness for all the X,/ ’s
by multiplying such a factor, as is easily seen by actually trying it.

We should note, however, that all we need now is not to realize such complete
connectedness of X.'"s on the 3- string vertex but simply to realize the equality (33)
between the 4-string §-functionals V&9 resulting from joining two 3-string vertices.
So it is enough if we can make the two sets of connection conditions (36) and (37) have
a common form by modifying the 3-string vertex (27) by multiplying a suitable factor
(38). This can be achieved relatively easily as follows.

§4. Modified 3-string vertex and gauge-invariance proof

Modifying the ordinary 3-string vertex | V°r(1, 2, 3)> in (27), we now take the
following 3-string vertex functional:

|V(L,2,3)>=e(p), )| V1, 2,3)>, _ (39)

where &(pi, p2) denote the phase factor of the form (38) and its dependence on ps is
suppressed by taking account of the conservation pi+p:+ ps=0. The factor &(p, q)
needs in the following to satisfy the properties:

a) e, @elp+aq,r)=elp, g+relq, ), (40-a)
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b) elp, @)=(—)""?(q, p), (40+b)

where p-q denote the inner product with Lorentzian metric: p-q=22:(p+"q+’
—p'.q’-). The first property a) says that ¢ is a two-cocycle. The phase factor &(p,
q) satisfying (40) is indeed well known in the literature,” and we shall give its explicit
form later.

Before that, let us first show that the modified vertex (39) actually realizes the
desired equality (33). Since we now have the additional multiplicative factors
- &(py, p2) in the 3-string vertex (39), the resultant 4- strmg d-functional V&%, for the
P-configuration (Fig. 3, P) becomes

(4)ord

Vi8.= e(p1, p2)e(D1+ D2, Ps) VER, (41)
and similarly, V¥, for the Q-configuration (Fig. 3, Q) becomes

V%= (2, ps)e(p2+ ps, 1) VI . (42)
If we use the properties (40) of the phase factors ¢, Eq. (41) can be rewritten as

V3= e(pz, ps)e(p2+ ps, pr)(— )P 2o Viore (43)

So V%, has an additional factor (—)®"®=» besides the common phase factors with
Vé% in (42). The previous connection conditions (36) on the ordinary 4-string
8-functional V4923 are now changed into the following ones on the new d-functional
(—)priptp) {9ord since the additional factor displaces the “center-of-mass coor-
dinates” z:' in X' (o) (2):

X" o) — X' og)= i%[p‘{i —(ph+ +pi)]=F ‘/g?p{i

X:"P(02)— X" (04)= iLZE‘[Pﬁt‘*‘P{i_ﬁ{i]: + ‘/;Mi ,on (—)presm e

X8 (05)— X9 (0= ¢%(p§¢+15{¢)= iLZ_“(P wtpl), A (44)

where we have used in the first equation the fact that (1//7)-(p/2)-27=/zp=Vz(p:’,
—p-)=0 modulo the rescaled I'lattice vector (1/v/7)Zm:e: because of the peri-
odicity condition (6). But these connection conditions are exactly the same as those of
(37) for (ITr=ee™ ™=+~ 1-") V¥4 | and therefore, from (42) and (43), we can conclude
the desired equality

( H e—zn(L+"’ L- ‘T’)) V(ea* (45)

Since the center-of-mass momentum p commutes with the o-translation operators
e”*™ 19 it is clear that the necessary equalities similar to (45) hold between the
d-functionals of P- and Q-configurations with general corresponding angles (6= ¢/(a
+a) and fo=7—¢/(az+as) in the region |p|< as7 [see Sec. IV in Ref. 4)]). Other
necessary equalities between the Q- and R-configurations (with'|Y o=(az+ @) fo=(as
+a)(7— Gr)| = as7) and between the R- and P-configurations (with | o=(as+ a1)6x
=(a+ a&)(7— 6p)| < ar7) follow similarly, and thus the Jacobi identity (24) is proved to
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hold for the modified 3-string vertex (39). [It is easy to see that this is true also for
the other cases than @, @, a:>0.]

We need next consider whether the commutativity (25), @ » ¥=(—)" """y « @
holds with our modified 3-string vertex (39). In the previous case of the ordinary
closed string, it resulted from the following property of the d-functional part Vs of the
3-string vertex V (see Eq. (3-31) in Ref. 4)):

3
| Vo1, 2, 3)>=(I1 &™) V4(2, 1, 3)> . (46)

However, this property is also violated for the §-functional part | Vo> of the ordinary
3-string vertex | V°™ in (27) again owing to the disconnectedness of the zero-mode
parts in the internal space. Indeed the connection conditions realized by | Vo(1, 2, 3)>
is given by (31) (for the case ai, >0, a:<0), but they do not coincide with those
realized by (IT3=1e™ 7" V4(2, 1, 3)>, which are given by

Xil(l)(dl) _ Xi{(s)(ds) =T ‘/Zzp{i ,

3
XS Oo)— X No)=+T gt on ([lem "=V, 1,3, 47)

[These values of disconnectedness are obtained from (31) simply by exchanging
the string names 1 and 2, being independent of the presence of the operators

$21e™ 7" which just adjust the o-coordinates of the corresponding points on the
strings.] But in this case of the modified 3-string vertex (39), the &-functional
| Vo(1, 2, 3)> is multiplied by e(py, p2), while | Vo(2,1, 3)> by &(ps, p1)=(—=)?"Pe(py, p2)
by (40-b). Therefore the connection conditions to be compared with (31) are those on
the vertex in (47) multiplied by an additional factor (—)?'?. This factor actually
convert the connection conditions (47) into the same ones as in (31). Thus we can

‘conclude the equality
3 7 ry— r
el p2)| Vi1, 2, 3)> = (2, p0) 11 €™ 777 Vi(2, 1, 3)) (48)

from which the commutativity (25), @ * ¥=(—)*""1"'¥ « @ follows for the -
product with our modified 3-string vertex.

Although we have finished the proofs of the Jacobi identity (24) and the com-
mutativity (25), we still need take care of the following two important properties
which the ordinary 3-string vertex satisfied;” one is the hermiticity

Vol Zy, Zoy, Zal= Vo Zo, Z1, Zs] | (49)
and the other is the cyclic symmetry
Vo[ Zy, Zo, Zs)= V[ Zy, Zs, Z1] . (50)

The former property guaranteed the consistency that the gauge transformed field
O+ QeN+g(® + A—A = @) has the same hermiticity as the original field @, and the
latter led to the important cyclic property of tri-linear form @-(¥ * A):
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O-(¥ » N)=(=)PNTHD T (4« @), (51)

Therefore both of these properties (49) and (50) are also indispensable for the gauge-
invariance of the theory and should not be violated by the present modification of the
vertex. Since we are multiplying the phase factor e(p, p2), those propertles (49) and
(50) remain to hold, if the function e(p, q) satisfies

e(—=p1, —p2)=¢&*(p2, p1), . (52)
&(p1, p2)=e(ps, Ps=—p1—p3), - (53)
respectively. It is easy to see by using the two-cocycle condition (40-a) that these are

satisfied if

e(p, —p)= ) = p-independent ,

6(0 p

or equivalently, if
e(p, —p)e(0,0)=1 for Vp, (54)

since also the p-independence of (0, p)=&(p, 0) follows from (40).

However the condition (54) can always be realized by redefining the phase of the
string field @: Indeed suppose that a certain phase function &(p, q) satisfies the
properties (40) but not the condition (54), and then consider the string field redefinition
from the field @ to

Olp, 1=U®0lp~] (UDI=1) (55)

in the p-representation. On this new field basis @, the phase function &(p, q) is
changed into

&b, )=e(p, YU (p)U @) U(p+q) (56)
as is seen from (39) and (20-a), and still satisfies (40). If we take
U(p)=[£(0,0)e(p, — p)]"*, (567)

the new phase factor &(p, q) defined by (56) clearly satisfies the condition (54) also
(since &(p, —p)= &(—p, p) follows from (40-a)). This, in turn, implies that we need
not necessarily do such a field redefinition (55) actually and may keep to use the phase
function &(p, @) and the corresponding field @. Then we have only to adopt the
follwing definitions of hermiticity and inner-product:

0'[p, Z1=(U(D)U(—p) Ol -, Z']
=[&(0,0&(p, -p)10[-p, 21,

0- 7= [(az101-p, 20,0 =(p, ~p)) Flp, 2" (58)

with Z” denoting Z other than p. These are of course equivalent to the usual
definitions (15) and (19) for @ by the identification (55).
Let us now give the explicit expression of the phase function &(p, q) satisfying the
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properties (40) and the condition (54). First of all we should note that the property
(40+b) for p=q demands

(—)?’=1 - p?’=even integer for "p, (59)

the same condition as was required already in (9) from the constraint (L+—L_)®=0.
That is~, the dual lattice must be a (Lorentzian) even lattice and hence the basis vectors
é; of I' satisfy

. even integer, (7=j)
" 77 |integer . (i=7) (60)

We can now find a phase function &(p, q) satisfying the two properties (40) by
demanding a stronger condition, bilinearity:

a) elptq,r)=ebp, r)s_(q, r),
e(p, a+r)=elp, )elp, r) (61)

from which the two-cocycle condition (40-a) follows trivially. With this bilinearity
condition (61) imposed, the second property (40+Db) is satisfied if it holds only for the
basis vectors &; of the dual lattice I':

e(e;, €,)=(—)%¢%¢e(e;, &:). (62)
A solution to this equation is clearly given by
£(e, 5= 02D .
AR (<)) (63)

with an arbitrary choiceé of the ordering of the basis vectors &:, which thus gives
generally

e(p=2n:é;, q=2mjé',-)=expz'7r§}.nimj'é,-- éjEexpz'ﬂgp'q ) (64)
2 J 1>7

This solution has an advantage that &(p, g) takes only the real values =1 and may
be convenient. With this &(p, ¢), however, since it does not satisfy the condition (54),
we have to use the above-mentioned unconventional form of definitions (58) of the
hermiticity and inner-product.

Another solution to (62) which satisfies also the condition (54) is given by

(v_)1/2é,-~é,- , (G>7)
E(éi, éj): 1, (Z:])
(=)vece, (i<y) (65)

from which we have generally

&(p, q)=eXpi7r%(§j~ ig‘.j)nimjé . §j=esz'7r%(g —2)pq. (66)
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This indeed satisfies (54) since e(p, —p)=&(p, p)=1. It is easy to see that this
solution &(p, q) (66) can be obtained also from the above solution &(p, q) (64) by the
procedure (56) if we use the even-lattice condition (60).

§5. Global Yang-Mills gauge transformation

It would be instructive to study the gauge transformation
00 =QsN+2g0 * N=QsN—2gA * ® (67)

more explicitly for the case of global Yang-Mills gauge transformation (rigid ‘color’
rotation), for which 4 is given by

|A(p*, p=, CTo, @)>=— 5@‘,{2{‘, 0:'6(p+)8(p-) cRaF'|0>

+ 2k, 0:(k+)8(p:— k) 8(ps) €R|00}(27m)+ 8(p") 8(a) (68)

where 6.' and 6:(k.) are constant parameters which satisfy the reality conditions
G.7*=0." and 8.*(k.)=— 0:(— k.) implied by A'[Z]=—A[Z]. Here and henceforth
p: denotes a D-dimensional vector with Eucledian metric and the summation 2%,, in
(68) is taken over the internal momenta k. satisfying

kiz =2 (69)

so that the constraint /A=A or Eq. (8) on [A> is met. The factor 27)*"'8(p*)8(a)
in (68) represents that the transformation is a global one in the x* and & (Fourier-
conjugate of @) spaces. Note also that all the states in (68) are the massless states
possessing the internal ghost number #w=—2 (which is required for A), and that

Qs A>=0. (70)

So we have to evaluate only
SIOB)>=—2g|(A * @)(3)>=ngd1d2<A(l)l< o2 V(Q,2,3)>. (71)

For the vertex given by (39) with | V' of (27), we use the expression (see Egs. (3-23)
and (3-24) in Ref. 4))

[V(QA,2,3>=PVPOP® %o, a, as)e(ps, p1)

X [ il (1— Eo(”%w;(”ﬂexp{E(I, 2, 3)5,0)l055(1, 2, 3),

=1

5(1,2, =) 8(2p)8(Sa) X pr)6(Tp, ) (72)

with wi”/ V2= (""" +wi ) /2 defined in (3-14b) in Ref. 4). We are now working
in the momentum representation for the zero-modes and so the fd» in (71) is under-
stood to be fd*p/ da,/(2m) " 2p,.20p,.. As a matter of fact, in order to evaluate (71)
properly, we need to replace the d-function 8(a:) in <A(1)| by a limit lime.o8(a— ¢).

Various formulas for the Neumann functions Nin and other formulas useful in this
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limit &:=e—-0 can be found in Appendix E of Ref 12). By using them and the
hermiticity condition of @ written as (cf. Eq. (2-8) in Ref. 4))

PO@3)>= f d2ATo?— ZOKO2)PP|7(2,3)),

|7,-(2 3)> exp{Z‘,( )n 12[ (+)(2) a,(i”)(S)__ E(_i;l)(z)c(_i;L)(S)_i_c(_in)(Z) 5(_:‘;3(3)]}'0)

X (27[)d+13(ﬁ2# +1)3#)8(afz+ &’3) 6(p2+ +pé+)3(pz— +p3—) , (73)
and also noting that only the part

3
H (1_ 50(”%@0(”) 5 (50(2)_ 50(3))%(6(_4?(1)_}_ C(—_1)(1)) (74)

r=1
contributes to (71), we easily reach the expression
S| P>=—2g|A * @
=g§{215 HiIH-:I+2kt(9i(kt)Ei(ki)}|@> , ‘ (75‘)

Hi’=[ 299 /7P (5)= +f 299 Jx X" (0)=p.!
E(ks)=e(ps, — k) /: Zg—;:exp(Zﬁiki-Xi(d)) :
exp(2Vrik- X:(0)): —exp<2 —=k-a%e *‘"‘7>exp<2ik-<xi$~l4pid>>

X exp< 2 _1% (+)eiino‘> , (76)

where X.'(0) and P.'(0) are the “internal” coordinate and momentum of |®> defined
in (2) and x: and p: are their zero-modes. The phase factor &(p:, —k+) is under-
stood to be e(p, — k) with p=(p+,0), k=(k+,0) or p=(0, —p_), k=(0, —k_) substi-
tuted. From(75) weseethat H=(H.") and E.(k.)stand for the generators of the global
YM gauge transformation represented on the string field |@>, which correspond to a
Lie group G+&®G-. Actually the commutation relations

[X./(0), P/ ()] =458"8(c— o),

[P.(0), P/(o)]=[F X."(0), P(0)]=F46"8/ (o~ o), (77)
immediately lead to

[H!, H1=0, | " | (78)

[H, E+(k:)]=R:Ex(ks) . (79)

Further, for the commutator
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[Es(ky), Eo(I)]=&(ps, — ko) As(b)e(ps, — 1) A(l)— (R 1) (80)
with A+(B)=/(do/2n):exp(2nik- X:(0));, we use an equation
At(ki)e(pi, - li): S(p:r_ by, — li)Ai(ki) s (81)

since A.(k) contains the part exp2ik-x.=exp(— k- d/dp+) non-commutative with p..
With the help of the properties (40) of &(p, k) and the known formula®

A+ (B+1)=2,
A(B)AL(D)—(=)"'A(DA(B)={ B p: E+1=0,
0 otherwise , ' (82)

we find i
[Ei(ki), Ei( li)] = E(Pi, —hks—l)e(— ke, — li)At(ki)Ai(li) —(kel)
=&(ps, — ke~ L)e(— by, — 1) As(B) As(le) — ()% ' As(1:) As(Bs)]

e(ks, L)E(Rs+ 1) (B:t1:)*=2,
- ki'Hi ki+li:0,
0 otherwise. (83)

[We have used e(p, 0)=c(k, —k)=1 and e(—k, —1)=e(k, 1).] Thus, from (78), (79)
and (83) we see that our generators of global YM gauge transformation indeed
reproduce the correct commutation relations and that H.' are the generators of the
Cartan subalgebra and E.(%.) are those of non-zero roots k..

§ 6. Discussion

We thus have shown that the gauge-invariant action for the closed string field
compactified on a torus is also given by the same form as (17) for the ordinary
non-compactified closed string, if the 3-string vertex is modified by the two-cocycle
phase factor &(p:, ps) as given in (39). ,

Since all the formal identities concerning the BRS operator @z and the * and -
products remain the same as in the ordinary case, it is clear that the gauge-fixed
action S of the torus compactified closed string field also takes the same form and is
given simply by putting the ¢-component of @=—Cod+¢ equal to zero in the
gauge-invariant action:

5= 0-Quo+290°| —p-Lp+2gp (84)
with L=2(L.+L-). The BRS transformation &s¢ in this gauge-fixed system is
given by setting ¢ =0 in the “original” BRS transformation 8:0= Q@+ g® * @ of the
¢-component:

C§B¢:5B¢l¢=o:/dfo(QB@+g@ * 0)|y=0, (85)

which is on-shell nilpotent and leaves the gauge-fixed action (84) invariant. .
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We have restricted our discussion in this paper to the compactifications of D right
moving and D left moving coordinates since we have started from the ordinary
26-dimensional closed string. However, as is clear from the present discussion, it is
not necessary that the compactified dimension of the right- and left-moving coor-
dinates are equal. Also for the general case when D. right-moving and D_ left-
moving coordinates are compactified, our arguments in this paper apply as they stand
if the inner product p-q in the phase factor formula (64),

e(p, @)=exp iﬁ%@ —2)p-q, (86)
is understood to be the one with a Lorentzian metric of signature (D., D_):®
D+ D- l '
prg=2p+'qs' = XNp-"q" . 87

Therfore, for instance, our 3-string vertex already gives a correct answer to the
bosonic coordinate part of the heterotic string field theory by taking (D., D_)=(0, 16)
and d=10. If a further compactification would occur in the heterotic string, then we
should take (Ds, D_)=(D, D+16).

In this connection with superstrings, it would be appropriate here to mention the
odd lattice (=non-even integral lattice) which generally appears when the fermionic
coordinates are bosonized. The extension of the present formulation to the odd
lattice case is straightforward. In this case, (40-b) is replaced by

) elp, @)=(—)reree(q, p), (40-b)

which then becomes consistent also with non-even p?. It is well known that the phase
function e(p, @) satisfying the properties (40-a), (40-b") and (54) exists.’® The added
factor (—)?’¢, which equals +1 in the even lattice case, does not affect the proof of the
Jacobi identity (24) since the additional deviations of the connection condition for
X"s induced by this factor can always be obliterated by the periodicity of X*.

It is interesting to note that the phase factor &(p, ¢) (86) in the case D.=D_
becomes 1 in the zero-winding number sector in which p.=p- always holds as is seen
from (87). Therefore, if the radii R; of the torus tend to infinity, the present theory
reduces smoothly to the previous one for the ordinary closed string since the non-zero
winding number sectors with &(p, ¢) +1 decouple in this limit. In this sense it is mote
general to think that the phase factor &(p, @) always exists in the 3-string -vertex.
Thinking this way would make it more natural to regard that the compactification
occurs spontaneously in the closed string field theory.
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