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4d N = 2 susy theories of class S(ix)

(Gaiotto, Gaiotto Moore Neitzke, ... )

“Partially twisted” compactification of the (2,0) 6d theory on a 2d surface C with punctures
— N = 2 superconformal theories in four dimensions.
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4d N = 2 susy theories of class S(ix)

(Gaiotto, Gaiotto Moore Neitzke, ... )

“Partially twisted” compactification of the (2,0) 6d theory on a 2d surface C with punctures
— N = 2 superconformal theories in four dimensions.

@ Space of complex structures C 2 marginal gauge couplings of the 4d theory.

@ Conformal factor of the metric on C believed to be RG-irrelevant.

Recent check at large N.
Holographic RG equation (@ is related to conformal factor)

2 o 2 2 (o}
82e® + (02 +02)0 = €.

Global existence proof of regular flows interpolating between arbitrary UV metric and
canonical IR metric of constant negative curvature (for g > 1).
(Anderson Beem Bobev LR)
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4d N = 2 susy theories of class S(ix)

(Gaiotto, Gaiotto Moore Neitzke, ... )

“Partially twisted” compactification of the (2,0) 6d theory on a 2d surface C with punctures
— N = 2 superconformal theories in four dimensions.

@ Space of complex structures C 2 marginal gauge couplings of the 4d theory.

@ Conformal factor of the metric on C believed to be RG-irrelevant.

Recent check at large N.
Holographic RG equation (@ is related to conformal factor)

2 o 2 2 )
0,e” + (0 +0,)P =e”.
Global existence proof of regular flows interpolating between arbitrary UV metric and
canonical IR metric of constant negative curvature (for g > 1).

(Anderson Beem Bobev LR)

@ Moore-Seiberg groupoid of C = (generalized) 4d S-duality
Vast generalization of “A/ = 4 S-duality as modular group of T2".
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6=4+2: beautiful and unexpected 4d/2d connections. Most famous example,
(Alday Gaiotto Tachikawa)

@ Correlators of Liouville/Toda on C compute the 4d partition functions (on S%)
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6=4+2: beautiful and unexpected 4d/2d connections. Most famous example,

@ Correlators of Liouville/Toda on C compute the 4d partition functions (on S%)
(Alday Gaiotto Tachikawa)

In this talk we focus on another surprising connection:

@ The superconformal index Z(q, p, t; ,x;) is computed by topological QFT1on C.

!Term used loosely: infinite-dimensional state-space.
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6=4+2: beautiful and unexpected 4d/2d connections. Most famous example,

@ Correlators of Liouville/Toda on C compute the 4d partition functions (on S%)
(Alday Gaiotto Tachikawa)

In this talk we focus on another surprising connection:

@ The superconformal index Z(q, p, t; ,x;) is computed by topological QFT1on C.
Index = twisted partition function on S3 x S1.
Encodes the protected spectrum of the 4d theory: independent of the gauge theory moduli.
Simpler 4d/2d relation (topological): may hope to derive it from 6d.

Still very non-trivial. Index of generic theory unknown.

!Term used loosely: infinite-dimensional state-space.
Leonardo Rastelli (YITP) Mac iNDEX November, 2011 3/22



The superconformal index

@ The superconformal index (Kinney-Maldacena-Minwalla-Raju 2006) encodes the information about
the protected spectrum of a SCFT that can be obtained from representation theory alone.

@ It is evaluated by a trace formula of the schematic form
T(u) = T(-1)F e ZimTie™?0 5=2{Q,a} (>0),
where Q is the supercharge “with respect to which” the index is calculated and {T;} a

complete set of generators that commute with Q and with each other.

@ The trace is over the states of the theory on S (in radial quantization). States with
& # 0 cancel pairwise, so the index counts states with § = 0 and it is independent of 3.
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The superconformal index

@ The superconformal index (Kinney-Maldacena-Minwalla-Raju 2006) encodes the information about
the protected spectrum of a SCFT that can be obtained from representation theory alone.

@ It is evaluated by a trace formula of the schematic form
T(u) = T(-1)F e ZimTie™?0 5=2{Q,a} (>0),

where Q is the supercharge “with respect to which” the index is calculated and {T;} a
complete set of generators that commute with Q and with each other.

@ The trace is over the states of the theory on S (in radial quantization). States with
& # 0 cancel pairwise, so the index counts states with § = 0 and it is independent of 3.

@ For a theory with a Lagrangian description one can compute the index in the free limit by
counting the gauge-invariant operators in terms of a matrix integral. (Unlike the S*
partition function, which is sensitive to non-perturbative physics.)
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N = 2 index
@ N =2 SCFTs have 8 supercharges (+8 superconformal charges): Qy,, Oia -

Here | = 1,2 are SU(2)g indices and o = &, & = &£ Lorentz indices.
We choose to compute the index “with respect to” @, (all other choices are equivalent).

Leonardo Rastelli (YITP) Mac iNDEX November, 2011 5/22



N = 2 index

@ N =2 SCFTs have 8 supercharges (+8 superconformal charges): Qy,, Oia -
Here | = 1,2 are SU(2)g indices and o = &, & = + Lorentz indices.
We choose to compute the index “with respect to” @, (all other choices are equivalent).

The commutant subalgebra to @1; and (@1;)T has 61—, 01+ 52; as Cartan generators,
bi-=2{Q-, (@)} =E-21-2R -1,
b1 =2{Qu (@)} = E+ 21 —2R 1,
0y =2{Qy1, (@)} =E+2p+2R+r,
50 =2{Q, (@) yY=E—-2p-2R+r.

E is the conformal dimension, (j1,j2) the Cartan generators of the SU(2); ® SU(2)2
isometry group, and (R, r), the Cartan generators of the SU(2)g ® U(1), R-symmetry.
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N = 2 index

@ N =2 SCFTs have 8 supercharges (+8 superconformal charges): Qy,, Oia -
Here | = 1,2 are SU(2)g indices and o = &, & = + Lorentz indices.
We choose to compute the index “with respect to” @, (all other choices are equivalent).

The commutant subalgebra to @1; and (@1;)T has 61—, 01+ 52; as Cartan generators,
bi-=2{Q-, (@)} =E-21-2R -1,
b1 =2{Qu (@)} = E+ 21 —2R 1,
Sy = 2{©2+7 (Q2+)T} =E+2p+2R+r,
50 =2{@:,(Q ) Y=E—2p—2R+r.
E is the conformal dimension, (j1,j2) the Cartan generators of the SU(2); ® SU(2)2

isometry group, and (R, r), the Cartan generators of the SU(2)g ® U(1), R-symmetry.
@ The index is defined as

1 15.. 3§ .
(o, p,7,...) = Tr(=1)F PEL p201- 729 =A%

or equivalently

1 1 _B'5 .
I(p.q,t,...) = Tr(—1)F p2dir g201— (Rire=F ot
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N =2 SCFTs of class S (of type A)

@ Defined as the IR limit of the A,_; (2,0) theory on R* x C, where C a Riemann surface
with appropriate punctures (defects).

@ Complex moduli of C 2 4d gauge couplings
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N =2 SCFTs of class S (of type A)

@ Defined as the IR limit of the A,_; (2,0) theory on R* x C, where C a Riemann surface
with appropriate punctures (defects).

@ Complex moduli of C 22 4d gauge couplings

@ Punctures are associated with flavor symmetries.
Flavor symmetries are classified by “auxiliary Young diagrams” with k boxes
(embeddings of SU(2) into SU(k)).

@ Basic building blocks: theories corresponding to spheres with three punctures
(no moduli=no tunable couplings)

> Free hypermultiplets of SU(k) theories correspond to spheres with two “maximal”
punctures (SU(k) flavor symmetry) and one “minimal” (U(1) flavor symmetry).
> All other three-punctured spheres do not have Lagrangian description.
Simplest example: SU(3) theory with three maximal punctures = Eg SCFT
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N =2 SCFTs of class S (of type A)

@ Defined as the IR limit of the A,_; (2,0) theory on R* x C, where C a Riemann surface
with appropriate punctures (defects).
@ Complex moduli of C 2 4d gauge couplings

@ Punctures are associated with flavor symmetries.
Flavor symmetries are classified by “auxiliary Young diagrams” with k boxes
(embeddings of SU(2) into SU(k)).

@ Basic building blocks: theories corresponding to spheres with three punctures
(no moduli=no tunable couplings)

> Free hypermultiplets of SU(k) theories correspond to spheres with two “maximal”
punctures (SU(k) flavor symmetry) and one “minimal” (U(1) flavor symmetry).
> All other three-punctured spheres do not have Lagrangian description.
Simplest example: SU(3) theory with three maximal punctures = Eg SCFT

@ "“Gluing” three-punctured spheres at two maximal punctures corresponds to gauging the
diagonal SU(k)

@ Different “pair-of-pants” decompositions correspond to different S-duality frames.
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TQFT structure

@ The superconformal index is independent of the marginal couplings.
For theories of class S this means that the index does not depend on the complex moduli
of C: it must be computed by a 2d TQFT correlator on C.
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TQFT structure

@ The superconformal index is independent of the marginal couplings.
For theories of class S this means that the index does not depend on the complex moduli
of C: it must be computed by a 2d TQFT correlator on C.

@ The index of a generic theory of class S can be written in terms of the index of the basic
constituents: three-puncture spheres and propagators.
We parametrize the indices of the three-punctured spheres as

Z(a1,az,a3)

where a; are fugacities dual to the Cartan subgroup of the flavor symmetry.
In general these are a priori unknown functions.
The propagators are known explicitly,

n(a,b) = A(a)Z"(a) 6(a,b™?)

where A(a) is the Haar measure and ZV(a) the index of the vector multiplet.
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TQFT structure

@ The superconformal index is independent of the marginal couplings.
For theories of class S this means that the index does not depend on the complex moduli
of C: it must be computed by a 2d TQFT correlator on C.

@ The index of a generic theory of class S can be written in terms of the index of the basic
constituents: three-puncture spheres and propagators.
We parametrize the indices of the three-punctured spheres as

Z(a1,az,a3)

where a; are fugacities dual to the Cartan subgroup of the flavor symmetry.
In general these are a priori unknown functions.
The propagators are known explicitly,

n(a,b) = A(a)Z"(a) 6(a,b™?)

where A(a) is the Haar measure and ZV(a) the index of the vector multiplet.
@ As the simplest example of gluing,

Z(a1,az,as,as)

?{ [da] }f [db] Z(a1, a2,a) n(a, b) Z(b, a3, as)

}[[da] A(a)Z(ar, a0,a) 7V (a) (Y, a3, a4)

S-duality implies that this index is invariant under permutations of x;, which translates
into associativity of the TQFT structure constants.
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Expanding in a convenient basis of functions {f*(a)}, labeled by SU(k) representations {a},

I(a,b,c) = Y Capyf*(a)fP(b)f(c)
a,B,y
1 = fldal $lab] na,b) £ (@) 7 (b).

Invariance of the index under the different pairs-of-pants decomposition of C is equivalent to the
associativity of the structure constants,

Caﬁ'ycwée = oai'ycwﬁev

where indices are raised with the metric n®# and lowered with the inverse metric Nag-
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The full (“elliptic”) index for A; and A, theories

@ The “full index" is elegantly expressed in terms of elliptic Gamma functions.
For example, the index of a free hypermultiplet is given by a product of eight elliptic
Gamma functions (Dolan-Osborn )

- o

1— i+1 j+1

I(abyc) =T(t2 a6 ¢ pq),  T(zipg) = [] lopa jz
e 1-pqz
i,j=0 P
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The full (“elliptic") index for A; and A; theories

@ The “full index” is elegantly expressed in terms of elliptic Gamma functions.
For example, the index of a free hypermultiplet is given by a product of eight elliptic
Gamma functions (Dolan-Osborn )

- o
1— i+1 j+1
I(abyc) =T(t2 a6 ¢ pq),  T(zipg) = [] lopa jz
e 1-pqz
i,j=0 P

@ For A; quivers everything is explicit and associativity (S-duality) can be checked
(Gadde-Pomoni-LR-Razamat) by recently-found non-trivial integral identities (van de Bult ).
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The full (“elliptic") index for A; and A; theories

@ The “full index” is elegantly expressed in terms of elliptic Gamma functions.
For example, the index of a free hypermultiplet is given by a product of eight elliptic
Gamma functions (Dolan-Osborn )

- o

1— i+1 j+1

I(abyc) =T(t2 a6 ¢ pq),  T(zipg) = [] Sl Al hi Ly
e 1-pqz
i,j=0 P

@ For A; quivers everything is explicit and associativity (S-duality) can be checked
(Gadde-Pomoni-LR-Razamat) by recently-found non-trivial integral identities (van de Bult ).

@ One can in principle use dualities to obtain the indices of the strongly-coupled building
blocks for higher rank theories.

@ Indeed Argyres-Seiberg duality was used to compute the index of the Eg SCFT
(the structure constants of Ay quivers with three maximal punctures)
(Gadde—Razamat—LR—Yan ),

da ~
/ ?A(a7 C) IEG((a7 b)7 X, y) ~ IN(:G,SU(3)(X7 Y, ba C) .
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The full (“elliptic") index for A; and A; theories

@ The “full index” is elegantly expressed in terms of elliptic Gamma functions.
For example, the index of a free hypermultiplet is given by a product of eight elliptic
Gamma functions (Dolan-Osborn )

- o

1— i+1 j+1

I(abyc) =T(t2 a6 ¢ pq),  T(zipg) = [] Sl Al hi Ly
- 1—-pqg=z

i,j=0 P

@ For A; quivers everything is explicit and associativity (S-duality) can be checked
(Gadde-Pomoni-LR-Razamat) by recently-found non-trivial integral identities (van de Bult ).

@ One can in principle use dualities to obtain the indices of the strongly-coupled building
blocks for higher rank theories.

@ Indeed Argyres-Seiberg duality was used to compute the index of the Eg SCFT
(the structure constants of Ay quivers with three maximal punctures)
(Gadde—Razamat—LR—Yan ),

da ~
/ ?A(a7 C) IEG((a7 b)7 X, y) ~ IN(:ﬁ,SU(:i)(xv Y, ba C) .

@ This strategy is hard to generalize to Ap, n > 2.
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Goals:

@ Find an algorithm to calculate the index for all class S theories
@ Identify explicitly the 2d TQFT
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Goals:
@ Find an algorithm to calculate the index for all class S theories
@ Identify explicitly the 2d TQFT

Strategy:

@ "Bottom-up”, experimental approach.

@ Extrapolate the results for Lagrangian theories (A; quivers) to higher rank.
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Goals:
@ Find an algorithm to calculate the index for all class S theories
@ Identify explicitly the 2d TQFT

Strategy:

@ "Bottom-up”, experimental approach.

@ Extrapolate the results for Lagrangian theories (A; quivers) to higher rank.

Results:
We succeeded for a slice (q,0, t) of the (g, p, t) fugacity space.
@ TQFT ~ (g, t)-deformation of 2d Yang-Mills in the zero-area limit.

@ The structure constants are diagonal in the basis of (g, t)-Macdonald polynomials of the
flavor fugacities {x;}

@ Relation with relativistic Calogero-Moser integrable models.
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Strategy

@ Choose {f*(a)} to be orthonormal under the propagator measure, that is,
naﬁ _ 604,3 .
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Strategy

@ Choose {f“(a)} to be orthonormal under the propagator measure, that is,
nP =P (1)
@ Perform further orthogonal transformation to basis where structure constants are

diagonal,

Caﬁ'y7£0 - O(:ﬂ:’)’.

Associativity is then automatic.
Finding the diagonal basis in principle always possible: challenge is describe it concretely.
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Strategy
@ Choose {f“(a)} to be orthonormal under the propagator measure, that is,

P =50 @)

@ Perform further orthogonal transformation to basis where structure constants are
diagonal,

Caﬂ'y7£0 - O(:ﬂ:’)’.

Associativity is then automatic.
Finding the diagonal basis in principle always possible: challenge is describe it concretely.
@ Useful to consider the ansatz

f*(a) = K(a)P*(a), )

for some cleverly chosen K(a).
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Strategy

@ Choose {f“(a)} to be orthonormal under the propagator measure, that is,

=5, @)

@ Perform further orthogonal transformation to basis where structure constants are
diagonal,

Caﬂ'y7£0 - a:ﬂ:’)/‘

Associativity is then automatic.
Finding the diagonal basis in principle always possible: challenge is describe it concretely.
@ Useful to consider the ansatz

f*(a) = K(a)P*(a), )
for some cleverly chosen K(a).
@ Focus on A; quivers, which are Lagrangian.

In special limits, able to diagonalize the structure constants: {P®(a)} turn out to be
well-known orthogonal polynomials (Macdonald, Schur, Hall-Littlewood)
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Strategy

@ Choose {f“(a)} to be orthonormal under the propagator measure, that is,

noB = 508 | 1)

@ Perform further orthogonal transformation to basis where structure constants are
diagonal,

Caﬂ'y7£0 - a:ﬂ:’)/‘

Associativity is then automatic.
Finding the diagonal basis in principle always possible: challenge is describe it concretely.
@ Useful to consider the ansatz

f*(a) = K(a)P*(a), )

for some cleverly chosen K(a).

@ Focus on Aj quivers, which are Lagrangian.
In special limits, able to diagonalize the structure constants: {P®(a)} turn out to be
well-known orthogonal polynomials (Macdonald, Schur, Hall-Littlewood)

@ These polynomials are defined for any root system.
Immediate to formulate compelling conjectures for A, quiver. Test against expected
dualities.
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Strategy

@ Choose {f“(a)} to be orthonormal under the propagator measure, that is,

noB = 508 | 1)

@ Perform further orthogonal transformation to basis where structure constants are
diagonal,

Caﬂ'y7£0 - a:ﬂ:’Y-

Associativity is then automatic.
Finding the diagonal basis in principle always possible: challenge is describe it concretely.
@ Useful to consider the ansatz

f*(a) = K(a)P*(a), )

for some cleverly chosen K(a).

@ Focus on Aj quivers, which are Lagrangian.
In special limits, able to diagonalize the structure constants: {P®(a)} turn out to be
well-known orthogonal polynomials (Macdonald, Schur, Hall-Littlewood)

@ These polynomials are defined for any root system.
Immediate to formulate compelling conjectures for A, quiver. Test against expected
dualities.

@ Then immediate to evaluate index for genus g surface with s (maximal) punctures,

Tys(a1,3,...,85) = 3 (Caaa)® 2 ] F(a)).
1=1

o
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Interesting limits

Use susy enhancement to select special limits

I(p, q,t,...) = Tr(—1)F paiir g0 tRtr =01

o p — 0: Macdonald Zy(q,t)  O,-, Q1+
e p— 0, g— 0: Hall-Littlewood Zpy (t) O, Q14+, Q1
e g =t (independent of p it turns out): Schur Zs(q) Ql;, Q1+
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Macdonald index

@ p — 0 limit of the full index,
Iy = Tru(=1)" g7 £FF7,

where the trace in over states with E 4 2j; — 2R — r = 0.
%BPS: one chiral and one antichiral supercharge.
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Macdonald index

@ p — 0 limit of the full index,
Iy = Tru(=1)" g7 £FF7,

where the trace in over states with E 4 2j; — 2R — r = 0.
%BPS: one chiral and one antichiral supercharge.

@ Basic ansatz for complete set of functions that diagonalize the structure constants:
A A
fg.e(a) = Kq,e(a) P~ (alg, t) .

Macdonald polynomials Py (a; g, t) associated to the root system A,_; are labeled by
representations A of SU(k). They are orthogonal with respect to the measure

Ag.t(a) = Kl H H 1-— tqq a;://a;

n=0 i#j

@ g =t gives Schur (still % BPS) while g = 0 gives Hall-Littlewood (% BPS)

Leonardo Rastelli (YITP) Mac iNDEX November, 2011
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| Symbol | Surface | Value

A(g,
Copy 0 dimif’t(t())‘) 80 Sar
I
a o dimg, ()
v ‘O Azq,t)

(ol
@

Table: The structure constants, the cap, and the metric for the TQFT of the Macdonald index
for Ax_1 quivers.

dimq,t(A)

k—1 1-k
PNt 2 .t 2 | g, 1)

el o] o
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The Macdonald index of the theory corresponding to a sphere with generic punctures is

k i 3
IA17A27/\3 — (t; q)k+2 H ((tJ.Y q) HI% )Z 75 (/\ )‘q7 t)
iz (@a)

4 i by P,\(t T st 2 ~-atT\q7f)

There is well-defined rule a;(A;) to “partially-close” punctures by specializing the flavor
fugacities.
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The index and 2d Yang-Mills

@ Consider the genus g partition function in the Schur limit, g = t,

[y, 2g—2]k—1 2-2g v
Zg(q) = [(q, q) ] Soo(q) ; [dimg(\)] 282

27mi
where Sq is the partition function of SU(k) level £ Chern-Simons theory on S3 if one formally identifies g = e £+ ,
k
(9:9)
Soo(q) = — - (3)
j_ljz (&5 q)

Up to a simple prefactor, this is the genus g partition function of a g-deformed 2d Yang-Mills in the zero area limit
(equivalently, the analytic continuation of CS partition function on Cg X 51)
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The index and 2d Yang-Mills

@ Consider the genus g partition function in the Schur limit, g = t,

1

Zy(q) = [(q; q)zg_z]k_1 Soo(q)> 28 ZW'

27
where Sq is the partition function of SU(k) level £ Chern-Simons theory on 53 if one formally identifies g = e /+

k
(a:9)
S = - . 3
00(q) j|:2| @ a (3)

Up to a simple prefactor, this is the genus g partition function of a g-deformed 2d Yang-Mills in the zero area limit
(equivalently, the analytic continuation of CS partition function on Cg X Sl)

@ In the more general case of q # t

1

— _11k—
Ta(a.t) = [(E)* ! (:0)° 1] So0(q, t)° %8 Z Tdimgs(V]282 "

where

K (p
Soo(a:t) =] (t-' il -

j=2 (t; q)

Closely related to the “refinement” of Chern-Simons theory recently discussed by Aganagic and Shakirov
Possible 2d interpretation: 2d YM with modified (Macdonald) measure. Such modification might arise by integrating
out degrees of freedom.
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Hall-Littlewood index

@ We take the limit o, p — 0 of the full index

N
@
Sl
-
|

1 1 15 . —
T = Tr(—1)F o201+ p2o1- 2% e
@ Alternatively can state that it is given by
7= TI‘HL(—].)F 72E-2R s

where the trace is over states satisfying j =0 and E —2R —r = 0.

@ The states contributing to this index are annihilated by three supercharges, two chiral and
one anti-chiral.

@ For Lagrangian theories the only “letters” contributing to this index are a scalar g (7)
from the hypermultiplet and a gaugino A, ; (—72) from the vector multiplet.

@ For genus-zero quivers, HL index 22 Hanany's “Hilbert series of the Higgs branch”.
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HL index - SU(2) quivers

@ All these theories have a Lagrangian description.

@ The basic building block (sphere with three punctures) is a trifundamental free
hypermultiplet.

@ The HL index of the free hypermultiplet is given by

1
+1 _+1 _+1, °
[Mii(1—7a7" a3 a37)

I(a1, az,a3) =
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HL index - SU(2) quivers

@ All these theories have a Lagrangian description.

@ The basic building block (sphere with three punctures) is a trifundamental free
hypermultiplet.

@ The HL index of the free hypermultiplet is given by

1
Hil(l_Tail +1 3;’tl)

I(a1, az,a3) =

@ By explicit diagonalization, it can be rewritten

Tonema) = ] 1 > TP )
ai, ag, a = aj 73-
b 1—72 3 (1 — 7'23,?) (1 — 7'2/3/2) =0 HL(“' "_1| T) i1 '
3 oo 3
= N [IxG) S o I -
i=1 A=0 i=1
where

Pt (a, a7t |T) = Na(7) (xa(a) — xa—2(a))

are SU(2) Hall-Littlewood polynomials.

Leonardo Rastelli (YITP) Mac iNDEX November, 2011 18 / 22



HL index - higher rank generalization

@ The HL polynomials can be defined for U(k) groups

HL A1 Ak X"_szf
Py (X1, .o xk| ) = Na(T) Za Xt xg Hi .

o€S) icj XX

and thus for higher rank building blocks, the T, theories, we conjecture

1

3
ZI(a1,az,a3) = Ni(7) HKJ(a,) Z

1=1 A I=1
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HL index - higher rank generalization

@ The HL polynomials can be defined for U(k) groups

Pi'IL(xl7 .

s Xk | T)

=NA(r) D o

gESy

A1
(H.

Ak

Xk

S X — X
i<j ! J

and thus for higher rank building blocks, the T, theories, we conjecture

3
I(a1,a2,a3) = Ni(7) [[K(ar) > pHL
x

I1=1

i\ (kal

i k) H P{t(ar)

@ For arbitrary punctures

I1=1

3
Tay mons (a1,32,83) = Ni(7) [ [ K, (ar) D
x

1

P;\—IL(Tk_

1
P

. k)HPA (@A)
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HL index - SU(3) quivers - Closing punctures

The index of the SU(3) x SU(3) x U(1) free
hypermultiplet is given by

3

1 1
Z(a17a27c): H 1

ij=1 1-— 'ra,-bjc 1-— Ta,-bjc

@ It can be rewritten as

HL -1 -2
1-7°  KE)KGE) 5 Piager e ‘T) f[p al 7).
(1—72)3 (1 — 73c3)(1 — 73c—3) HL o (r2,7=2,1]7) X1 (B

I(ay,az,¢) = P
ALx AT
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HL index - SU(3) quivers - Closing punctures

The index of the SU(3) x SU(3) x U(1) free
hypermultiplet is given by

3

1 1
I(a17a27c): H 1

ij=1 1-— Ta,'bjC 1-— Ta,-bjc

@ It can be rewritten as

HL -1 -2
1-7°  KE)KGE) 5 Piager e ‘T) f[p al 7).
(1—72)3 (1 — 73c3)(1 — 73c—3) HL (72,721 1) ++ AL 2, (@

Z(ay,az,¢c) = P
A1sA2 A1sA2 i=

@ Further setting ¢ = 7 we completely close one puncture to obtain a cylinder (propagator)

5@, by~ > Pt (al ) P (b] 7).
A1,A2
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HL index - E; and Eg SCFTs

The index of the E; SCFT is given by

QL+ 72+ Ha+ K(a1)K(az)
(1—72)3 (1 — 7-25:!:2)(1 — T4cE2)

T, (a1, a2, ¢) =

P>\1,>\2,)\3(TC’ e rel

H N Apag @il T)-

P 3 ~1 ;-3
A1,A2,A3 M,/\z,M(T LTl

i 2
=>"[,0,0,0,0,0,0], 7%
k=0

The index of the Eg SCFT is given by

11— -1 - +12)
(1 —72)3(1 — 74)4(1 — 79)
K(a)
(1 — m2c£2)(1 — 74cE2)(1 — 76cE2) [T, ;(1 — 72b;/b;)(1 — 74b; /b})

Tgg(a, (b1, b2), €) =

b 2
5 H(rby, by, b, B, 2, B r)P (e ¢, 5, 22 1, 4| )P al
P;’L(T s

Ao AB=A

3, = =3 =5 1)

o
=3 [k,0,0,0,0,0,0,0], 7>
k=0
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@ Possible to include line and surface operators (in progress)

@ Macdonald index closely related to refined CS: hint of a relation to topological strings?
(2,0) theory on S3 x S x C versus (C x S* x M3)q,: with M3 = S! x C...
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@ Macdonald index closely related to refined CS: hint of a relation to topological strings?
(2,0) theory on S3 x S x C versus (C x S* x M3)q,: with M3 = S! x C...

@ Full three-parameter index?
Natural to try elliptic generalizations of Macdonald polynomials.

This idea can be sharpened by making recalling the relations between 2d YM, Macdonald
polynomials an a family of integrable models:

> The reduction of 2d YM on a cylinder gives the Calogero-Moser model
(Gorsky-Nekrasov).

» Macdonald polynomials are eigenfunctions of a relativistic version of the
trigonometric Calogero-Moser model.
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Outlook

@ Possible to include line and surface operators (in progress)
@ Macdonald index closely related to refined CS: hint of a relation to topological strings?
(2,0) theory on S3 x S x C versus (C x S* x M3)q,: with M3 = S! x C...

@ Full three-parameter index?
Natural to try elliptic generalizations of Macdonald polynomials.
This idea can be sharpened by making recalling the relations between 2d YM, Macdonald
polynomials an a family of integrable models:

> The reduction of 2d YM on a cylinder gives the Calogero-Moser model
(Gorsky-Nekrasov).
» Macdonald polynomials are eigenfunctions of a relativistic version of the
trigonometric Calogero-Moser model.
The relevant elliptic generalizations of Macdonald polynomials should be eigenfunctions of
the relativistic elliptic Calogero-Moser model. Not much is explicitly known about them ...

@ Microscopic derivation of the 2d TQFT from the (2,0) theory?
Perhaps easiest to derive quantum-mechanical model obtained by reduction of 2d TQFT
to a graph G. (From 5d SYM on S3 x S! x G?)
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