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4d N = 2 susy theories of class S(ix)
(Gaiotto, Gaiotto Moore Neitzke, . . . )

“Partially twisted” compactification of the (2, 0) 6d theory on a 2d surface C with punctures
=⇒ N = 2 superconformal theories in four dimensions.

Space of complex structures C ∼= marginal gauge couplings of the 4d theory.

Conformal factor of the metric on C believed to be RG-irrelevant.

Recent check at large N.
Holographic RG equation (Φ is related to conformal factor)

∂2
ρe

Φ + (∂2
x + ∂2

y )Φ = eΦ .

Global existence proof of regular flows interpolating between arbitrary UV metric and
canonical IR metric of constant negative curvature (for g > 1).
(Anderson Beem Bobev LR)

Moore-Seiberg groupoid of C = (generalized) 4d S-duality
Vast generalization of “N = 4 S-duality as modular group of T 2”.
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6=4+2: beautiful and unexpected 4d/2d connections. Most famous example,

Correlators of Liouville/Toda on C compute the 4d partition functions (on S4)
(Alday Gaiotto Tachikawa)

In this talk we focus on another surprising connection:

The superconformal index I(q, p, t; , xi ) is computed by topological QFT1on C.

Index = twisted partition function on S3 × S1.
Encodes the protected spectrum of the 4d theory: independent of the gauge theory moduli.

Simpler 4d/2d relation (topological): may hope to derive it from 6d .

Still very non-trivial. Index of generic theory unknown.

1Term used loosely: infinite-dimensional state-space.
Leonardo Rastelli (YITP) Mac iNDEX November, 2011 3 / 22



6=4+2: beautiful and unexpected 4d/2d connections. Most famous example,

Correlators of Liouville/Toda on C compute the 4d partition functions (on S4)
(Alday Gaiotto Tachikawa)

In this talk we focus on another surprising connection:

The superconformal index I(q, p, t; , xi ) is computed by topological QFT1on C.

Index = twisted partition function on S3 × S1.
Encodes the protected spectrum of the 4d theory: independent of the gauge theory moduli.

Simpler 4d/2d relation (topological): may hope to derive it from 6d .

Still very non-trivial. Index of generic theory unknown.

1Term used loosely: infinite-dimensional state-space.
Leonardo Rastelli (YITP) Mac iNDEX November, 2011 3 / 22



6=4+2: beautiful and unexpected 4d/2d connections. Most famous example,

Correlators of Liouville/Toda on C compute the 4d partition functions (on S4)
(Alday Gaiotto Tachikawa)

In this talk we focus on another surprising connection:

The superconformal index I(q, p, t; , xi ) is computed by topological QFT1on C.

Index = twisted partition function on S3 × S1.
Encodes the protected spectrum of the 4d theory: independent of the gauge theory moduli.

Simpler 4d/2d relation (topological): may hope to derive it from 6d .

Still very non-trivial. Index of generic theory unknown.

1Term used loosely: infinite-dimensional state-space.
Leonardo Rastelli (YITP) Mac iNDEX November, 2011 3 / 22



The superconformal index

The superconformal index (Kinney-Maldacena-Minwalla-Raju 2006) encodes the information about
the protected spectrum of a SCFT that can be obtained from representation theory alone.

It is evaluated by a trace formula of the schematic form

I(µi ) = Tr(−1)F e−
P

i µi Ti e−β δ , δ = 2
n
Q,Q†

o
(≥ 0) ,

where Q is the supercharge “with respect to which” the index is calculated and {Ti} a
complete set of generators that commute with Q and with each other.

The trace is over the states of the theory on S3 (in radial quantization). States with
δ 6= 0 cancel pairwise, so the index counts states with δ = 0 and it is independent of β.

For a theory with a Lagrangian description one can compute the index in the free limit by
counting the gauge-invariant operators in terms of a matrix integral. (Unlike the S4

partition function, which is sensitive to non-perturbative physics.)
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N = 2 index
N = 2 SCFTs have 8 supercharges (+8 superconformal charges): QIα, Q̃I α̇ .
Here I = 1, 2 are SU(2)R indices and α = ±, α̇ = ± Lorentz indices.
We choose to compute the index “with respect to” Q̃1−̇ (all other choices are equivalent).

The commutant subalgebra to Q̃1−̇ and (Q̃1−̇)† has δ1−, δ1+ δ̃2−̇ as Cartan generators,

δ1− ≡ 2
n

Q1−, (Q1−)†
o

= E − 2j1 − 2R − r ,

δ1+ ≡ 2
n

Q1+, (Q1+)†
o

= E + 2j1 − 2R − r ,

δ̃2−̇ ≡ 2{Q̃2+̇, (Q̃2+̇)†} = E + 2j2 + 2R + r ,

δ̃1−̇ ≡ 2{Q̃1−̇, (Q̃1−̇)†} = E − 2j2 − 2R + r .

E is the conformal dimension, (j1, j2) the Cartan generators of the SU(2)1 ⊗ SU(2)2

isometry group, and (R , r), the Cartan generators of the SU(2)R ⊗ U(1)r R-symmetry.

The index is defined as

I(σ, ρ, τ, . . . ) = Tr(−1)F σ
1
2
δ1+ ρ

1
2
δ1− τ

1
2
δ̃2−̇ e

−β δ̃1−̇ . . . .

or equivalently

I(p, q, t, . . . ) = Tr(−1)F p
1
2
δ1+ q

1
2
δ1− tR+r e

−β′ δ̃1−̇ . . . .
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N = 2 SCFTs of class S (of type A)

Defined as the IR limit of the Ak−1 (2, 0) theory on R4 × C, where C a Riemann surface
with appropriate punctures (defects).

Complex moduli of C ∼= 4d gauge couplings

Punctures are associated with flavor symmetries.
Flavor symmetries are classified by “auxiliary Young diagrams” with k boxes
(embeddings of SU(2) into SU(k)).

Basic building blocks: theories corresponding to spheres with three punctures

(no moduli=no tunable couplings)
I Free hypermultiplets of SU(k) theories correspond to spheres with two “maximal”

punctures (SU(k) flavor symmetry) and one “minimal” (U(1) flavor symmetry).
I All other three-punctured spheres do not have Lagrangian description.

Simplest example: SU(3) theory with three maximal punctures ∼= E6 SCFT

“Gluing” three-punctured spheres at two maximal punctures corresponds to gauging the
diagonal SU(k)

Different “pair-of-pants” decompositions correspond to different S-duality frames.
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TQFT structure
The superconformal index is independent of the marginal couplings.
For theories of class S this means that the index does not depend on the complex moduli
of C: it must be computed by a 2d TQFT correlator on C.

The index of a generic theory of class S can be written in terms of the index of the basic
constituents: three-puncture spheres and propagators.
We parametrize the indices of the three-punctured spheres as

I(a1, a2, a3)

where ai are fugacities dual to the Cartan subgroup of the flavor symmetry.
In general these are a priori unknown functions.
The propagators are known explicitly,

η(a, b) = ∆(a)IV (a) δ(a, b−1)

where ∆(a) is the Haar measure and IV (a) the index of the vector multiplet.

As the simplest example of gluing,

I(a1, a2, a3, a4) =

I
[da]

I
[db] I(a1, a2, a) η(a, b) I(b, a3, a4)

=

I
[da] ∆(a) I(a1, a2, a) IV (a) I(a−1, a3, a4) ,

S-duality implies that this index is invariant under permutations of xi , which translates
into associativity of the TQFT structure constants.
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Expanding in a convenient basis of functions {f α(a)}, labeled by SU(k) representations {α},

I(a, b, c) =
X
α,β,γ

Cαβγ f α(a) f β(b) f γ(c)

ηαβ =

I
[da]

I
[db] η(a, b) f α(a) f β(b) .

Invariance of the index under the different pairs-of-pants decomposition of C is equivalent to the
associativity of the structure constants,

CαβγCγδε = CαδγCγβε ,

where indices are raised with the metric ηαβ and lowered with the inverse metric ηαβ .
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The full (“elliptic”) index for A1 and A2 theories

The “full index” is elegantly expressed in terms of elliptic Gamma functions.
For example, the index of a free hypermultiplet is given by a product of eight elliptic
Gamma functions (Dolan-Osborn )

I(a, b, c) = Γ(t
1
2 a±1b±1c±1; p, q), Γ(z; p, q) =

∞Y
i,j=0

1− pi+1qj+1/z

1− piqjz
.

For A1 quivers everything is explicit and associativity (S-duality) can be checked
(Gadde-Pomoni-LR-Razamat) by recently-found non-trivial integral identities (van de Bult ).

One can in principle use dualities to obtain the indices of the strongly-coupled building
blocks for higher rank theories.

Indeed Argyres-Seiberg duality was used to compute the index of the E6 SCFT
(the structure constants of A2 quivers with three maximal punctures)
(Gadde-Razamat-LR-Yan ),Z

da

a
e∆(a, c) IE6

((a, b), x, y) ∼ INf =6,SU(3)(x, y, b, c) .

This strategy is hard to generalize to An, n > 2.
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Goals:

Find an algorithm to calculate the index for all class S theories

Identify explicitly the 2d TQFT

Strategy:

“Bottom-up”, experimental approach.

Extrapolate the results for Lagrangian theories (A1 quivers) to higher rank.

Results:
We succeeded for a slice (q, 0, t) of the (q, p, t) fugacity space.

TQFT ∼ (q, t)-deformation of 2d Yang-Mills in the zero-area limit.

The structure constants are diagonal in the basis of (q, t)-Macdonald polynomials of the
flavor fugacities {xi}
Relation with relativistic Calogero-Moser integrable models.
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TQFT ∼ (q, t)-deformation of 2d Yang-Mills in the zero-area limit.

The structure constants are diagonal in the basis of (q, t)-Macdonald polynomials of the
flavor fugacities {xi}
Relation with relativistic Calogero-Moser integrable models.
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Strategy
Choose {f α(a)} to be orthonormal under the propagator measure, that is,

ηαβ = δαβ . (1)

Perform further orthogonal transformation to basis where structure constants are
diagonal,

Cαβγ 6= 0 → α = β = γ .

Associativity is then automatic.
Finding the diagonal basis in principle always possible: challenge is describe it concretely.
Useful to consider the ansatz

f α(a) = K(a)Pα(a) , (2)

for some cleverly chosen K(a).
Focus on A1 quivers, which are Lagrangian.
In special limits, able to diagonalize the structure constants: {Pα(a)} turn out to be
well-known orthogonal polynomials (Macdonald, Schur, Hall-Littlewood)
These polynomials are defined for any root system.
Immediate to formulate compelling conjectures for An quiver. Test against expected
dualities.
Then immediate to evaluate index for genus g surface with s (maximal) punctures,

Ig,s(a1, a2, . . . , as) =
X
α

(Cααα)2g−2+s
sY

I=1

f α(aI ) .
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Interesting limits

Use susy enhancement to select special limits

I(p, q, t, . . . ) = Tr(−1)F p
1
2
δ1+ q

1
2
δ1− tR+r e−β

′ δ̃1−̇ . . .

p → 0: Macdonald IM(q, t) Q̃1−̇, Q1+

p → 0, q → 0: Hall-Littlewood IHL(t) Q̃1−̇, Q1+, Q1−

q = t (independent of p it turns out): Schur IS(q) Q̃1−̇, Q1+
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Macdonald index

p → 0 limit of the full index,

IM = TrM(−1)F q−2j1 tR+r ,

where the trace in over states with E + 2j1 − 2R − r = 0.
1
4

BPS: one chiral and one antichiral supercharge.

Basic ansatz for complete set of functions that diagonalize the structure constants:

f λq,t(a) = Kq,t(a) Pλ(a|q, t) .

Macdonald polynomials Pλ(a; q, t) associated to the root system Ak−1 are labeled by
representations λ of SU(k). They are orthogonal with respect to the measure

∆q,t(a) =
1

k!

∞Y
n=0

Y
i 6=j

1− qnai/aj

1− t qnai/aj
,

q = t gives Schur (still 1
4

BPS) while q = 0 gives Hall-Littlewood ( 3
8

BPS)
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Symbol Surface Value

Cαβγ

|α〉

|β〉

|γ〉

A(q,t)
dimq,t (α)

δαβ δαγ

Vα 〈α|
dimq,t (α)

A(q,t)

ηαβ
〈α|

〈β|

δαβ

Table: The structure constants, the cap, and the metric for the TQFT of the Macdonald index

for Ak−1 quivers.

dimq,t(λ) = Pλ(t
k−1

2 , .., t
1−k

2 | q, t)

A(q, t) = PE

»
1

2
(k − 1)

t − q

1− q

– kY
j=2

(t j ; q) .
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The Macdonald index of the theory corresponding to a sphere with generic punctures is

IΛ1,Λ2,Λ3
= (t; q)k+2

kY
j=2

(t j ; q)

(q; q)

3Y
i=1

K̂Λi
(ai )

X
λ

Q3
i=1 Pλ(ai(Λi )|q, t)

Pλ(t
k−1

2 , t
k−3

2 , . . . , t
1−k

2 |q, t)
.

There is well-defined rule ai(Λi ) to “partially-close” punctures by specializing the flavor
fugacities.
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The index and 2d Yang-Mills
Consider the genus g partition function in the Schur limit, q = t,

Ig(q) =
h

(q; q)2g−2
ik−1

S00(q)2−2g
X
λ

1ˆ
dimq(λ)

˜2g−2
.

where S00 is the partition function of SU(k) level ` Chern-Simons theory on S3 if one formally identifies q = e
2πi
`+k ,

S00(q) =
kY

j=2

(q; q)

(qj ; q)
. (3)

Up to a simple prefactor, this is the genus g partition function of a q-deformed 2d Yang-Mills in the zero area limit
(equivalently, the analytic continuation of CS partition function on Cg × S1)

In the more general case of q 6= t

Ig(q, t) =
h

(t; q)g−1 (q; q)g−1
ik−1

Ŝ00(q, t)2−2g
X
λ

1ˆ
dimq,t (λ)

˜2g−2
, (4)

where

Ŝ00(q, t) =
kY

j=2

(t; q)

(t j ; q)
.

Closely related to the “refinement” of Chern-Simons theory recently discussed by Aganagic and Shakirov
Possible 2d interpretation: 2d YM with modified (Macdonald) measure. Such modification might arise by integrating
out degrees of freedom.
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Hall-Littlewood index

We take the limit σ, ρ→ 0 of the full index

I = Tr(−1)F σ
1
2
δ1+ ρ

1
2
δ1− τ

1
2
δ̄2+̇ e

− 1
2
β δ̄1−̇ .

Alternatively can state that it is given by

I = TrHL(−1)F τ2E−2R ,

where the trace is over states satisfying j1 = 0 and E − 2R − r = 0.

The states contributing to this index are annihilated by three supercharges, two chiral and
one anti-chiral.

For Lagrangian theories the only “letters” contributing to this index are a scalar q (τ)
from the hypermultiplet and a gaugino λ̄1+̇ (−τ2) from the vector multiplet.

For genus-zero quivers, HL index ∼= Hanany’s “Hilbert series of the Higgs branch”.
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HL index - SU(2) quivers

All these theories have a Lagrangian description.

The basic building block (sphere with three punctures) is a trifundamental free
hypermultiplet.

The HL index of the free hypermultiplet is given by

I(a1, a2, a3) =
1Q

±1(1− τ a±1
1 a±1

2 a±1
3 )

.

By explicit diagonalization, it can be rewritten

I(a1, a2, a3) =
1 + τ2

1− τ2

3Y
i=1

1“
1− τ2a2

i

” “
1− τ2/a2

i

” ∞X
λ=0

1

PHL
λ

(τ, τ−1| τ)

3Y
i=1

PHL
λ (ai , a

−1
i | τ)

= N (τ)
3Y

i=1

K(ai )
∞X
λ=0

Cλλλ

3Y
i=1

f λ(ai ) .

where
PHL
λ (a, a−1|τ) = Nλ(τ)

`
χλ(a)− τ2χλ−2(a)

´
are SU(2) Hall-Littlewood polynomials.
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HL index - higher rank generalization

The HL polynomials can be defined for U(k) groups

PHL
λ (x1, . . . , xk | τ) = Nλ(τ)

X
σ∈Sk

σ

0@xλ1
1 . . . x

λk
k

Y
i<j

xi − τ2xj

xi − xj

1A .

and thus for higher rank building blocks, the Tk theories, we conjecture

I(a1, a2, a3) = Nk (τ)
3Y

I=1

K(aI )
X
λ

1

PHL
λ (τk−1, . . . , τ1−k )

3Y
I=1

PHL
λ (aI ) .

For arbitrary punctures

IΛ1,Λ2,Λ3
(a1, a2, a3) = Nk (τ)

3Y
I=1

KΛI
(aI )

X
λ

1

PHL
λ (τk−1, . . . , τ1−k )

3Y
I=1

PHL
λ (aI (ΛI )) .
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HL index - SU(3) quivers - Closing punctures

The index of the SU(3)× SU(3)× U(1) free
hypermultiplet is given by

I(a1, a2, c) =
3Y

i,j=1

1

1− τaibjc

1

1− τ 1
ai bj c

.

a1 a2 a3

b2 b3b1

τ c

τ
−1

c c
−2

It can be rewritten as

I(a1, a2, c) =
1− τ6

(1− τ2)3

K(a1)K(a2)

(1− τ3c3)(1− τ3c−3)

X
λ1,λ2

PHL
λ1,λ2

(τc, τ−1c, c−2| τ)

PHL
λ1,λ2

(τ2, τ−2, 1| τ)

2Y
i=1

PHL
λ1,λ2

(ai| τ) .

Further setting c = τ we completely close one puncture to obtain a cylinder (propagator)

δHL(a, b) ∼
X
λ1,λ2

PHL
λ1,λ2

(a| τ) PHL
λ1,λ2

(b| τ) .
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HL index - E7 and E8 SCFTs
The index of the E7 SCFT is given by

IE7
(a1, a2, c) =

(1 + τ2 + τ4)(1 + τ4)

(1− τ2)3

K(a1)K(a2)

(1− τ2c±2)(1− τ4c±2)
×

X
λ1,λ2,λ3

PHL
λ1,λ2,λ3

(τc, c
τ
, τ

c
, 1
τc
| τ)

PHL
λ1,λ2,λ3

(τ3, τ, τ−1, τ−3| τ)

2Y
i=1

PHL
λ1,λ2,λ3

(ai| τ) .

=
∞X
k=0

[k, 0, 0, 0, 0, 0, 0]z τ
2k
.

a4a3a2a1

b2 b3b1 b4

c

τ

τ

c
τ c

1

τc

The index of the E8 SCFT is given by

IE8
(a, (b1, b2), c) =

(1− τ8)(1− τ10)(1− τ12)

(1− τ2)3(1− τ4)4(1− τ6)
×

K(a)

(1− τ2c±2)(1− τ4c±2)(1− τ6c±2)
Q

i 6=j (1− τ2bi/bj )(1− τ4bi/bj )
×

X
λ1,...,λ5≡λ

PHL
λ (τb1, τb2, τb3,

b1
t
,

b2
τ
,

b3
τ
| τ)PHL

λ (τ2c, c, c
τ2 ,

τ2

c
, 1

c
, 1
τ2c

, | τ)PHL
λ (a| τ)

PHL
λ

(τ5, τ3, τ, τ−1, τ−3, τ−5| τ)

=
∞X
k=0

[k, 0, 0, 0, 0, 0, 0, 0]z τ
2k
.

a3a1 a2 a4 a5 a6

τb3τb2τb1

b1/τ b2/τ b3/τ

c/τ 2 1

τ 2c

1/cc

τ 2c τ 2/c
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Outlook

Possible to include line and surface operators (in progress)

Macdonald index closely related to refined CS: hint of a relation to topological strings?
(2,0) theory on S3 × S1 × C versus (C× S1 ×M3)q,t with M3 = S1 × C...

Full three-parameter index?
Natural to try elliptic generalizations of Macdonald polynomials.
This idea can be sharpened by making recalling the relations between 2d YM, Macdonald
polynomials an a family of integrable models:

I The reduction of 2d YM on a cylinder gives the Calogero-Moser model
(Gorsky-Nekrasov).

I Macdonald polynomials are eigenfunctions of a relativistic version of the

trigonometric Calogero-Moser model.

The relevant elliptic generalizations of Macdonald polynomials should be eigenfunctions of
the relativistic elliptic Calogero-Moser model. Not much is explicitly known about them ...

Microscopic derivation of the 2d TQFT from the (2,0) theory?
Perhaps easiest to derive quantum-mechanical model obtained by reduction of 2d TQFT
to a graph G. (From 5d SYM on S3 × S1 × G?)
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