Gauge Theories and Macdonald Polynomials

Leonardo Rastelli
Yang Institute for Theoretical Physics，Stony Brook

with Abhijit Gadde，Shlomo Razamat and Wenbin Yan PRL 106 241602，arXiv：1110．3740

Exact Methods in Gauge／String Theories
PCTS，11／11／11

$4 \mathrm{~d} \mathcal{N}=2$ susy theories of class $\mathcal{S}(\mathrm{ix})$

(Gaiotto, Gaiotto Moore Neitzke, ...)
"Partially twisted" compactification of the $(2,0) 6 \mathrm{~d}$ theory on a 2 d surface \mathcal{C} with punctures $\Longrightarrow \mathcal{N}=2$ superconformal theories in four dimensions.

- Space of complex structures $\mathcal{C} \cong$ marginal gauge couplings of the 4 d theory.
- Conformal factor of the metric on \mathcal{C} believed to be RG-irrelevant.
necent check a' 'arge N .
Holographic RG equation (ϕ is related to conformal factor)

Global existence proof of regular flows interpolating between arbitrary UV metric and canonical IR metric of constant negative curvature (for $g>1$) (Anderson Beem Bobev LR)

$4 \mathrm{~d} \mathcal{N}=2$ susy theories of class $\mathcal{S}(\mathrm{ix})$

(Gaiotto, Gaiotto Moore Neitzke, ...)
"Partially twisted" compactification of the $(2,0) 6 \mathrm{~d}$ theory on a 2 d surface \mathcal{C} with punctures $\Longrightarrow \mathcal{N}=2$ superconformal theories in four dimensions.

- Space of complex structures $\mathcal{C} \cong$ marginal gauge couplings of the 4 d theory.
- Conformal factor of the metric on \mathcal{C} believed to be RG-irrelevant.

Recent check at large N.
Holographic RG equation (ϕ is related to conformal factor)

Global existence proof of regular flows interpolating between arbitrary UV metric and canonical IR metric of constant negative curvature (for $g>1$)

- Moore-Seiberg groupoid of $\mathcal{C}=$ (generalized) 4d S-duality Vast generalization of " $\mathcal{N}=4$ S-duality as modular group of T^{2} "

$4 \mathrm{~d} \mathcal{N}=2$ susy theories of class $\mathcal{S}(\mathrm{ix})$

(Gaiotto, Gaiotto Moore Neitzke, ...)
"Partially twisted" compactification of the $(2,0) 6 \mathrm{~d}$ theory on a 2 d surface \mathcal{C} with punctures $\Longrightarrow \mathcal{N}=2$ superconformal theories in four dimensions.

- Space of complex structures $\mathcal{C} \cong$ marginal gauge couplings of the 4 d theory.
- Conformal factor of the metric on \mathcal{C} believed to be RG-irrelevant.

Recent check at large N.
Holographic RG equation (Φ is related to conformal factor)

$$
\partial_{\rho}^{2} e^{\Phi}+\left(\partial_{x}^{2}+\partial_{y}^{2}\right) \Phi=e^{\Phi}
$$

Global existence proof of regular flows interpolating between arbitrary UV metric and canonical IR metric of constant negative curvature (for $g>1$). (Anderson Beem Bobev LR)

- Moore-Seiberg groupoid of $\mathcal{C}=$ (generalized) 4d S-duality Vast generalization of " $\mathcal{N}=4$ S-duality as modular group of T^{2} "

$4 \mathrm{~d} \mathcal{N}=2$ susy theories of class $\mathcal{S}(\mathrm{ix})$

(Gaiotto, Gaiotto Moore Neitzke, ...)
"Partially twisted" compactification of the $(2,0) 6 \mathrm{~d}$ theory on a 2 d surface \mathcal{C} with punctures $\Longrightarrow \mathcal{N}=2$ superconformal theories in four dimensions.

- Space of complex structures $\mathcal{C} \cong$ marginal gauge couplings of the 4 d theory.
- Conformal factor of the metric on \mathcal{C} believed to be RG-irrelevant.

Recent check at large N.
Holographic RG equation (Φ is related to conformal factor)

$$
\partial_{\rho}^{2} e^{\Phi}+\left(\partial_{x}^{2}+\partial_{y}^{2}\right) \Phi=e^{\Phi}
$$

Global existence proof of regular flows interpolating between arbitrary UV metric and canonical IR metric of constant negative curvature (for $g>1$). (Anderson Beem Bobev LR)

- Moore-Seiberg groupoid of $\mathcal{C}=$ (generalized) 4d S-duality Vast generalization of " $\mathcal{N}=4 \mathrm{~S}$-duality as modular group of T^{2} ".
$6=4+2$: beautiful and unexpected $4 d / 2 d$ connections. Most famous example,
- Correlators of Liouville/Toda on \mathcal{C} compute the 4 d partition functions (on S^{4}) (Alday Gaiotto Tachikawa)

In this talk we focus on another surprising connection:

- The sunerconformal index $\mathcal{T}\left(a, b, t, \mathbf{x}_{i}\right)$ is comnuted by topological QFTºn C

Index $=$ twisted partition function on $S^{3} \times S^{1}$.
Encodes the protected spectrum of the $4 d$ theory: independent of the gauge theory moduli
Simpler $4 d / 2 d$ relation (topological): may hope to derive it from 6d
Still very non-trivial. Index of generic theory unknown.
$6=4+2$: beautiful and unexpected $4 d / 2 d$ connections. Most famous example,

- Correlators of Liouville/Toda on \mathcal{C} compute the 4 d partition functions (on S^{4}) (Alday Gaiotto Tachikawa)

In this talk we focus on another surprising connection:

- The superconformal index $\mathcal{I}\left(q, p, t ; \mathbf{x}_{i}\right)$ is computed by topological QFT^{1} on \mathcal{C}.

Index $=$ twisted partition function on $S^{3} \times S^{1}$.
Encodes the protected spectrum of the $4 d$ theory: independent of the gauge theory moduli
Simpler 4d/2dréation (iopological' may hope Lo derive it from 6'
Still very non-trivial. Index of generic theory unknown
${ }^{1}$ Term used loosely: infinite-dimensional state-space.
$6=4+2$: beautiful and unexpected $4 d / 2 d$ connections. Most famous example,

- Correlators of Liouville/Toda on \mathcal{C} compute the 4 d partition functions (on S^{4}) (Alday Gaiotto Tachikawa)

In this talk we focus on another surprising connection:

- The superconformal index $\mathcal{I}\left(q, p, t ; \mathbf{x}_{i}\right)$ is computed by topological QFT^{1} on \mathcal{C}.

Index $=$ twisted partition function on $S^{3} \times S^{1}$.
Encodes the protected spectrum of the 4d theory: independent of the gauge theory moduli.
Simpler 4d/2d relation (topological): may hope to derive it from $6 d$.
Still very non-trivial. Index of generic theory unknown.
${ }^{1}$ Term used loosely: infinite-dimensional state-space.

The superconformal index

- The superconformal index (Kinney-Maldacena-Minwalla-Raju 2006) encodes the information about the protected spectrum of a SCFT that can be obtained from representation theory alone.
- It is evaluated by a trace formula of the schematic form

$$
\mathcal{I}\left(\mu_{i}\right)=\operatorname{Tr}(-1)^{F} e^{-\sum_{i} \mu_{i} T_{i}} e^{-\beta \delta}, \quad \delta=2\left\{\mathcal{Q}, \mathcal{Q}^{\dagger}\right\}(\geq 0)
$$

where \mathcal{Q} is the supercharge "with respect to which" the index is calculated and $\left\{T_{i}\right\}$ a complete set of generators that commute with \mathcal{Q} and with each other.

- The trace is over the states of the theory on S^{3} (in radial quantization). States with $\delta \neq 0$ cancel pairwise, so the index counts states with $\delta=0$ and it is independent of β.
- For a theory with a Lagrangian description one can compute the index in the free limit by partition function, which is sensitive to non-perturbative physics.)

The superconformal index

- The superconformal index (Kinney-Maldacena-Minwalla-Raju 2006) encodes the information about the protected spectrum of a SCFT that can be obtained from representation theory alone.
- It is evaluated by a trace formula of the schematic form

$$
\mathcal{I}\left(\mu_{i}\right)=\operatorname{Tr}(-1)^{F} e^{-\sum_{i} \mu_{i} T_{i}} e^{-\beta \delta}, \quad \delta=2\left\{\mathcal{Q}, \mathcal{Q}^{\dagger}\right\}(\geq 0)
$$

where \mathcal{Q} is the supercharge "with respect to which" the index is calculated and $\left\{T_{i}\right\}$ a complete set of generators that commute with \mathcal{Q} and with each other.

- The trace is over the states of the theory on S^{3} (in radial quantization). States with $\delta \neq 0$ cancel pairwise, so the index counts states with $\delta=0$ and it is independent of β.
- For a theory with a Lagrangian description one can compute the index in the free limit by counting the gauge-invariant operators in terms of a matrix integral. (Unlike the S^{4} partition function, which is sensitive to non-perturbative physics.)

$\mathcal{N}=2$ index

- $\mathcal{N}=2$ SCFTs have 8 supercharges (+8 superconformal charges): $\mathcal{Q}_{l \alpha}, \quad \tilde{\mathcal{Q}}_{l \dot{\alpha}}$. Here $I=1,2$ are $S U(2)_{R}$ indices and $\alpha= \pm, \dot{\alpha}= \pm$ Lorentz indices. We choose to compute the index "with respect to" \tilde{Q}_{1} - (all other choices are equivalent).

[^0]- The index is defined as

$\mathcal{N}=2$ index

- $\mathcal{N}=2$ SCFTs have 8 supercharges (+8 superconformal charges): $\mathcal{Q}_{l \alpha}, \quad \tilde{\mathcal{Q}}_{l \dot{\alpha}}$. Here $I=1,2$ are $S U(2)_{R}$ indices and $\alpha= \pm, \dot{\alpha}= \pm$ Lorentz indices.
We choose to compute the index "with respect to" \tilde{Q}_{1-} (all other choices are equivalent). The commutant subalgebra to \tilde{Q}_{1-} and $\left(\tilde{Q}_{1-}\right)^{\dagger}$ has $\delta_{1-}, \delta_{1+} \tilde{\delta}_{2-}$ as Cartan generators,

$$
\begin{aligned}
\delta_{1-} & \equiv 2\left\{Q_{1-},\left(Q_{1-}\right)^{\dagger}\right\}=E-2 j_{1}-2 R-r \\
\delta_{1+} & \equiv 2\left\{Q_{1+},\left(Q_{1+}\right)^{\dagger}\right\}=E+2 j_{1}-2 R-r \\
\tilde{\delta}_{2-} & \equiv 2\left\{\tilde{Q}_{2 \dot{ }},\left(\tilde{Q}_{2+}\right)^{\dagger}\right\}=E+2 j_{2}+2 R+r \\
\tilde{\delta}_{1-} & \equiv 2\left\{\tilde{Q}_{1-},\left(\tilde{Q}_{1-}\right)^{\dagger}\right\}=E-2 j_{2}-2 R+r
\end{aligned}
$$

E is the conformal dimension, $\left(j_{1}, j_{2}\right)$ the Cartan generators of the $S U(2)_{1} \otimes S U(2)_{2}$ isometry group, and (R, r), the Cartan generators of the $S U(2)_{R} \otimes U(1)_{r}$ R-symmetry.

$\mathcal{N}=2$ index

- $\mathcal{N}=2$ SCFTs have 8 supercharges (+8 superconformal charges): $\mathcal{Q}_{l \alpha}, \quad \tilde{\mathcal{Q}}_{l \dot{\alpha}}$.

Here $I=1,2$ are $S U(2)_{R}$ indices and $\alpha= \pm, \dot{\alpha}= \pm$ Lorentz indices.
We choose to compute the index "with respect to" \tilde{Q}_{1-} (all other choices are equivalent).
The commutant subalgebra to \tilde{Q}_{1-} and $\left(\tilde{Q}_{1-}\right)^{\dagger}$ has $\delta_{1-}, \delta_{1+} \tilde{\delta}_{2-}$ as Cartan generators,

$$
\begin{aligned}
\delta_{1-} & \equiv 2\left\{Q_{1-},\left(Q_{1-}\right)^{\dagger}\right\}=E-2 j_{1}-2 R-r, \\
\delta_{1+} & \equiv 2\left\{Q_{1+},\left(Q_{1+}\right)^{\dagger}\right\}=E+2 j_{1}-2 R-r, \\
\tilde{\delta}_{2-} & \equiv 2\left\{\tilde{Q}_{2 \dot{ }},\left(\tilde{Q}_{2 \dot{ }}\right)^{\dagger}\right\}=E+2 j_{2}+2 R+r, \\
\tilde{\delta}_{1-} & \equiv 2\left\{\tilde{Q}_{1-},\left(\tilde{Q}_{1-}\right)^{\dagger}\right\}=E-2 j_{2}-2 R+r .
\end{aligned}
$$

E is the conformal dimension, $\left(j_{1}, j_{2}\right)$ the Cartan generators of the $S U(2)_{1} \otimes S U(2)_{2}$ isometry group, and (R, r), the Cartan generators of the $S U(2)_{R} \otimes U(1)_{r}$ R-symmetry.

- The index is defined as

$$
\mathcal{I}(\sigma, \rho, \tau, \ldots)=\operatorname{Tr}(-1)^{F} \sigma^{\frac{1}{2} \delta_{1+}} \rho^{\frac{1}{2} \delta_{1-}} \tau^{\frac{1}{2} \tilde{\delta}_{2}-e^{-\beta \tilde{\delta}_{1-}} \ldots ~}
$$

or equivalently

$$
\mathcal{I}(p, q, t, \ldots)=\operatorname{Tr}(-1)^{F} p^{\frac{1}{2} \delta_{1+}} q^{\frac{1}{2} \delta_{1-}} t^{R+r} e^{-\beta^{\prime} \tilde{\delta}_{1}-}
$$

$\mathcal{N}=2$ SCFTs of class \mathcal{S} (of type A)

- Defined as the IR limit of the $A_{k-1}(2,0)$ theory on $\mathbb{R}^{4} \times \mathcal{C}$, where \mathcal{C} a Riemann surface with appropriate punctures (defects).
- Complex moduli of $\mathcal{C} \cong 4 d$ gauge couplings
- Punctures are associated with flavor symmetries.

Flavor symmetries are classified by "auxiliary Young diagrams" with k boxes
(embeddings of $S U(2)$ into $S U(k)$).

- Basic building blocks: theories corresponding to spheres with three punctures
(no moduli=no tunable couplings)
- "Gluing" three-punctured spheres at two maximal punctures corresponds to gauging the
- Different "pair-of-pants" decompositions correspond to different S-duality frames.

$\mathcal{N}=2$ SCFTs of class \mathcal{S} (of type A)

- Defined as the IR limit of the $A_{k-1}(2,0)$ theory on $\mathbb{R}^{4} \times \mathcal{C}$, where \mathcal{C} a Riemann surface with appropriate punctures (defects).
- Complex moduli of $\mathcal{C} \cong 4 d$ gauge couplings
- Punctures are associated with flavor symmetries. Flavor symmetries are classified by "auxiliary Young diagrams" with k boxes (embeddings of $S U(2)$ into $S U(k)$).
- Basic building blocks: theories corresponding to spheres with three punctures (no moduli=no tunable couplings)
- Free hypermultiplets of $\operatorname{SU}(k)$ theories correspond to spheres with two "maximal" punctures ($S U(k)$ flavor symmetry) and one "minimal" ($U(1)$ flavor symmetry).
- All other three-punctured spheres do not have Lagrangian description. Simplest example: $S U(3)$ theory with three maximal punctures $\cong E_{6}$ SCFT

$\mathcal{N}=2$ SCFTs of class \mathcal{S} (of type A)

- Defined as the IR limit of the $A_{k-1}(2,0)$ theory on $\mathbb{R}^{4} \times \mathcal{C}$, where \mathcal{C} a Riemann surface with appropriate punctures (defects).
- Complex moduli of $\mathcal{C} \cong 4 d$ gauge couplings
- Punctures are associated with flavor symmetries. Flavor symmetries are classified by "auxiliary Young diagrams" with k boxes (embeddings of $S U(2)$ into $S U(k)$).
- Basic building blocks: theories corresponding to spheres with three punctures (no moduli=no tunable couplings)
- Free hypermultiplets of $\operatorname{SU}(k)$ theories correspond to spheres with two "maximal" punctures ($S U(k)$ flavor symmetry) and one "minimal" ($U(1)$ flavor symmetry).
- All other three-punctured spheres do not have Lagrangian description. Simplest example: $S U(3)$ theory with three maximal punctures $\cong E_{6}$ SCFT
- "Gluing" three-punctured spheres at two maximal punctures corresponds to gauging the diagonal SU(k)
- Different "pair-of-pants" decompositions correspond to different S-duality frames.

TQFT structure

- The superconformal index is independent of the marginal couplings.

For theories of class \mathcal{S} this means that the index does not depend on the complex moduli of \mathcal{C} : it must be computed by a $2 d$ TQFT correlator on \mathcal{C}.

```
constituents: three-puncture spheres and propagators.
We parametrize the indices of the three-punctured spheres as
```

where \mathbf{a}_{i} are fugacities dual to the Cartan subgroup of the flavor symmetry
In general these are a priori unknown functions.
The propagators are known explicitly,
where $\Delta\left(\right.$ a) is the Haar measure and \mathcal{I}^{V} (a) the index of the vector multiplet
As the simplest example of gluing,

S-duality implies that this index is invariant under permutations of x_{i}, which translates
into associativity of the TQFT structure constants.

TQFT structure

- The superconformal index is independent of the marginal couplings.

For theories of class \mathcal{S} this means that the index does not depend on the complex moduli of \mathcal{C} : it must be computed by a $2 d$ TQFT correlator on \mathcal{C}.

- The index of a generic theory of class \mathcal{S} can be written in terms of the index of the basic constituents: three-puncture spheres and propagators.
We parametrize the indices of the three-punctured spheres as

$$
\mathcal{I}\left(\mathbf{a}_{1}, \mathbf{a}_{2}, \mathbf{a}_{3}\right)
$$

where \mathbf{a}_{i} are fugacities dual to the Cartan subgroup of the flavor symmetry. In general these are a priori unknown functions.
The propagators are known explicitly,

$$
\eta(\mathbf{a}, \mathbf{b})=\Delta(\mathbf{a}) \mathcal{I}^{V}(\mathbf{a}) \delta\left(\mathbf{a}, \mathbf{b}^{-1}\right)
$$

where $\Delta(\mathbf{a})$ is the Haar measure and $\mathcal{I}^{V}(\mathbf{a})$ the index of the vector multiplet.

TQFT structure

- The superconformal index is independent of the marginal couplings.

For theories of class \mathcal{S} this means that the index does not depend on the complex moduli of \mathcal{C} : it must be computed by a $2 d$ TQFT correlator on \mathcal{C}.

- The index of a generic theory of class \mathcal{S} can be written in terms of the index of the basic constituents: three-puncture spheres and propagators.
We parametrize the indices of the three-punctured spheres as

$$
\mathcal{I}\left(\mathbf{a}_{1}, \mathbf{a}_{2}, \mathbf{a}_{3}\right)
$$

where \mathbf{a}_{i} are fugacities dual to the Cartan subgroup of the flavor symmetry. In general these are a priori unknown functions.
The propagators are known explicitly,

$$
\eta(\mathbf{a}, \mathbf{b})=\Delta(\mathbf{a}) \mathcal{I}^{V}(\mathbf{a}) \delta\left(\mathbf{a}, \mathbf{b}^{-1}\right)
$$

where $\Delta(\mathbf{a})$ is the Haar measure and $\mathcal{I}^{V}(\mathbf{a})$ the index of the vector multiplet.

- As the simplest example of gluing,

$$
\begin{aligned}
\mathcal{I}\left(\mathbf{a}_{1}, \mathbf{a}_{2}, \mathbf{a}_{3}, \mathbf{a}_{4}\right) & =\oint[d \mathbf{a}] \oint[d \mathbf{b}] \mathcal{I}\left(\mathbf{a}_{1}, \mathbf{a}_{2}, \mathbf{a}\right) \eta(\mathbf{a}, \mathbf{b}) \mathcal{I}\left(\mathbf{b}, \mathbf{a}_{3}, \mathbf{a}_{4}\right) \\
& =\oint[d \mathbf{a}] \Delta(\mathbf{a}) \mathcal{I}\left(\mathbf{a}_{1}, \mathbf{a}_{2}, \mathbf{a}\right) \mathcal{I}^{V}(\mathbf{a}) \mathcal{I}\left(\mathbf{a}^{-1}, \mathbf{a}_{3}, \mathbf{a}_{4}\right)
\end{aligned}
$$

S-duality implies that this index is invariant under permutations of x_{i}, which translates into associativity of the TQFT structure constants.

Expanding in a convenient basis of functions $\left\{f^{\alpha}(\mathbf{a})\right\}$, labeled by $S U(k)$ representations $\{\alpha\}$,

$$
\begin{aligned}
\mathcal{I}(\mathbf{a}, \mathbf{b}, \mathbf{c}) & =\sum_{\alpha, \beta, \gamma} C_{\alpha \beta \gamma} f^{\alpha}(\mathbf{a}) f^{\beta}(\mathbf{b}) f^{\gamma}(\mathbf{c}) \\
\eta^{\alpha \beta} & =\oint[d \mathbf{a}] \oint[d \mathbf{b}] \eta(\mathbf{a}, \mathbf{b}) f^{\alpha}(\mathbf{a}) f^{\beta}(\mathbf{b}) .
\end{aligned}
$$

Invariance of the index under the different pairs-of-pants decomposition of \mathcal{C} is equivalent to the associativity of the structure constants,

$$
C_{\alpha \beta \gamma} C^{\gamma}{ }_{\delta \epsilon}=C_{\alpha \delta \gamma} C^{\gamma}{ }_{\beta \epsilon}
$$

where indices are raised with the metric $\eta^{\alpha \beta}$ and lowered with the inverse metric $\eta_{\alpha \beta}$.

The full ("elliptic") index for A_{1} and A_{2} theories

- The "full index" is elegantly expressed in terms of elliptic Gamma functions.

For example, the index of a free hypermultiplet is given by a product of eight elliptic Gamma functions (Dolan-Osborn)

$$
\mathcal{I}(a, b, c)=\Gamma\left(t^{\frac{1}{2}} a^{ \pm 1} b^{ \pm 1} c^{ \pm 1} ; p, q\right), \quad \Gamma(z ; p, q)=\prod_{i, j=0}^{\infty} \frac{1-p^{i+1} q^{j+1} / z}{1-p^{i} q^{j} z}
$$

- For A_{1} quivers everything is explicit and associativity (S-duality) can be checked
- One can in principle use dualities to obtain the indices of the strongly-coupled building blocks for higher rank theories
- Indeed An-myes Seibers duality Was used to compute the index of the E6 SCFT (the structure constants of A_{2} quivers with three maximal punctures)

The full ("elliptic") index for A_{1} and A_{2} theories

- The "full index" is elegantly expressed in terms of elliptic Gamma functions.

For example, the index of a free hypermultiplet is given by a product of eight elliptic Gamma functions (Dolan-Osborn)

$$
\mathcal{I}(a, b, c)=\Gamma\left(t^{\frac{1}{2}} a^{ \pm 1} b^{ \pm 1} c^{ \pm 1} ; p, q\right), \quad \Gamma(z ; p, q)=\prod_{i, j=0}^{\infty} \frac{1-p^{i+1} q^{j+1} / z}{1-p^{i} q^{j} z}
$$

- For A_{1} quivers everything is explicit and associativity (S-duality) can be checked (Gadde-Pomoni-LR-Razamat) by recently-found non-trivial integral identities (van de Bult).
blocks for higher rank theories.
- Indeed Argyres-Seiherg duality was used to compute the index of the E6 SCFT (the structure constants of A_{2} quivers with three maximal punctures)
- This strategy is hard to generalize to $A_{n}, n>2$.

The full ("elliptic") index for A_{1} and A_{2} theories

- The "full index" is elegantly expressed in terms of elliptic Gamma functions.

For example, the index of a free hypermultiplet is given by a product of eight elliptic Gamma functions (Dolan-Osborn)

$$
\mathcal{I}(a, b, c)=\Gamma\left(t^{\frac{1}{2}} a^{ \pm 1} b^{ \pm 1} c^{ \pm 1} ; p, q\right), \quad \Gamma(z ; p, q)=\prod_{i, j=0}^{\infty} \frac{1-p^{i+1} q^{j+1} / z}{1-p^{i} q^{j} z} .
$$

- For A_{1} quivers everything is explicit and associativity (S-duality) can be checked (Gadde-Pomoni-LR-Razamat) by recently-found non-trivial integral identities (van de Bult).
- One can in principle use dualities to obtain the indices of the strongly-coupled building blocks for higher rank theories.
- Indeed Argyres-Seiberg duality was used to compute the index of the E_{6} SCFT (the structure constants of A_{2} quivers with three maximal punctures) (Gadde-Razamat-LR-Yan),

$$
\int \frac{d a}{a} \widetilde{\Delta}(a, c) \mathcal{I}_{E_{6}}((a, b), \mathbf{x}, \mathbf{y}) \sim \mathcal{I}_{N_{f}=6, S U(3)}(\mathbf{x}, \mathbf{y}, b, c)
$$

The full ("elliptic") index for A_{1} and A_{2} theories

- The "full index" is elegantly expressed in terms of elliptic Gamma functions.

For example, the index of a free hypermultiplet is given by a product of eight elliptic Gamma functions (Dolan-Osborn)

$$
\mathcal{I}(a, b, c)=\Gamma\left(t^{\frac{1}{2}} a^{ \pm 1} b^{ \pm 1} c^{ \pm 1} ; p, q\right), \quad \Gamma(z ; p, q)=\prod_{i, j=0}^{\infty} \frac{1-p^{i+1} q^{j+1} / z}{1-p^{i} q^{j} z} .
$$

- For A_{1} quivers everything is explicit and associativity (S-duality) can be checked (Gadde-Pomoni-LR-Razamat) by recently-found non-trivial integral identities (van de Bult).
- One can in principle use dualities to obtain the indices of the strongly-coupled building blocks for higher rank theories.
- Indeed Argyres-Seiberg duality was used to compute the index of the E_{6} SCFT (the structure constants of A_{2} quivers with three maximal punctures) (Gadde-Razamat-LR-Yan),

$$
\int \frac{d a}{a} \widetilde{\Delta}(a, c) \mathcal{I}_{E_{6}}((a, b), \mathbf{x}, \mathbf{y}) \sim \mathcal{I}_{N_{f}=6, S U(3)}(\mathbf{x}, \mathbf{y}, b, c) .
$$

- This strategy is hard to generalize to $A_{n}, n>2$.

Goals:

- Find an algorithm to calculate the index for all class \mathcal{S} theories
- Identify explicitly the $2 d$ TQFT
- "Bottom-up", experimental approach.
- Fxtranolate the results for I agrangian theories (A_{1} quivers) to higher rank

Results:
We succeeded for a slice $(q, 0, t)$ of the (q, p, t) fugacity space.

- TQFT $\sim(q, t)$-deformation of $2 d$ Yang-Mills in the zero-area limit.
- The structure constants are diagonal in the basis of (q, t)-Macdonald polynomials of the flavor fugacities $\left\{\mathbf{x}_{i}\right\}$
- Relation with relativistic Calogero-Moser integrable models.

Goals:

- Find an algorithm to calculate the index for all class \mathcal{S} theories
- Identify explicitly the $2 d$ TQFT

Strategy:

- "Bottom-up", experimental approach.
- Extrapolate the results for Lagrangian theories (A_{1} quivers) to higher rank.

Results:
We succee ded for a slice $(q, 0, t)$ of the (q, p, t) fugacity space

- TQFT $\sim(q, t)$-deformation of $2 d$ Yang-Mills in the zero-area limit.
- The structure constants are diagonal in the basis of (q, t)-Macdonald polynomials of the
flavor fugacities $\left\{x_{i}\right\}$
- Relation with relativistic Calogero-Moser integrable models.

Goals:

- Find an algorithm to calculate the index for all class \mathcal{S} theories
- Identify explicitly the $2 d$ TQFT

Strategy:

- "Bottom-up", experimental approach.
- Extrapolate the results for Lagrangian theories (A_{1} quivers) to higher rank.

Results:
We succeeded for a slice $(q, 0, t)$ of the (q, p, t) fugacity space.

- TQFT $\sim(q, t)$-deformation of $2 d$ Yang-Mills in the zero-area limit.
- The structure constants are diagonal in the basis of (q, t)-Macdonald polynomials of the flavor fugacities $\left\{\mathbf{x}_{i}\right\}$
- Relation with relativistic Calogero-Moser integrable models.

Strategy

- Choose $\left\{f^{\alpha}(\mathbf{a})\right\}$ to be orthonormal under the propagator measure, that is,

$$
\begin{equation*}
\eta^{\alpha \beta}=\delta^{\alpha \beta} \tag{1}
\end{equation*}
$$

- Perform further orthogonal transformation to basis where structure constants are diagonal

Associativity is then automatic.
Finding the diagonal basis in principle always possible: challenge is describe it concretely

- Useful to consider the ansatz

Strategy

- Choose $\left\{f^{\alpha}(\mathbf{a})\right\}$ to be orthonormal under the propagator measure, that is,

$$
\begin{equation*}
\eta^{\alpha \beta}=\delta^{\alpha \beta} \tag{1}
\end{equation*}
$$

- Perform further orthogonal transformation to basis where structure constants are diagonal,

$$
C_{\alpha \beta \gamma} \neq 0 \quad \rightarrow \quad \alpha=\beta=\gamma .
$$

Associativity is then automatic.
Finding the diagonal basis in principle always possible: challenge is describe it concretely.
for some cleverly chosen $\mathcal{K}(\mathbf{a})$.

- Focus on A_{1} quivers, which are Ligrangian

In specia' '"imits, a'be to "'agona'ize the structure constants: \{pa(a)\} turn out to be
well-known orthogonal polynomials (Macdonald, Schur, Hall-Littlewood)

Strategy

- Choose $\left\{f^{\alpha}(\mathbf{a})\right\}$ to be orthonormal under the propagator measure, that is,

$$
\begin{equation*}
\eta^{\alpha \beta}=\delta^{\alpha \beta} \tag{1}
\end{equation*}
$$

- Perform further orthogonal transformation to basis where structure constants are diagonal,

$$
C_{\alpha \beta \gamma} \neq 0 \quad \rightarrow \quad \alpha=\beta=\gamma .
$$

Associativity is then automatic.
Finding the diagonal basis in principle always possible: challenge is describe it concretely.

- Useful to consider the ansatz

$$
\begin{equation*}
f^{\alpha}(\mathbf{a})=\mathcal{K}(\mathbf{a}) P^{\alpha}(\mathbf{a}), \tag{2}
\end{equation*}
$$

for some cleverly chosen $\mathcal{K}(\mathbf{a})$.

Strategy

- Choose $\left\{f^{\alpha}(\mathbf{a})\right\}$ to be orthonormal under the propagator measure, that is,

$$
\begin{equation*}
\eta^{\alpha \beta}=\delta^{\alpha \beta} \tag{1}
\end{equation*}
$$

- Perform further orthogonal transformation to basis where structure constants are diagonal,

$$
C_{\alpha \beta \gamma} \neq 0 \quad \rightarrow \quad \alpha=\beta=\gamma .
$$

Associativity is then automatic.
Finding the diagonal basis in principle always possible: challenge is describe it concretely.

- Useful to consider the ansatz

$$
\begin{equation*}
f^{\alpha}(\mathbf{a})=\mathcal{K}(\mathbf{a}) P^{\alpha}(\mathbf{a}), \tag{2}
\end{equation*}
$$

for some cleverly chosen $\mathcal{K}(\mathbf{a})$.

- Focus on A_{1} quivers, which are Lagrangian.

In special limits, able to diagonalize the structure constants: $\left\{P^{\alpha}(a)\right\}$ turn out to be well-known orthogonal polynomials (Macdonald, Schur, Hall-Littlewood)

Immediate to formulate compelling conjectures for A_{n} quiver. Test against expected

- Then immediate to evaluate index for genus \mathfrak{g} surface with s (maximal) punctures,

Strategy

- Choose $\left\{f^{\alpha}(\mathbf{a})\right\}$ to be orthonormal under the propagator measure, that is,

$$
\begin{equation*}
\eta^{\alpha \beta}=\delta^{\alpha \beta} \tag{1}
\end{equation*}
$$

- Perform further orthogonal transformation to basis where structure constants are diagonal,

$$
C_{\alpha \beta \gamma} \neq 0 \quad \rightarrow \quad \alpha=\beta=\gamma .
$$

Associativity is then automatic.
Finding the diagonal basis in principle always possible: challenge is describe it concretely.

- Useful to consider the ansatz

$$
\begin{equation*}
f^{\alpha}(\mathbf{a})=\mathcal{K}(\mathbf{a}) P^{\alpha}(\mathbf{a}), \tag{2}
\end{equation*}
$$

for some cleverly chosen $\mathcal{K}(\mathbf{a})$.

- Focus on A_{1} quivers, which are Lagrangian.

In special limits, able to diagonalize the structure constants: $\left\{P^{\alpha}(a)\right\}$ turn out to be well-known orthogonal polynomials (Macdonald, Schur, Hall-Littlewood)

- These polynomials are defined for any root system.

Immediate to formulate compelling conjectures for A_{n} quiver. Test against expected dualities.

Strategy

- Choose $\left\{f^{\alpha}(\mathbf{a})\right\}$ to be orthonormal under the propagator measure, that is,

$$
\begin{equation*}
\eta^{\alpha \beta}=\delta^{\alpha \beta} \tag{1}
\end{equation*}
$$

- Perform further orthogonal transformation to basis where structure constants are diagonal,

$$
C_{\alpha \beta \gamma} \neq 0 \quad \rightarrow \quad \alpha=\beta=\gamma
$$

Associativity is then automatic.
Finding the diagonal basis in principle always possible: challenge is describe it concretely.

- Useful to consider the ansatz

$$
\begin{equation*}
f^{\alpha}(\mathbf{a})=\mathcal{K}(\mathbf{a}) P^{\alpha}(\mathbf{a}), \tag{2}
\end{equation*}
$$

for some cleverly chosen $\mathcal{K}(\mathbf{a})$.

- Focus on A_{1} quivers, which are Lagrangian.

In special limits, able to diagonalize the structure constants: $\left\{P^{\alpha}(a)\right\}$ turn out to be well-known orthogonal polynomials (Macdonald, Schur, Hall-Littlewood)

- These polynomials are defined for any root system.

Immediate to formulate compelling conjectures for A_{n} quiver. Test against expected dualities.

- Then immediate to evaluate index for genus \mathfrak{g} surface with s (maximal) punctures,

$$
\mathcal{I}_{\mathfrak{g}, s}\left(\mathbf{a}_{1}, \mathbf{a}_{2}, \ldots, \mathbf{a}_{s}\right)=\sum_{\alpha}\left(C_{\alpha \alpha \alpha}\right)^{2 \mathfrak{g}-2+s} \prod_{l=1}^{s} f^{\alpha}\left(\mathbf{a}_{l}\right)
$$

Interesting limits

Use susy enhancement to select special limits

$$
\mathcal{I}(p, q, t, \ldots)=\operatorname{Tr}(-1)^{F} p^{\frac{1}{2} \delta_{1+}} q^{\frac{1}{2} \delta_{1-}} t^{R+r} e^{-\beta^{\prime} \tilde{\delta}_{1-}-} \ldots
$$

- $p \rightarrow 0:$ Macdonald $\mathcal{I}_{M}(q, t) \quad \tilde{\mathcal{Q}}_{1-}, \mathcal{Q}_{1+}$
- $p \rightarrow 0, q \rightarrow 0$: Hall-Littlewood $\mathcal{I}_{H L}(t) \quad \tilde{\mathcal{Q}}_{1-}, \mathcal{Q}_{1+}, \mathcal{Q}_{1-}$
- $q=t$ (independent of p it turns out): Schur $\mathcal{I}_{S}(q) \quad \tilde{\mathcal{Q}}_{1-}, \mathcal{Q}_{1+}$

Macdonald index

- $p \rightarrow 0$ limit of the full index,

$$
\mathcal{I}_{M}=\operatorname{Tr}_{M}(-1)^{F} q^{-2 j_{1}} t^{R+r}
$$

where the trace in over states with $E+2 j_{1}-2 R-r=0$.
$\frac{1}{4}$ BPS: one chiral and one antichiral supercharge.

Macdonald polynomials $P_{\lambda}(\mathbf{a} ; q, t)$ associated to the root system A_{k-1} are labeled by representations λ of $S U(k)$. They are orthogonal with respect to the measure

Macdonald index

- $p \rightarrow 0$ limit of the full index,

$$
\mathcal{I}_{M}=\operatorname{Tr}_{M}(-1)^{F} q^{-2 j_{1}} t^{R+r}
$$

where the trace in over states with $E+2 j_{1}-2 R-r=0$.
$\frac{1}{4}$ BPS: one chiral and one antichiral supercharge.

- Basic ansatz for complete set of functions that diagonalize the structure constants:

$$
f_{q, t}^{\lambda}(\mathbf{a})=\mathcal{K}_{q, t}(\mathbf{a}) P^{\lambda}(\mathbf{a} \mid q, t)
$$

Macdonald polynomials $P_{\lambda}(\mathbf{a} ; q, t)$ associated to the root system A_{k-1} are labeled by representations λ of $S U(k)$. They are orthogonal with respect to the measure

$$
\Delta_{q, t}(\mathbf{a})=\frac{1}{k!} \prod_{n=0}^{\infty} \prod_{i \neq j} \frac{1-q^{n} a_{i} / a_{j}}{1-t q^{n} a_{i} / a_{j}}
$$

- $q=t$ gives Schur (still $\frac{1}{4} \mathrm{BPS}$) while $q=0$ gives Hall-Littlewood ($\frac{3}{8} \mathrm{BPS}$)

Symbol	Surface	Value
$C_{\alpha \beta \gamma}$	$\begin{aligned} & \theta^{\mid(\lambda)} \\ & y^{(3)} \\ & 0^{(3)} \end{aligned}$	$\frac{\mathcal{A (q , t)}}{\operatorname{dim}_{q, t}(\alpha)} \delta_{\alpha \beta} \delta_{\alpha \gamma}$
V^{α}	(a) (D)	$\frac{\operatorname{dim}_{q, t}(\alpha)}{\mathcal{A}(q, t)}$
$\eta^{\alpha \beta}$	$\sum_{i j}^{2 j}$	$\delta^{\alpha \beta}$

Table: The structure constants, the cap, and the metric for the TQFT of the Macdonald index for A_{k-1} quivers.

$$
\begin{aligned}
\operatorname{dim}_{q, t}(\lambda) & =P^{\lambda}\left(t^{\frac{k-1}{2}}, . ., \left.t^{\frac{1-k}{2}} \right\rvert\, q, t\right) \\
\mathcal{A}(q, t) & =P E\left[\frac{1}{2}(k-1) \frac{t-q}{1-q}\right] \prod_{j=2}^{k}\left(t^{j} ; q\right)
\end{aligned}
$$

The Macdonald index of the theory corresponding to a sphere with generic punctures is

$$
\mathcal{I}_{\Lambda_{1}, \Lambda_{2}, \Lambda_{3}}=(t ; q)^{k+2} \prod_{j=2}^{k} \frac{\left(t^{j} ; q\right)}{(q ; q)} \prod_{i=1}^{3} \hat{\mathcal{K}}_{\Lambda_{i}}\left(\mathbf{a}_{i}\right) \sum_{\lambda} \frac{\prod_{i=1}^{3} P_{\lambda}\left(\mathbf{a}_{\mathbf{i}}\left(\Lambda_{i}\right) \mid q, t\right)}{P_{\lambda}\left(t^{\frac{k-1}{2}}, t^{\frac{k-3}{2}}, \ldots, \left.t^{\frac{1-k}{2}} \right\rvert\, q, t\right)} .
$$

There is well-defined rule $\mathbf{a}_{\mathbf{i}}\left(\Lambda_{i}\right)$ to "partially-close" punctures by specializing the flavor fugacities.

The index and 2d Yang-Mills

- Consider the genus \mathfrak{g} partition function in the Schur limit, $q=t$,

$$
\mathcal{I}_{\mathfrak{g}}(q)=\left[(q ; q)^{2 \mathfrak{g}-2}\right]^{k-1} S_{00}(q)^{2-2 \mathfrak{g}} \sum_{\lambda} \frac{1}{\left[\operatorname{dim}_{q}(\lambda)\right]^{2 \mathfrak{g}-2}} .
$$

where S_{00} is the partition function of $S U(k)$ level ℓ Chern-Simons theory on S^{3} if one formally identifies $q=e^{\frac{2 \pi i}{\ell+k}}$,

$$
\begin{equation*}
S_{00}(q)=\prod_{j=2}^{k} \frac{(q ; q)}{\left(q^{j} ; q\right)} \tag{3}
\end{equation*}
$$

Up to a simple prefactor, this is the genus \mathfrak{g} partition function of a q -deformed $2 d$ Yang-Mills in the zero area limit (equivalently, the analytic continuation of CS partition function on $\mathcal{C}_{g} \times S^{1}$)

The index and 2d Yang-Mills

- Consider the genus \mathfrak{g} partition function in the Schur limit, $q=t$,

$$
\mathcal{I}_{\mathfrak{g}}(q)=\left[(q ; q)^{2 \mathfrak{g}-2}\right]^{k-1} S_{00}(q)^{2-2 \mathfrak{g}} \sum_{\lambda} \frac{1}{\left[\operatorname{dim}_{q}(\lambda)\right]^{2 \mathfrak{g}-2}} .
$$

where S_{00} is the partition function of $S U(k)$ level ℓ Chern-Simons theory on S^{3} if one formally identifies $q=e^{\frac{2 \pi i}{\ell+k}}$,

$$
\begin{equation*}
S_{00}(q)=\prod_{j=2}^{k} \frac{(q ; q)}{\left(q^{j} ; q\right)} \tag{3}
\end{equation*}
$$

Up to a simple prefactor, this is the genus \mathfrak{g} partition function of a q-deformed $2 d$ Yang-Mills in the zero area limit (equivalently, the analytic continuation of CS partition function on $\mathcal{C}_{g} \times S^{1}$)

- In the more general case of $q \neq t$

$$
\begin{equation*}
\mathcal{I}_{\mathfrak{g}}(q, t)=\left[(t ; q)^{\mathfrak{g}-1}(q ; q)^{\mathfrak{g}-1}\right]^{k-1} \hat{S}_{00}(q, t)^{2-2 \mathfrak{g}} \sum_{\lambda} \frac{1}{\left[\operatorname{dim}_{q, t}(\lambda)\right]^{2 \mathfrak{g}-2}} \tag{4}
\end{equation*}
$$

where

$$
\hat{S}_{00}(q, t)=\prod_{j=2}^{k} \frac{(t ; q)}{\left(t^{j} ; q\right)}
$$

Closely related to the "refinement" of Chern-Simons theory recently discussed by Aganagic and Shakirov Possible $2 d$ interpretation: $2 d \mathrm{YM}$ with modified (Macdonald) measure. Such modification might arise by integrating out degrees of freedom.

Hall-Littlewood index

- We take the limit $\sigma, \rho \rightarrow 0$ of the full index

$$
\mathcal{I}=\operatorname{Tr}(-1)^{F} \sigma^{\frac{1}{2} \delta_{1+}} \rho^{\frac{1}{2} \delta_{1-}} \tau^{\frac{1}{2} \bar{\delta}_{2+}} e^{-\frac{1}{2} \beta \bar{\delta}_{1}} .
$$

- Alternatively can state that it is given by

$$
\mathcal{I}=\operatorname{Tr}_{H L}(-1)^{F} \tau^{2 E-2 R}
$$

where the trace is over states satisfying $j_{1}=0$ and $E-2 R-r=0$.

- The states contributing to this index are annihilated by three supercharges, two chiral and one anti-chiral.
- For Lagrangian theories the only "letters" contributing to this index are a scalar $q(\tau)$ from the hypermultiplet and a gaugino $\bar{\lambda}_{1+}\left(-\tau^{2}\right)$ from the vector multiplet.
- For genus-zero quivers, HL index \cong Hanany's "Hilbert series of the Higgs branch".

HL index - $S U(2)$ quivers

- All these theories have a Lagrangian description.
- The basic building block (sphere with three punctures) is a trifundamental free hypermultiplet.
- The HL index of the free hypermultiplet is given by

$$
\mathcal{I}\left(a_{1}, a_{2}, a_{3}\right)=\frac{1}{\prod_{ \pm 1}\left(1-\tau a_{1}^{ \pm 1} a_{2}^{ \pm 1} a_{3}^{ \pm 1}\right)} .
$$

- By explicit diagonalization, it can be rewritten

are $S U(2)$ Hall-Littlewood polynomials.

HL index - $S U(2)$ quivers

- All these theories have a Lagrangian description.
- The basic building block (sphere with three punctures) is a trifundamental free hypermultiplet.
- The HL index of the free hypermultiplet is given by

$$
\mathcal{I}\left(a_{1}, a_{2}, a_{3}\right)=\frac{1}{\prod_{ \pm 1}\left(1-\tau a_{1}^{ \pm 1} a_{2}^{ \pm 1} a_{3}^{ \pm 1}\right)} .
$$

- By explicit diagonalization, it can be rewritten

$$
\begin{aligned}
\mathcal{I}\left(a_{1}, a_{2}, a_{3}\right) & =\frac{1+\tau^{2}}{1-\tau^{2}} \prod_{i=1}^{3} \frac{1}{\left(1-\tau^{2} a_{i}^{2}\right)\left(1-\tau^{2} / a_{i}^{2}\right)} \sum_{\lambda=0}^{\infty} \frac{1}{P_{\lambda}^{H L}\left(\tau, \tau^{-1} \mid \tau\right)} \prod_{i=1}^{3} P_{\lambda}^{H L}\left(a_{i}, a_{i}^{-1} \mid \tau\right) \\
& =\mathcal{N}(\tau) \prod_{i=1}^{3} \mathcal{K}\left(a_{i}\right) \quad \sum_{\lambda=0}^{\infty} C_{\lambda \lambda \lambda} \quad \prod_{i=1}^{3} f^{\lambda}\left(a_{i}\right)
\end{aligned}
$$

where

$$
P_{\lambda}^{H L}\left(a, a^{-1} \mid \tau\right)=\mathcal{N}_{\lambda}(\tau)\left(\chi_{\lambda}(a)-\tau^{2} \chi_{\lambda-2}(a)\right)
$$

are $S U(2)$ Hall-Littlewood polynomials.

HL index - higher rank generalization

- The HL polynomials can be defined for $U(k)$ groups

$$
P_{\lambda}^{H L}\left(x_{1}, \ldots, x_{k} \mid \tau\right)=\mathcal{N}_{\lambda}(\tau) \sum_{\sigma \in S_{k}} \sigma\left(x_{1}^{\lambda_{1}} \ldots x_{k}^{\lambda_{k}} \prod_{i<j} \frac{x_{i}-\tau^{2} x_{j}}{x_{i}-x_{j}}\right) .
$$

and thus for higher rank building blocks, the T_{k} theories, we conjecture

$$
\mathcal{I}\left(\mathbf{a}_{1}, \mathbf{a}_{2}, \mathbf{a}_{3}\right)=\mathcal{N}_{k}(\tau) \prod_{l=1}^{3} \mathcal{K}\left(\mathbf{a}_{l}\right) \sum_{\lambda} \frac{1}{P_{\lambda}^{H L}\left(\tau^{k-1}, \ldots, \tau^{1-k}\right)} \prod_{l=1}^{3} P_{\lambda}^{H L}\left(\mathbf{a}_{l}\right) .
$$

- For arbitrary punctures

HL index - higher rank generalization

- The HL polynomials can be defined for $U(k)$ groups

$$
P_{\lambda}^{H L}\left(x_{1}, \ldots, x_{k} \mid \tau\right)=\mathcal{N}_{\lambda}(\tau) \sum_{\sigma \in S_{k}} \sigma\left(x_{1}^{\lambda_{1}} \ldots x_{k}^{\lambda_{k}} \prod_{i<j} \frac{x_{i}-\tau^{2} x_{j}}{x_{i}-x_{j}}\right) .
$$

and thus for higher rank building blocks, the T_{k} theories, we conjecture

$$
\mathcal{I}\left(\mathbf{a}_{1}, \mathbf{a}_{2}, \mathbf{a}_{3}\right)=\mathcal{N}_{k}(\tau) \prod_{l=1}^{3} \mathcal{K}\left(\mathbf{a}_{l}\right) \sum_{\lambda} \frac{1}{P_{\lambda}^{H L}\left(\tau^{k-1}, \ldots, \tau^{1-k}\right)} \prod_{l=1}^{3} P_{\lambda}^{H L}\left(\mathbf{a}_{l}\right) .
$$

- For arbitrary punctures

$$
\mathcal{I}_{\Lambda_{1}, \Lambda_{2}, \Lambda_{3}}\left(\mathbf{a}_{1}, \mathbf{a}_{2}, \mathbf{a}_{3}\right)=\mathcal{N}_{k}(\tau) \prod_{l=1}^{3} \mathcal{K}_{\Lambda_{l}}\left(\mathbf{a}_{l}\right) \sum_{\lambda} \frac{1}{P_{\lambda}^{H L}\left(\tau^{k-1}, \ldots, \tau^{1-k}\right)} \prod_{l=1}^{3} P_{\lambda}^{H L}\left(\mathbf{a}_{l}\left(\Lambda_{l}\right)\right) .
$$

HL index - $S U(3)$ quivers - Closing punctures

The index of the $S U(3) \times S U(3) \times U(1)$ free hypermultiplet is given by

$$
\mathcal{I}\left(\mathbf{a}_{1}, \mathbf{a}_{2}, c\right)=\prod_{i, j=1}^{3} \frac{1}{1-\tau a_{i} b_{j} c} \frac{1}{1-\tau \frac{1}{a_{i} b_{j} c}} .
$$

- It can be rewritten as

$$
\mathcal{I}\left(\mathbf{a}_{\mathbf{1}}, \mathbf{a}_{2}, c\right)=\frac{1-\tau^{6}}{\left(1-\tau^{2}\right)^{3}} \frac{\mathcal{K}\left(\mathbf{a}_{1}\right) \mathcal{K}\left(\mathbf{a}_{2}\right)}{\left(1-\tau^{3} c^{3}\right)\left(1-\tau^{3} c^{-3}\right)} \sum_{\lambda_{1}, \lambda_{2}} \frac{P_{\lambda_{1}}^{H L}, \lambda_{2}\left(\tau c, \tau^{-1} c, c^{-2} \mid \tau\right)}{P_{\lambda_{1}, \lambda_{2}}^{H L L}\left(\tau^{2}, \tau^{-2}, 1 \mid \tau\right)} \prod_{i=1}^{2} P_{\lambda_{1}, \lambda_{2}}^{H L}\left(\mathbf{a}_{\mathbf{i}} \mid \tau\right) .
$$

- Further setting $c=\tau$ we completely close one puncture to obtain a cylinder (propagator)

HL index - $S U(3)$ quivers - Closing punctures

The index of the $S U(3) \times S U(3) \times U(1)$ free hypermultiplet is given by

$$
\mathcal{I}\left(\mathbf{a}_{1}, \mathbf{a}_{2}, c\right)=\prod_{i, j=1}^{3} \frac{1}{1-\tau a_{i} b_{j} c} \frac{1}{1-\tau \frac{1}{a_{i} b_{j} c}} .
$$

- It can be rewritten as

$$
\mathcal{I}\left(\mathbf{a}_{1}, \mathbf{a}_{2}, c\right)=\frac{1-\tau^{6}}{\left(1-\tau^{2}\right)^{3}} \frac{\mathcal{K}\left(\mathbf{a}_{1}\right) \mathcal{K}\left(\mathbf{a}_{2}\right)}{\left(1-\tau^{3} c^{3}\right)\left(1-\tau^{3} c^{-3}\right)} \sum_{\lambda_{1}, \lambda_{2}} \frac{P_{\lambda_{1}, \lambda_{2}}^{H L}\left(\tau c, \tau^{-1} c, c^{-2} \mid \tau\right)}{P_{\lambda_{1}, \lambda_{2}}^{H L}\left(\tau^{2}, \tau^{-2}, 1 \mid \tau\right)} \prod_{i=1}^{2} P_{\lambda_{1}, \lambda_{2}}^{H L}\left(\mathbf{a}_{\mathbf{i}} \mid \tau\right) .
$$

- Further setting $c=\tau$ we completely close one puncture to obtain a cylinder (propagator)

$$
\delta^{H L}(\mathbf{a}, \mathbf{b}) \sim \sum_{\lambda_{1}, \lambda_{2}} P_{\lambda_{1}, \lambda_{2}}^{H L}(\mathbf{a} \mid \tau) P_{\lambda_{1}, \lambda_{2}}^{H L}(\mathbf{b} \mid \tau)
$$

HL index $-E_{7}$ and E_{8} SCFTs

The index of the E_{7} SCFT is given by

$$
\begin{aligned}
& \mathcal{I}_{E_{7}}\left(\mathbf{a}_{1}, \mathbf{a}_{2}, c\right)=\frac{\left(1+\tau^{2}+\tau^{4}\right)\left(1+\tau^{4}\right)}{\left(1-\tau^{2}\right)^{3}} \frac{\mathcal{K}\left(\mathbf{a}_{1}\right) \mathcal{K}\left(\mathbf{a}_{2}\right)}{\left(1-\tau^{2} c^{ \pm 2}\right)\left(1-\tau^{4} c^{ \pm 2}\right)} \times \\
& \quad \sum_{\lambda_{1}, \lambda_{2}, \lambda_{3}} \frac{P_{\lambda_{1}, \lambda_{2}, \lambda_{3}}^{H L}\left(\tau c, \frac{c}{\tau}, \frac{\tau}{c}, \left.\frac{1}{\tau c} \right\rvert\, \tau\right)}{P_{\lambda_{1}, \lambda_{2}, \lambda_{3}}^{H L}\left(\tau^{3}, \tau, \tau^{-1}, \tau^{-3} \mid \tau\right)} \prod_{i=1}^{2} P_{\lambda_{1}, \lambda_{2}, \lambda_{3}}^{H L}\left(\mathbf{a}_{\mathbf{i}} \mid \tau\right) \\
& =\sum_{k=0}^{\infty}[k, 0,0,0,0,0,0]_{2} \tau^{2 k}
\end{aligned}
$$

The index of the E_{8} SCFT is given by

$$
\begin{aligned}
& \mathcal{I}_{E_{8}}\left(\mathbf{a},\left(b_{1}, b_{2}\right), c\right)=\frac{\left(1-\tau^{8}\right)\left(1-\tau^{10}\right)\left(1-\tau^{12}\right)}{\left(1-\tau^{2}\right)^{3}\left(1-\tau^{4}\right)^{4}\left(1-\tau^{6}\right)} \times \\
& \frac{\mathcal{K}(\mathbf{a})}{\left(1-\tau^{2} c^{ \pm 2}\right)\left(1-\tau^{4} c^{ \pm 2}\right)\left(1-\tau^{6} c^{ \pm 2}\right) \prod_{i \neq j}\left(1-\tau^{2} b_{i} / b_{j}\right)\left(1-\tau^{4} b_{i} / b_{j}\right)} \times \\
& \quad \sum_{\lambda_{1}, \ldots, \lambda_{5} \equiv \lambda} \frac{P_{\lambda}^{H L}\left(\tau b_{1}, \tau b_{2}, \tau b_{3}, \frac{b_{1}}{t}, \frac{b_{2}}{\tau}, \left.\frac{b_{3}}{\tau} \right\rvert\, \tau\right) P_{\lambda}^{H L}\left(\tau^{2} c, c, \frac{c}{\tau^{2}}, \frac{\tau^{2}}{c}, \frac{1}{c}, \frac{1}{\tau^{2} c}, \mid \tau\right) P_{\lambda}^{H L}(\mathbf{a} \mid \tau)}{P_{\lambda}^{H L}\left(\tau^{5}, \tau^{3}, \tau, \tau^{-1}, \tau^{-3}, \tau^{-5} \mid \tau\right)} \\
& =\sum_{k=0}^{\infty}[k, 0,0,0,0,0,0,0]_{2} \tau^{2 k} .
\end{aligned}
$$

Outlook

- Possible to include line and surface operators (in progress)

Outlook

- Possible to include line and surface operators (in progress)
- Macdonald index closely related to refined CS: hint of a relation to topological strings? $(2,0)$ theory on $S^{3} \times S^{1} \times \mathcal{C}$ versus $\left(\mathbb{C} \times S^{1} \times M_{3}\right)_{q, t}$ with $M_{3}=S^{1} \times \mathcal{C} \ldots$

Natural to try elliptic generalizations of Macdonald polynomials.
This idea can be sharpened by making recalling the relations between $2 d \mathrm{YM}$, Macdonald polynomials an a family of integrable models:
\rightarrow The reduction of $2 d$ YM on a cylinder gives the Calogero-Moser model

- Macdonald polynomials are eigenfunctions of a relativistic version of the
trigonometric Calogero-Moser model.

Outlook

- Possible to include line and surface operators (in progress)
- Macdonald index closely related to refined CS: hint of a relation to topological strings? $(2,0)$ theory on $S^{3} \times S^{1} \times \mathcal{C}$ versus $\left(\mathbb{C} \times S^{1} \times M_{3}\right)_{q, t}$ with $M_{3}=S^{1} \times \mathcal{C} \ldots$
- Full three-parameter index?

Natural to try elliptic generalizations of Macdonald polynomials.
polynomials an a family of integrable models:

- The reduction of 2dVM on a cylinder gives the Calogero-Moser model
- Macdonald polynomials are eigenfunctions of a relativistic version of the trigonometric Calogero-Moser model.

The relevant elliptic generalizations of Macdonald polynomials should be eigenfunctions of the relativistic elliptic Calogero-Moser model. Not much is explicitly known about them

Outlook

- Possible to include line and surface operators (in progress)
- Macdonald index closely related to refined CS: hint of a relation to topological strings? $(2,0)$ theory on $S^{3} \times S^{1} \times \mathcal{C}$ versus $\left(\mathbb{C} \times S^{1} \times M_{3}\right)_{q, t}$ with $M_{3}=S^{1} \times \mathcal{C} \ldots$
- Full three-parameter index?

Natural to try elliptic generalizations of Macdonald polynomials.
This idea can be sharpened by making recalling the relations between $2 d \mathrm{YM}$, Macdonald polynomials an a family of integrable models:

- The reduction of $2 d \mathrm{YM}$ on a cylinder gives the Calogero-Moser model (Gorsky-Nekrasov).
- Macdonald polynomials are eigenfunctions of a relativistic version of the trigonometric Calogero-Moser model.

Outlook

- Possible to include line and surface operators (in progress)
- Macdonald index closely related to refined CS: hint of a relation to topological strings? $(2,0)$ theory on $S^{3} \times S^{1} \times \mathcal{C}$ versus $\left(\mathbb{C} \times S^{1} \times M_{3}\right)_{q, t}$ with $M_{3}=S^{1} \times \mathcal{C} \ldots$
- Full three-parameter index?

Natural to try elliptic generalizations of Macdonald polynomials.
This idea can be sharpened by making recalling the relations between $2 d \mathrm{YM}$, Macdonald polynomials an a family of integrable models:

- The reduction of $2 d \mathrm{YM}$ on a cylinder gives the Calogero-Moser model (Gorsky-Nekrasov).
- Macdonald polynomials are eigenfunctions of a relativistic version of the trigonometric Calogero-Moser model.

The relevant elliptic generalizations of Macdonald polynomials should be eigenfunctions of the relativistic elliptic Calogero-Moser model. Not much is explicitly known about them ...

Outlook

- Possible to include line and surface operators (in progress)
- Macdonald index closely related to refined CS: hint of a relation to topological strings? $(2,0)$ theory on $S^{3} \times S^{1} \times \mathcal{C}$ versus $\left(\mathbb{C} \times S^{1} \times M_{3}\right)_{q, t}$ with $M_{3}=S^{1} \times \mathcal{C} \ldots$
- Full three-parameter index?

Natural to try elliptic generalizations of Macdonald polynomials.
This idea can be sharpened by making recalling the relations between $2 d \mathrm{YM}$, Macdonald polynomials an a family of integrable models:

- The reduction of $2 d \mathrm{YM}$ on a cylinder gives the Calogero-Moser model (Gorsky-Nekrasov).
- Macdonald polynomials are eigenfunctions of a relativistic version of the trigonometric Calogero-Moser model.

The relevant elliptic generalizations of Macdonald polynomials should be eigenfunctions of the relativistic elliptic Calogero-Moser model. Not much is explicitly known about them ...

- Microscopic derivation of the $2 d$ TQFT from the $(2,0)$ theory?

Perhaps easiest to derive quantum-mechanical model obtained by reduction of 2d TQFT to a graph \mathcal{G}. (From $5 d \mathrm{SYM}$ on $S^{3} \times S^{1} \times \mathcal{G}$?)

[^0]: E is the conformal dimension, $\left(j_{1}, j_{2}\right)$ the Cartan generators of the $S U(2)_{1} \otimes S U(2)_{2}$
 isometry group, and (R, r), the Cartan generators of the $S U(2)_{R} \otimes U(1)_{r}$ R-symmetry.

