
Gauge Symmetry Breaking in Gauge Theories—In Search of
Clarification

Simon Friederich

friederich@uni-wuppertal.de

Universität Wuppertal, Fachbereich C – Mathematik und
Naturwissenschaften, Gaußstr. 20, D-42119 Wuppertal, Germany

Abstract: The paper investigates the spontaneous breaking of gauge sym-
metries in gauge theories from a philosophical angle. Local gauge symmetry
itself cannot break spontaneously in quantized gauge theories according to
Elitzur’s theorem—even though the notion of a spontaneously broken local
gauge symmetry is widely employed in textbook expositions of the Higgs
mechanism, the standard account of mass generation for the weak gauge
bosons in the standard model. Nevertheless, gauge symmetry can be broken
in gauge theories, namely, in the form of the breaking of remnant subgroups
of the original local gauge group under which the theories typically remain
invariant after gauge fixing. The paper discusses the relation between these
instances of symmetry breaking and phase transitions and draws some more
general conclusions for the philosophical interpretation of gauge symmetries
and their breaking.

1 Introduction

The interpretation of symmetries and symmetry breaking has been recog-
nized as a central topic in the philosophy of science in recent years. Gauge
symmetries, in particular, have attracted a considerable amount of interest
due to the central role they play in our most successful theories of the fun-
damental constituents of nature. The standard model of elementary particle
physics, for instance, is formulated in terms of gauge symmetry, and so are
its most discussed extensions. The defining characteristic of gauge symme-
tries is that they are not empirical but purely formal symmetries1 in that

1See [Healey, 2007], Chapter 6, where the distinction between empirical and purely
formal symmetries is spelled out in detail and the standard account of gauge symmetries
as purely formal symmetries is defended with great care.
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different configurations of the fields involved represent identical physical sit-
uations if they are related by gauge symmetry. For recent philosophical
work on the interpretation of gauge symmetries see, for instance, [Redhead,
2002], [Brading and Castellani, 2003], [Lyre, 2004], [Healey, 2007].

The present paper focuses on a particular aspect of gauge symmetries,
namely, the notion of a spontaneously broken gauge symmetry. This is a
notion that may seem puzzling at first glance, for it seems natural to ask
what it might mean to spontaneously break a purely formal symmetry that
exists only on the level of our description of physical reality, not on the
level of physical reality itself. The notion of a spontaneously broken gauge
symmetry is not an exotic notion, however, for it is widely regarded as
playing a crucial role in the generation of particle masses in the standard
model of particle physics by the Higgs mechanism. Although it is almost
universally accepted, the received view of the Higgs mechanism as a case
of broken local gauge symmetry has been criticized by both physicists and
philosophers of physics, see [’t Hooft, 2007], [Earman, 2004], [Healey, 2007],
[Lyre, 2008]. ’t Hooft, for instance, criticizing it from the point of view of
a physicist, claims that the notion of a spontaneously broken local gauge
symmetry is “something of a misnomer”2, while Earman, from the point of
view of a philosopher, expresses qualms concerning the Higgs mechanism as
a spontaneously broken local gauge symmetry on grounds that “a genuine
physical property like mass cannot be gained by eating descriptive fluff,
which is just what gauge is.”3 Worries like these about the standard picture
of the Higgs mechanism as a spontaneously broken local gauge symmetry
are aggravated by a result known as Elitzur’s theorem (see [Elitzur, 1975]),
rigorously established for the context of lattice gauge theory, according to
which local (gauge) symmetry cannot be spontaneously broken at all.

In order to develop an adequate perspective on the status of spontaneous
symmetry breaking in quantized gauge theories, Earman proposes that the
question be tackled by means of the constraint Hamiltonian formalism, an
approach in which, in contrast to the standard approach discussed in Sec-
tions 5 and 6 of this paper, gauge orbits (that is, gauge field configurations
related by gauge symmetry) are quotiented out before the resulting uncon-
strained system of variables is subjected to a quantization procedure (see
[Earman, 2004]). An analysis of a particular gauge theory (the Abelian
Higgs model) in terms of the constraint Hamiltonian approach has recently
been proposed by [Struyve, 2011], but the generalization to the non-Abelian

2See ([’t Hooft, 2007] p. 697).
3See ([Earman, 2004] p. 1239).
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case and the quantization for the resulting unconstrained system remain to
be done. Independently of the success of this enterprise, it seems reasonable
to ask whether the puzzles surrounding the notion of spontaneous symme-
try breaking in gauge theories might not be resolvable within the standard
“Lagrangean” framework of quantum field theories, as it is actually used by
those working in the field of high energy physics. My aim in the present
paper will be to show that this can indeed be done. A proper assessment
of the role of symmetry breaking in gauge theories that does not merely
recite the standard narrative of the Higgs mechanism as a spontaneously
broken local gauge symmetry, arguably, can be given on the basis of the
conventional approach to quantum field theory alone.

The rest of this paper is organized as follows: Section 2 recalls some
basic features of the concepts of (gauge) symmetry and (gauge) symmetry
breaking, and Section 3 discusses the characterization of symmetry break-
ing as a “natural phenomenon” proposed by Liu and Emch4 and considers
in which sense it applies to cases where the broken symmetry is a gauge
symmetry. Sections 4 and 5 assess the fate of the notion of local symmetry
breaking in gauge theories, which, as argued in Section 4, makes sense at the
classical level but is vacuous, as discussed in Section 5, in quantized gauge
theories according to Elitzur’s Theorem. Section 6 discusses the breaking
of post-gauge fixing remnant global gauge symmetries and their relation to
transitions between distinct physical phases. It is argued that there seems
to be no fixed connection between these instances of symmetry breaking
and phase transitions in that the distinction between broken and unbroken
symmetries does not in general line up with a distinction between distinct
physical phases. Section 7 turns to the more general philosophical rele-
vance of these findings by considering their implications for claims brought
forward in the literature on philosophical aspects of gauge symmetries and
their breaking. The paper closes in Section 8 with a brief concluding remark.

2 Symmetries, gauge symmetries, and symmetry
breaking

In this section, I give a brief review of the concepts in terms of which the
questions discussed in this paper are formulated. The concepts are those
of symmetry, gauge symmetry, symmetry breaking, and gauge symmetry
breaking. Readers who are familiar with these notions can skip the section

4See ([Liu and Emch, 2005] p. 153).

3



without loss, perhaps apart from the last two paragraphs, which review the
phenomenon of Bose-Einstein condensation in a free Bose gas in terms of
broken gauge symmetry.

A symmetry α of a classical system is a transformation α : γ 7→ αγ
of the (coordinate) variables in terms of which its configurations Sγ are
individuated that induces an automorphism α : Sγ 7→ αSγ ≡ Sαγ which
commutes with its time evolution. If the equations of motions for the sys-
tem are derived from an action principle in the Lagrange formalism or as
Hamilton’s equations from a Hamiltonian, this translates into the statement
that the Lagrangean or Hamiltonian from which they are derived is invari-
ant under α. For a quantum system, a symmetry is an automorphism of the
observables or canonical variables which preserves all algebraic relations. In
analogy to the classical case, possible states of the system are individuated
in terms of the expectation values they ascribe to these quantities. Time
evolution, in the Heisenberg picture, counts as an algebraic relation among
others, so the invariance of all algebraic relations under a symmetry in the
Heisenberg picture implies that the symmetry commutes with the dynamics
of the system.

Gauge theories are defined in terms of an action S that is invariant
under transformations corresponding to an infinite dimensional Lie group
and depending on a finite number of arbitrary functions. As follows from
Noether’s second theorem (see [Noether, 1918]), the equations of motion
apparently fail to be deterministic in this case in that they involve arbitrary
functions of space-time. This means, in particular, that any configuration of
the coordinate variables at a given initial time t0 does not uniquely determine
the configuration of variables at a later time t1. In the physical interpretation
of gauge theories, however, determinism can be restored by assuming that
variable configurations that are related by the symmetry represent identical
physical situations. The symmetry is referred to as a gauge symmetry in this
case. Classical electromagnetism is a paradigm example of a gauge theory
in that (assuming the relativistic formulation in terms of four-vector fields)
its action is invariant under local gauge transformations of the four-vector
potential Aµ(x) having the form

Aµ(x) 7→ Aµ(x)− 1

e
∂µα(x) . (1)

Only functions of the gauge fields that are invariant under gauge trans-
formations of the form (1) correspond to physical quantities. The inertial
frame-dependent electric and magnetic fields E(x) and B(x), obtained from
Aµ(x) by taking certain derivatives, are examples of such quantities, and
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only these, not the gauge fields themselves nor any other gauge-dependent
quantities, are observable. Since there are various different approaches to
the quantization of classical theories that are gauge theories in the sense just
discussed but no all-encompassing systematic account of what counts as a
“quantization procedure”, the notion of a “quantum gauge theory” does not
seem to have a precise definition at present. For the discussion of gauge
symmetry breaking in the quantum context in Sections 5 and 6 I shall in-
troduce and rely on the functional integral approach to the quantization of
gauge theories, which provides the basis for the vast majority of physicists’
studies of quantum gauge theories.

Symmetries that are gauge symmetries in the sense just discussed are
often referred to as local symmetries, alluding to the fact that the parameters
of symmetry transformations can be chosen “locally”, that is, independently
of each other for distinct space-time regions (see, for instance, the freedom in
the choice of α(x) in Eq. (1)). However, the idea that variable configurations
related by symmetry correspond to identical physical situations applies also
in contexts where the symmetry transformations depend on only finitely
many parameters, and one speaks of “global gauge symmetries” with regard
to these cases, in contrast to the “local” gauge symmetries discussed before.
Only theories that are formulated in terms of local gauge symmetry are
commonly referred to as gauge theories, however. The present paper adopts
this standard use of terminology, understanding “gauge symmetry” to refer
to both local and global gauge symmetries and “gauge theory” to refer to
theories formulated in terms of local gauge symmetry only.

Having reviewed the notions of symmetry in general and of gauge symme-
try in particular, I now turn to the notion of spontaneous symmetry break-
ing (“SSB” in what follows). The basic idea behind this concept is that
the mapping of the state space onto itself which is induced by a symmetry
transformation does not in general map each single state onto itself. Put
differently, this means that the state of a physical system need not have
all the symmetries which the laws of motions governing its behaviour have.
States for which this is the case are candidates for exhibiting SSB, and for
the purposes of the present paper, where the focus is on ground states and
thermal states of theories with infinitely many degrees of freedom, one may
simply identify them with the spontaneously symmetry breaking ones.5

5See [Strocchi, 2008] for a rigorous textbook account of SSB that avoids both unneces-
sary technicalities and misleading simplifications. Roughly speaking, for a state to exhibit
SSB in the rigorous sense specified in that work, it needs to take an infinite amount of
energy to transform the system from one asymmetric state into another. This is the reason
why realistic systems (that is, systems without any potential barriers of infinite height)
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For quantum theories, the basic idea behind the concept of SSB just
sketched can be turned into a precise criterion using the language of the al-
gebraic approach to quantum theories. One defines that for a symmetry α of
the algebra of observables of a system to be spontaneously broken by a state
ω, the GNS representations associated with the states ω and α∗ω (defined
by α∗ω(A) = ω(α(A))) have to be unitarily inequivalent.6 Intuitively, this
means that the states ω and α∗ω cannot be written in the form of density
matrices in one and the same Hilbert space H. An expectation value ω(A)
of an observable A for which

ω(A) 6= α∗ω(A) (2)

is called a symmetry breaking order parameter for the symmetry α in the
state ω. Situations where the symmetry α is broken are characterized by
the fact that this quantity is nonzero, whereas it vanishes for states that
are symmetric with respect to α. Symmetry breaking order parameters
in the sense of Eq. 2 can be used to define SSB in contexts where the
algebraic criterion does not apply in that the quantum theory at issue is
not formulated in terms of the algebraic approach. This holds, for instance,
for the application of the concept of SSB in the framework of the functional
integral formulation of quantum theories in which the quantization of gauge
theories is most commonly carried out (see Section 5 of this paper for more
details).

The notion of a spontaneously broken gauge symmetry may seem puz-
zling at first sight. As formulated by Smeenk, “[i]f gauge symmetry merely
indicates descriptive redundancy in the mathematical formalism, it is not
clear how spontaneously breaking a gauge symmetry could have any physi-
cal consequences, desirable or not.”7 Part of the aim of the present paper is
to remove the puzzlement expressed in Smeenk’s statement and to elucidate
the physical significance of SSB for gauge symmetries. For the purposes of
the present section it suffices to clarify the notion of a spontaneously broken

need to have infinitely many degrees of freedom to exhibit SSB. Furthermore, it does not
suffice for a non-symmetric state to differ only slightly from a symmetric one (in the sense
in which, say, a single particle state differs from a zero-particle, fully symmetric vacuum
state) to qualify as symmetry breaking. Cases like these are automatically excluded by
the criterion in terms of the algebraic approach to quantum theories stated in the next
paragraph.

6For accessible introductions to the notions of algebras of observables, their represen-
tations, the unitary (in-) equivalence of representations, and a state’s GNS representation,
see, for instance, ([Ruetsche, 20011] Chap. 13) and [Strocchi, 2008].

7See ([Smeenk, 2006] p. 488). See ([Earman, 2004] Section 9) for a similar way of
putting the challenge.
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gauge symmetry at a technical level, and to do so, the account just given for
SSB on the level of observables must be generalized by extending the algebra
of observables to an algebra of canonical variables that are not themselves
physical observables. A simple example of a quantum theory with a spon-
taneously broken gauge symmetry is that of Bose-Einstein condensation of
a non-relativistic free Bose gas in the thermodynamic limit at zero temper-
ature.8 Since this theory is formulated in terms of global, rather than local,
gauge symmetry, it does not qualify as a gauge theory, but the spontaneous
breaking of a gauge symmetry can nevertheless nicely be illustrated with it.
In this case, the canonical variables are (quantum) fields ψ(x), and the sys-
tem has infinitely many pure ground states Ωθ, labelled by different values
of an angle variable θ, all of which assign a nonzero expectation value to the
(improper) field operator ψ(x):

Ωθ(ψ) =
√
neiθ, θ ∈ [0, 2π) , (3)

where n is the average density n = |Ωθ(ψ)|2.
Physically, all states Ωθ defined in Eq. (3) are equivalent to each other

in that they (and their mixtures) yield the same expectation values for all
observable quantities. Gauge symmetry comes into play in the form of an
invariance of the dynamics under global gauge transformations of the form

ψ(x) 7→ αλ(ψ(x)) = eiλψ(x) ,

ψ∗(x) 7→ αλ(ψ∗(x)) = e−iλψ∗(x) , (4)

where λ ∈ [0, 2π).
The states Ωθ are not invariant under these transformations in that

Ωθ(α
λ(ψ)) = Ωθ+λ(ψ) 6= Ωθ(ψ) (5)

for λ 6= 0, so they break the gauge symmetry. The GNS representations
associated with the states Ωθ are unitarily inequivalent, so the symmetry
α defined in Eq. (4) is spontaneously broken by each Ωθ. Gauge symmetry
breaking is an unavoidable feature of one’s description if one wants to de-
scribe the free Bose gas in the thermodynamic limit (at zero temperature) in
terms of gauge variables by means of a pure state, but the states Ωθ, among
which one can choose, are all physically equivalent in that they assign the
same expectation values to all observables.9

8The following presentation relies on ([Strocchi, 2008] Chap. 7.2). See also Chapters
13.3 and 13.4 of [Strocchi, 2008] for further details.

9[Leggett, 2006] provides an illuminating discussion of Bose-Einstein condensation in
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3 Symmetry breaking as a natural phenomenon

Spontaneous symmetry breaking, as explained in the previous section, is a
feature of states that do not have the all the symmetries of the underlying
laws of motions (in theories with infinitely many degrees of freedom). In or-
der to interpret the notion thereby defined, let us first focus on cases where
the broken symmetry is one of the algebra of observables (that is, not a
gauge symmetry), so that its breaking manifests itself as an asymmetry on
the level of observables. Having in mind these cases of SSB, Liu and Emch
characterize symmetry breaking by means of the non-technical and intuitive
notion of a “natural phenomenon”10, contrasting it with “merely theoretical
concepts” such as “renormalization, first- or second- quantization.”11 When-
ever the state of a system as specified in terms of the expectation values of
its observables spontaneously breaks some symmetry of the underlying laws
of motion, the discrepancy between the symmetries of the state and those of
the laws is an objective feature of the physical situation described by that
state and not merely an artefact of our description. Liu’s and Emch’s char-
acterization of SSB as a “natural phenomenon” therefore seems adequate
for cases of SSB on the level of observables in that the breaking of these
symmetries, whenever it occurs, is an objective matter and not merely a
conventional or otherwise arbitrary feature of how we represent the physical
situation.12

the absence of the thermodynamic limit that does not operate with the notion of a spon-
taneously broken gauge symmetry. The assumptions underlying Leggett’s approach are
more realistic than those of the discussion in the main text, since the number of atoms
in physically realized examples of BEC is not exceedingly large (between roughly 103 and
105) and there are important inter-particles interactions. Leggett’s “order parameter” (see
[Leggett, 2006] Eq. (2.2.1)), in terms of which he defines Bose-Einstein condensation, is
not a symmetry breaking order parameter in the sense of Eq. (orderparam).

10See ([Liu and Emch, 2005] p. 153). Liu and Emch focus on quantum spontaneous
symmetry breaking, specifically, but the characterization of symmetry breaking as a nat-
ural phenomenon does no to seem to be based on any particular quantum (as opposed to
classical) aspects.

11See ([Liu and Emch, 2005] p. 153, fn. 14).
12Note that to accept the characterization of SSB on the level of observables in quantum

theories as a natural phenomenon, it does not seem necessary to endorse the standard
ontic view of quantum states as states quantum systems “are in”. The main reason
for adopting the alternative, epistemic, conception of quantum states is that it elegantly
avoids the paradoxes of measurement and nonlocality. (See [Friederich, 2011] for more
details and an exploration of how the view might be spelled out in detail.) According
to the epistemic conception of quantum states, quantum states reflect the state assigning
agents’ epistemic relations to these systems, so no such thing as the “true” quantum
state of a quantum system is acknowledged, and SSB cannot be characterized in terms of
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While SSB on the level of observables seems adequately characterized as
a “natural phenomenon” in the sense just discussed, the status of SSB on
the level of gauge variables seems less clear. The reason for this is that gauge
symmetries, as explained in the first section, are purely formal symmetries
that have no physical instantiations. Whenever we describe some physical
situation in terms of broken gauge symmetry, there is thus no discrepancy
between the physical symmetries of the situation and those of the under-
lying laws of motion. This can nicely be seen, for instance, in the case of
Bose-Einstein condensation mentioned at the end of the previous section,
where the gauge symmetry is broken by any of the states Ωθ, but the physi-
cal properties of the system, i. e., the expectation values of observables, are
exactly the same for all Ωθ. There is in this case no asymmetry in the phys-
ical, gauge-invariant, properties of the system which the underlying laws of
motion do not have. In just the same sense in which gauge symmetries con-
trast with empirical symmetries in that they have no physical instantiations
gauge symmetry breaking seems to be rather an aspect of how we describe
a physical situation than an objective feature of the situation itself.

One may feel, however, that to conclude from these considerations that
gauge symmetry breaking does not deserve to be characterized as a “natural
phenomenon” in any reasonable sense would be too rash. More specifically,
one may feel that whether some physical system is described in terms of
broken or unbroken gauge symmetry relates directly to objective features of
that system. Even though SSB does not seem to be an intrinsic physical fea-
ture of systems described in terms of broken gauge symmetry in the same
way as it is for systems described in terms of a broken symmetry on the
level of observables, it might nevertheless be regarded as an extrinsic phys-
ical feature of these systems in the sense that their physical characteristics
may strongly differ from those of systems described in terms of unbroken
gauge symmetry. Instances of gauge symmetry breaking, one might want to
say, deserve to be called “natural phenomena” if and only if situations de-
scribed in terms of broken gauge symmetry are qualitatively different from
those described in terms of unbroken gauge symmetry. However, since both

quantum systems’ “being in” quantum states that break some symmetry of the algebra
of observables. Nevertheless, proponents of the epistemic conception of states can hold
that SSB is a natural phenomenon in that an observable called a “witness” of a symmetry
of the observables may have a value that, if known, requires the assignment of a state
that breaks that symmetry. (For an explanation of the notion of an observable being a
“witness” for SSB, see ([Liu and Emch, 2005] p. 145).) The characterization of SSB in
quantum theories as a natural phenomenon seems therefore independent of the question
of whether quantum states are conceived of as ontic or non-ontic.
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the notion of a natural phenomenon and that of a “qualitative difference”
between physical situations are only intuitive notions, this idea is in need of
further qualification and should be made more precise.

A natural way of doing so is to say that gauge symmetry breaking qual-
ifies as a “natural phenomenon” just in case the distinction between bro-
ken and unbroken gauge symmetry lines up completely with a distinction
between two qualitatively different physical phases. Physical phases are
regions in the space of parameters characterizing a theory (such as, for in-
stance, particle masses, coupling constants, or temperature) in the interior of
which the expectation values of macroscopic observables (derivatives of the
Gibbs potential), written as functions of the parameters, vary only analyti-
cally. Boundaries between the different phases are called phase transitions.13

Formulated in terms of this notion, the criterion for gauge symmetry break-
ing to qualify as a “natural phenomenon” stated above translates into the
statement that it does so just in case the transition between broken and
unbroken gauge symmetry coincides with a phase transition. Cases of SSB
on the level of observables automatically count as natural phenomena in this
sense, at least if there is a symmetry breaking order parameter in form of the
expectation value of a macroscopic observable, which seems to be the case
in all the typical cases of practical interest. In view of this tight connection
between phase transitions and symmetry breaking it is not so surprising that
the vocabulary of SSB is of crucial importance for our understanding and
classification of phase transitions. An example of a phase transition that
is accompanied by a change of a symmetry from broken to unbroken is the
transition between a ferromagnetic and a paramagnetic phase of a magnetic
material where the total magnetic moment of the system serves as an order
parameter. This quantity is zero throughout the unbroken (“symmetric”)
regime but becomes nonzero in the broken regime and therefore must exhibit
a non-analyticity (that is, a cusp or a jump) where the symmetry breaking
occurs. For the breaking of a gauge symmetry, in contrast, it is not immedi-
ately clear on conceptual grounds whether it is necessarily accompanied by a
non-analyticity on the level of observables, that is, by a phase transition. A
more detailed investigation is required to decide whether specific instances

13Alternatively, one may reserve the notion of a phase transition for the physical process
of crossing a phase boundary. This is the sense in which, for instance, cosmologists speak
of phase transitions in the early universe. For a detailed and rigorous account of phase
transitions in the sense of phase boundaries, see ([Sewell, 1986] Chapt. 4). Here I gloss
over the difficulties of giving a rigorous account of thermodynamic notions such as the
Gibbs potential in the relativistic, quantum field theoretical, context, assuming that at
least for all practical purposes these difficulties can be met.
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of broken gauge symmetries can count as natural phenomena in that sense.
For the case of Bose-Einstein condensation discussed in the previous sec-

tion this question is settled rather easily. We saw that the ground states
Ωθ break the gauge symmetry αλ for a free Bose gas at zero temperature.
For temperatures T substantially higher than T = 0, however, the situation
looks entirely different. Above a certain critical temperature Tc one finds
that the expectation value Ω(ψ) vanishes, which may serve as a symmetry
breaking order parameter, signalling that the gauge symmetry is unbroken
above Tc. The most interesting question for present purposes is whether
observable properties of the free Bose gas above the critical temperature Tc
are qualitatively different from those below Tc. Clearly they are: Thermo-
dynamic quantities such as the compressibility of the gas (which is infinite
below Tc in the non-interacting case and nonzero yet finite above Tc) show
qualitative differences below and above Tc, and the temperature dependence
of its specific heat exhibits a cusp at Tc. Since for a free (i. e. non-interacting)
system the many-particle states are just symmetrized products of the single-
particle states, the microscopic origin of these features can be analysed in
terms of occupation numbers of the single-particle states of the free bosons.
For temperatures T < Tc below the critical temperature the occupation
number n0 of the single-particle ground state (that is, the ground state for
a single boson in the same volume) diverges, so that the ratio n0/N remains
finite even when the total number of particles N goes to infinity. At zero
temperature, all particles have “condensed” into the single-particle ground
state, so that n0 = N = n · V , where n is the particle density introduced
in Eq. (3). For temperatures above the critical temperature Tc, in contrast,
n0/N goes to zero as N approaches infinity. The “condensation” of particles
into the single-particle ground state vanishes together with the restoration
of global gauge symmetry, as becomes manifest in the fact that n0/N can be
expressed in terms of the symmetry breaking order parameter. Therefore,
in the case of Bose-Einstein condensation of a free Bose gas the distinction
between broken and unbroken gauge symmetry corresponds exactly to a dis-
tinction on the level of macroscopic observables insofar as situations which
are described in terms of broken gauge symmetry are separated by a phase
transition from situations described in terms of unbroken gauge symmetry.
In Section 6 of this paper I shall argue that this does not always hold for
instances of symmetry breaking in gauge theories so that these do not (in
general) qualify as natural phenomena in the (weak) sense introduced before
in terms of phase transitions.
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4 Local gauge symmetry breaking—the classical
perspective

In this section, I briefly review the textbook account of the Higgs mechanism
in classical terms as a spontaneously broken local gauge symmetry. To see
the underlying idea, it suffices to consider, as an example, the Lagrangean
of the Abelian Higgs model defined by

L = Dµφ
∗Dµφ− V (φ)− 1

4
FµνF

µν , (6)

which exhibits a local U(1) gauge symmetry in that it is invariant under
gauge transformations of the form

φ(x) 7→ eiα(x)φ(x), Aµ(x) 7→ Aµ(x)− 1

e
∂µα(x) . (7)

The covariant derivative Dµ is defined as Dµ = ∂µ+ ieAµ, and the potential
V (φ) in Eq. (6) is given by

V (φ) = m2
0φ

∗φ+ λ0(φ
∗φ)2 . (8)

If the coefficient of the term quadratic in the fields is taken to be negative,
that is, if m2

0 < 0, the potential V has a minimum at a nonzero value of the

Higgs field φ, namely, |φ|2 = −m2
0

2λ0
.

The classical ground states of the theory are configurations of the fields
φ and Aµ of the form

φ(x) = eiθ(x)v/
√

2, Aµ(x) = −1

e
∂µθ(x), (9)

where θ(x) is an arbitrary real-valued function of space and time and v =√
−m2

0
λ0

. For any two field configurations of the form Eq. (9) there exist

gauge transformations of the form Eq. (7) that transform them into one
another, so all these configurations are physically equivalent. However, since
v 6= 0, the transformations (7) do not act trivially on these configurations,
that is, none of the field configurations (9) is itself invariant under local
gauge transformations. This means that local gauge symmetry is indeed
spontaneously broken in any classical ground state of (6).

In order to extract the physical content of the theory defined by the
Lagrangean (6), it is useful to perform the θ-dependent local gauge trans-
formation

φ(x) = eiθ(x)ρ(x) 7→ ρ(x) ,

Aµ(x) 7→ Aµ(x) +
1

e
∂µθ(x) ≡ Bµ(x) , (10)
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which makes it possible to eliminate the θ-field from the Lagrangean, so that
it becomes

L = ∂µρ∂
µρ− V (φ) +

1

2
e2ρ2BµB

µ − 1

4
FµνF

µν . (11)

Expanding the field ρ around its expectation value as ρ = v/
√

2 + η and
neglecting terms which are of third or higher order in the fields η and Bµ
one obtains

L(2) =
1

2

(
∂µη∂

µη +m2
0η

2
)

+
1

2
e2v2BµB

µ − 1

4
FµνF

µν . (12)

The characteristic physical properties of the theory defined by this La-
grangean can easily be read off in that it describes a massive vector boson
with a mass MB = ev and a massive scalar boson with mass

√
−2m2

0. The
real field θ, which would have played the role of a Goldstone boson in the case
of an invariance under global gauge symmetries, has been eliminated, and
this shows that there are no massless scalar particles in the theory. Accord-
ing to how this is often expressed, the Goldstone boson has been “eaten” by
the gauge field. The Lagrangean (12) contains only gauge-invariant fields14,
and, from a classical point of view at least, one could have defined the the-
ory directly in terms of these without introducing gauge symmetry at all.15

Classically, as we see, the Higgs mechanism can be spelled out either in terms
of broken local gauge symmetry or without introducing gauge symmetry in
the first place. In the formulation using local gauge symmetry, as discussed
before, it is broken in any classical ground state.

In the electroweak theory part of the standard model the implementation
of the Higgs mechanism is slightly more complicated than in the case just
discussed in that the broken local symmetry is a (non-Abelian) SU(2)×U(1)
symmetry instead of the simpler (Abelian) U(1) symmetry of our example.
Moreover, the SU(2) × U(1) symmetry is not completely broken by the
Higgs field, but only up to a residual U(1) symmetry, which coincides with
the gauge symmetry of electromagnetism. Despite these important con-
ceptual differences, however, the conclusion just established that the Higgs
mechanism can be described as a case of a spontaneously broken local gauge

14Equivalently, one could have arrived at a Lagrangean of exactly the same form by
imposing the unitary gauge θ = 0.

15See [Struyve, 2011] for a detailed discussion of these questions. If one chooses to use
only gauge-invariant fields, however, one has to pay careful attention to the constraints for
the variable η occurring in Eq. (12), see ([Struyve, 2011] Section 4) and ([Strocchi, 2008]
p. 194). The analysis in terms of the constraint Hamiltonian approach given in ([Struyve,
2011] Section 7) avoids this problem.
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symmetry is not affected and remains correct for the classical version of the
electroweak theory. Leaving aside the classical context from now, I turn to
the fate of spontaneously broken local gauge symmetry in quantized gauge
theories.

5 Quantization without gauge fixing

At present we do not have any rigorous formulation of quantum gauge theo-
ries in the framework of the algebraic approach to quantum theories, so the
status of symmetry breaking in quantized gauge theories has to be discussed
within a different framework. Since functional integral quantization seems
to be the most common and most convenient approach to the quantization
of gauge theories, especially in the Non-Abelian case, it is taken as the basis
for the discussion of symmetry breaking in quantized gauge theories in the
present and following sections. The existence of non-vanishing symmetry
breaking order parameter in the sense of Eq. (2) provides the criterion for
SSB in this context.

In the functional integral formulation of quantum field theory, all ex-
pectation values of the observables and fields are obtained as derivatives of
a generating functional W [ηi] that depends on the so-called “source fields”
ηi. In the case of a gauge theory with gauge field Aµ and scalar field φ this
functional can be written as a functional integral (that is, as an integral over
all possible field configurations) of the form

W [η, J ] = N

∫
DφDAµ exp

(
i

∫
d4x(L+ ηφ+ JµA

µ)

)
, (13)

where L is the Lagrangean of the theory to be quantized and S =
∫

d4xL the
corresponding action. Correlation functions, which include the expectation
values of gauge-dependent quantities that may serve as symmetry breaking
order parameters (such as 〈φ〉, where φ is the Higgs field), are obtained from
W [η, J ] by taking derivatives with respect to the source fields η and J and
then setting them to zero.

The expression (13) for W [η, J ] involves an integral over all possible con-
figurations of the fields φ and Aµ, which means that each gauge-equivalent
class of field configurations is integrated over infinitely often. As a result,
the integral in Eq. (13) diverges in a “vicious way” in that the inverse free
propagator, a function that is contained in the exponent of the integrand,
cannot be inverted to obtain the free propagator itself that is required as

14



a starting point for perturbative calculations.16 Non-perturbative calcula-
tions that do not require the inverse free propagator in the exponent of the
functional integral Eq. (13) to be invertible can be performed by starting
from Eq. (13), but this requires the setting of lattice gauge theory, where the
gauge theory to be quantized is not formulated on the space-time continuum
but rather on a discrete lattice of space-time points.

There are at least two different possible reactions to this problem, which
I shall consider in the present and following section, respectively. The first
of these is to choose the non-perturbative route, which in practice means
to quantize the theory on a lattice and to extrapolate the results to the
continuum case by letting the lattice spacing go to zero; the second reaction,
discussed in the following section, is gauge fixing—the insertion of terms in
the functional integral that violate gauge invariance, but in such a way
that correlation functions for gauge invariant quantities are independent of
the choice of gauge fixing terms. Since local gauge symmetry is explicitly
broken by gauge fixing terms, one has to consider the option without gauge
fixing to assess the fate of local gauge symmetry breaking in quantized gauge
theories. The next section will focus on the breaking of post-gauge fixing
remnant global gauge symmetries that, depending on the choice of gauge,
survive in the presence of gauge fixing terms.

In gauge theories that are quantized on a lattice, scalar and fermion fields
are defined on a lattice representing discretized space-time, and the gauge
fields are defined on the links connecting the lattice sites.17 By considering
finite lattices with periodic boundary conditions the functional integrals can
be evaluated explicitly in a non-perturbative way, so that no expansion of
expressions like Eq. (13) needs to be made that requires a free propagator
for the gauge field. This means, in other words, that functional integral
quantization can be carried out in the lattice setting without gauge fixing,
so that gauge invariance is not violated during the quantization procedure.
Since local gauge symmetry persists after quantization, it is possible to dis-
cuss whether local gauge symmetry can be broken in gauge theories that are

16The inverse free propagator of the gauge fields can be thought of as the coefficient of
the part in the Lagrangean L which is quadratic in the gauge fields. For the Abelian case
this part of the Lagrangean is given by − 1

4
(∂mAν − ∂νAµ)2, and the resulting inverse free

propagator for the gauge field is, in momentum representation, given by ηµνk
2 − kµkν

(where ηµν corresponds to the matrix diag[1,−1,−1,−1]). As remarked in the main text,
the operator ηµνk

2 − kµkν is not invertible, which can be seen from the fact that it has
kν as an eigenvector with eigenvalue zero.

17For the earliest introduction of lattice gauge models, see [Wegner, 1971]. Lattice gauge
theory as sketched in this paragraph was essentially invented by Wilson, see [Wilson, 1974].
For a gentle modern introduction to lattice gauge theory, see Münster and Walzl [2000].
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quantized in this way.
The most important result in this context, mentioned already in the in-

troductory section of this paper, is a theorem due to Elitzur18, which states
that local gauge symmetry cannot be spontaneously broken at all. Mathe-
matically, what the theorem says is that for any local gauge transformation
α : φ 7→ α(φ) the vacuum expectation value of the Higgs field φ is invariant
under the gauge transformation α in the sense that

〈φ〉 = 〈α(φ)〉 , (14)

from which it follows that 〈φ〉 = 0. Since the proof of the theorem can be
generalized to show that the expectation values of arbitrary gauge-dependent
combinations of fields must be zero, this means that there can be no sponta-
neous breaking of local gauge symmetry at all.19 The proof of the theorem
is crucially based on the fact that local gauge transformations depend on
infinitely many parameters and does not extend to the case of global gauge
symmetries, which depend on only finitely many parameters. Thus, the im-
possibility of breaking local gauge symmetries is not a direct consequence
of the general unobservability of gauge transformations but has to do with
the specific features of local symmetries.

A possible reaction to Elitzur’s theorem, tempting perhaps for those
who are used to think of what is usually called the Higgs mechanism as
a spontaneously broken local gauge symmetry, is to regard the theorem
as an embarrassment for lattice gauge theory rather than as a reductio of
that way of conceiving the Higgs mechanism. The temptation to make this
move, however, should be resisted on at least two grounds. The first is that
if we want to assess the fate of the notion of a spontaneously broken local
gauge symmetry in quantized gauge theories at all, we must do so in the
context of an approach where local gauge symmetry is not explicitly broken
from the start, that is, an approach to the quantization of gauge theories
that does not rely on gauge fixing. The Wilsonian lattice formulation of
gauge theory fulfills this requirement and provides the natural framework
for investigating the status of (allegedly broken) local gauge symmetries,
especially in the absence of a workable approach to quantization without
gauge fixing for the continuum case. The second reason for not dismissing

18Elitzur proved the theorem for the case of a Higgs field with fixed modulus, see [Elitzur,
1975]. The result was generalized to the case of a Higgs field with variable modulus by de
Angelis, de Falco and Guerra, see [De Angelis et al., 1978].

19See ([Strocchi, 1985], Chap. II 2.5) and ([Fröhlich et al., 1981], Section 3) for helpful
sketches of the generalized version of the proof and ([Itzykson and Drouffe, 1989], Chap.
6.1.3) for a more rigorous textbook version applied to the special case of Eq. (14).
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Elitzur’s theorem as an oddity of the lattice formulation is that the crucial
ingredient of its proof—the fact that local gauge transformations, in contrast
to global ones, depend on an infinity of parameters labelled by the points
of space-time—carries over to the continuum case, where the number of
independent parameters characterizing a gauge transformation is even non-
denumerably large. Another important aspect is that the proof does not
seem to depend on any peculiarities of the lattice formulation of which one
could be sure that they would not be valid in whatever precise formulation
one might have for the continuum case without gauge fixing in the future.

Elitzur’s theorem raises the question of whether the Higgs mechanism
may perhaps not work as an account of mass generation in the standard
model as it shows that the notion of a spontaneously broken local gauge sym-
metry is not sound, on which textbook expositions of the Higgs mechanism
are commonly based. Fortunately, however, as demonstrated by Fröhlich,
Morchio, and Strocchi20, such fears are ungrounded, since the physical phe-
nomena which are usually associated with the Higgs mechanism can be
recovered in terms of an approach that uses only entirely gauge-invariant
fields. They develop a recipe for constructing gauge-invariant combinations
of the Higgs and gauge fields that allows to reformulate any gauge theory
in terms of such gauge-invariant combinations. Observable quantities, such
as the (Yukawa) couplings between the gauge bosons and fermions in the
conventional formulation, are obtained as functions of expectation values of
these gauge-invariant fields. In particular,Fröhlich et al. provide a list of
gauge-invariant quantities that are non-vanishing and correspond directly to
quantities identifiable with the particle masses in the conventional formula-
tion using gauge dependent fields. So, mass generation through the Higgs
mechanism can get along very well without assuming a nonzero expectation
value for any gauge dependent combination of fields, in particular not for
the Higgs field itself.

One may conclude from the fact that mass generation through the Higgs
mechanism, as demonstrated by Fröhlich, Morchio and Strocchi, can be ac-
counted for in terms of gauge-invariant fields that to characterize the Higgs
mechanism as a spontaneously broken local gauge symmetry is, as Smeenk
puts it, a “relatively benign case of abuse”21 of terminology. An alterna-
tive conclusion to draw, however, would be that the abuse of terminology
involved in characterizing the Higgs mechanism as a spontaneously broken
local gauge symmetry is not so benign—after all, the notion is demonstrably

20See [Fröhlich et al., 1981].
21See ([Smeenk, 2006] p. 498).
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vacuous—, but that despite its being vacuous the notion of a spontaneously
broken local gauge symmetry has an important heuristic value, at least his-
torically, and may still be useful for semi-classical calculations.

Another worry that might be brought up by Elitzur’s theorem is that if
we do not dispose of the notion of a spontaneously broken local gauge sym-
metry, we can no longer make the important distinction between cases where
local gauge symmetry is broken and cases where it is unbroken (“restored”).
This distinction, however, is apparently crucial to describe the electroweak
phase transition, a phase transition between two different phases of the uni-
verse as described by the electroweak theory at different values of the fun-
damental parameters such as temperature and the Higgs boson mass. This
transition is widely believed to have actually taken place as temperature
decreased in the history of the early universe so that it supposedly evolved
from a phase where the SU(2)×U(1) local gauge symmetry of electroweak
theory is unbroken to the phase in which we now exist, where that symmetry
is allegedly broken.22 In the phase where the electroweak symmetry is said
to be unbroken (“restored”) the electron and the neutrino are not yet distin-
guishable in that they correspond to degenerate states of one and the same
particle. At the present state of the universe, in contrast, there is obviously
a substantive physical difference between the electron and the neutrino, so
the supposed phase transition seems to have taken the universe from one
phase to another, qualitatively very different, one. Do we have to conclude
from Elitzur’s theorem that the very idea of an electroweak phase transition
rests on an error in that there cannot be a transition from a situation where
electroweak symmetry is unbroken to a situation where it is broken since
electroweak symmetry can never be broken at all?

Fortunately, this conclusion need not be drawn since the electroweak
phase transition, just as the Higgs mechanism itself, can be described in
purely gauge invariant terms. An example of an observable, that is, gauge-

22Detailed calculations (see, for instance, [Kajantie et al., 1996]) have shown that for
values of the Higgs mass not excluded by experiment the electroweak phase transition is
actually not a real phase transition (in the sense of an abrupt change in thermodynamic
quantities) but rather a steep crossover between two qualitatively different regimes of
electroweak theory, meaning that at least some expectation values of observables vary
very strongly (yet analytically) from one regime to the other. In the context of the
present paper, however, the question of whether, for realistic values of the Higgs mass, the
electroweak phase transition is a genuine phase transitions or rather a continuous crossover
is not important since we are concerned here with the more general questions of whether
the notion of a spontaneously broken local gauge symmetry is needed to give meaning to
the distinction between the high and low temperature phases of the electroweak theory,
which are sharply separated for some values of the Higgs mass.
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invariant quantity that may quite drastically change at the phase transition
is the expectation value 〈φ∗φ〉 (where φ is the Higgs field), which, if displayed
as a function of parameters such as temperature and the Higgs boson mass,
exhibits a “jump” across the planes in the phase diagram where the elec-
troweak phase transition occurs.23 From the fact that phase transitions are
often accompanied by the breaking (or restoration) of certain symmetries
and the fact that the electroweak phase transition is often associated with
“electroweak symmetry breaking” one might mistakenly conclude that there
is an incompatibility between Elitzur’s theorem and the electroweak phase
transition. As we have just seen, however, this is not the case, for the dis-
tinction between the two different phases, one where electroweak symmetry
is allegedly broken and one where it is allegedly unbroken, can be made in an
entirely gauge invariant way so that the dubious notion of a spontaneously
broken local gauge symmetry is altogether avoided. Phase transitions are
indeed often accompanied by instances of symmetry breaking, but the defi-
nition of a phase transition in terms of non-analytic behaviour of observable
quantities does not require symmetry breaking. The electroweak phase tran-
sition, as we see, is a case in point.

The topic of phase transitions in gauge theories will concern us again
in the following section while discussing the role of spontaneous symmetry
breaking in the presence of gauge fixing terms.

6 Gauge fixing and symmetry breaking

Having discussed the quantization of gauge theories without gauge fixing in
the lattice formulation of gauge theories, I now turn to their quantization by
means of gauge fixing terms, which makes it possible to perform perturbative
computations using the diagrammatic techniques invented by Feynman in
the continuum as well as on the lattice. In classical gauge theories, gauge
fixing amounts to the implementation of constraints for the Higgs and gauge
fields such as, for instance, the unitary gauge mentioned in Section 4, which
fixes the phase of the Higgs field at a constant value, say zero, at any space-
time point. For the Higgs field in the Abelian Higgs model discussed in
Section 4, which can be written as φ(x) = eiθ(x)ρ(x), this means setting
θ(x) = 0 for all x. Other choices of gauge fixings that tend to be better suited
for practical calculations include the Coulomb gauge, defined by ∂iA

i = 0
(where the summation is over spatial indices only), and the Lorenz gauge,
defined by ∂µA

µ = 0.

23See, for instance, [Buchmüller et al., 1994] pp. 134-6.
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In the functional integral formulation of quantum field theory, gauge
fixing is implemented in the form of field-valued Dirac-δ-functions in the
functional integral. The introduction of these δ-functions can be seen as part
of a change of integration variables involving a Jacobi determinant, the so-
called Faddeev-Popov determinant ∆(A), and it requires, at least in certain
gauges, the introduction of additional, purely formal, fields as integrations
variables. These are the so-called ghost fields, which do not correspond to
any physical degrees of freedom.24 The original gauge-invariant action S
of the gauge theory to be quantized (corresponding to the integral in the
exponent of Eq. 13) is replaced by an “effective” action Seff of the form

Seff = S + Sgf + Sghost , (15)

where Sgf implements the gauge fixing in that it contains the gauge fixing
constraint and Sghost is an additional term in the presence of ghost fields.

The gauge fixing term Sgf in the “effective” action Seff explicitly violates
local gauge invariance in that some gauge-dependent term is inserted in the
functional integral. This is done in such a way that the physical content
of the theory remains unchanged, so the gauge fixing does not have any
physical significance whatsoever. However, the way in which local gauge
invariance is violated by this procedure depends on the choice of gauge fixing
made. One possibility is that the gauge freedom is completely eliminated
by the gauge fixing in the sense that out of any class of gauge-equivalent
field configurations exactly one is singled out by the gauge fixing constraint.
This is the case for the unitary gauge, which, in the case of the locally U(1)-
symmetric Abelian Higgs model discussed before, is given by θ(x) = 0. Here,
local gauge symmetry is eliminated completely (and explicitly) at the level of
the “effective” action Seff , so spontaneous symmetry breaking cannot occur
any more, for there simply is no unbroken symmetry left to be broken.

For other choices of gauge fixing terms, however, the action Seff can still
be invariant under symmetry transformations corresponding to some finite-
parameter subgroup of the original infinite-parameter local gauge group. In
the presence of gauge fixing terms of this class, the action Seff still exhibits
certain global gauge symmetries, but no longer a local one. The spontaneous
breaking of global symmetries is not forbidden by Elitzur’s theorem, and in-
deed the breaking of these remnant global gauge symmetries is a common
phenomenon in gauge theories in the presence of gauge fixing. In what fol-
lows, I will refer to it as the spontaneous breaking of “global subgroups” of

24This can be seen, for instance, from the fact that ghost fields formally correspond to
spinless fermion fields the physical existence of which is excluded by the spin-statistics
theorem.
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the original, local, gauge group or just “remnant symmetry breaking”. It
can also be studied in the formulation without gauge fixing, discussed in the
previous section, by introducing fields which depend on the spacetime vari-
able x not only in an explicit manner, but also implicitly, via an additional
dependence on the gauge fields. An example of such a field is25

Φ(x;A) = g(x;A)φ(x) , (16)

where φ(x) is the Higgs field and g(x;A) is a transformation that transforms
it into a chosen gauge such as, say, the Coulomb or Landau gauge. The so
defined Φ(x;A) has a nonzero expectation value just in case the Higgs field
φ(x) itself has a nonzero expectation value for the respective choice of gauge
fixing, that is, for the choices mentioned, in the Coulomb or Landau gauge.

Since local gauge symmetry cannot be spontaneously broken according
to Elitzur’s theorem, the breaking of these remnant global subgroups is the
only way in which gauge symmetries can be broken in quantized gauge the-
ories.26 To answer the question of whether gauge symmetry breaking in
quantized gauge theories can count as a natural phenomenon in the sense
spelled out in Section 3 in terms of phase transitions, we therefore have to
investigate whether the distinction between broken and unbroken remnant
gauge symmetry always lines up with a contrast between distinct physical
phases. We have to ask, in other words, whether the transition from unbro-
ken to broken global subgroups is always accompanied by an abrupt change
in the expectation values of some observables.

Even though there does not seem to be any rigorous statement about the
relation between (remnant) symmetry breaking and the occurrence of phase
transitions in gauge theories, there is strong evidence, based on a combina-
tion of exact and numerical results, that there is no rigid connection between
the two and that, therefore, remnant gauge symmetry breaking does not in
general qualify as a natural phenomenon in the sense specified in Section 3.
A particularly illuminating discussion of the relation between the breaking
of remnant subgroups and phase transitions is given by Caudy and Green-
site in the context of a study of an SU(2)-symmetric lattice gauge model

25The example taken is Eq. (1.1) in [Caudy and Greensite, 2008].
26There are other, non-gauge, symmetries which can be broken is quantized gauge the-

ories such as, for instance, chiral symmetry in QCD or centre symmetry in non-Abelian
gauge theories (the centre of a group is the set of elements which commutes with all other
elements), which seems to be linked to the confinement-deconfinement phase transition,
see [Greensite, 2011]. The present paper is not concerned with the breaking of these
symmetries but only with that of gauge symmetries.
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with a fixed-modulus Higgs field.27 For this model, there is robust numerical
evidence that there exists, in a limited region of the phase diagram, a phase
transition between a “Higgs phase”, where the spectrum exhibits a gauge
boson mass, and a “non-Higgs phase”, where there is no such mass and the
properties of the model are more similar to those of quantum chromodynam-
ics (QCD) in the presence of confinement.28 The main conclusion drawn by
Caudy and Greensite from their results is that there is no general agreement
between the two transition lines (that between the different phases and that
between broken and unbroken remnant gauge symmetry), even though for
some values of the parameters of the model the transition between the two
phases does coincide with that between a regime where remnant symmetry
is broken and one where it is unbroken.

This conclusion has two distinct interesting aspects the first of which
is that, according to the results reported by Caudy and Greensite, both in
Coulomb and Landau gauge part of the separation line between broken and
unbroken gauge symmetry is found for parameters where the existence of
an accompanying phase transition can be definitely excluded.29 Remnant
gauge symmetry breaking, thus, is not always linked to a transition between
distinct physical phases as in the Bose-Einstein case discussed in Section 3
in that the transition between broken and unbroken remnant subgroups can
occur in regimes where all observables vary analytically. This shows that
remnant symmetry breaking is not in general a natural phenomenon in the
sense specified in Section 3. A second interesting aspect of the conclusions

27See [Caudy and Greensite, 2008]. More precisely, their results are for a model with a
fixed-modulus Higgs field in the fundamental colour representation. Their results clearly
show that in a certain range of parameters the system exhibits the typical features of
a “Higgs phase” such as, for instance, the appearance of a massive spectrum associated
with the gauge field degrees of freedom, even though there is no “Mexican hat potential”
(which makes sense only for a Higgs field with a variable modulus).

28See [Greensite, 2011] for an introduction to the problem of confinement that includes
an in-depth discussion of how confinement should be defined in the first place.

29It is known from an exact result due to Fradkin and Shenker [1979] that in the model
considered by Caudy and Greensite, for any two pairs of gauge and Higgs couplings β
and γ, there exists a continuous path in the β-γ-plane along which the expectation values
of all observables vary analytically. This implies that the phase boundary that separates
the “Higgs phase” from the “confinement phase” cannot be such that it divides the phase
diagram into a pair of half-planes, but that it rather must have an endpoint, just as the
phase transition between the liquid and gaseous phases in the typical phase diagram of
ordinary matter has a (critical) endpoint beyond which the distinction between liquid and
gas is only gradual. Caudy and Greensite find the distinction between regimes with broken
and unbroken remnant gauge symmetries to coincide in part with the phase transition
between the Higgs and confinement regimes, but they also find it continuing beyond the
endpoint of that transition line for parameters where all observables vary only analytically.
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presented by Caudy and Greensite is that, according to their results, the val-
ues of the parameters (couplings of the theory) for which there is a transition
between unbroken and broken gauge symmetry are dependent on the choice
of remnant subgroup, that is, if gauge fixing is used, on the choice of gauge
fixing terms. As Caudy and Greensite conclude, gauge symmetry breaking
in gauge theories is “ambiguous” in the sense that whether or not remnant
gauge symmetry is broken for a specific choice of parameters can depend on
the (from a physical point of view) arbitrary choice of remnant subgroup.
This observation illustrates further why remnant symmetry breaking does
not deserve to be called a “natural phenomenon” in that whether or not it
occurs for a given choice of parameters depends on the unphysical (gauge)
freedom of description.

In the following, final, section of this paper, I consider some consequences
of the considerations presented in this and the previous sections for philo-
sophical debates about the interpretation of gauge symmetries and their
breaking.

7 Philosophical implications

The considerations on gauge symmetry breaking presented in the previous
sections have interesting philosophical ramifications. In particular, they im-
ply that some interpretive claims about gauge symmetries and their breaking
in the literature are misleading. I discuss three examples of such claims.

The first example is Peter Kosso’s contention that broken gauge sym-
metries belong to the class of cases where “the relevant laws of nature are
exactly symmetric, but the phenomena expressing these laws are not.”30

That this characterization cannot really be adequate follows already from
the fact that gauge symmetries have no physical instantiations. If a theory
such as that of the Bose gas discussed in Section 3 has ground states that
break (global) gauge symmetry, all these ground states are still physically
equivalent in that with respect to observable quantities they all assign the
same expectation values. Kosso’s question of why we should think that the
fundamental interactions of nature are “gauge symmetric” even though the
phenomena which we observe are not is misleading since there is no asym-
metry in the phenomena that is not found in the basic laws due to the
fact that gauge symmetries are purely formal and hence unobservable. The
defence of the Higgs mechanism as an account of mass generation in the
standard model may still raise interesting epistemological challenges, but

30See ([Kosso, 2000], p. 359).
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this has nothing to do with the issue of conjecturing the fundamental laws
to be symmetric in a way in which the phenomena we observe are not.

A number of claims on the nature and role of gauge symmetry break-
ing in gauge theories are based on failure to take into account Elitzur’s
theorem and the fact that whether or not the Higgs field has a nonzero ex-
pectation values depends on the choice of gauge fixing. Margaret Morrison,
for instance, argues that the Higgs mechanism is “based on the idea that
even the vacuum state can fail to exhibit the full symmetries of the laws of
physics.”31 As a claim about ideas that have historically played a role in
the development of the Higgs mechanism this statement may be true, but
Morrison argues further that even from a methodological point of view “one
needs the underlying vacuum assumptions regarding the plenum and degen-
eracy as part of the ‘physical’ picture.”32 An integral part of this picture,
as she claims, is the thought that here “we are dealing with fields whose
average value is non-zero, where the vacuum is said to have a non-zero ex-
pectation value.”33 This statement, as we have seen, is not correct in that,
as we know from Elitzur’s theorem, the vacuum expectation of the Higgs
field is actually zero in the absence of any gauge fixing, whereas in the pres-
ence of gauge fixing it depends on the choice of gauge fixing which, practical
considerations aside, is arbitrary from a physical point of view. Morrison’s
central conclusion that “it would be folly to accept a robust physical inter-
pretation of the SSB story”34 in the electroweak theory is quite plausible
(depending on what exactly is meant by “robust physical interpretation”),
but the reason she gives for drawing the conclusion, namely, “that the vari-
ous vacuum hypotheses which provide the necessary theoretical foundations
are essentially problematic, for both physical and philosophical reasons”35,
is not completely convincing. The problematic aspect of the notion of spon-
taneous symmetry breaking in the context of the SU(2) × U(1) symmetry
of the electroweak theory is not that it is based on a questionable “theoret-
ical story about the nature of the vacuum”36, but that the SU(2) × U(1)
local gauge symmetry is in fact unbroken, whereas the breaking of remnant
subgroups depends on the gauge fixing.

Misunderstandings about the nature and significance of SSB in gauge
theories can be found not only among philosophers but also among eminent

31See ([Morrison, 2003] p. 356).
32See ([Morrison, 2003] p. 357).
33See ([Morrison, 2003] p. 359).
34See ([Morrison, 2003] p. 361).
35See loc. cit.
36See loc. cit.
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physicists. Steven Weinberg, for instance, argues in a ground-breaking pa-
per on phase transitions in gauge theories that these phase transitions have
the “philosophical implication” as regards the “reality” of gauge symmetries
that “if a gauge symmetry becomes unbroken for sufficiently high tempera-
ture, it becomes difficult to doubt its reality.”37 Weinberg’s reasoning here
seems to be that if gauge symmetries exist in both broken and unbroken
forms in such a way that there is a substantial physical difference between
the two cases (that is, a phase transition that separates them), these symme-
tries are the bearers of non-trivial physical properties and, therefore, must
be real. Although there may be disagreement about the sense in which
gauge symmetries are supposedly established as “real” according to this line
of thought, it seems clear from the considerations presented in the previous
sections that Weinberg’s argument fails, whatever exactly it is supposed to
show, for several reasons. Local gauge symmetry, as we know from Elitzur’s
theorem, is never broken in quantized gauge theories, so phase transitions
such as the electroweak phase transition cannot be described in terms of its
breaking and the existence of phase transitions cannot have any implications
whatsoever for the reality of local gauge symmetries. Remnant global sub-
groups of local gauge groups, on the other hand, may break spontaneously,
but their breaking is ambiguous in that it depends on the gauge and is not
necessarily accompanied by a qualitative change in physical properties. It
seems therefore problematic to regard these global symmetries as the true
bearers of physical properties and thus as “real” in a more substantial sense
than the original, local, symmetries. The standard view of gauge symmetries
as purely formal symmetries which do not have physical instantiations, in
particular, is not in the least called into question by the result that there are
phase transitions in gauge theories at high temperatures which for certain
choices of gauge fixing are accompanied by a restoration of remnant gauge
symmetry.

8 Conclusion

The aim of this paper has been to clarify the status and significance of
gauge symmetry breaking in gauge theories. While local gauge symmetry
itself cannot break spontaneously in quantized gauge theories according to
Elitzur’s theorem, this does not hold for remnant global gauge symmetries
under which the action of a gauge theory typically remains invariant after
gauge fixing. The physical significance of these instances of symmetry break-

37See ([Weinberg, 1974] p. 3359).
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ing was considered by investigating their relation to transitions between dis-
tinct physical phases. Based on the results of [Caudy and Greensite, 2008]
it was argued that there seems to be no general fixed connection between
remnant gauge symmetry breaking and phase transitions in that, first, a
transition between broken and unbroken remnant gauge symmetry can exist
without any accompanying discontinuous change in the expectation values
of observables and, second, the breaking of remnant gauge symmetry may
depend on the choice of gauge fixing made.38

With respect to the Higgs mechanism the following two conclusions can
be drawn from the considerations presented: The first is that the standard
textbook characterization of the Higgs mechanism as a spontaneously broken
local gauge symmetry is misleading (even though useful from a heuristic
point of view) in that it is valid only for the classical, not for the quantum,
case. The second is that while remnant global gauge symmetries may indeed
be broken in regimes that exhibit the typical features of a “Higgs-phase”,
it does not suffice to detect the breaking of a remnant global symmetry
to establish that these features actually hold. A more direct inspection of
objective, that is, gauge-invariant, quantities remains necessary.
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