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ABSTRACT: We study the N/ = 2 four-dimensional superconformal index in various inter-
esting limits, such that only states annihilated by more than one supercharge contribute.
Extrapolating from the SU(2) generalized quivers, which have a Lagrangian description, we
conjecture explicit formulae for all A-type quivers of class S, which in general do not have one.
We test our proposals against several expected dualities. The index can always be interpreted
as a correlator in a two-dimensional topological theory, which we identify in each limit as a
certain deformation of two-dimensional Yang-Mills theory. The structure constants of the

topological algebra are diagonal in the basis of Macdonald polynomials of the holonomies.
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In memory of Francis A. Dolan

1. Introduction

In recent years we have learnt many surprising facts about four-dimensional superconformal
field theories (SCFTs), a subject where disparate strands of mathematical physics come to-
gether in new beautiful ways. For maximal supersymmetry there is an extraordinarily rich
model, N/ = 4 super Yang-Mills, which is a unique theory given a choice of gauge group.
Theories with N/ = 2 superconformal symmetry are even richer. The vast majority of them
do not have a weakly-coupled regime nor a conventional Lagrangian description. This fact,
which may have been suspected since the early days of string dualities, has taken center stage
after the more explicit construction of the N' = 2 superconformal theories of “class 8" [1, 2],
most of which are not Lagrangian.!

Class S theories arise by compactification of the six-dimensional (2,0) theory on a punc-
tured Riemann surface C. There is a growing dictionary relating four-dimensional quantities
with quantities associated to the surface C. A basic entry of the dictionary identifies the ex-
actly marginal couplings of the 4d theory with the complex structure moduli of C.2 According
to the celebrated AGT conjecture [7, 8, 9], the 4d partition functions on the Q-background [10]
and on S* [11] are computed by Liouville/Toda theory on C. An analogous relation exists
between the 4d superconformal index [12, 13] (which can also be viewed as a supersymmetric
partition function on S® x S') and topological quantum field theory (TQFT) on C [14, 15, 16].
In this paper we continue to explore this last relation.

The superconformal index is a simpler observable than the S* partition function, and
it should be a good starting point for a microscopic derivation of the 4d/2d dictionary from
the 6d (2,0) theory. Being coupling-independent, the index is computed by a topological
correlator on C [14], as opposed to a CFT correlator as in the AGT correspondence. For the
subset of class S theories that have a Lagrangian description, it can be easily evaluated in
the free-field limit, unlike the S* partition function, which is sensitive to non-perturbative
physics and requires a sophisticated localization calculation [10, 11].

Despite these simplifying features, the index of class S theories is still a very non-trivial
observable with remarkable mathematical structure. First of all, there is no direct way to

compute it for the non-Lagrangian SCFTs, which by definition are not continuously connected

Though very large, class S does not cover the full space of N' =2 SCFTs. Counterexamples can be found
e.g. in [1, 3]. See [4, 3, 5] for the beginning of a classification program for A" = 2 4d SCFTs.

20On the other hand, the conformal factor of the metric on C is irrelevant (in the RG sense) and its memory
lost in the IR SCFT. See [6] for a recent holographic check of this fact.



to free-field theories.® An indirect route is to use the generalized S-dualities [26, 1] that relate
non-Lagrangian with Lagrangian theories. This is the strategy used in [15] to evaluate the
index of the strongly-coupled SCFT with Eg flavor symmetry [27]. In principle this procedure
could be carried out recursively to find the index of all the non-Lagrangian theories, but it
suffers from two drawbacks: conceptually, one would rather use the index to test dualities,
than assume dualities to compute the index; and practically, this program gets quickly too
complicated to be useful.

What one should aim for is a direct algorithm that applies to all class S theories — one
would like to identify and solve the 2d TQFT that computes the index. The first step in this
direction has been recently taken in [16]: in a limit where a single superconformal fugacity is
kept (out of the original three) the 2d topological theory is recognized as the zero-area limit
of g-deformed Yang-Mills theory. In this paper we generalize this result to a two-parameter
slice (q,t) of the three-dimensional fugacity space, which reduces to the limit considered in
[16] for t = q. We give a fully explicit prescription to compute this limit of the index for the
most general? A-type generalized quiver of class S.

The principle that selects this particular fugacity slice is supersymmetry enhancement,
which leads to simplifications. We study systematically the limits where the index receives
contributions only from states annihilated by more than one supercharge. The (g, t) slice is the
most general limit of this kind sensitive to the flavor fugacities associated to the punctures.
We also study another interesting slice (Q,7T), where the index receives contribution only
from “Coulomb-branch” operators, which are flavor-neutral, so the flavor dependence is lost.

Let us briefly outline the strategy of our computation. It is essential to the construction
of [1] that a punctured surface C can be obtained, usually in more than one way, by gluing
three-punctured spheres (pairs of pants) with cylinders. Different ways to decompose the
same surface C correspond to different S-duality frames of the same SCFT. The index is a
topological quantity intrinsically associated to C and independent of the choice of pair-of-pants
decomposition. The three-punctured spheres correspond to isolated 4d SCFTs, which are the
elementary building blocks for all other class S theories. To each puncture I is associated a
flavor symmetry Gy C SU(k) (for the A-type theories that we focus on). The basic gluing
operation joins two maximal punctures (that is, both with G = SU(k)) and corresponds to
gauging the common SU(k) symmetry. It is then sufficient to give an expression for the

index associated to the three-punctured spheres. Taking for illustration the SCFT associated

3We should mention that for N' = 1 SCFTs obtained as IR points of an RG flow, a prescription to compute
the index in terms of the UV field content and the charges of the anomaly free R-symmetry was put forward by
Romelsberger [13, 17] and recently revisited with more rigor in [18]. Following the seminal work of Dolan and
Osborn [19] there have been many checks and implications of this conjecture, see e.g. [20, 21, 22, 23, 24, 25].
“In particular in [16] certain overall normalization factors were determined only for theories with special

types of punctures. Here we fill this gap and work in complete generality.



to the sphere with three maximal punctures, its index is some function Z, ,, ;(a;, az, a3) of the
three superconformal fugacities (¢,p,t) and of the SU(k) flavor fugacities a; = (al,...ak)
at each puncture. The topological nature of the index is very constraining. It guarantees
the existence of a complete basis of functions { f{)‘q% 1 (a)}, where A labels irreducible SU (k)

representations, such that Z, ,;(a;, az,a3) has the diagonal expansion
Topi(ar, az, a3) = Z C@: P ) Sy (@1) Fg .y (32) [0 (23) (1.1)
A

The left-hand-side is a priori unknown — except in the SU(2) case, where it is the index of the
free hypermultiplet theory. The idea is to focus on the explicit SU(2) expression, write it in
the form (1.1), and try to extrapolate the answer to general SU (k). This program succeeds for
the two-dimensional slice (g, 0,t) in fugacity space, where the functions f;:t(a) turn out to be
closely related to a well-studied family of symmetric polynomials, the Macdonald polynomials,
which are defined for all root systems. One is led to a compelling general conjecture that
passes many tests. The extension to the three-dimensional fugacity space must be possible
but is not entirely straightforward, as the basis that diagonalizes the structure constants is
expected to consist of symmetric functions of an elliptic kind, which are less understood. We
comment on this generalization in our conclusions.

The TQFT that computes the index turns out to be a deformation of two-dimensional
Yang-Mills theory. For ¢t = ¢ Macdonald polynomials reduce to Schur polynomials and the
TQFT can be related to the zero-area limit of 2d g-deformed Yang-Mills theory [28, 29, 30],
which can also be viewed as an analytic continuation of Chern-Simons theory on C x S' away
from integer rank. For the more general (g, 0,t) slice the TQFT appears to be closely related

to the “refined” version of Chern-Simons theory recently discussed in [31].

The rest of the paper is organized as follows. In section 2 we review the definition of N’ = 2
superconformal index, paying special attention to the parametrization of the superconformal
fugacities. In section 3 we review the TQFT structure of the index and describe the strategy
of our computation. In section 4 we define interesting limits of the index characterized by
enhanced supersymmetry. In section 5 we apply our strategy to the simplest limit, the
fugacity slice (0,0,¢). In this case the functions that diagonalize the structure constants are
proportional to Hall-Littlewood polynomials. We conjecture an explicit general expression
and present a wide range of checks of our proposal. In particular we make contact with the
results of [32, 33]: we show that for genus-zero quivers the HL index is equivalent to the
Hilbert series of the Higgs branch and test this equivalence in several examples. In section 6
we consider the slice (g,p,q) (which is in fact independent of p). This is limit of the index
previously considered in [16]. The relevant symmetric functions are proportional to Schur

polynomials. We generalize the results of [16] and give explicit expressions valid for arbitrary



punctures. In section 7 we combine and generalize the results of sections 5 and 6. We consider
the fugacity slice (g, 0,t) and conjecture an expression for the index associated to the general
three-puncture sphere in terms of Macdonal polynomials, equation (7.9). This is our main
result. In section 8 we consider an index that counts Coulomb-branch operators. Amusingly
we are able to give a “physics proof” of Macdonald’s constant term identities. We conclude
in section 9 with a discussion of our results and speculations on a few open questions. Several

appendices supplement the text with technical details and reference material.

As we were finalizing our draft we learnt about the tragic death of Francis A. Dolan. Dolan
and Osborn’s beautiful results on superconformal representation theory and on the index were
a direct influence and inspiration for our work. This paper intersects Francis’ interests in so
many ways, that we knew he would be one of our most demanding readers, and aspired to be

up to the standards he set. This paper is dedicated to his memory.

2. The N = 2 superconformal index

The superconformal index [12] encodes the information about the protected spectrum of a
SCFT that can be obtained from representation theory alone. It is evaluated by a trace

formula, of the schematic form
T(;) = Te(—1D)F e miTie B0 52 {Q, QT} , (2.1)

where Q is the supercharge “with respect to which” the index is calculated and {7;} a complete
set of generators that commute with @ and with each other. The trace is over the states of the
theory on S~ (in the usual radial quantization). By standard arguments, states with § # 0
cancel pairwise, so the index counts states with § = 0 (the “harmonic representatives” of the
cohomology classes of Q) and it is independent of S. From the index one can reconstruct the
spectrum of short multiplets, up to the equivalence relations that set to zero the combinations
of short multiplets that may a priori recombine into long ones [12].

For four-dimensional N’ = 2 SCFTs, which are non-chiral, different choices of Q lead to
physically equivalent indices. The subalgebra of SU(2,2|2) commuting with a single super-
charge is SU(1,1|2), which has rank three, so the N' = 2 index depends on three supercon-
formal fugacities. In addition, there will be fugacities associated with the flavor symmetries.
For definiteness we choose Q = é1;- See table 1 for a summary of our notations. There are

three supercharges commuting with él; and (él;ﬁz

Q1 Qit s égjr . (2.2)



Q [ SU(2) | SU2)y | SU2)g | U(1), 0 Commuting ds
Q- | -1 0 . L6 =E—-2j1 —2R—7r | 6o, 11, b
Q1 : 0 1 L6 =E+2j1 —2R—r | 6o, Oy1, Oy
Q| -1 0 -1 3|0 =E—2j1+2R—71 | 614, byp, Oy
Oy. 1 0 -1 Lo Gy =E+2j1+2R—r | 61, by, Oy
Q- | o -1 1 L N5 =E—2y—2R+r |8y, 01p, 01
Q1 0 1 1 L N6 =FE+2—2R+r | b6y, Gy, 01
9, 0 —i —i L by =B -2+ 2R+ | b1, oy, o
Q| O 1 -1 L N3y =E+2s+2R+r |3, 0o, 0o

Table 1: For each supercharge Q, we list its quantum numbers, the associated § = 2 {Q, QT}, and
the other ds commuting with it. Here I = 1,2 are SU(2)g indices and oo = £, & = £ Lorentz indices.
E is the conformal dimension, (ji,j2) the Cartan generators of the SU(2); ® SU(2)2 isometry group,
and (R, r), the Cartan generators of the SU(2)r ® U(1), R-symmetry group.

A useful choice is to take as a basis for the Cartan generators of the commutant subalgebra
SU(1,1/2) the three ds of these supercharges. For each Q the associated ¢ is defined as

552{9,@}, (2.3)

and it has a non-negative real spectrum. We then write the index as

I(p,o,7) = Tr(-1)F p%‘sl— P LS e e (2.4)
In table 1 we give the expressions of the § charges in terms of the more familiar Cartan
generators (E, ji, jo, R,7) of SU(2,2|2). This parametrization of the fugacities makes it easy
to consider special limits with enhanced supersymmetry, which is our goal in this paper.®

Another very useful parametrization is in terms of fugacities (p, q,t), related to (o, p, 7) as
p=t10, q=T1p, t=712. (2.5)

This is the choice that corresponds to the (p,q) labels of the elliptic Gamma function [34],

and also, as we shall see, to the (t,q) labels of Macdonald polynomials®. In terms of these

® Although at first glance the trace formula (2.4) may seem to depend symmetrically on four equivalent s,
this is not the case. The charge 51; is special: the associated supercharge Ql; commutes with all the four ds,
but the supercharges associated to the other three ds do not. This is then the index “computed with respect
to é1;”’ and it is independent of 3, which we will usually omit.

SNote that while the fugacities (g,p) have exactly the same meaning in our previous papers [14, 23, 15],
the fugacity ¢ is different from the one introduced in [12] and used in [14, 23, 15]. We made this change of
notations to make contact with the Macdonald literature, where ¢ has a canonical definition that one wishes

to respect.



fugacities, the definition of the index reads
(p,q.1) = Te(=1)" s g20t- gm0 (2.6)

In appendix B we review the shortening conditions of the N' = 2 superconformal algebra and
give the expression of the index for the various short multiplets. Given the index of a SCFT,
the formulae of appendix B allow to determine its spectrum of short multiplets, up to the
usual recombination ambiguities (spelled out in section 5.2 of [35]).

For a theory with a weakly-coupled description the index can be explicitly computed as

a matrix integral,

Z(V,p,a,T)—/[dU] exp Z% SR 0" ) xR, (U VY| (@)
n=1 J

Here U denotes an element of the gauge group, with [dU] the invariant Haar measure, and V'
an element of the flavor group. The sum is over the different N' = 2 supermultiplets appearing
in the Lagrangian, with R; the representation of the j-th multiplet under the flavor and gauge

groups and xg; the corresponding character. The Haar measure has the following property
n

/ [dU] T ] xw,(U) = #of singlets in Ry ® -+ @ Ry, (2.8)
j=1

The functions fU) are the “single-letter” partition functions, fU) = fV or f0) = f 3H accord-
ing to whether the j-th multiplet is an N' = 2 vector or N' = 2 %—hypermultiplet. The “single
letters” of an N = 2 gauge theory contributing to the index obey 51; =F—-2j5—2R+r =0
and are enumerated in table 2. The first block of table 2 shows the contributing letters from
the N' = 2 vector multiplet, including the equations of motion constraint. The second block
shows the contributions from the half-hypermultiplet (or A/ = 1 chiral multiplet). The last
line shows the spacetime derivatives contributing to the index. Since each field can be hit by
an arbitrary number of derivatives, the derivatives give a multiplicative contribution to the

single-letter partition functions of the form

> S on) = s 29)

m=0n=0

The single-letter partition functions of the NV = 2 vector and A/ = 1 chiral multiplets are thus
given by

oT pT op — 12

V== (2.10)

1—07_1—p7+(1—p7)(1—07)

P __a . _pat=t
l-p 1-q¢ (1—-q(1-p)’
T  Vt—pg/Vit .

Fil = =)= =50 -p) 21




Letters E jl j2 R r I(U’ paT) Z(p7Q7t)
1) 1 0| 0] 0| —1 op pg/t
A+ S145| 0| 5| —5|—om, —p7 | —p, —q
3 3 1|1 1 2
ALj 2| 91 33| 3 -7 —
F%J% 2 0] 1] 0 0 opt? Pq
8_4_>\1++8_H_)\1_ =0 g 0 % % —% O'pT2 g
q 1| 0] 03] 0 T Vit
7 51 0| 30| =53] —opr | —pg/Vi
01y 1 i% % 0 0 oT, pT P, q

Table 2: Contributions to the index from “single letters”. We denote by (¢, o, AlLas AL s Fup, Faﬁ')
the components of the adjoint N = 2 vector multiplet, by (g, , %o, %) the components of the N = 1
chiral multiplet, and by J,4 the spacetime derivatives.

For general values of the three fugacities the explicit expression for the index of a Lagrangian
theory is most elegantly expressed [19] in terms of the elliptic Gamma functions (see [34] for
a nice review of these special functions). In this paper however we consider reduced forms of
the index and do not utilize the power of these special functions. We comment on the relation

to elliptic functions in the concluding section 9.

3. TQFT structure of the index

Four-dimensional superconformal field theories of S [1, 2] arise from partially-twisted com-
pactification of the six-dimensional (2,0) theory on a punctured Riemann surface C. The
complex-structure moduli of C are identified with the exactly marginal couplings of the 4d
SCF'T, while the punctures are associated to flavor symmetries.

Any punctured surface can be obtained, usually in more than one way, by gluing three-
punctured spheres (pairs of pants) with cylinders. The three-punctured spheres are then the
elementary building blocks. They correspond to isolated 4d SCFTs with flavor symmetry
G1 ® Gy @ G3, where each factor G is associated to one of the three punctures.” The

cylinders correspond to N = 2 vector multiplets, and the gluing operation amounts to gauging

"In this paper we focus on class S theories that descend from the (2,0) theory of type Ax_;. Then the
punctures are classified by the possible embeddings of SU(2) into SU(k) and G; C SU(k) is the commutant
of the chosen embedding.



a common SU (k) symmetry of two punctures. The gluing parameter is interpreted as the
complexified gauge coupling, with zero coupling corresponding to an infinitely long cylinder —
a degeneration limit of the surface. Different pairs-of-pants decompositions of the same surface
C correspond to different descriptions of the same SCFT, related by generalized S-dualities.
Since the index is independent of the moduli, and is invariant under S-dualities, it is
naturally viewed as a correlator in a 2d topological QFT living on C [14]. Let us review how
this works. We parametrize the index of a three-punctured sphere as Z(a;, ag, ag), where ay
are fugacities dual to the Cartan subgroup of Gj: except in special cases these are a priori
unknown functions. On the other hand we can easily write down the “propagator” associated

to a cylinder,
n(a,b) = A(a)"(a) d(a,b™}), (3.1)

where A(a) is the Haar measure and Z" (a) the index of a vector multiplet, which is known
explicitly. The index of a generic theory of class S can be written in terms of the index of
these elementary constituents. As the simplest example, gluing two three-punctured spheres

with one cylinder one obtains the index of a four-punctured sphere,
Z(aj,ag,as,ag) = %[da] j[[db] Z(aj,az,a)n(a,b)Z(b,as, a,) (3.2)
= flda] A@) Z(ar, a2 ) 7" (@) Z(a ! ag.),

where we have introduced the notation

k—1

]f [da] = 7{ 1;[1 Qija . (3.3)

If we expand the index in a convenient basis of functions {f*(a)}, labeled by SU (k) repre-

sentations {a},® we can associate to each three-punctured sphere “structure constants” Casy

and to each propagator a metric n®?,

I(a,b,c) = Y Cagy [*(a) f*(b) f7(c) (3.4)

a,Byy

1 = Pldal §ldb] nta,b) £(a) 17(0). (3.5)

8For theories of type A, {f*(a)} are symmetric functions of their arguments, which are fugacities dual to
the Cartan generators of SU(k). More generally, for theories of type D and E, {f“(a)} are invariant under
the appropriate Weyl group.



Invariance of the index under the different ways to decompose the surface is tantamount of
saying that C,g, and n®? define a two-dimensional topological QFT.? The crucial property

is associativity,
Caﬁ'ycfy& = Ca&'ycfyﬁe; (36)

where indices are raised with the metric 7% and lowered with the inverse metric Nag-
It is very natural to choose the complete set of functions {f“(a)} to be orthonormal

under the measure that appears in the propagator,
Flaa] A@) 7V (@) (@) @) = 67 (37)
Then the metric 7% is trivial,
n*h = b . (3.8)

Condition (3.7) still leaves considerable freedom, as it is obeyed by infinitely many bases of
functions related by orthogonal transformations. The real simplification arises if we can find

an explicit basis {f*(a)}, such that the structure constants are diagonal,

Capy 70 — a=p=7. (3.9)

Associativity (3.6) is then automatic. For structure constants satisfying (3.6) one can always
find a basis in which they are diagonal: we give a detailed example of such a diagonalization
procedure in appendix A for the simplest limit of the index. The challenge is to describe the
basis in concrete form.

In general the measure appearing in the propagator is complicated and no explicit set of

orthonormal functions is available. We find it very useful to consider an ansatz
f%(a) = K(a)P*(a), (3.10)

for some function K(a). Clearly, from (3.7), the functions {P“(a)} are orthornormal under

the new measure A(a),

j’{ [da] A(a) P*(a)PP(a™ ) =6,  A(a)=1"(a)K(a)? A(a). (3.11)

9We are using this term somewhat loosely. As axiomatized by Atiyah, a TQFT is understood to have
a finite-dimensional state-space, while in our case the state-space will be infinite-dimensional. The best-
understood example of a 2d topological theory with an infinite-dimensional state-space is the zero-area limit
of 2d Yang-Mills theory [36, 37] (see e.g. [38] for a comprehensive review). Happily, the 2d topological theory

associated to the index turns out to be closely related to 2d Yang-Mills.

,10,



(Recall that A(a) always denotes the Haar measure). The name of the game is to find a
clever choice of K(a), for which A(a) is a simple known measure and the orthonormal basis
{P*(a)} an explicit set of functions such that (3.9) holds.

Once the diagonal basis {f*(a)} and the structure constant Cynq are known, one can

easily calculate the index of the SCFT associated to the genus g surface with s punctures.

Such a surface can be built by gluing 2g — 2 + s three-punctured spheres, so we have'”
S
Igys(al, ag, ... ,as) = Z(Caaa)29_2+s H fa(al) . (312)
« I=1

In the rest of the paper we implement the following strategy. We start by considering the
generalized SU(2) quivers. Since they have a Lagrangian description, closed form expressions
for the index (as matrix integrals) are readily available. We then look for a basis of functions
{f%(a)} that diagonalizes the structure constants. Fortunately, for each special limit of the
index that we consider, the diagonal basis is of the form (3.10), with {P“(a)} well-known
symmetric polynomials: Hall-Littlewood, Schur or Macdonald polynomials. (The first two
are in fact special cases of Macdonald polynomials). Since these polynomials are defined for
arbitrary rank, we can extrapolate from the SU(2) case and formulate compelling conjectures
for the index of all generalized quivers of type A. (This approach readily generalizes to all
ADEF theories, but in this paper we focus on the A series). Finally we check our conjectures

against expected symmetry enhancements and S-dualities.

4. Limits of the index with additional supersymmetry

We now consider several limits of the superconformal index, such that the states contributing
to it are annihilated by more than one supercharge. Recall that before taking any limit the

index receives contributions only from states with

5. =E—2j,—2R+r=0, (4.1)

which are annihilated by él;. We tend to refer to the different limits of the index by the type
of symmetric polynomials relevant for their evaluation. In appendix B we discuss which short

multiplets of the superconformal algebra are counted by the index in each of these limits.

0Here for simplicity we are considering the case where all external punctures are “maximal”, i.e. they
have flavor symmetry SU (k). The prescription for punctures with reduced symmetry is discussed in detail in

sections 5, 6 and 7.

— 11 —



Macdonald index

We first consider the limit!!

o—0, p, T fixed, (4.2)

(which is the same as p — 0 with ¢ and ¢ fixed). The limit is well-defined since the power of
o in the trace formula (2.4) is given by 2614 > 0. The index is given by

Ty = TI‘M(—l)F p%(E72j172R7r) T%(E+2R+2j2+r) (43)
1
2

_ TI‘M(*l)Fq (E—2j1—2R—r) tR—l-r’

where Trj; denotes the trace restricted to states with 61y = E + 2j; — 2R —r = 0. Such
states are annihilated by Q14. All in all Z; is a i-BPS object receiving contributions only
from states annihilated by two supercharges, one chiral (Q;) and one anti-chiral (Q,- ). The

single letter partition functions of the half-hypermultiplet and the vector simplify to

_ 2 _t—
L — :i, g (4.4)
1—pr 1—g¢q 1—pr 1—gq
Hall-Littlewood index
We further specialize the index by sending p — 0, so we are taking the limit
oc—0, p—0, T fixed , (4.5)

(equivalently, ¢,p — 0 with ¢ fixed), which is well-defined thanks to d;+ > 0. The index is
given by

Tip, = Trpp(—1)F raEH2R420247) — oy () 720B-R) (4.6)

where Try; denotes the trace restricted to states with 1+ = F +£2j; —2R —r = 0. All in

all, taking (4.1) into account, the states contributing to the index obey
j1=0, Jo=r, E=2R+r, (4.7)

and are annihilated by three supercharges: Q14+, @1 and @1;.

Let us consider the Hall-Littlewood (HL) index for a theory with a Lagrangian descrip-
tion. From table 2, we see that it gets contributions only from the scalar ¢ of the hypermul-
tiplet and from the fermion X, 1 of the vector multiplet. The single letter partition function

of the half-hypermultiplet and the vector multiplet is then

f%H =7, fV=-72. (4.8)

" An equivalent limit can be obtained by sending p to zero.

- 12 —



Remarkably, for generalized quivers with a sphere topology the computation of the HL index
is equivalent to the computation of the partition function over the Higgs branch discussed
n [32, 33] (the Hilbert series of the Higgs branch).!? This can be shown as follows. To
compute the partition function of [32, 33] for the Higgs branch of an N/ = 2 gauge theory
one counts all the possible gauge invariant operators built from the scalar components of
the hypermultiplets taking into account the F-term superpotential constraints. In an N' = 2

gauge theory with M SU(2) gauge factors the superpotential takes the form

W= Z Z Qazakal ZQ )biakal7 (49)

=1 aec{i}

where the summation over i is over the gauged groups. The set {i} is the set of (at most two)
trifundamental hypermultiplets transforming non-trivially under gauge group i. The F-term

constraints then read

Q(a1 Q(al Ybiaray + Q(a2 Q(OéQ)biaman —0. (4.1())

a;apa; ;A An,

If the quiver diagram does not have loops, i.e. the corresponding Riemann surface has a
topology of a sphere, this is a set of M independent constraints. It then follows that the
computation of this partition function is the same as the computation of the index. Indeed,
one associates a fugacity 7 for each scalar component of (). The constraint (4.10) is quadratic
in @ and is in the adjoint representation of the gauge group. It is implemented by multiplying
the unconstrained partition function with the following factor [32, 33],

o0

exp —2%72" (a?"+a;2"+1) =1-)1-71%a)(1-1%a;?). (4.11)
n=1
This factor is the same as the index of the letter A;;. Thus, one can think of the letter A;;
in the calculation of the index as playing the same role as the superpotential constraint in
the calculation of the Higgs partition function! This logic can be extended to higher-rank
theories, where not all the building blocks have Lagrangian description, but the Higgs branch
can still be described in terms of operators obeying certain constraints. This concludes the
argument that the HL index is the same as the Higgs partition function for theories with
sphere topology. Our derivation also makes it clear that this correspondence fails for higher-
genus theories.
In [32] non-trivial very explicit expressions for the Higgs branch partition function of the
SCFTs with exceptional flavor symmetry groups [27, 41] were conjectured. We will see that
they are exactly reproduced by the HL index.

12A relation of a similar limit of the A” = 1 index with the counting problems discussed in [39, 40] was

mentioned in [21]. We thank V. Spiridonov for bringing this reference to our attention.
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Schur index

The Schur index is defined by specializing the fugacities to p = 7 with o arbitrary (equivalently
q =t with p arbitrary). It reads

Tg = Tr(_l)FO_%(E-&-Zjl—ZR—r) pE—jl—i—jg o BE=2j2—2R+7) (4.12)

By construction, all charges in the trace formula commute with the supercharge él; “with
respect to which” the index is evaluated. From table 1, we observe that the charges in (4.12)
also commute with Q1. Thus the index receives contributions from states with 6, = 51; =0
(the intersection of the cohomologies of Q14 and of @1;) and it is independent of both o and

8. We can then write
Ts = Tr(—1)F p?E-R) = Tr(—1)F ¢F~F (4.13)

The Schur index can also be obtained as a special case of the Macdonald index by setting
p = 7 (equivalently ¢ = t); we have just seen that for p = 7 the index becomes independent
of o so the limit o — 0 that we take to obtain the Macdonald index is immaterial.
The single letter partition functions of the half-hypermultiplets and the vector multiplet
are given by
—2p% =2
pE__P N v 2% 220 (4.14)
1—p2 1-—qgq 1—p2 1—4¢q
The Schur index is the same as the index studied in [16], where we referred to it as the

reduced indez.

Coulomb-branch index

Finally we consider the limit
T—0, p,o fixed, (4.15)

which is well-defined thanks to 0, i+ > 0. The trace formula becomes

To = Trc<_1)Fo_%(E+2j172Rfr) p%(E72j172R77") o~ B(E—2j2—2R+r) ’ (4.16)
where Tro denotes the trace over the states with SQJF = F 4+ 2js + 2R +r = 0, which are
annihilated by @2 ;. All in all, the index gets contributions from states annihilated by two
antichiral supercharges, él; and @2 i

In this limit the single-letter partition function of the half-hypermultiplet and the vector

multiplet are

fel =0,  fV=o0p=T. (4.17)
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From the viewpoint of the the single-letter partition functions one can take an interesting less

restrictive limit,

7,0 =0, p— 00 with Q=7p and T =op fixed. (4.18)
In this limit we have
Ll \% T — Q
=0 = . 4.19
f2 J f 1 _ Q ( )
We recover (4.17) for @ — 0. In terms of the new fugacities @) and 7' the index reads
Tonr = Tron(—1)F T3E+21-2R=1) (3 (B+2ja+2R+7) (4.20)

where Treops denotes the trace restricted to states satisfying E + 277 +r = 0. This index is

well-defined for Lagrangian theories and for theories related to them by dualities.

We now describe the explicit evaluation of these special limits of the index for the SCFT's

of class S.

5. Hall-Littlewood index

We begin with the Hall-Littlewood index,
IHL(T> = TI‘HL(—l)F 7'2E_2R, (51)

where Try denotes the trace restricted to states with j; = 0 and £ — 2R — r = 0. This is
the limit that leads to the greatest simplifications.

5.1 SU(2) quivers

Let us start from the SU(2) generalized quivers, for which the basic building blocks are known
explicitly. There is only one type of non-trivial puncture, the maximal puncture with SU(2)
flavor symmetry. The SCFT corresponding the three-punctured sphere, denoted by 7% in [1],
is the theory of free hypermultiplets in the trifundamental representation of SU(2). Its index
is immediately evaluated,

1

Hsa,sb,sC::H(l — T a% b CSC)

where the fugacities a, b, and ¢ label the Cartans of the three SU(2) flavor groups. The

I(CL, b, C) =PE [TX1(G)X1 (b)xl (C)]a,b,c,T = ) (5'2)

plethystic exponent PFE is defined as

PE[f(x)],, = exp (Z if(ﬁ)) . (53)
n=1
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We will often omit the subscript x; in the expressions for PE]...]. xi(a) is the character of
fundamental representation of SU(2). More generally the SU(2) Schur polynomials x, are
given by

xa(a) = I (5.4)
The propagator n(a,b) is also easily evaluated:
n(a,b) = Ala)ZV (a)6(a,b71), (5.5)
where ZV () is the index of the vector multiplet,
IV(a) = PE[-7*x2(a)la,r = (1 = 72) (1 = 7% a®) (1 — 72a7?), (5.6)
and A(a) the SU(2) Haar measure,
Ala) = %(1 — )1 aiz) . (5.7)

Following the strategy outlined in section 3, we look for a complete set of functions {f*(a)}

orthonormal under the propagator measure such that the structure constants are diagonal,

Z(a,b,c) = Y _ Cron fAa) FA(b) (o). (5.8)
A=0
We describe this calculation in appendix A. We find the remarkable result
fAa) = K(a) Py (a,a™'|7), (5.9)
VI (1472
Chon = ( ) . (5.10)

P 1)
Here Pﬁ‘f 1, are the SU(2) Hall-Littlewood polynomials,
Piip(a,a77) = xala) = 7°xa2(a) for A>1, Pp7’(a,a”t|r) = V1+2, (5.11)

which are orthonormal under the measure

1 (1-a)(1—a?)
T 2(1—72a?)(1—12a72) "

A(a) = AHL(CL)

(5.12)

The requirement that { f*(a)} be orthonormal under the propagator measure A(a)Z" (a) fixes
the prefactor K(a),

= (5.13)
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We can now immediately write down an explicit formula for the index of any generalized

SU(2) quiver associated to a genus g Riemann surface with s punctures. From (3.12),

Tys(ar,ag, ... as) = (1—72)% " (14 72)%7%F. (5.14)
i 1 H Ppy(ar,a;'| 1)
(1-— 7'20,%)(1 — T2CLI_2) '

— 20—2+
A=0 [PI>1\TL(7—7T 1 7')} ! ’ I=1

In particular for genus g with no punctures the sum over the SU(2) irreducible representations

in (5.14) can be explicitly performed and one gets

(1=7) " (P24 (14 72" (1 72072)) |

(2) _
L = 1 — 7202

(5.15)

We observe that setting a flavor fugacity a = 7 we “close” the corresponding punc-
ture. For example we can go from the three-punctured sphere to the two-punctured sphere

(=cylinder),

Z(ay, a9, ) ~ Z Py (a1, a7t |7)Phyp(az, a5t |7) = n(ay, az) . (5.16)
A

(There is an overall divergent proportionality factor). This procedure of (partially) closing
punctures by trading (some of) the flavor fugacities with 7 plays an important role, as it will
allow us to construct the index for theories with arbitrary types of punctures. For SU (k)
theories the punctures are classified by the different embeddings of SU(2) inside SU (k) [1, 2],
which are conveniently labelled by auxiliary Young diagrams with k& boxes. For SU(2) we
get only two possibilities: (i) a row with two boxes corresponding to the “maximal” puncture
with SU(2) flavor symmetry, (ii) a column with two boxes corresponding to the absence of a

puncture. For higher-rank theories the space of possibilities will be more interesting.

5.2 Higher rank: preliminaries

For higher-rank quivers the situation is more complicated since the basic building blocks
are given by strongly-interacting SCFTs for which direct computations are not possible.
However, the expressions that we obtained for the index of the SU(2) quivers can be naturally
extrapolated to higher rank. The basic conjecture is that the set of functions {f“(a)} that
diagonalize the structure constants are related to Hall-Littlewood polynomials for higher-rank
as well.

The Hall-Littlewood (HL) polynomials associated to U(k) are a set of orthogonal poly-
nomials labeled by Young diagrams with at most k£ rows, A = (A1,...,Ar), Aj > Ajy1. They
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are given by [42]
Lo(i) — sza ]

Pyr(x1,... x| 7) Z xAl )...xi’(“k)H()—@, (5.17)

o€ESy, i<j g

and they are orthonormal under the measure

1 1— i/
Apr = — Hﬂ (5.18)

The normalization N (t) is given by
1—7% 1
)\1, H H 1_72 ) (5' 9)
=0 j=1

where m(i) is the number of rows in the Young diagram A = (\1,...,A;) of length i. For
SU(k) groups we take Young diagrams with Ay = 0 and the product of xp in (5.17) is
constrained as Hle xp = 1.

Let us also quote from the outset the expression for the SU (k) propagator,
n(a,b™") = A(a)I" (a)d(a,b™"), (5.20)

where A(a) is the SU (k) Haar measure,

= H ( > li[ai =1, (5.21)

i#j

and Z"(a) the vector multiplet index,

5 H (1—72%a;/a;). (5.22)

5.3 SU(3) quivers — the Eg SCFT

We now focus on the SU(3) theories. There are two kinds of non-trivial punctures: the
maximal puncture, associated to the Young diagram (3,0,0), which carries the full SU(3)
flavor symmetry; the puncture associated with the Young diagram (2,1,0), which carries
U(1) flavor symmetry. The elementary building blocks are the 333 vertex and the 331 vertex,
where 3 and 1 are shorthands for the SU(3) and U(1) punctures, respectively.

The 333 vertex corresponds to the Eg SCFT of [27], denoted by T3 in [1]. A maximal
subgroup of the Eg flavor symmetry is given by SU(3)? and we parametrize the Cartans of
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the three SU(3)s by a;. Guided by the expression of the T index obtained in the previous

subsection, we conjecture that the index of T3 is given by

A(T) & AL
Z(ay,aq,ag) = K(ay) Py (ar| T 5.23
( 1 2 3) )\127;2 PI/}EA2(7'2’7'2,1’T)IE[1 ( I) HL ( I‘ ) ( )
1 3 1 >
Kla) = — - a; =1 5.24
@i Mo U o2
ATy = (1 —mHa + 72 + 7). (5.25)

The function K(a) is fixed as always by (3.11), with A = Ay, while the overall fugacity-
independent normalization factor A(7) was fixed by comparing with the known result for
this index [15]. We expanded the above expression in power series in 7 and found a perfect
match with [15].13 In [32] an explicit expression was conjectured for the partition function
over the Higgs branch of the Eg SCFT, which we argued in section 4 to be equivalent to the

Hall-Littlewood index. This expression has a very simple form [32],
oo
T(zg,) = Y _[0,k,0,0,0,0],7 (5.26)
k=0

where z is an Fj fugacity and [0, k, 0,0, 0, 0], are the characters of the irreducible represen-
tation of Eg with Dynkin labels [0, k,0,0,0,0]. This expression is manifestly Fg covariant
while (5.23) is not: however, order by order in the T-expansion we find that the fugacities of
SU(3)3 combine to label representations of Eg and we obtain perfect agreement. We empha-
size that for this to happen the overall factors K(a;) are absolutely crucial — without taking
them into account the flavor-symmetry enhancement to Fg does not occur.

We can define an unrefined index by setting all the flavor fugacities to one. In this case
the series can be easily summed up in closed form and we obtain that the unrefined index is

given by

7_ (5.27)
14720+ 55(7% + 7'%) + 890(7* 4 716) + 5886(7° + 74) + 17929(r® + 7'2) + 260607
1+72)7" (1 -72)* ’

in complete agreement with [32].

13 All the expressions for the HL index we obtain here are geometric progressions which in principle can be
explicitly summed. However, for the purposes of this paper we often found it computationally more feasible

and insightful to perform perturbative checks to high order in expansion in 7.
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Figure 1: Association of flavor fugacities for the vertex corresponding to the 331 of the SU(3) quivers.
Here ajas0a3 = 1 and b1b2b3 =1.

The 331 vertex corresponds to the SCFT of a free hypermultiplet in the bifundamental
of SU(3) and charged under U(1). Its index is given by

Z(ay,az,c) = PE [7'Xl(a)X1(b)C]a,b,c PFE [TX1(a_1)X1(b_1)C_1]aﬂb’c (5.28)
3 3
1 1
:H — T T Hal:Hblzl
i=1 1—rTabjc 1 — Tabie e ey

It can be rewritten by partially closing a puncture of the Eg vertex (5.23), as

P)\17)‘2 1

1— 70 K(a1)K(az) Z HL (T¢, T

S 1-72(1—733) (1 — 133 AL, A2 PI/}L’/\Q(TQ»TJv 7)1

-9 2
D] ey o).

I(al, az, C)
(5.29)

The sum over representations here is a geometric progression and can be easily performed
establishing the equivalence of (5.28) and (5.29) (in the process we have fixed the overall
T-dependent factor).

We can use the above expressions to write the index of any SU(3) quiver. Let us give

again the example of the genus g theory,

L= (5.30)
(1 + 2 (1 + 7__2)9—1 (7-2_29 — 7-29—2)> FAg—1) (1 . 7_2)29—2
)2

(7-2—29 — 7292

(-7 (-9

We can subject (5.23) and (5.29) to a further non-trivial check. The channel-crossing
duality of the four-punctured sphere with two SU(3) and two U (1) punctures corresponds to
Argyres-Seiberg duality [26]. In one channel we glue together two 331 vertices along two 3
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punctures, while in the other channel the 333 vertex (index of T3) is (formally) glued to a
311 vertex. Requiring equality of the two channels we find the index of the 311 vertex,

1—76 K(a)
(1—-72)1—7%) (1 —=73c3)(1 — m3¢3)(1 — 3d3)(1 — 73d—3)

3 Py (re, 77 Ve, ¢ 2 ) PR (rd, vV, A2 T) PR (al T)‘

A1, —
PHlL 2(7-27 271’ )

Tzn(a, ¢, d) = (5.31)

A1,A2
In the expression above the sum over representations diverges. The 311 should be regarded as
a formal construct that only makes sense as a part of the larger theory. It can be interpreted
as implementing a d-function constraint on the flavor indices. The non-singular way to view
the gluing of 333 vertex with 311 vertex is as gauging an SU(2) subgroup of Eg, as opposed
to an SU(3) subgroup [26]. With this interpretation of the 311 vertex, equality of the two
channels amounts to

d
(1 7'2)7{ ‘? PI)}EM(ar,a_lr, 7“_2\7') H

4mia

1 1

1 —7591q%2 1 — 72930304

(1-— a2"5)

01,02,03,04,05==%1

17 Moo Py (r57 771500, 57 )

r r

=T PR T ) [y gy (L= 73571 /13)(1 = 7350208

(5.32)

In the first line we gauge an SU(2) subgroup of Fg and couple it to a single hypermultiplet,
and in the second line a 311 vertex is glued to 333 vertex by gauging an SU(3) flavor group.
This is a non-trivial identity involving HL polynomials which we have checked to very high

order in a perturbative expansion in 7.

5.4 A conjecture for the structure constants with generic punctures

Extrapolating from the SU(2) and SU(3) cases, we are now formulate a complete conjecture
for the index of all building blocks of SU(k) quivers. The building blocks are classified by a
triple of Young diagrams (A1, A2, A3). We conjecture

[Tjo(1 — > [T)—, Py (aa(AD)r)
Tpynohs = W H ,CAI ar PI/}L(Tk_l k-3 k) (5.33)
I 1 b AR

Here the assignment of fugacities according to the Young diagram labelling the type of the
puncture, a(A), is as illustrated in figure 2. The summation over \ is over the Young diagrams
with & — 1 rows, A = (A1,..., Ag—1), Aj > Ajqp1. The factors ICA(a) are defined as

row(A) I;

Il —— . (5.34)

i=1 jk=1

Here row(A) is the number of rows in A and [; is the length of ith row. The coefficients a},

are associated to the Young diagram as illustrated in figure 3. Our conjecture is consistent
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Figure 2: Association of the flavor fugacities for a generic puncture. Punctures are classified by
embeddings of SU(2) in SU(k), so they are specified by the decomposition of the fundamental rep-
resentation of SU (k) into irreps of SU(2), that is, by a partition of k. Graphically we represent the
partition by an auxiliary Young diagram A with & boxes, read from left to right. In the figure we have
the fundamental of SU(26) decomposed as 5+ 5 +4+4+4+ 2+ 1+ 1. The commutant of the
embedding gives the residual flavor symmetry, in this case S(U(3) x U(2) x U(2) x U(1)), where the
S(...) constraint amounts to removing the overall U(1). The 7 variable is viewed here as an SU(2)
fugacity, while the Latin variables are fugacities of the residual flavor symmetry. The S(...) constraint
implies that the flavor fugacities satisfy (ab)®(cde)* f2gh = 1.

with the SU(2) and SU(3) cases seen previously as well as with all other examples discussed
below.

For three maximal punctures (the T} theory), (5.33) becomes

A(r Ay A
Ir,(a1,az,a3) = Z YRV kgl) - H’C(al) Py ar] 7)),
M>Ae> oM PHE (G S ) e
1 b 1 i
Kla) = — . =1, (5.35)
(1- 72)% z‘,j:ll_,Iz';éj (1 —72ai/a;) i=1
L )
A(T) = [t =) :
(-7

Let us illustrate the power of these TQFT expressions by computing the index of the genus
g SU (k) theory. It is given by
29—2

70 _ (1 =)

1
8 (1= r2)k-D-D) EA: P) (7h=1 k=3 1-k|7)2-2" (5.36)
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where the summation is over all Young diagrams with k—1 rows, i.e. over the finite irreducible
representations of SU (k).

The sum over representations in (5.33) does not converge for arbitrary choices of the three
Young diagrams A;. We have already encountered an example in the last subsection: the 311
vertex of SU(3) theories has a divergent expression. There is no actual SCFT corresponding
to the 311 vertex, but one can glue this vertex to a larger quiver and obtain meaningful
results. There are cases however where the divergent vertex cannot appear as a piece of
a larger quiver and thus the expression (5.33) for its index does not have a clear physical
interpretation. An example of such a vertex is the index of an SU(6) theory with three
SU(3) punctures. We have checked in several cases that a divergence in (5.33) correlates
with the fact that the graded rank of the Coulomb branch (as defined in [43]) of the putative
SCF'T has negative components. This is an indication that associating field theories to such
punctured surfaces may be delicate. Punctured surfaces of this type were recently considered
in [44] and subtleties associated with them addressed in [45].

at | b1

at?l b2 | er | dr | er

a3 b3 | er?| dr?| er

at| bt | e d3 | e | fr

am | b | e | drt] er f72 gt | A7

- R D —

U(2) U(3) v U@

Figure 3: The factors a, associated to a generic Young diagram. The upper index is the row index
and the lower is the column index. In @ one takes the inverse of flavor fugacities while 7 is treated as

real number. As before, the flavor fugacities in this example satisfy (ab)®(cde)* f2gh = 1.

5.5 SU(4) quivers — T; and the F; SCFT

Let us use the general expressions of the previous section to discuss some of the features of

SU(4) quivers. First, from (5.35) we can compute the unrefined index of 7y,

Tr, = 1+ 4572 + 12873 4 12497* 4 55047° 4 3078675 + 13683277 + 62399175 4 ... (5.37)
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We present a closed form expression for it in appendix D. Refining with the flavor fugacities

one gets

Ir, = 14+[(15,1,1) + (1,15,1) + (1,1,15)] 72 + [(4,4,4) + (4,4,4)] 7 + (5.38)
1+ (15,1,1) +(1,15,1) + (1,1,15) + (20,1,1) + (1,20,1) + (1,1,20)+
+(15,15,1) + (1,15,15) + (15,1,15) + (84,1,1) + (1,84, 1) + (1,1,84)+
+(6,6,6)] 71+ ... .

In terms of Young diagrams 84 = (4,2,2), 6 = (1,1,0), 20 = (2,2,0). The symmetric
product of the 72 term reproduces all the terms at the 7# order except for the (6, 6,6) term,
and for the fact that two singlets are missing (the symmetric product contains three singlets
while only one is present at order 74). We deduce that the (6,6,6) state is an additional
generator of the Higgs branch, and that there is a constraint allowing only for one singlet in
the symmetric product of the 72 states to appear at 74 order. Unlike the situation for the Eg
SCFT where the Higgs branch is generated by a single scalar transforming as 78 of Fg [46]
here one has new generators appearing at higher orders in the 7 expansion and thus having
different £ — R quantum numbers.

Next, we can partially close a puncture to obtain the index of the 441 vertex. On one
hand, the 441 vertex correspond to the free hypermultiplet SCFT in the bifundamental of
two SU(4)s and charged under the U(1), so its index can be evaluated by direct counting,

4 4 4
1 1

I(ay,ag,c) = H Ty vk p—— Ha = Hb =1. (5.39)

1,] aibjc =1 i=1

On the other hand, from (5.33),
1-— 7'8 IC(al)lC(aQ)

T = 5.40
(81, 82,¢) = T3y T =) (1 = ric ) (540

Py (12, ¢, 7726, ¢8| 1) T paen

2. i Py ail 7).

Mooy P 7 mr Tl r i 7))
We have checked the equivalence of these two expressions perturbatively to very high order

in 7.

Finally, let us look at the vertex with two maximal punctures and one puncture corresponding
to a square Young diagram, which carries an SU(2) flavor symmetry, see figure 4. The flavor
symmetry of this theory is known to enhance to E7 [26]. From (5.33), the Hall-Littlewood
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Figure 4: Association of the flavor fugacities for the E; vertex. Here H?Zl b; = H?Zl a; = 1.

index of this SCFT is given by

K(ai)K(az)

_ 2, 4 4

Ip,(a1,az,c) = (L+77+7°)(1+7 )(1 2 (1 riEr)
P (re, .2, k7)) |

Z YT ¢ TC
A1,A2,A3
Moars PHI

A1,A2,\
e PN (s 7). (5.41)
(T377—77_ 77— 3| 7_) =1

In [32] an explicit expression for the Higgs partition function was conjectured,

o0

I(zg,) = »_[k,0,0,0,0,0,0], 7%, (5.42)
k=0

where z is an E; fugacity and [k,0,0,0,0,0,0], are the characters of the irreducible repre-
sentation of E7 with Dynkin labels [£,0,0,0,0,0,0]. We have checked also here (5.41) is in
complete agreement with [32], and thus in particular is secretly Er covariant: the check can
be done analytically for the unrefined index and perturbatively in 7 to high order for the
refined one.

The expression (5.41) can be also checked by the Argyres-Seiberg duality between U Sp(4)
theory coupled to six fundamental hypermultiplets and Er theory with an SU(2) subgroup
gauged [26]. The former has a weakly-coupled description and its index can be computed
directly,

Tuspiay = 1+ XS a2 (w0, w, 2,9, 2)7° + -+ . (5.43)
Since there are six fundamental hypermultiplets the flavor group is SO(12). On the other
hand, gauging an SU(2) inside one SU(4) subgroup of the FE; index (5.41) gives

7= 7{ 4?; (1—€) (1 - ) PE [~r2xs()],, Tey @, {es, s/e,b/s, fbs} ). (5.44)

We have checked perturbatively in 7 that (5.43) and (5.44) coincide under the following
identification of the fugacities:
a as 1

a1
u— —, v—> —, wW— —, T — s
S S S ajasass

b
y—be, z— o (5.45)
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5.6 SU(6) quivers — the Fg SCFT

As our last example, we consider the index of the Fg SCFT [41]. This theory corresponds
to a sphere with a maximal SU(6) puncture and two non-maximal punctures with SU(3)
and SU(2) flavor symmetries, see figure 5. The group SU(6) x SU(3) x SU(2) is a maximal
subgroup of Fg. Following the general prescription (5.33) the index of Eg SCFT is given by

1—78)(1—710
IES(av b17 b27 C) = (i — 7_2)3/(2<1 — 7_2§ (1 — 7_23) X (546)
K(a) )
(1—72¢22)(1 — 74e*2)(1 — 76¢22) T, ;éj( — 72b; /b;)(1 — 74b; /b))

2
Z PHL<Tb1,Tb2,Tb37 tl, 177_2, l’);—g’ T)PHL(TQC C, 7'727 %7 %, T2C7‘ T)PHL(31’ 7—)

PﬁL(TS,TS,T,T Lr=3,773| 1)

)\1,...,)\55/\

In [32] it was conjectured that the Higgs partition function has the following Eg covariant

expansion,
o
I(zgs) = Y _[k,0,0,0,0,0,0,0], 7, (5.47)
k=0

where z is an Fg fugacity and [k,0,0,0,0,0,0,0], are the characters of the irreducible rep-
resentation of Eg with Dynkin labels [k, 0,0,0,0,0,0,0]. We have again checked equivalence
of (5.46) and (5.47) in the T-expansion, though in this case due to computational complexity
we could perform the expansion only up to order 78. The size of representations of Fg con-
tributing to the index grows very fast with the order of 7, e.g. the unrefined index is given
by

Tp, = 1+ 24872 + 27000 74 4 1763125 7¢ + 79143000 7% + . .. . (5.48)

5.7 Large k limit

It is not difficult to evaluate the large k limit of the HL index of SU(k) generalized quiv-
rs.14 For instance, for the index of the theory corresponding to a genus g surface without

punctures (5.36),

k=) ﬁl_T -l = pE [—(g—l) ! 2} : (5.49)

1—17

MWe thank Davide Gaiotto and Juan Maldacena for discussions on issues related to this section.
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Figure 5: Association of the flavor fugacities for the Eg vertex. Here H 1bi = HZ 1a; = 1.

In appendix C we give a short derivation of this expression. In the large k limit only the
singlet in the sum over the representations of (5.36) contributes. Since (5.49) is of order one
for large k it is expected to be matched by counting the appropriate supergravity modes in
the dual AdS background [47]. We can also compute the index of the T} theories in the large
k limit,

Ty, . (a1,82,83) = H 2J HH 72 =y (5.50)

j=2 I=1 761
- 3
— 2 I, 1
_PE[l 72] [I1PE |7 al/a]
I=1 i#]

From here the large k index of any generalized quiver is trivial to compute; in particular (5.49)
can be obtained by gluing together the index of (5.50). Unrefining the index of T}, by setting

all the flavor fugacities al = 1 we see that it has a non-trivial & dependence for large k limit.

Taking the plethystic 10gjof (5.50) (that is, considering the index of single-particle states) we
find
T4 1

P =37 (K —k)+ =710 <k> . (5.51)
The term of order k? on the right-hand-side comes from states in the adjoint representation of
the flavor group, while the term of order & comes from neutral states. At least some of O(k?)
states in the adjoint representation must correspond to modes of the AdS gauge fields that
couple to the flavor currents of the boundary theory. It would be interesting to check whether
all the O(k?) and O(k) states can be accounted for by supergravity states. If not, the extra
states could arise as non-perturbative states in the bulk geometry (e.g. wrapped branes or

black holes). In all cases studied so far the index is of order one in the large & limit and thus
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cannot capture the non-perturbative states of the bulk theory [12, 48, 49, 23|. This is not a
contradiction, since the index only counts protected states with signs. The index vanishes on
combinations of short multiplets that can in principle recombine into long ones, even when
such kinematically-allowed recombination do not actually happen [12]. However, for linear
quivers (in particular for the T} theories) the HL index has the meaning of a Hilbert series
over the Higgs branch, so it is expected to capture all the relevant %—BPS states of the dual

theory. We leave the very interesting comparison with the bulk theory for future research.

6. Schur index
We turn to the Schur index,
Ty = Te(~1)F 7, (6.1)

which is the same as the reduced index considered in [16]. Let us first recall the expression

for the SU (k) propagator. It is of the usual form
n(a,b1) = A@)T" (@)(a,b71), (6.2)
where A(a) is the Haar measure (5.21), and Z" (a) the index of the vector multiplet, given
by
7V(a) = PE | 21 6.3
q (a) = inadj(a) . (6.3)
q,a

The set of functions { fq)‘(a)} that diagonalize the structure constants are proportional to the

Schur polynomials [16],
fi(a) = Kq(a) x*(a). (6.4)

The Schur polynomials are orthonormal under the Haar measure, so in this case A(a) = A(a)
(recall (3.10)) and the factor ICq(a) is given by

Kyla) = —+. (6.5)

Generalizing our results in [16], we conjecture the following expression for the Schur index of

a three-punctured sphere with generic punctures,

k+2

ZA17A27A3 =

3
(¢:9) H’CAz(aI)Z : Q?Tlﬁigal(Az))l_k . (6.6)
=1 Y X(g

k—1 Nk—q k-1 k=3 1-k
Hj:l(l_q])kjj 27q27"'7q2>
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Here the sum is over the finite-dimensional irreducible representations of SU(k). The as-
signment of fugacities according to the Young diagram, a(A), is again as in figure 2, with
7 — ¢'/2. The Pochhammer symbol (a; b) is defined by

o0
(a; ) =JJ(1 —ab). (6.7)
i=0
The character of the representation corresponding to Young diagram A\ = (Ay,..., Ax_1,0) is
given by a Schur polynomial,
Aj+k—j
det(a;’ )
XNa) =~ (6.8)
det(a; )
The Ka prefactors are given by
row(A)  1; at
Ka(a) = PE | LE :
a@= ]I TI 1_q] : (6.9)
=1 ]»kzl ai,q

where row(A) is the number of rows in A and /; is the length of ith row. The coefficients ai, are
associated to the Young diagram again as in figure 3, with 7 — ¢%/2. Note that the quantity
appearing in the denominator of (6.6) is the quantum dimension of the representation A of
SU(k),

dimq/\:X)‘(q%,q%,...,qﬂ). (6.10)
For SU(2) the quantum dimension is also known as the g-number [A],.

We have subjected (6.6) to similar checks as the one described for the Hall-Littlewood
index, finding complete agreement with expectations; a few such checks were reported in [16].
Let us only mention here the basic identity following from compatibility of (6.6) with the
index of the SU(2) trifundamental hypermultiplet,

q'/? 1 1 1
ar+—Jlax+— | (a3 + —
1—g¢q ai as as

3
. N\3( 2. L a? a._2
(a:9)(q ’Q)EPEL—Q( P +a; +2)}

PE

- (6.11)

iy

3 _
— Hi:l X)\(aiva‘i 1)
1 _1 :

air vz XMg2,q72)

A proof of this identity is outlined in appendix E.
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7. Macdonald index

We are now ready to combine and generalize the results of the two previous sections. The Hall-
Littlewood and Schur polynomials are special cases of a two-parameter family of polynomials
discovered by Macdonald [42]. One naturally expects Macdonald polynomials to be relevant
for the calculation of the index in a two-dimensional slice of the full three-dimensional fugacity
space. The precise confirmation of this idea is our main result. Identifying the correct slice
is by no means obvious, but at this point it will come as no great surprise that it is given by

the limit that we have called the Macdonald index in section 4,
Tar = Trpg (—1)F B 2B (B4 — Ty (1) F 720 g1t (7.1)

where Trjp; denotes the trace restricted to states with 614 = F + 2j; — 2R —r = 0. For
g = t Macdonald polynomials reduce to Schur polynomials, while for ¢ = 0 they reduce
to Hall-Littlewood polynomials. By design, the Macdonald trace formula (7.1) reproduces
respectively the Schur and Hall-Littlewood trace formulae in the same limits.

Our basic ansatz is that the complete set of functions {f;(a)} that diagonalize the

structure constants are proportional to Macdonald polynomials with parameters ¢ and ¢,

Fan(@) = Kqa(a) PX(alg,1). (7.2)

The Macdonald polynomials [42]'> {P*(a)} are defined as the set of polynomials labeled by

Young diagrams A, orthonormal under the measure

1 1—1¢ —q"a;/a;
A = — PE|——— (xagj(a) =k +1 |||| - I :
0:(2) k! 1—gq (Xaaj (2) * )] ot ! Py 1 —tqai/a;j’ (73)
and having the expansion
= MNa(gq,t) < my + E P (g, t)my p . (7.4)

p<A

Here we define

A= (Ar,0) (8 Z Ha M (7.5)

oS i=1

where S; denotes the set of distinct permutations of (A1, ..., Ag).

5Macdonald polynomials appear in physics in many different contexts. Some recent papers on subjects

related to N' = 2 gauge theories that discuss Macdonald polynomials are [50, 51, 52].
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The factor Ky (a) is again fixed by requiring orthonormality of { f(;\’t(a)} under the prop-

agator measure. The propagator takes the standard form
n(a,b™") = A(@)Z"(a)d(a,b™"), (7.6)

where as always A(a) is the Haar measure (5.21), while the index of the vector multiplet is

in this case given by

7@ = PE [T )] &

We then have

_ Aq,t(a) :
Ful = (A(a) qu,xa)) ' 75

We can finally state our main conjecture. The Macdonald index of the SU(k) quiver

theory associated to a sphere with three punctures of generic type is

k (tj
IAl,A2,A3 = (t; Q)k+2 H (

?

3
q)) HI@ Z HI 1P>\ aI(A1)|q7 ) ) (79)
fie e ot |q,t)

The assignment of fugacities according to the Young diagram a;(A;) is again as in figure 2,

with 7 — t1/2. The K prefactors are

row(A) 1 i=i

A a.a

Ka@) = [[ [] PE 13’“] , (7.10)
i=1 jk=1 q a;,q

with the coefficients a?€ associated to the Young diagram again as in figure 3, with 7 — ¢1/2.
It is immediate to check that (7.9) reduces to the HL and Schur expressions in the respective

limits. For three maximal punctures (7.9) becomes,

A((Lt) ALy
Ir,(a1,a2,a3) = Z o H’th ay) PM1(ag] g, t),
A1>Xe> >N PAL"’)\k_l(t 25, ’q7 t) 1=
1 t—q koo
Alg,t) = PE [2(145 - 1)1_(1] H(tJ;Q)‘ (7.11)
j=2

For k = 2, this expression must agree with the index of the hypermultiplet in the trifunda-

PE

mental representation of SU(2),
= (7.12)

#1/2 1 1 1

1 a; + — as + — az + —

—q al a2 a3
ai,q,t

A (82 o) 3 ¢ P
( 7q) ( 7q) HPE |: (aZQ +a,L_2 +2):| Z H’L 1 (al) 7, |q7 ) .
<Q; Q) i=1 1- q a;i,q,t =0 (t2 i 2 |Q7 )
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We have verified this identity in the ¢ and g expansions. It helps that for SU(2) one can write

an explicit form for the Macdonald polynomials,

1 — q]+1 1— q]+1

R s IR B
PMa,a g, t) = Na(g, t Z H Lg% (7.13)
=0 j =0

where N (g, t) is a normalization constant rendering the Macdonald polynomials orthonormal
under the measure (7.3). More generally, equating the index for the (nnl) vertex from (7.9)
with the index of a hypermultiplet in the bifundamental representation of SU (k) and charged
under U(1), we obtain the identity

t1/2 : 1 & 1,1 (t;0)" &
PE | p CAZ aibj + - Z a; 'b; = W(t 1q) X (7.14)
2,7=1 i,7=1 abcq,
L ts
| - k —k

PE iq‘z:alaj T be PE 1iq(c ) X
Z,]:l (l,q,t 7‘ ] 1 b,q,t C,q7t

3 PMet's et ... ct's ! Flg, ) P (ailg, ) P (bilg, 1)

A PA(t%ﬂt%avt%|q7t)

It would be interesting to have an analytic proof of these identities.

From (3.12) we can readily calculate the index of the genus g theory with s punctures,

k
(t; q) k=D (—0)+s 1‘[ ICA (az) PA(az( i)la,t)
2 2+8 i=1 ’
T,y s(ar;q,t H (t7;9)%~ (¢:q) D=9 ZA: [ At 2= 2ts

j=2 T 2 g, 1)

(7.15)

Let us dwell upon this result. Let us first consider the genus g partition function (no punc-
tures) in the Schur limit, ¢ = t. We can write it as

To(q) = [(:9)*%]" " Suo(q)? ™ Z (7.16)

dlmq 29 2
Here Spo is the partition function of SU(k) level £ Chern-Simons theory on 53 if we formally

27i
identify ¢ = e?+¥,

(7.17)

The expression (7.16), up to the simple factor [(q; q)29_2] k_l, is the genus g partition function
of g-deformed 2d Yang-Mills theory in the zero area limit [28], which is in fact the same as
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Symbol | Surface Value
la)
3 Ag;t)
Capy 7 dimg (@) O Doy
1)
dimg, ()
ve “ D A(qq,t)
(af
naﬁ 6&5
(Bl

Table 3: The structure constants, the cap, and the metric for the TQFT of the Macdonald index.

the partition function of SU(k) level £ Chern-Simons theory on Cy x St with ¢ = etk [28].16
If we reintroduce punctures, the index is related to a correlator the ¢-deformed 2d Yang-Mills
theory; the relation involving both a flavor independent factor and flavor-dependent factors
K associated to the punctures. We have recovered in more generality the relation found
in [16] between the Schur index and 2d g-deformed Yang-Mills theory.!”

In the more general case of ¢ # ¢ the genus g partition function can be written as

_ k-
To(g,t) = [(0)%" (¢:9)% "] o(q,t)*~? Z T (7.18)
dzmq,
where the generalized quantum dimension is given by
dimgs(\) = PMt'T t' 2, ... t'2 |g.t) (7.19)

16\More precisely, g-deformed Yang-Mills theory in the zero area limit can be viewed as an analytical contin-
uation of Chern-Simons theory, or equivalently of the G/G WZW model (see [53] for a review of the latter),
to non-integer rank £.

"Ordinary 2d Yang-Mills theory [36, 37] is obtained by sending ¢ — 1. From the index perspective, because
of the additional overall factors, this is a singular limit. However, with proper regularization this limit can be
understood as reducing the 4d index to a 3d partition function [54, 55, 56]. See also [57] for yet another 3d/4d

connection.
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and we have defined

k .
Soo(g, t) = H (t-,,Q) :

Jj=2

(7.20)

This result appears to be closely related to the refinement of Chern-Simons theory recently
discussed by Aganagic and Shakirov [31]. Up to overall factors, Z,(q, t) is equal to the partition
function of refined Chern-Simons on Cy x S*. In terms of the Chern-Simons matrix model the
refinement of [31] amounts to changing the matrix integral measure from Haar to Macdonald.
We can thus identify the 2d theory whose correlators give the Macdonald index as the theory
obtained from ¢-Yang-Mills theory by deforming in the same way the path integral measure.
It would be interesting to find a more conventional Lagrangian description of this 2d theory,
for example the deformed measure could arise by integrating out some matter fields. It would
also be desirable to have a better understanding of the flavor-independent factors needed
to relate 2d Yang-Mills (g-deformed or (g, t)-deformed) to the index. They can be formally
associated to a decoupled TQFT with a single operator (the identity). Perhaps this decoupled
TQFT plays a similar role as the decoupled U (1) factor in the AGT correspondence [7].

8. Coulomb-branch index

Finally we consider the index
Ton(T, Q) = Troay(—1)F T3 (E+21=2R=1) 3 (B+2j2+24r) (8.1)

where Trops stands for the trace over states with £ + 2j; +r = 0. This limit of the full
index makes sense for theories with a Lagrangian description, since the single-letter partition
functions have well-defined expressions,

T-Q
=T 0

Theories connected to Lagrangian theories by dualities also have a well-defined Zop (T, Q). As

f2H=o0,  fv

. (8.2)

discussed in section 4, the further limit @@ — 0 leads to the Zo(7T') index, which is guaranteed
to be well-defined for any A/ = 2 SCFT.

We refer to (8.1) as the “Coulomb-branch” index, or Coulomb index for short, because
in a Lagrangian theory it receives contributions only from the £-type short-multiplets (see
Appendix B), whose bottom components are the gauge-invariant operators that parametrize

the Coulomb branch, for example
Tr¢?, Tr?,..., TroF (8.3)

for a theory with SU(k) gauge group. Since the hypermultiplets do not contribute, the

Coulomb index is independent of the flavor fugacities and the TQFT structure is very simple.
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The structure constants associated to a three-punctured sphere depend only on T and @), and
so does the propagator, since the gauge-group matrix integral can be carried out independently
of what the propagator connects to. The index of a quiver is then just a product over the
indices of its constituents (propagators and vertices).

The index of a vector multiplet in the adjoint representation of a simple gauge group G

is
0 (Q.T) ?{ H %A ) ex
@) Trg 211 g P

where rg is the rank of G and Ag(a) the Haar measure,

Z 1 Qn - Xafl;(a )] , (8.4)

n:l

1

Ag(a) = el

exp

1
-3 %(Xadj(an) - 7“9)] : (8.5)
n=1

with |[WWg| the order of the Weyl group. We recognize the integrand in (8.4) as the Macdonald
measure (7.3) with parameters Q and 7. The integral can be evaluated explicitly thanks to
Macdonald’s celebrated constant-term identities (see e.g. [42, 58] for pedagogic expositions

and [59] for a brief review),

1§ = PE | rank(G)Ty + > Tite, —Le, | » oy = Z (8.6)
aER* ERt
where RT is the collection of positive roots of G and
- T — Q
Iy =T"1"—=%. 8.7
=TS (87)

We recognize 7, as the index of the 5_3(0,0) superconformal multiplet, which satisfies the
shortening condition E = ¢ (see appendix B). By a Lie-algebraic identity, (8.6) can be

rewritten more succinctly as [59]

Iy =PE| Y I, (8.8)
jeexp(g)

where exp(G) stands for the set of exponents of the Lie group G. This result has an immediate
physical interpretation. The Coulomb index is saturated by the £-multiplets, whose bottom
components are the gauge-invariant operators made of ¢s. The single-particle index (the
argument of the plethystic exponential in (8.8)) then counts the independent gauge-invariant
operators made of ¢s, which are in 1-1 correspondence with the Casimirs of the group, that
is with exp(G). For example, for G = SU(k), exp(G) = {1,2,...,k — 1}, and we see that

the Coulomb index counts the independent single-trace operators (8.3) that parametrize the
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Coulomb branch. Turning the logic around, we can view this as a “physical” (or perhaps,
combinatorial) proof of Macdonald’s constant term identities. The integral over the Mac-
donald measure (8.4) counts gauge-invariant words built from certain letters of the vector
multiplet; from superconformal representation theory we can identify which short multiplets

are relevant for this counting problem, and deduce (8.8).

20 | 21

16 17 18 19 1 20

12 13 14 15 16

- R D —

U2 U(3) Ul U@

Figure 6: The bottom left box is assigned 0. The assigned integer increases from left to right. As we

move up, the first box of each row is assigned the same number as the last box in the row below.

Though the TQFT structure for the Coulomb index is very simple, it is not entirely
trivial. We can deduce the Coulomb index of strongly-coupled theories by using dualities,
and check that different routes to obtain the index give the same result. For example, using
Argyres-Seiberg duality [26]

1%
Tpy = @ — PE|T3), (8.9)
SU(2)

which is the expected result since the Coulomb branch of the Eg SCFT is generated by an
operator with E = |r| = 3. Strongly coupled SCFTs are sometimes obtained using S-dualities

in more than one way [60] but all the dualities yield the same index, for example

Y, Iy
SU(3 SU(4 =
1p, = TV - -7V % = PEL],
SU(2) USp(4)
% v v 4
_ Lsuw _ Lospay _ Lsomy _ Lsos) _ PE[L] (8.10)
7 7 .
Tarsy  Zéwe  Z& Zsow
7V 1y
SU Us 7
Tps = v <= v 20 PE[Zg].
SU(5) S0(5)
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The index of the T}, theory is also obtained easily from the generalized Argyres-Seiberg duality,

(I;”/U(k))k_2 zk:
Tp, = —0 = G—2)7Z;| . (8.11)
e 211;*/U() =3

This is again as expected, since the Coulomb branch of the T} theory is spanned by (j — 2)
operators with F = |r| = j, for j = 3,...,k (see e.g. [61]).

Extrapolating from these examples let us conjecture the Coulomb index of the theory
corresponding to a sphere with three generic punctures. For a general puncture [ in the Ag_4
theory, we associate the set of kK numbers {pg-l) : 7 =1,...k} from the corresponding auxiliary
Young diagram. The assignment is illustrated in figure 6. The Coulomb branch index of the

theory corresponding to a sphere with three punctures p™"), p® p(®) is then

k
S -2+ 4P 4 pl?y . (8.12)
=2

Z,0) p p3) = PE [dj ij] :

The dimension d; of the Coulomb branch spanned by operators with E = |r| = j agrees with
the dimension of the space of meromorphic j-differentials on the Riemann surface having
poles of order at most pg-I) at puncture I [1, 43].

Let us finally observe that the Coulomb index (8.4) discussed in this section can also
be interpreted as the index of N' =4 SYM in a certain limit of the N’ = 4 superconformal
fugacities, such that the index of the N/ = 4 vector multiplet reduces to the index of NV = 2
vector multiplet. The authors of [62] noticed the appearance of the Macdonald measure in

this context.

9. Discussion

Let us briefly summarize and discuss our results. We have defined and studied several limits
of the N' = 2 superconformal index. They are characterized by enhanced supersymmetry and
depend at most on two superconformal fugacities, out of the possible three. We have given a
prescription to calculate these limits for all A-series superconformal quivers of class S, even
when they lack a Lagrangian description. Thanks to the topological QFT structure of the
index, it suffices to find a formula for the elementary three-valent building blocks. For the
SU(2) quivers, which do have a Lagrangian description, the building blocks can be written
in terms of algebraic objects that admit a natural extrapolation to higher rank, leading to
a compelling general conjecture that passes many tests. These objects are the Macdonald
polynomials, tailor-made for our purposes as they depend on two fugacities, and for which a
beautiful general theory is already available. We expect the generalization of our results to

the D-series quivers of class S (and possibly to the E-series as well) to be straightforward.

— 37 —



The TQFT that calculates the index of the Aj_q quivers is closely related to two-
dimensional Yang-Mills theory with gauge group SU(k). An immediate qualitative hint,
of course, is that the state-space of the index TQFT is the space of irreducible SU (k) repre-
sentations. As first discussed in [16], and confirmed here in more generality, there is in fact
a precise quantitative correspondence between the limit of the index that we have dubbed
the “Schur index”, which depends on a single fugacity ¢, and correlators of ¢-deformed 2d
Yang-Mills theory [28] in the zero-area limit. In turn, the zero-area limit of ¢-deformed 2d
Yang-Mills on the Riemann surface C can be viewed as an analytic continuation of Chern-
Simons theory on C x S! [28].

Recently, a “refinement” of Chern-Simons theory on three-manifolds admitting a circle
action was defined in [31], via the relation with topological string theory and its embedding
into M-theory. Taking the three-manifold to be of the form C x S!, and reducing on the S*, one
obtains an indirect definition of “refined g-deformed Yang-Mills theory” on C, which depends
on two parameters ¢ and ¢. (The definition is indirect because unlike the purely g-deformed
case no Lagrangian description is available for the refined theory.) The refinement essentially
amounts to trading Schur polynomials with Macdonald polynomials, and we have found a
precise relation between our (¢,t) “Macdonald index” and correlators of this (g, t)-Yang-Mills
theory. It is natural to ask whether this is pointing to a direct connection between topological
string theory and the superconformal index. At first sight the geometries involved appear
to be quite different, since to obtain the superconformal index we must consider the (2,0)
theory on S% x S1 x C, with appropriate twists induced by the fugacities, while in the setup of
[4, 31] the relevant geometry is (C x S x Mj),+, where one may take Mz = S* x C (we refer
to the cited papers for a proper explanation). Moreover while the index admits a further
refinement for a total of three fugacities, it seems difficult to introduce a third parameter
in the framework of [4, 31] while preserving supersymmetry. Nevertheless, at least for the
special case of the Macdonald index, there should be a deeper way to understand the striking
similarity of the two results.

An obvious direction for future work is the generalization of our results to the full three-
parameter index. The Haar measure together with the index of the N' = 2 vector multiplet
combine to [19, 15]

k

% 11 - ! (9.1)

viciis L @ifg ap) Ut/ a,p)

where I'(z; p, q) is the elliptic Gamma function

00 o
1—ptlgitl/y
I(zp,q) = H W (9:2)
i,j=0

— 38 —



A natural speculation is that the functions fzj\’q,t(a) that diagonalize the structure constants
of the full index should be proportional to elliptic extensions of the Macdonald polynomials,
to which they should reduce in the limit p — 0 (or ¢ — 0). Various proposals for elliptic
Macdonald functions have appeared in the mathematical literature, see e.g. [63, 64, 65]. We
can in fact formulate a more precise conjecture, motivated by the relation between two-
dimensional gauge theories and integrable quantum mechanical models of Calogero-Moser
(CM) type, see e.g. [66, 67, 68, 69, 70, 71]. The reduction of ordinary 2d Yang-Mills theory
to one dimension yields the rational (non-relativistic) CM model [66]. One can consider
the trigonometric and elliptic generalizations of the non-relativistic model, as well as their
relativistic cousins (the relativistic versions are also known as Ruijsenaars-Schneider (RS)
models). The relativistic trigonometric model (trigonometric RS) depends on two parameters
(g,t), has Macdonald polynomials as its eigenfunctions, and is closely related to the two-
dimensional G/G WZW model'® or equivalently to Chern-Simons theory on C x S!. At the
summit of this hierarchy is the elliptic relativistic model (elliptic RS), which depends on three
parameters, analogous to (p, q,t) of the full index. Our conjecture is then that the symmetric
functions relevant for the computation of the full index are the eigenfunctions of the elliptic
RS model. Not too much is known about them, see [73] for a review.”

Perhaps the most interesting open problem is to give a “microscopic” derivation of the
two-dimensional TQFT of the index from the six-dimensional (2,0) theory. A promising
shortcut, which exploits the mentioned connection between 2d gauge theories and 1d Calogero-
Moser models, is along the following lines. Consider the (2,0) theory on S? x S(ll) X Cq,s- The
Riemann surface Cy s can be viewed as a circle, 5(12), times a graph I, By first reducing the
(2,0) theory on 5’(12) (note that there is no twist around this circle) one obtains 5d super
Yang-Mills on S3 x S(ll) x Iy ;. We propose that the further reduction of 5d SYM on S(ll) x S3
(with the fugacity twists) yields the elliptic RS model on the graph I, with appropriate
boundary conditions at the s external punctures and at the internal junctures. In a suitable
limit, which corresponds to taking S(ll) to be small, the 4d index becomes the 3d partition
function [54, 55, 56], and our proposal reduces to the one of [78] (see also [79]). These authors
show how to interpret such 3d partition functions as overlaps of quantum mechanical wave
functions. We are suggesting that a similar idea may apply to the 4d index, and that the
relevant quantum mechanical model is the elliptic RS model. Work is in progress along these

lines.

8See [70] for a review and [72] for recent relevant work.
19Quantum mechanical integrable models have been recently related to the problem of counting vacua of
N = 2 supersymmetric theories in the Q-background [74, 75]. See also [76, 77] for connections of elliptic

Gamma functions to integrable systems.
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A. Construction of the diagonal expression for the SU(2) HL index

In this appendix we diagonalize the structure constants of the SU(2) quivers in the p — 0,
o — 0 limit. With hindsight, we have dubbed this limit the Hall-Littlewood (HL) index, since
the diagonal functions turn out to be closely related to the Hall-Littlewood polynomials. This
is precisely what we show in this appendix.
For SU(2), the SCFT associated to three-punctured sphere is the the free hypermultiplet
in the trifundamental representation. In the limit of interest, its index reads
1

HSG,Sb’SC:ﬂ(l — T ase b ¢se)

where the fugacities a, b, and ¢ label the Cartans of the three SU(2) flavor groups. The index

Z(a,b,¢) = PE[tx1(a)x1(0)x1 (g per = (A1)

of the vector multiplet and the SU(2) Haar measure combine to

AT (a,7) = (1 - 7%) A a(a), (A.2)
where A2 ;4(a) is the Macdonald measure (7.3) with ¢ =72 and ¢ = 74,
1 2 1 2 2 2
AT2774(a):§(1—a )(1—;)(1—7‘ a )(1—?). (A.3)

The corresponding Macdonald polynomials P*(a,a"';¢q,t), normalized to be orthonormal
under (A.2), are?”

A2 4y _ T (@) xarz(a)
P (a; 2.7 ) = \/ﬁ(l - aizTQ) (1= a2r2) XA(T)xat2(7) {XA(T) X}\+2(T>} )

(A4)

20This normalization is only used in this appendix. In the rest of the paper Macdonald polynomials are

taken to have unit norm with respect to the Macdonald measure.

— 40 —



By choosing {P*(a,a"';¢,t)} as a basis, the metric of the TQFT is then trivial, n** = M.
On the other hand, the projection of Z(a,b,c) into the basis functions gives the structure

constants Cpp»,

I(a,byc) = Y CunP(a; 72, 74P (b; 72, 7P e 72, 7). (A.5)
2, v,A=0

We find that while the structure constants are not diagonal, they take a relatively simple

“upper triangular” form. The only non-vanishing coefficients are
Chon =V, C)\,uu: W = M,U»)\E“QA fOI“u<)\, (—1))\+H:1, (AG)

where

Ua(r) =

i <+ . xm), (A7)

Ve \WVal)
(1) = \/@(771 +7) !

XA (T)xas2(7) '

Associativity is easy to check. It is trivial for most choices of external states, the one inter-
esting case being the four-point function puvr with p < v and having the same parity (both
even or both odd). Equality of the two channels reads

Z C,u,u)\c)\w/ = [Cuuu]z ’ (AS)

A>p,(—1)A+n=1

which amounts to (no sum on v)

S AP+ 2, (r) = 2, (7). (A.9)

AS v, (—1)A =1

One can verify that this property is satisfied for the particular values of the coefficients given
in (A.7).2!

Let us now perform an orthogonal transformation that diagonalizes the structure con-
stants. From (A.6) we see even and odd Macdonald polynomials do not mix with each other
and thus can carry our the diagonalization separately for each parity; the discussion below is
restricted to the even parity case for definiteness. The Latin letter indices below, j,..., run
over the integers and correspond to half the value of the Greek indices used above.

We define real symmetric matrices N; as??

(Ni) j = Ciji - (A.10)

1 _ e @
sinh «(2k+1) ~ 2sinh? a cosh a

22Note that since the metric is trivial, %/ = §%, the upper or lower position of the indices is immaterial.

210ne needs the identity > oreo SR a@hTE) and induction on v.
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Associativity implies that they commute, [N;, N;] = 0, so they can be simultaneously diago-

nalized. Recall that the structure of each matrix Nj; is

(i<ji=k 9
i=k=j 1z
(Nj)y = i>j k=3 (A.11)

k>j3,i=3 Qp

other 0

The non-zero eigenvalues of this matrix are €; with multiplicity j, and ¥; — Q; with multi-

plicity one. The unique eigenvector with eigenvalue ¥; — ); is
€11 = (0, ey 0, lpj - Qj, Qj-i—h Qj+2, .. .), (A12)

where there are j zeros in the beginning of the vector. Note that the e;s are orthogonal to

each other,

ejr1 -enr1 = (U — Q)2 + ) [ =0, (A.13)

1>7

where we took j > k without loss of generality and used the associativity constraint (A.9).

Moreover, the vectors e; turn out to be eigenvectors of all the matrices Nj,

1< : Nj ‘€] = Qj €11, (A14)
Z:] : Nj -ei+1:(Wj—Qj) €i+1,
1> : Nj'ei+1:0~

This can be shown from the definitions with the help of the associativity constraint (A.9). To

complete this set of vectors to a basis we have to add one more vector, orthogonal to all e;,
ey = (Ql, QQ, ) (A15)

This is an eigenvector of all the matrices N; with eigenvalue €2;. We have thus managed to
diagonalize the matrices N;. In the diagonal basis {e;} the matrices are given by (we use

hatted indices to represent components in the new basis)

]>%, QJ(S%-
(NiJii = i=4, (& —9Q)); (A.16)
j<i, 0
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Finally we perform the orthogonal transformation to the new basis also for the matrix label

j of Nj, and find constants in the new basis read

Chi = - > (e (N (A.17)

9

where n; is the normalization of e,
n; = /e e; = 7%\/1— 72 forj >0, (A.18)
ng = /€5 € = (1—72)(1+72).

A little calculation gives

(A.19)

and zero for the other choices of the indices. So far we have restricted attention to even
parity (in terms of the original Greek labels). The case of odd parity works along completely
parallel lines.

We can now explicitly compute the functions that diagonalize the structure constants,
by contacting the normalized vectors e, /n, with the Macdonald polynomials (A.4). A useful
identity is (A > 0)

[e.9]

1+7° xa(a)
Z PRy, = 2,2 372 - (A.20)
p=A, (1) e=1 (1 =7%a?) (1 = 72/a?) xa(7)

One finds that the diagonal basis is given by
1 1
A _ 2
Fem) = = T ey 1= rjan) V@)~ T2 (0)}

1 1 —
Flon = mi=—raya=—=@ ¥

It is straightforward to verify that this basis is orthonormal under the measure (A.2). Re-

for A>0, (A.21)

markably, the functions f*(a,7) are proportional to the SU(2) Hall-Littlewood polynomials
PﬁL(a, a=!|7), see (5.11), with a A-independent proportionality factor K(a, 7).

Finally we can write the diagonalized form for the index,

I(al,ag,ag) = (A.22)

1 1 e 3
(el § N (Epere Y Cppeypey {(1 P T L (xa(ai) - TQXA—z(aﬂ)} :

A=1 i=1

The equality of this expression with (A.1) can be proven directly by elementary means since

the sum above is a geometric sum. By noting that

(1) = T2 xa—a(7T) = 7'7)‘(1 +72), (A.23)
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and recalling the definition (5.11) of the HL. polynomials we can also write

o
Z(ay,a2,a3) = L+ 7 H Z HP (ai,a; | 7).
1—72 TZ/CLZZ) furd P/\HL(T 7'_1]7' ¢
(A.24)

B. Index of short multiplets of A/ = 2 superconformal algebra

A generic long multiplet AE 11j2) of the N' = 2 superconformal algebra is generated by the
action of the eight Pomcare supercharges Q and Q on a superconformal primary, which by
definition is annihilated by all conformal supercharges S. If some combination of the Qs also
annihilates the primary, the corresponding multiplet is shorter and the conformal dimensions
of all its members are protected against quantum corrections. The shortening conditions for
the A/ = 2 superconformal algebra were studied in [80, 81, 82]. We follow the nomenclature
of [82], whose classification scheme is summarized in table 4. Let us take a moment to
i1y is the highest weight state with SU (2)g spin

R > 0, U(1), charge r, which can have either sign, and Lorentz quantum numbers (ji, j2).

explain the notation. The state |R,r)v Gir

The multiplet built on this state is denoted as Xg where the letter X' characterizes

T\J1,J2)°
the shortening condition. The left column of table 4 labéls the condition. A superscript on
the label corresponds to the index Z = 1,2 of the supercharge that kills the primary: for
example B refers to Q1,. Similarly a “bar” on the label refers to the conjugate condition:
for example By corresponds to Qa4 annihilating the state; this would result in the short anti-
chiral multiplet BR,r(jl,O)a obeying £ = 2R —r. Note that conjugation reverses the signs of r,
j1 and jo in the expression of the conformal dimension.

The superconformal index counts with signs the protected states of the theory, up to
equivalence relations that set to zero all sequences of short multiplets that may in principle
recombine into long multiplets. The recombination rules for N/ = 2 superconformal algebra
are [82]

2R+r+2j142

RoGrgs = CRrG1d2) © CRed rpd (-1 o) o (B.1)
2R—T+2j2+2

Ryr(j1.52) CR 7 (j1,52) ® CR-i-f T—*(Jh]Q ) ’

2R+j1+j2+2

Rj1—j2(jr.g2) — CR(Jl g2) D CR+ 5 (j1—%.J2) ® CR+ L(j1.d2—12) ® CR+1( j1—5.d2— %) " (B.3)

The C, C and ¢ multiplets obey certain “semi-shortening” conditions, while A multiplets
are generic long multiplets. A long multiplet whose conformal dimension is exactly at the
unitarity threshold can be decomposed into shorter multiplets according to (B.1,B.2,B.3). We

can formally regard any multiplet obeying some shortening condition (with the exception of
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Shortening Conditions Multiplet
Bi | Qia|R, 7)) =0 j1=0 E=2R+r BR.r(0.42)
By | Qau|R, ) =0 Jj2=10 E=2R-r Brr(1,0)
£ | BinB, R=0 E=r Er(0.2)
£ | BinB, R=0 E=—r €rj1.0)
B | BN B, r=0, j1,j2 =0 E =2R Br
C1 | €PQup|R,7)v =0 E=2+2j14+2R+7 | Cpy(j1.jo)
(Q1)?|R, ) =0 for j; =0 E=2+2R+r CRr(0,42)
2 6d6Q28|R’ ryhw. = E=2+42j4+2R—7 | Cry(j1.i»)
(Q2)?|R, r)- =0 for jo =0 E=2+2R—r CRir(j1,0)
C1NCy R=0 E=2+2j+r Co,r(j1,j2)
¢, NGy R=0 E=2+2j—r éo,r(jl,jz)
C |CiNG r=j2—Jj1 E=2+2R+ji+j2 | Cry o)
CiNCyNCiNCy R=0,r=50—-531 | E=2+7+72 éO(j1,j2)
D | BN, r=ja+1 E=1+2R+j DR(0,2)
D | BoNC —-r=j5+1 E=1+2R+ Dr(jr0)
ENCo r=jo+1,R=0 |E=r=1+j Dy (0,5,)
Enc —r=j+1L,R=0| E=—-r=1+j Dy (i, 0)

Table 4: Shortening conditions and short multiplets for the A/ = 2 superconformal algebra.

the £ (£) types, and 150(]'1,0) (Do(0,45)) types) as a multiplet of type C, C or C by allowing the
spins j1 and jo2, whose natural range is over the non-negative half-integers, to take the value

—1/2 as well. The translation is as follows:

CR’T(_%JQ) = BR"‘%”’"‘%(OJQ)’ CR,T(]L L= BR+%,r—%(]1,o) ) (B.4)
CR(—%,jz) = DR+§(0,32)7 R(1,—1) ~ DR+%(31,0) , (B.5)
CAR(—;—%) ~Dprii-1) = @R+§(—l 0) =~ Bpii - (B.6)

Note how these rules flip statistics: a multiplet with bosonic primary (j; + jo integer) is

turned into a multiplet with fermionic primary (j; + j2 half-odd), and vice versa. With these
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conventions, the rules (B.1, B.2, B.3) are the most general recombination rules. The £ and &
multiplets never recombine.

The index of the C and £ type multiplets vanishes identically (the choice of supercharge
with respect to which the index is computed, Q = él;, breaks the symmetry between C (£)
and C (€) multiplets). The index of all remaining short multiplets can be specified by listing
the index of C,C , &, Dy (o,j,), and 750(3'1,0) multiplets,

) o \201400) 242R+2js st ja—r L —0p)(T —0)(T—p) o
Tenrn g = e = i\ )

342R+2j2 si1+5 Jii+5 (1 _ 5D
e, = (—1)2+i2) T ot e pn e (L Zop) e (/2 —7@)(2;‘1 7.
R(j1,32) (1 —=0o7)(1—p1) p T p

o —r—1 —r—1_(T = 0)(T = p) o
IE’T(]-LO) _ (_1)2]10. T lp r—1 )X2j1 =),

(I1—07)(1—pr p
(et
IDo(jl,m - (1 —or)(1—p1)

(3 ()~ () e (2)

. (—1)22+1722+2 .
= 1— . 7
DO(O,]Q) (1 . O'T)(l . pT) ( Up) ( )

where the Schur polynomial x2; (ﬁ) gives the character of the spin j representation of
SU(2).

Let us evaluate the interesting limits of the index studied in this paper on individual
multiplets.
Macdonald index

This index is obtained from the general index in the limit ¢ — 0. The index of the short

multiplets in this limit is given by

_ -0
cRﬂ"(J’LJ’z) ’

3+2R+2j2 251+1
. _ _1)2(j1+j2)7— Zp (B.8)
CR(1.52) (1 — pT) ’
E’_"V‘(jl,o) = 0)
) 2j1+1 . 72J2+2
/AU G ) o N (R
Do(jl,o) ( ) (1 — ,07_) ) DO(O,JQ) ( ) (1 — pT)

While taking the limit of the C and € multiplet index we have used jo —j; > r and —r > j; +1
respectively. The first inequality follows from the bound d;_ > 0 along with 51; = 0 and the
second one can be obtained by evaluating §;— > 0 on the first descendant of the primary of
the £ multiplet.
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Hall-Littlewood index

This index is obtained from the Macdonald index by further taking the limit p — 0. The

index of the short multiplets is

C_er(jlvjz) - 0’

Cripy gy = T(DPRIIERG (B.9)
Ergroy — O

Lpy,0 = 0 Ipy(o,5y) = (—1)2ttrees,

Schur Index

We take the limit 7 — p. In this limit, the index becomes independent of ¢ and the short

multiplets give

C_er(hdé) =0,
44+2(R+-j1+5
. = _1)2(j1+j2)T ( o ) (B.10)
CR(j1 ) (1 — 7'2) ’
Igf‘(jl,o) = 07
T = (—1)2jl+1 THt _ (_1)2j2+1 72242
Dogjy,00 (1—72)° Do(o0,j2) 1-72)
Coulomb Index
Finally we take 7 — 0. In this limit only the £ multiplet have a non-vanishing index
CRr(rgz)
éR(jlvj2) =0, (Bll)

: _ o
Igr(jl,O) = (_1)211(0-[)) TX2]'1 <\/;> )
. . o
Zﬁo(n,o) = (=1 (o) " x2j, (\/Z) , Iy 5y = 0-

The N = 2 vector multiplet is the direct sum of Dy (0,0 and 750(0,0), indeed (4.17) is simply
150(0,0).23 In a Lagrangian theory, the only possible D multiplets have j; = 0, and are obtained
from the 2_)0(0’0) half of the N' = 2 vector multiplet. In the less restrictive limit of o,7 — 0
and p — oo the index of some of the short multiplets could potentially diverge. However, for
Lagrangian theories the only contributing multiplets are gr(0,0) multiplets arising from tensor

products of the @0(070) from the vector multiplet, whose index is finite.

2%Note that in this limit Is = Iﬁo(o 0" This is also true in the less restrictive Coulomb limit (4.18).

1(0,0)
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C. Large k limit of the genus g HL index

In this appendix we give some details about the large k limit of the HL index for SU(k)
quivers corresponding to genus g surface with no punctures. For finite k, the index is given
by (5.36),
L\ 2g—2
k
o (szzu . ng))

1
Tq (1 — 72)(k=1)(a=1) ; P){JL(Tk’—l’Tk—?)’ LTIk 7)2e-27 (C.1)

The denominator in the sum above is explicitly given by [42],

(C.2)

1— 7%
— 20

k
k— ,
P{IL(Tk_l,Tk_g, . ,Tl_k|7') =Ny(7) 7 i1 (2i—k=1)X; H :
=1

where Ny (7) is given in (5.19),

72 oo m(i) 1_ 7‘2j

Here m(i) is the number of rows in the Young diagram A = (A1, ..., \x) of length i. We need

to evaluate

A D DI v T
Ar2Xo> >

o0

— (1 - 72)k=D-D) Soazx e i (e=i)im

N15M25-Mk—1=0

where \; = Z?;i Nk—j. In the large k limit terms with non-zero 7; vanish since we always
assume |7| < 1. Thus, the only contribution to the sum at leading order for large k is from

the term with all n; = 0,

k—o0 . _ _ —
Ig( —00) _ klinc}o (1 _T2)(k 1)(g 1)/\/51:23’.__%_1:070 — (C.5)
- 2j\g—1 7
_]1;[2(1—7 ) —PE[—(g—l)l_ﬂ}.

The same logic applies also to the large k limit of the T} theories: the singlet is the only term

contributing to the index at leading order.
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1 T 3372 14473

87374 41697° 1948676 8069377

31923778 116563277 4024927710 13054735711
4013724472 11687614173 323853313714 854555364715
2153519932716 5188980328717 1197837238578 2652197472971
56409853881720 115373040784 72! 227178289971722 431064583235723
7889450727977 1393870863434725 2379094134408726 3925581861006727
62658849738417%8 96803319180677%° 14483072164070730 | 2099403352814773!
29497595795349732 | 40188148151858733 | 5311090008673773* | 6810440283895973°
84760383950971736 | 102408879854636737 | 1201431878523257%° | 13688300818482573°
1514782204837997%0 | 16283426298990274! | 1700476513422447%? | 1725213860890307%3

Table 5: The coefficients of Pgg(7). The coefficient of 786=F is equal to the coefficient of 7% .

D. The unrefined HL index of T}

Using the conjecture of section 5.4 we can write an explicit expression for the unrefined index
of the T theory. We find

3
(PHE, \,(1,1,1,119))

Ir, = 2)42 HL S p— : (D.1)
(1-72) /\1>)\22>/\3>0 P>\1,>\27/\3 (TB’ LT 3’5)
The sum over the representation can be explicitly evaluated to give
1—171
Ir, = (D.2)

=281 Ay~ s o)

where Pgg(7) is a polyndromic polynomial of degree 86 in 7 with coefficients given in table 5.
The degree of the singularity when 7 — 1 has a physical meaning: since the Hall-Littlewood
index computes the Hilbert series of the Higgs branch this is the complex dimension of the

Higgs branch. For T the HL index predicts the dimension to be 42, in agreement with [47, 61].
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E. Proof of the SU(2) Schur index identity
In this appendix we prove the basic SU(2) Schur index identity (6.11),

PE [+ 2)(a+ A+ )]

3 —
ai,q _ > Hi=1 XA(G@, ai 1) (E 1)
- l _l . .
(4:9)%(a% @) [T, PE [%Zq(af +a; 7+ 2)} o xaleza72)

ai,q
The strategy is to study the analytic properties of this expression and show that the left- and
right-handed sides have the same poles and residues. Let us first define

ay az as
T = , Y= , z= , u=ajasaz, Tyzu=1, (E.2)
a2a3 aias a2a1

where a; are SU(2) fugacities. We also define

e}

(@) = (a; @)oo = [ [(1 = ag"). (E.3)
=0
We will use square brackets [ ] to denote ordinary brackets (that delimit expressions). Then,

using

Z%:—log 1—ux), (E.4)

the LHS of (E.1) is given by

[1 — q)(q)*(gzy) (qz2) (qru)(qy2) (qyu) (qzu) (E.5)
(¢"22)(q" /%)) (¢ 2y) ("2 /y)(q/22)(¢" /%) 2) (¢} Pu) (¢ Ju) - '

Let us study the analytic properties of this expression as a function of = (the expression is
1/2—1

LHS =

symmetric in z,y, z,u). We have poles whenever =z = ¢ with integer [ (positive, zero or
negative). At z — 0, oo we have accumulation of poles. Let us for concreteness compute the

residue with positive [

Respps = L@@ ) (@ 2) 0/ ) ay2) @ 22 @2 y) g
(@ 1) (@) (@' 2y) (a2 /y) (@' 22) (a2 ) 2) (@) (y2))(a* Hyz) '
Here (¢! is (¢'/?z) evaluated at z = ¢*/?>~! with the vanishing factor removed. Now we
have
(@2~ @2 y) [yl 1
(/29 (q1/2/y) - ¢2/2 1 — gl/2-1y (E.7)
From here we get
_ [1 - ql(0)[y=]' TTizo(1 — 4"/ (=) I
RS = Ty P - P — T — ) A
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where

1 1 1 1
A=z ——4+y——+z——+u——. (E.9)
x Yy z u

Let us now look on the RHS of (E.1), which can be written as

V22 &
A

n/2 1 1 1
RHS = a n

1

We again want to compute residues in z. To see the poles we write

> 5?::;3 nafr g g T (B.11)
— — gl/2+i g ’
i=1 1 =0 n=1 =0 1 q / L

Thus again the poles are at z = ¢*/2~! for any integer (we have also same expression as (E.11)
with x — 1/z). The residue here is easily computed to give

~1/2 _ g1/2
Resprs =~ (E.12)

All in all, the LHS and RHS have the same poles and residues

,51,



References

[1]
2]

[11]

[12]

[13]

D. Gaiotto, N=2 dualities, arXiv:0904.2715.

D. Gaiotto, G. W. Moore, and A. Neitzke, Wall-crossing, Hitchin Systems, and the WKB
Approzimation, 0907 .3987.

S. Cecotti and C. Vafa, Classification of complete N=2 supersymmetric theories in 4
dimensions, 1103.5832.

S. Cecotti, A. Neitzke, and C. Vafa, R-Twisting and 4d/2d Correspondences, 1006 .3435.

M. Alim, S. Cecotti, C. Cordova, S. Espahbodi, A. Rastogi, et al., BPS Quivers and Spectra of
Complete N=2 Quantum Field Theories, 1109.4941.

M. T. Anderson, C. Beem, N. Bobev, and L. Rastelli, Holographic Uniformization, 1109.3724.

L. F. Alday, D. Gaiotto, and Y. Tachikawa, Liouville Correlation Functions from
Four-dimensional Gauge Theories, Lett. Math. Phys. 91 (2010) 167-197, [0906.3219].

N. Wyllard, Ay_1 conformal Toda field theory correlation functions from conformal N=2
SU(N) quiver gauge theories, JHEP 11 (2009) 002, [0907.2189].

A. Mironov and A. Morozov, On AGT relation in the case of U(3), Nucl. Phys. B825 (2010)
1-37, [0908.2569).

N. A. Nekrasov, Seiberg- Witten Prepotential From Instanton Counting, Adv. Theor. Math. Phys.
7 (2004) 831-864, [hep-th/0206161].

V. Pestun, Localization of gauge theory on a four-sphere and supersymmetric Wilson loops,
0712.2824.

J. Kinney, J. M. Maldacena, S. Minwalla, and S. Raju, An index for 4 dimensional super
conformal theories, Commun. Math. Phys. 275 (2007) 209-254, [hep-th/0510251].

C. Romelsberger, Counting chiral primaries in N = 1, d=4 superconformal field theories, Nucl.
Phys. B747 (2006) 329-353, [hep-th/0510060].

A. Gadde, E. Pomoni, L. Rastelli, and S. S. Razamat, S-duality and 2d Topological QFT, JHEP
03 (2010) 032, [0910.2225].

A. Gadde, L. Rastelli, S. S. Razamat, and W. Yan, The Superconformal Index of the Eg SCFT,
JHEP 08 (2010) 107, [1003.4244].

A. Gadde, L. Rastelli, S. S. Razamat, and W. Yan, The 4d Superconformal Indez from
g-deformed 2d Yang- Mills, Phys. Rev. Lett. 106 (2011) 241602, [1104.3850).

C. Romelsberger, Calculating the Superconformal Index and Seiberg Duality, 0707 .3702.

G. Festuccia and N. Seiberg, Rigid Supersymmetric Theories in Curved Superspace, JHEP 1106
(2011) 114, [1105.0689].

— 52 —



[19] F. A. Dolan and H. Osborn, Applications of the Superconformal Index for Protected Operators
and g¢-Hypergeometric Identities to N=1 Dual Theories, Nucl. Phys. B818 (2009) 137-178,
[arXiv:0801.4947].

[20] V. P. Spiridonov and G. S. Vartanov, Superconformal indices for N' =1 theories with multiple
duals, Nucl. Phys. B824 (2010) 192-216, [0811.1909].

[21] V. P. Spiridonov and G. S. Vartanov, Elliptic hypergeometry of supersymmetric dualities,
0910.5944.

[22] V. Spiridonov and G. Vartanov, Supersymmetric dualities beyond the conformal window,
Phys.Rev.Lett. 105 (2010) 061603, [1003.6109].

[23] A. Gadde, L. Rastelli, S. S. Razamat, and W. Yan, On the Superconformal Index of N=1 IR
Fized Points: A Holographic Check, JHEP 1103 (2011) 041, [1011.5278].

[24] G. Vartanov, On the ISS model of dynamical SUSY breaking, Phys.Lett. B696 (2011) 288-290,
[1009.2153].

[25] V. Spiridonov and G. Vartanov, Elliptic hypergeometry of supersymmetric dualities II.
Orthogonal groups, knots, and vortices, 1107 .5788.

[26] P. C. Argyres and N. Seiberg, S-duality in n=2 supersymmetric gauge theories, JHEP 0712
(2007) 088.

[27] J. A. Minahan and D. Nemeschansky, An N = 2 superconformal fized point with E(6) global
symmetry, Nucl. Phys. B482 (1996) 142-152, [hep-th/9608047].

[28] M. Aganagic, H. Ooguri, N. Saulina, and C. Vafa, Black holes, g-deformed 2d Yang-Mills, and
non-perturbative topological strings, Nucl.Phys. BT15 (2005) 304348, [hep-th/0411280].

[29] E. Buffenoir and P. Roche, Two-dimensional lattice gauge theory based on a quantum group,
Commun. Math. Phys. 170 (1995) 669-698, [hep-th/9405126].

[30] C. Klimcik, The formulae of Kontsevich and Verlinde from the perspective of the Drinfeld
double, Commun. Math. Phys. 217 (2001) 203-228, [hep-th/9911239].

[31] M. Aganagic and S. Shakirov, Knot Homology from Refined Chern-Simons Theory, 1105.5117.

[32] S. Benvenuti, A. Hanany, and N. Mekareeya, The Hilbert Series of the One Instanton Moduli
Space, JHEP 06 (2010) 100, [1005.3026].

[33] A. Hanany and N. Mekareeya, Tri-vertices and SU(2)’s, JHEP 1102 (2011) 069, [1012.2119].
[34] V. Spiridonov, Elliptic hypergeometric functions, arXiv:0704.3099.

[35] A. Gadde, E. Pomoni, and L. Rastelli, The Veneziano Limit of N=2 Superconformal QCD:
Towards the String Dual of N = 2SU(N.) SYM with Ny = 2N,, 0912.4918.

[36] E. Witten, On quantum gauge theories in two-dimensions, Commun.Math.Phys. 141 (1991)
153-2009.

— 53 —



[37]

[38]

[39]

[40]

[41]

[42]
[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[54]

E. Witten, Two-dimensional gauge theories revisited, J. Geom. Phys. 9 (1992) 303-368,
[hep-th/9204083].

S. Cordes, G. W. Moore, and S. Ramgoolam, Lectures on 2-d Yang-Mills theory, equivariant
cohomology and topological field theories, Nucl. Phys. Proc. Suppl. 41 (1995) 184244,
[hep-th/9411210].

J. Gray, A. Hanany, Y.-H. He, V. Jejjala, and N. Mekareeya, SQCD: A Geometric Apercu,
JHEP 0805 (2008) 099, [0803.4257].

A. Hanany and N. Mekareeya, Counting Gauge Invariant Operators in SQCD with Classical
Gauge Groups, JHEP 0810 (2008) 012, [0805.3728].

J. A. Minahan and D. Nemeschansky, Superconformal fized points with E(n) global symmetry,
Nucl. Phys. B489 (1997) 24-46, [hep-th/9610076].

1. G. Macdonald, Symmetric functions and hall polynomials, Ozford University Press (1995).

O. Chacaltana and J. Distler, Tinkertoys for Gaiotto Duality, JHEP 1011 (2010) 099,
[1008.5203].

G. W. Moore and Y. Tachikawa, On 2d TQFTs whose values are holomorphic symplectic
varieties, 1106.5698.

D. Gaiotto, G. W. Moore, and Y. Tachikawa, On 6d N = (2,0) theory compactified on a
Riemann surface with finite area, 1110.2657.

D. Gaiotto, A. Neitzke, and Y. Tachikawa, Argyres-Seiberg duality and the Higgs branch,
Commaun. Math. Phys. 294 (2010) 389-410, [0810.4541].

D. Gaiotto and J. Maldacena, The gravity duals of N=2 superconformal field theories,
arXiv:0904.4466.

Y. Nakayama, Index for orbifold quiver gauge theories, Phys. Lett. B636 (2006) 132-136,
[hep-th/0512280].

Y. Nakayama, Index for supergravity on AdS(5) x T**1,1 and conifold gauge theory, Nucl. Phys.
B755 (2006) 295-312, [hep-th/0602284].

H. Awata and Y. Yamada, Five-dimensional AGT Conjecture and the Deformed Virasoro
Algebra, JHEP 01 (2010) 125, [0910.4431].

R. Schiappa and N. Wyllard, An A, threesome: Matriz models, 2d CFTs and 4d N = 2 gauge
theories, 0911.5337.

A. Mironov, A. Morozov, S. Shakirov, and A. Smirnov, Proving AGT conjecture as HS duality:

extension to five dimensions, 1105.0948.

M. Blau and G. Thompson, Lectures on 2-d gauge theories: Topological aspects and path integral
techniques, hep-th/9310144.

F. Dolan, V. Spiridonov, and G. Vartanov, From 4d superconformal indices to 3d partition
functions, 1104.1787.

,54,



[55]
[56]

[57]
[58]

[59]

[60]

[61]

A. Gadde and W. Yan, Reducing the 4d Index to the S® Partition Function, 1104.2592.

Y. Imamura, Relation between the 4d superconformal index and the S® partition function,
1104.4482.

F. Benini, T. Nishioka, and M. Yamazaki, 4d Indez to 3d Index and 2d TQFT, 1109.0283.

I. Cherednik, Double affine Hecke algebras. London Mathematical Society lecture note series.
Cambridge University Press, 2005.

A. A. Kirillov Jr, Lectures on affine hecke algebras and macdonald’s conjectures, Bull. Amer.
Math. Soc. 34 (1997) 251-293.

P. C. Argyres and J. R. Wittig, Infinite coupling duals of N=2 gauge theories and new rank 1
superconformal field theories, JHEP 01 (2008) 074, [0712.2028].

F. Benini, S. Benvenuti, and Y. Tachikawa, Webs of five-branes and N=2 superconformal field
theories, JHEP 09 (2009) 052, [arXiv:0906.0359].

V. Spiridonov and G. Vartanov, Superconformal indices of N=4 SYM field theories, 1005.4196.

P. I. Etingof and A. A. Kirillov, Jr., On the affine analog of Jack’s and MacDonald’s
polynomials, hep-th/9403168.

E. M. Rains, Transformations of Elliptic Hypergeometric Integrals , math/0309252.
E. M. Rains, BC),-symmetric abelian functions, math/0402113.

A. Gorsky and N. Nekrasov, Hamiltonian systems of Calogero type and two-dimensional
Yang-Mills theory, Nucl. Phys. B414 (1994) 213-238, [hep-th/9304047].

J. A. Minahan and A. P. Polychronakos, Interacting fermion systems from two-dimensional
QCD, Phys.Lett. B326 (1994) 288-294, [hep-th/9309044].

A. Gorsky and N. Nekrasov, Relativistic Calogero-Moser model as gauged WZW theory,
Nucl. Phys. B436 (1995) 582608, [hep-th/9401017].

A. Gorsky and N. Nekrasov, Elliptic Calogero-Moser system from two-dimensional current
algebra, hep-th/9401021.

A. Gorsky, Integrable many-body systems in the field theories, Theoretical and Mathematical
Physics 103 (1995) 681-700. 10.1007/BF02065867.

A. Gorsky and A. Mironov, Integrable many body systems and gauge theories, hep—th/0011197.

A. A. Gerasimov and S. L. Shatashvili, Higgs Bundles, Gauge Theories and Quantum Groups,
Commun.Math. Phys. 277 (2008) 323-367, [hep-th/0609024].

S. Ruijsenaars, Elliptic integrable systems of Calogero-Moser type: A survey, Rokko Lectures in
Math., no. 18 (2004) 201-221.

N. A. Nekrasov and S. L. Shatashvili, Quantization of Integrable Systems and Four Dimensional
Gauge Theories, 0908.4052.

,55,



[75] N. Nekrasov and E. Witten, The Omega Deformation, Branes, Integrability, and Liouwville
Theory, JHEP 09 (2010) 092, [1002.0888|.

[76] V. Spiridonov, Elliptic hypergeometric functions and calogero-sutherland-type models,
Theoretical and Mathematical Physics 150 (2007) 266-277. 10.1007/s11232-007-0020-5.

[77] V. Spiridonov, Elliptic beta integrals and solvable models of statistical mechanics, 1011.3798.

[78] T. Nishioka, Y. Tachikawa, and M. Yamazaki, 3d Partition Function as Overlap of
Wavefunctions, JHEP 1108 (2011) 003, [1105.4390].

[79] S. Benvenuti and S. Pasquetti, 3D-partition functions on the sphere: exact evaluation and
marror symmetry, 1105.2551.

[80] V. Dobrev and V. Petkova, All Positive Energy Unitary Irreducible Representations of Extended
Conformal Supersymmetry, Phys.Lett. B162 (1985) 127-132.

[81] V. Dobrev and V. Petkova, Group Theoretical Approach to Extended Conformal Supersymmetry:
Function Space Realizations and Invariant Differential Operators, Fortsch.Phys. 35 (1987) 537.

[82] F. A. Dolan and H. Osborn, On short and semi-short representations for four dimensional
superconformal symmetry, Ann. Phys. 307 (2003) 41-89, [hep-th/0209056].

— 56 —



