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Abstract: We propose a dictionary between geometry of triangulated 3-manifolds and

physics of three-dimensional N = 2 gauge theories. Under this duality, standard operations

on triangulated 3-manifolds and various invariants thereof (classical as well as quantum)

find a natural interpretation in field theory. For example, independence of the SL(2)

Chern-Simons partition function on the choice of triangulation translates to a statement that

S3
b partition functions of two mirror 3d N = 2 gauge theories are equal. Three-dimensional

N = 2 field theories associated to 3-manifolds can be thought of as theories that describe

boundary conditions and duality walls in four-dimensional N = 2 SCFTs, thus making the

whole construction functorial with respect to cobordisms and gluing.
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1. Introduction

One of the predictions of String Theory/M-Theory is the existence of a discrete family of

maximally symmetric six-dimensional conformal field theories, labeled by a simply-laced Lie

algebra g. These theories lack a Lagrangian definition, but some of their properties are

known. The existence of such six-dimensional SCFT’s has a simple, but perhaps surprising,

consequence: it allows a geometric description of many lower-dimensional supersymmetric

field theories. Indeed, one can define large families of 6 − d dimensional theories T [Md, g]

via compactification of the six-dimensional theory labeled by g on a d-dimensional manifold

Md. If the compactification is accompanied by an appropriate twist, it will lead to theories

with 6 − d dimensional supersymmetry. In order to fully exploit this type of construction,

one should ideally give an alternative explicit definition of these “effective” theories directly

in 6 − d dimensions. If that can be accomplished, the result is a large family of theories

defined in 6−d dimensions, whose properties are controlled by the geometry of d-dimensional

manifolds.

This program was pursued successfully for d = 2 [1, 2, 3]. The compactification of

the six-dimensional theories on a Riemann surface C leads to N = 2 supersymmetric gauge

theories T [C, g] in four dimensions. The geometry of the Riemann surface controls a variety

of protected quantities in the four-dimensional gauge theories: the space of exactly marginal

deformations, the space of vacua in flat space and upon compactification on a circle, the

partition function of the Ω-deformed theory, the S4 partition function, the superconformal

index, etc.

It is natural to wonder if there is a similar d = 3 dictionary. A twisted compactification

of a 6d theory on a three-manifold M3 will give an N = 2 field theory T [M3, g] in three

dimensions. Some properties of these theories follow from the definition. For example, one of

the basic properties of the 6d theories is that they reduce to 5d SYM upon compactification

on a circle. If we consider a 6d SCFT on S1 ×M3, we find that the moduli space of vacua of

T [M3, g] is the same as the space of flat complex g-connections on M3 [4].

One way to find other properties of this d = 3 correspondence is to draw lessons from its

d = 2 version. Indeed, consider a three-dimensional cobordism, i.e. a 3-manifold M3 which

interpolates between two (or, more generally, several) Riemann surfaces, as in Figure 1. The

compactification of the six-dimensional theory on the cobordism should give a domain wall

between the 4d theories associated to the Riemann surfaces. Note, in particular, that a half-

BPS domain wall (cf. Figure 1) or a boundary condition (cf. Figure 2) in a 4d N = 2

field theory preserve the same amount of supersymmetry as a three-dimensional N = 2 field

theory.

Therefore, one possible strategy for understanding T [M3, g] is to directly leverage the

d = 2 correspondence to construct the three-dimensional field theories: take a closed manifold

M3, and stretch it to a configuration of long tubes with a Riemann surface as cross sections,

joined by appropriate plumbing fixtures, i.e. cobordisms. One could then reduce the six-

dimensional theory on the tubes of section C to give known four-dimensional gauge theories
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Figure 1: (a) A cobordism M between C and C′ gives rise to a domain wall (b) between 4d N = 2

theories T (C) and T (C′).

T [C, g] on segments, cf. Figure 2. These theories would be coupled through the domain walls

associated to the plumbing fixtures, and the whole setup taken to define a three-dimensional

gauge theory in the IR.

This strategy is hampered by the rapid proliferation of possible “elementary” plumbing

fixtures: one would need to find a way to construct the corresponding domain walls by hand,

and demonstrate a large set of mirror symmetries which relate different ways to glue together

the same manifold. This should be contrasted with a similar approach in d = 2, where the

tubes are all cylinders with S1 cross-section, and the only plumbing fixture is the pair of

pants.

We will follow an alternative, simpler strategy. Namely, we will abandon the restriction

to cut the manifold along tubes only, and instead propose a candidate N = 2 SCFT TM

for the theory T [M, su(2)] based on a decomposition (triangulation) of a 3-manifold M into

tetrahedra, glued together along the triangular faces. Note, here and in the rest of the paper

we focus (mainly for simplicity) on g = su(2). Moreover, since we are interested only in the

case d = 3, so here and in what follows we denote M3 simply by M .

We do not derive our construction of the N = 2 theory TM directly from properties of

the six-dimensional theory. Instead, we wish to associate a simple “building block” theory

T∆ to each tetrahedron ∆, and to define the field theory analogue of the geometric gluing

with a simple constraint in mind: different triangulations of the same manifold must give

equivalent definitions of the corresponding theory, in the sense that they flow to the same

SCFT in the IR. In d = 2 different decompositions of the same Riemann surface were related

by known S-dualities. In d = 3 we aim to relate different triangulations of M through known

mirror symmetries, so that every 3-manifold M is associated to a well-defined, triangulation-

independent 3d N = 2 SCFT.

We describe the theory TM as the IR fixed point of an abelian Chern-Simons-matter

theory whose Lagrangian depends on the choice of triangulation of M (plus some extra

decoration Π that one encounters in SL(2) Chern-Simons theory on M). Intuitively, given a
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Figure 2: (a) A 3-manifold M stretched along a ‘neck’ R × C becomes a 4d N = 2 superconformal

theory (b) on R3 × I coupled to 3-dimensional theories T (M+) and T (M−) at the boundary. The 4d

N = 2 gauge theory in the bulk is determines by the cross-section C of the 3-manifold M .

triangulation M =
⋃N

i=1∆i, we construct a theory for each tetrahedron ∆i

∆i  T∆i
, (1.1)

and glue the tetrahedra together to build

M  TM ∼
⊗

i

T∆i
. (1.2)

The gluing of theories T∆i
involves a bit more than just taking a tensor product, and one of

the main technical aims of this paper is to develop a proper understanding of the sign ‘∼’

in (1.2). Loosely speaking, the gluing involves two steps, which require a careful explanation

and depend on a choice of the extra data Π (defined below): gauging some flavor symme-

tries, with carefully chosen Chern-Simons couplings, and adding a superpotential coupling

for each internal edge of the triangulation. The choice of the operators which enter the su-

perpotential couplings is the most subtle part of the construction. In general, they cannot be

simultaneously realized as products of elementary fields, but are defined as ’t Hooft monopole

operators.

Regardless of the compactification from six dimensions, the family of 3d N = 2 SCFTs

TM associated to 3-manifoldsM is an interesting object, and we hope it will lead to interesting

connections between three-dimensional SCFTs and three-dimensional geometry and topology.

For example, quantities like the superconformal index of TM or the partition function on S3

should map to interesting three-manifold invariants, as summarized in Table 1. In this paper

we specialize to a very simple building block theory for the tetrahedron, which is essentially the

theory of a single chiral multiplet. We believe our approach is much more general though, and

with an appropriate choice of tetrahedron building block one can produce natural candidates

for T [M, g].
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3-manifold M 3d N = 2 theory TM

ideal tetrahedron theory T∆

change of triangulation mirror symmetry

change of polarization Π Sp(2N,Z) duality action

boundary flip F transformation

gluing along superpotential

an internal edge coupling

Wilson lines line operators

boundary C = ∂M coupling to 4d N = 2 theory

flat SL(2,C) connections SUSY moduli on R2 × S1

Vol(M) + iCS(M) twisted superpotential W̃eff

SL(2) Chern-Simons
partition function on S3

bpartition function

Seiberg-Witten invariants superconformal index

Table 1: The dictionary between geometry and physics.

We will be able to motivate our proposal for TM = T [M, su(2)] in a wide variety of ways,

and to check that it has expected properties. In particular, we take inspiration from two

related facts:

• The moduli space of vacua of the 3d theory must coincide (with some caveats) with the

space of flat SL(2) connections on M .

• The partition function of T [M, g] on an ellipsoid S3
b , as in [5], should coincide with the

(analytically continued) g Chern-Simons partition function on M .

We engineer TM = T [M, su(2)] in such a way that these two properties are automatically

true.

One may wonder why the IR dynamics of the non-abelian six-dimensional theory on a

3-manifold M should admit a dual 3d description based on abelian gauge fields. A likely

answer is that in a generic vacuum of the 3d theory, the 6d theory is deep in its Coulomb

branch on most of M . Far on the Coulomb branch, the 6d theory reduces to an abelian

theory of self-dual forms. It is conceivable that the abelian gauge fields in our description

arise from these 6d abelian fields, and the matter fields arise from excitations localized in

the regions of M where the 6d theory is close to the origin of the Coulomb branch. Similar

ideas are useful for d = 2, but they give rise to IR-free, non-UV complete four-dimensional

abelian gauge theories. On the other hand, a three-dimensional abelian gauge theory is a UV

complete description of an IR fixed point.
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Finally, we should describe in more detail the class of 3-manifolds M to which our con-

struction applies. In the d = 2 case, it is useful to introduce codimension two defects of the

six-dimensional (2, 0) theory, which sit at points of the Riemann surface and fill the entire 4d

space-time. These defects do not break any further supersymmetry, and greatly extend the

space of four-dimensional N = 2 theories which are amenable of a geometric construction.

The presence of even a single puncture allows one to use some interesting tools based on

“ideal” triangulations of Riemann surfaces, which have vertices at the defects only. Similarly,

in d = 3 one can add the very same kind of defects, which fill the entire 3d space-time and are

supported on a line (or, better, on a knot/link) inside M . Again, our construction employs an

“ideal” triangulation: the tetrahedra have vertices at the defects. In particular, the manifold

should have at least one defect. In d = 2 a defect can represent a semi-infinite tubular region

of the surface, and the same is true in d = 3.

Our construction does not actually force us to glue all the faces of the tetrahedra pairwise

together, to get a closed manifold with defects. We can also do a partial gluing, and obtain

theories associated to manifolds with boundaries made by faces of the tetrahedra. The defects

and boundaries both have an interpretation in terms of coupling to four-dimensional N = 2

theories. The difference is that defects represented by semi-infinite tubular region with a cross

section C correspond to couplings of theories TM to N = 2 theories in the UV. In particular,

for our theories TM = T [M, su(2)] that come from compactification of the (2, 0) theory of

type g = su(2), the corresponding N = 2 theories associated to C in the UV typically have

SU(2) gauge groups. For example, closed cusps in M represented by semi-infinite tubular

region with a 2-torus C = T 2 as a cross section correspond to coupling to four-dimensional

N = 4 super-Yang-Mills with gauge group SU(2).

On the other hand, a big, “geodesic” boundary of M (formed from unglued tetrahe-

dron faces) of topology C represents coupling of theory TM to the IR limit of the N = 2

four-dimensional theory T [C] (cf. Figure 2). In contrast to its UV version, this IR theory

is usually abelian. Therefore, to summarize, each boundary of M corresponds to a possible

coupling of the 3d N = 2 theory TM to either IR or UV limit of the 4d N = 2 gauge theory

T [C], depending on whether the boundary C is big and “geodesic” or small and “defect-like.”

This is very natural because a typical example of a boundary condition for a weakly coupled

four-dimensional N = 2 field theory consists of a three-dimensional N = 2 field theory living

at the boundary and coupled to the bulk degrees of freedom. Looking at the same boundary

condition or domain wall in different weakly coupled regions of the bulk parameter space

leads to different descriptions involving different three-dimensional degrees of freedom.

The paper is organized as follows. In section 2 we will review the geometric properties of

triangulated three-manifolds that will inspire the construction of TM . In fact, we will need

to generalize the standard constructions a little bit in order to describe triangulations of 3-

manifolds that support irreducible flat SL(2,C) connections. Section 3 reviews the physical

tools needed for the construction of TM , whereas the definition of the 3d N = 2 theory TM

is presented in section 4. Section 5 describes the match between the moduli space of flat
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connections on M and the moduli space of vacua of the theory TM on a circle. Section 6

describes a similar match between the SL(2) Chern-Simons partition function of M and the

ellipsoid partition function of TM . Finally, section 7 extends the dictionary between geometry

of M and physics of TM to line operators.

2. Geometry of 3-manifolds

In this section, we discuss the geometric construction of oriented 3-manifolds M from basic

building blocks: ideal tetrahedra. Such “ideal triangulations” in three dimensions were initi-

ated by Thurston [6]. More precisely, we wish to build 3-manifolds that support irreducible

flat SL(2,C) connections A. For this purpose, it is often convenient to replace flat SL(2,C)

connections with hyperbolic metrics1 on M — that is, metrics of constant curvature −1.

Then the SL(2,C) structures become geometric, and can be manipulated in a much more

intuitive manner.

The 3-manifolds we consider have twogeodesic boundary

annular cusps

torus cusp

Figure 3: Types of boundaries for M

different types of boundary, geodesic bound-

aries and generalized cusps. Geometrically,

the geodesic boundaries are (possibly punc-

tured) geodesic surfaces of any genus, and

come with an induced 2-dimensional hyper-

bolic metric. Any triangulation of M will

determine a triangulation of the geodesic bound-

ary, which will be part of the data in even-

tually defining a 3d gauge theory.

In contrast, “cusp” boundaries do not

have a triangulation that is relevant in defin-

ing 3d gauge theories. Geometrically, cusps

are knotted loci where the hyperbolic metric

on M develops a cone angle, or the SL(2,C)

connection has a specified monodromy de-

fect. Such loci can be resolved to boundaries

with the topology of either tori T 2 or annuli

S1 × I. In either case, the induced metric

on cusp boundaries is Euclidean. Well-studied examples of 3-manifolds with torus cusps are

knot complements in S3. More generally, a cusp might begin and end at punctures on the

geodesic boundary of M (Figure 3). Then, the resolved cusp has the topology of an annulus.

The total boundary of M , with potential components of both types, determines a bound-

ary moduli space of flat connections,

P∂M = {flat SL(2,C) connections on ∂M}
/
(gauge equivalence). (2.1)

1The equivalence between flat connections and hyperbolic geometry results from the fact that the isometry

group of hyperbolic three-space is (P )SL(2,C), cf. [6, 7, 8, 9]. Almost all flat connections can be realized as

(possibly degenerate) hyperbolic metrics; for further remarks on this in the context of ideal triangulations, see

[10, 11], and Section 4 of [12].
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This is a symplectic phase space, with a natural holomorphic symplectic form

ω∂M =
1

~

∫

∂M
Tr
(
δA ∧ δA

)
. (2.2)

The semiclassical parameter ~ here governs the normalization of the symplectic form. Ge-

ometrically, ω∂M is an analytic continuation of the Weil-Petersson form in 2-dimensional

hyperbolic geometry. In addition to the phase space P∂M , we can also define a Lagrangian

submanifold [8]

LM = {flat SL(2,C) connections on M}
/
(gauge) ⊂ P∂M , (2.3)

which is the set of flat connections on ∂M that can be extended as flat connections inside the

3-dimensional bulk of M . Mathematically, LM is described as the image of the “character

variety” of M inside the character variety of ∂M .

Our goal now is to construct a manifold M together with the pair (P∂M ,LM ) from ideal

hyperbolic tetrahedra. This will give us an extremely explicit realization of boundary phase

spaces, Lagrangians, and the symplectic structure (2.2), which in turn will enable us in Section

4 to explicitly build the 3d gauge theory associated to M . As previewed in the introduction,

this 3d theory will depend on M , a triangulation of its geodesic boundary, and a polarization

Π of its phase space P∂M — with additional ingredients such as LM playing roles like moduli

spaces of vacua.2

2.1 Building blocks

0

1

∞

z

z

z
�

z
��

z
�

z
��

∂H
3

z
��

Figure 4: An ideal hyperbolic

tetrahedron in H3, with vertices

on ∂H3

The fundamental building block used in building our 3-

manifolds M is an ideal hyperbolic tetrahedron (Figure 4).

Geometrically, an ideal tetrahedron ∆ has faces that are

geodesic surfaces and vertices that lie right on the boundary

of hyperbolic 3-space H3. As shown in Figure 4, hyperbolic

3-space can be viewed as the interior of a 3-ball, with the

Riemann sphere as its boundary.

The full hyperbolic structure of ∆ is determined by a

single complex cross-ratio of the positions of its vertices on

∂H3. There are three different ways to write this one cross-

ratio, encoded in three different edge parameters (z, z′, z′′).

Geometrically, the edge parameters are dihedral angles on

pairs of opposite edges of the tetrahedron [6]. Explicitly,

z ≡ exp(Z) with Z = (torsion) + i (angle) , (2.4)

and similarly for z′ = exp(Z ′) and z′′ = exp(Z ′′), where “torsion” measures the twisting of

the hyperbolic metric as one moves around an edge. As discussed in [12], the edge parameters
2We note that topologically, one might engineer (resolved) cusp boundaries that look identical to geodesic

boundaries. In particular, networks of annular cusps can assume the topology of nontrivial punctured Riemann

surfaces [13]. Formally, the phase spaces P∂M associated to the two types of boundary would then be equivalent.

However, the natural coordinate systems — and in particular the polarizations — for phase spaces on cusp

and geodesic boundaries are very different. In turn, the 3d gauge theories associated to 3-manifolds with the

two different types of boundary will be quite different.
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satisfy zz′z′′ = −1, which leads to the definition of the boundary phase space

P∂∆ =
{
(z, z′, z′′) ∈ (C∗\{1})3

∣∣ zz′z′′ = −1
}
≃ (C∗\{1})2 , (2.5)

or in a lifted, logarithmic form,

P∂∆ =
{
(Z,Z ′, Z ′′) ∈ (C\2πiZ)

∣∣ Z + Z ′ + Z ′′ = iπ
}
. (2.6)

This is an affine linear space, with symplectic form ω∂∆ = 1
~
dZ ∧ dZ ′ or, equivalently, a

Poisson structure such that

{Z,Z ′} = {Z ′, Z ′′} = {Z ′′, Z} = ~ . (2.7)

The edge parameters also obey a second relation z+z′−1−1 = 0, which defines the Lagrangian

submanifold

L∆ = {z + z′−1 − 1 = 0} = {eZ + e−Z′

− 1 = 0} ⊂ P∂∆ . (2.8)

Any cyclic permutation of the Lagrangian equation (with z → z′ → z′′ → z) could also be

used.

Topologically, it is convenient to truncate or regularize the

z
��

zz
�

z
��

z z
�

Figure 5: A truncated ideal

tetrahedron

four vertices of an ideal tetrahedron, as in Figure 5. The tetra-

hedron then has four large, geodesic boundaries, whose induced

metric is hyperbolic; and four small boundaries at the truncated

vertices, whose induced metric is Euclidean. In fact, the condi-

tion Z+Z ′+Z ′′ = iπ that defines the phase space in (2.6) simply

says that the sum of angles in the small Euclidean triangles at

the vertices is always π.

While the Lagrangian equation z + z′−1 − 1 = 0 follows

directly from the geometric definition of (z, z′, z′′) as equivalent cross-ratios, it also has an

intrinsic description in terms of SL(2,C) connections. If we view the boundary ∂∆ of a tetra-

hedron as a four-punctured sphere, the phase space P∂∆ is the set of flat SL(2,C) connections

with unipotent monodromy around the four punctures. The Lagrangian L∆ is then the sub-

space of flat connections with trivial monodromy — in other words, the flat connections that

can be extended from the boundary into the bulk of the tetrahedron. Understanding this

description explicitly in coordinates (z, z′, z′′) requires a bit of further background, which we

defer to Section 2.3.

In order to define the gauge theory associated to a tetrahedron, we will need to choose

a polarization Π for its boundary phase space. This means choosing affine linear coordinates

on P∂∆ that are canonically conjugate to each other with respect to the Poisson structure

above, with one coordinate thought of as “position” and the other as “momentum.” There

– 9 –



are three natural possibilities, which we call ΠZ , ΠZ′ , and ΠZ′′ ,

position X conjugate momentum P

ΠZ : Z Z ′′

ΠZ′ : Z ′ Z

ΠZ′′ : Z ′′ Z ′

(2.9)

Each of these polarizations can be encoded in a choice of opposite edges on the tetrahedron,

such that the edge parameters of the distinguished edges act as “positions” (Figure 6).

z
��

zz
�

z
��

z z
�

z
��

zz
�

z
��

z z
�

z
��

zz
�

z
��

z z
�

ΠZ ΠZ� ΠZ��

Figure 6: Natural polarizations for a tetrahedron, with the thickened pairs of opposite edges corre-

sponding to the “position” coordinate.

We can define a larger class of polarizations by starting with any of those in (2.9), and

acting with an affine symplectic transformation Sp(2,Z) ⋉ (iπZ)2. By this we mean taking

the vector
(
position, momentum

)
, multiplying by Sp(2,Z) ≃ SL(2,Z) matrices, and shifting

both position and momentum by integer multiples of iπ. For example, instead of ΠZ , we could

have considered polarization Π−
Z in which X− = Z is position and P− = −Z ′ is momentum;

then the transformation from ΠZ to Π−
Z is

ΠZ → Π−
Z :

(
X−

P−

)
=

(
1 0

1 1

)(
X

P

)
+

(
0

−iπ

)
. (2.10)

Similarly, to go from ΠZ to ΠZ′ , we transform

(
Z ′

Z

)
=

(
−1 −1

1 0

)(
Z

Z ′′

)
+

(
iπ

0

)
, (2.11)

where the matrix involved is ST =
(
0 −1
1 0

)
( 1 0
1 1 ) ∈ Sp(2,Z). The identity (ST )3 = I corre-

sponds to the fact that three cyclic permutations of shape parameters brings us back where

we started.

2.2 Gluing

Any 3-manifold M with a combination of geodesic and cusp boundaries can be constructed

from a collection of ideal tetrahedra {∆i}
N
i=1, by gluing together their faces one pair at a

time. Topologically, the geodesic boundary of M comes from faces of tetrahedra that remain
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unglued. The torus or annular cusps of M , however, arise from assembling collections of small

truncated-vertex triangles, as in Figure 7. Geometrically, it is clear that the geodesic boundary

of M will be endowed with a hyperbolic metric, since all the faces of ideal tetrahedra are

geodesic, hyperbolic surfaces. Similarly, the cusp boundaries become resolved into Euclidean

tori or annuli, triangulated by the Euclidean truncated vertices.

a) b)

Figure 7: Triangulations by Euclidean vertex triangles of (a) an annular cusp attached to a geodesic

boundary, and (b) a torus cusp.

In order for the hyperbolic metric on M resulting from such a gluing to be smooth, one

must impose that the total dihedral angle around every internal edge of the triangulation is

2π, and that the hyperbolic torsion vanishes. In other words, for every internal edge Ij , the

sum of complex edge parameters Zi, Z
′
i, Z

′′
i meeting this edge must equal exactly 2πi. This

could be written formally as

CI ≡
N∑

i=1

[
n(I, i)Zi + n′(I, i)Z ′

i + n′′(I, i)Z ′′
i

]
= 2πi (∀ internal edges I) , (2.12)

where n(I, i) ∈ {0, 1, 2} is the number of times the edge I in M coincides with an edge

parameter Zi of tetrahedron ∆i in the triangulation M =
⋃N

i=1∆i.

Given individual phase spaces P∂∆i
for each tetrahedron ∆i,

I

z1

z3
z
�

2

Figure 8: Illustration

of gluing at an internal

edge, with CI = Z1 +

Z ′

2 + Z3.

one can construct a product phase space P{∂∆i} =
∏N

i=1 P∂∆i
with

a product symplectic structure. The edge coordinates in this space

obey a Poisson algebra

{Zi, Z
′
j} = {Z

′
i, Z

′′
j } = {Z

′′
i , Zj} = ~ δij , (2.13)

with all other brackets vanishing. It is a wonderful fact that in the

product phase space all the “gluing constraints” CI defined in (2.12)

commute with each other [14]. It turns out that the remaining linear

combinations of edge coordinates in P{∂∆i} that commute with (but

are independent of) the gluing constraints CI precisely parametrize

the remaining boundary phase space of the glued 3-manifoldM . This

includes both geodesic and cusp-like boundary components, and we

will momentarily give explicit examples of both.
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Formally, the fact that all gluing constraints CI commute with each other and with the

coordinates of flat connections on ∂M means that P∂M can be obtained as the symplectic

quotient of the product phase space P{∂∆i} by the flows of the CI viewed as moment maps

[12],

P∂M =

( N∏

i=1

P∂∆i

)//(
CI = 2πi

)
, (2.14)

where I runs over all internal edges. The individual Lagrangian submanifolds L∆i
can also

be carried through this symplectic reduction. One forms a product Lagrangian L{∆i} =∏N
i=1 L∆i

⊂ P{∂∆i} cut out by N polynomial equations zi + z′i
−1− 1 = 0; then algebraically

eliminates all variables in these equations that do not commute with the CI (projecting

L{∆i} along the flows of the CI); and sets CI = 2πi in the equations that remain (intersecting

the projection with the moment map conditions). This leads to a Lagrangian submanifold

LM ⊂ P∂M . Subject to several technical caveats discussed in [12], it is precisely the desired

set of flat connections on M .

2.3 Geodesic boundaries

We proceed to provide some details of the phase spaces P∂M associated to the various types

of boundary for M , and to give explicit examples of their construction. A more complete,

mathematical analysis of boundaries and phase spaces will appear in [13].

It is perhaps simplest to begin with geodesic boundaries. As discussed above, these arise

when tetrahedra ∆i are impartially glued; then some tetrahedron faces are left over to form

one or more disjoint boundaries C ⊂ ∂M , each a triangulated, punctured Riemann surface.

The punctures are places where vertices of the tetrahedra ∆i are located, and can ultimately

be regularized into cusps that end on C — we will say a bit more about this later. The induced

2d triangulation of C is “ideal” in the sense that all edges begin and end on punctures.

The phase space PC , a factor in P∂M , is the moduli space of flat SL(2,C) connections on

C, with specified (fixed) holonomy eigenvalues at every puncture. These eigenvalues become

central elements in the algebra of functions on PC . Geometrically, we can also describe PC
as the complexified Teichmüller space of C, a complexification of the moduli space of 2-

dimensional hyperbolic metrics. From this perspective, the puncture eigenvalues reflect the

geometric size of holes in C.

We can construct coordinates on PC by associating to every edge E in the triangulation

of C the total complexified dihedral angle around it.3 In other words,

edge E  coordinate XE =
N∑

i=1

[
n(E, i)Zi + n′(E, i)Z ′

i + n′′(E, i)Z ′′
i

]
, (2.15)

where n(E, i) ∈ {0, 1, 2} is the number of times an edge of tetrahedron ∆i with parameter

Zi coincides with the glued edge E, and similarly for n′(E, i) and n′′(E, i). This definition is

analogous to (2.12), except that now E is an external edge of M .
3In fact, these are coordinates on algebraically open patches of PC that have the topology of complex tori,

cf. [15, 16].
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It turns out that the coordinates XE are already well known

E

E
�

E
��

E
���

Figure 9: Poisson bracket for

external edges. Here {XE , XE′}

= {XE′ , XE′′}= {XE′′ , XE}

= {XE′′ , XE′′′}= ~, etc.

mathematically as complexified “shear coordinates” on PC
[17, 18], defined rigorously in [15] in the complex case.4 By

following the arguments of [14], one can show that the Pois-

son structure induced on these edge coordinates is

{XE , XE′} = f(E,E′) , (2.16)

where f(E,E′) ∈ {0,±1,±2} is the number of faces shared

by edges E and E′, counted with orientation (cf. Figure

9). Expression (2.16) is precisely the Weil-Petersson Poisson

structure on PC , cf. [18]. Moreover, for each puncture p ∈ C, one finds that the sum of edge

coordinates encircling the puncture is
∑

E ending on p

(
iπ −XE

)
= 2(Λp − iπ) , (2.17)

where exp(±Λp) are the holonomy eigenvalues at p. The elements Λp form a basis for the

center of the Poisson algebra (2.16).

Shear coordinates on PC recently featured prominently in the analysis of BPS states and

wall crossing for 4-dimensional N = 2 theories associated to punctures Riemann surfaces C

[16]. In particular, we note that [16] considered edge coordinates XE = exp(iπ −XE), which

could be identified as the exponentiated central charges for a generating set of BPS states in

4d gauge theory. The electric-magnetic pairing of BPS charges was given by (2.16).

The simplest example of shear/edge coordinates already ap-

z

z
�

z
��

w

w
�

w
��

Figure 10: ∂∆ as a four-

punctured sphere.

peared above, when we described the phase space P∂∆ (2.6) of

an ideal tetrahedron. If we view the boundary ∂∆ as a trian-

gulated four-punctured sphere, we should start with six (log-

arithmic) edge coordinates (Z,Z ′, Z ′′,W,W ′,W ′′) that obey a

Poisson algebra

{Z,Z ′} = {Z ′, Z ′′} = {Z ′′, Z} = {Z,W ′}

= {Z ′,W ′′} = {Z ′′,W} = {W,Z ′} = {W ′, Z ′′} (2.18)

= {W ′′, Z} = {W,W ′} = {W ′,W ′′} = {W ′′,W} = ~ ,

according to the faces shared by these edges, with all other

brackets vanishing. Then we impose conditions (2.17) that the holonomy eigenvalue around

each vertex p is Λp = 2πi — in other words, we require that the holonomy be unipotent:

W +W ′ +W ′′ = Z + Z ′ +W ′′ = Z +W ′ + Z ′′ = W + Z ′ + Z ′′ = iπ (2.19)

This forces opposite edges to have equal parameters, W = Z, W ′ = Z ′, W ′′ = Z ′′, and cuts

down the phase space to P∂∆ = {(Z,Z ′, Z ′′) |Z+Z ′+Z ′′ = iπ}, with Poisson structure (2.7)

4We thank R. Kashaev for first making us aware of this connection.
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Figure 11: Forming a bipyramid from three tetrahedra.

As an example involving a nontrivial gluing, we can consider the “bipyramid”M of Figure

11. Its boundary is a 5-punctures sphere C. Here, we form the bipyramid from three ideal

tetrahedra, with respective shape parameters Z(′)(′′), W (′)(′′), Y (′)(′′). 5 This leads to a 6-

dimensional product phase space P{∂∆i} ≈ {(Z,Z
′, Z ′′,W,W ′,W ′′, Y, Y ′, Y ′′)} with relations

Z + Z ′ + Z ′′ = W + W ′ + W ′′ = Y + Y ′ + Y ′′ = iπ. Inside P{∂∆i} there is a single gluing

constraint

C ≡ Z +W + Y → 2πi (2.20)

corresponding to the internal, vertical edge of the bipyramid; it should be used as a symplectic

moment map to reduce P{∂∆i} to the 4-dimensional phase space P∂M = PC .

Explicitly, coordinates on PC are given by the dihedral angles of the nine external edges

of the bipyramid:

Z , W, Y (2.21a)

for the three equatorial edges, and

Z ′ +W ′′, Z ′′ +W ′, W ′ + Y ′′ , W ′′ + Y ′ , Y ′ + Z ′′ , Y ′′ + Z ′ (2.21b)

for the six longitudinal edges. It is easy to check that, as functions on the product phase

space P{∂∆i}, the nine external shear/edge coordinates (2.21) all commute with C. More-

over, modulo the gluing constraint (2.20), one can check using formula (2.17) that the total

logarithmic holonomy eigenvalue around each of the five punctures p of C is Λp = 2πi. The

resulting five relations among the nine external edge coordinates cut the dimension of PC
down to four.

As in the case of a single tetrahedron, the punctures on the boundary of the bipyramid

carry unipotent holonomy (with logarithmic eigenvalue 2πi). This is related to the fact that,

upon truncating tetrahedron vertices as in Figures 5, 11, the small vertex triangles come

together to form Euclidean 2d discs. These discs effectively cap off the punctures and force

unipotent holonomy. In general one can build 3-manifolds that have annular cusps, rather

5Any solid 3-ball whose boundary is an n–punctured sphere (n ≥ 4), with unipotent holonomy at each

puncture, can be obtained via a similar gluing.
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than discs, ending at the punctures of a geodesic boundary. The annular cusps will then allow

any holonomy eigenvalues to be realized. Constructions of this type are extremely interesting

in the context of 3d and 4d gauge theory, but will mainly be deferred to future work [13].

For simple manifolds such as the tetrahedron and the bipyramid, whose boundaries carry

unipotent punctures and whose interiors have the topology of 3-balls, the Lagrangian sub-

manifolds LM ⊂ P∂M are also very simple. They are always cut out by the condition that

the puncture holonomies are actually trivial (not just unipotent) — so that a flat connection

on the boundary can be extended to the bulk of M .

To conclude the discussion of geodesic boundaries, we ob-

Πeq

Πlong

Figure 12: Two polarizations

for the bipyramid.

serve that several natural polarizations Π for a phase spaces

PC can be specified by choosing maximal subsets of commut-

ing edges on C. In other words, we choose a maximal set of

independent edges that share no common faces. The corre-

sponding coordinates XE then correspond to “positions” in

PC . Their conjugate momenta can be constructed (not quite

uniquely) as combinations of the remaining edges.

For example, in the case of the bipyramid, two such po-

larizations are shown in Figure 12, one using “positions” on

equatorial edges and the other on longitudinal edges. (Note

that the three equatorial edges all commute, but obey a con-

straint Z + W + Y = C = 2πi, so only two of them, say Z

and W , are independent.) The respective positions X1,2 and

momenta P1,2 in these polarizations are summarized as

positions momenta

Πeq : X1 = Z , X2 = W P1 = Z ′′ + Y ′ , P2 = W ′′ + Y ′

Πlong : X ′
1 = W ′ + Y ′′ , X ′

2 = Z ′ + Y ′′ P ′
1 = Z ′′ + Y ′ , P ′

2 = W ′′ + Y ′

(2.22)

In equatorial coordinates (Xi, Pi), the Lagrangian LM (i.e. the set of connections with trivial

holonomy) can be shown to have the simple description

LM : p1 +
p2
x1
− 1 = 0 , p2 +

p1
x2
− 1 = 0 , (2.23)

while in longitudinal coordinates we have

LM : p′1 + x′−1
1 − 1 = 0 , p′2 + x′−1

2 − 1 = 0 , (2.24)

with xi = exp(Xi), pi = exp(Pi), etc.

Different polarizations for a geodesic boundary phase space PC are related to one another

by affine Sp(dimC PC ,Z) transformations. From the above discussion, it should be easy to

see that the complex dimension of PC must be

dimC PC = (# external edges on C)− (# punctures on C) , (2.25)
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which by an Euler character argument agrees with the standard formula dimC PC = 6g−6+2n,

where g is the genus and n is the number of punctures of C. The affinely extended group

Sp(6g − 6 + n,Z) is a subgroup of the full affine group Sp(2N,Z) of transformations on the

product phase space P{∂∆i} =
∏N

i=1 P∂∆i
. Therefore, we can always choose a polarization of

P{∂∆i} that is compatible with the final desired polarization of the quotient space PC .

2.4 Torus cusps

The cusp boundaries of a 3-manifold M arise from the resolution of line defects, and have

the topology of annuli or tori, depending on whether the defects are open or closed. For

simplicity, we will only consider the closed, toroidal case in the present paper, though we

note that annular cusps share many of the the same properties, and can be analyzed in a

similar way.

Suppose, then, that ∂M contains a toroidal cusp

�
±1

m
±1

Figure 13: Holonomy eigenvalues on

a torus boundary.

boundary T 2. For example, M could be the comple-

ment of a knot in S3. To describe the associated phase

space PT 2 , we can choose a basis of “A and B cycles”

on the torus — typically called meridian and longi-

tude cycles in the case of knot complements.6 Since

the fundamental group π1(T
2) is abelian, the SL(2,C)

holonomies along these cycles are simultaneously di-

agonalizable, and PT 2 is simply parametrized by their

eigenvalues, cf. [19]:

PT 2 =
{
(m, ℓ) ∈ C∗ × C∗

}/
Z2 , (2.26)

where the Weyl group Z2 acts by inversion (m, ℓ) 7→ (m−1, ℓ−1). As above, it is also convenient

to take logarithms7 u ≡ logm and v + iπ ≡ log ℓ and to lift the phase space to

PT 2 =
{
(u, v) ∈ C× C

}
/Z2 . (2.27)

Then the symplectic structure of PT 2 becomes ωT 2 = 2
~
dv ∧ du [8], or

{v, u} = ~/2 . (2.28)

The logarithmic eigenvalues u and v can both be computed as linear combinations of

edge parameters Zi, Z
′
i, Z

′′
i of tetrahedra in a triangulation of M . To see this, recall that

a cusp boundary T 2 is composed of small truncated-vertex triangles of the tetrahedra ∆i.

Thus, it comes with a (Euclidean) 2d triangulation, as illustrated in Figure 14. The dihedral

angles of tetrahedra ∆i become actual (complexified) angles in the 2d triangles. Logarithmic

holonomies can be computed by adding and subtracting the angles subtended by a given

path, then dividing by two [14, 20]. For example, in Figure 14 we have drawn the meridian

and longitude of the figure-eight knot complement on a boundary T 2. The corresponding
6For a knot complement in S3, M = S3\K, there is actually a canonical choice of cycles. The meridian is

an infinitesimally small loop linking the knot K once, while the longitude intersects the meridian once and is

nullhomologous in M (in particular, it has zero linking number with the knot). Presently, however, we will

allow ourselves the freedom of choosing any basis of cycles whatsoever.
7As discussed in [12], the shift by iπ in v+iπ = log ℓ characterizes the correct lift from PSL(2,C) structures

(most naturally computed by triangulation data) to SL(2,C).
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Figure 14: Gluing two tetrahedra, as indicated by calligraphic letters on the faces, to form the figure-

eight knot complement. On the right is a map of the resulting torus cusp boundary, triangulated by

Euclidean vertex triangles.

holonomies are

U ≡ 2u = Z ′ −W (2.29a)

2v = 2(Z − Z ′) (2.29b)

As functions on the product phase space P{∂∆i} ≃ {(Z,Z
′Z ′′,W,W ′Z ′′) |Z + Z ′ + Z ′′ =

W +W ′ +W ′′ = iπ}, these satisfy the expected commutation relation {v, U} = ~.

Continuing with the example of the figure-eight knot complement, we find that the tri-

angulation of Figure 14 has two internal edges, with corresponding gluing constraints

C1 = 2Z + Z ′′ + 2W +W ′′ → 2πi , C2 = 2Z ′ + Z ′′ + 2W ′ +W ′′ → 2πi . (2.30)

(It is easy to read these off from the map of the cusp, since every internal edge begins and ends

at a “vertex” on the cusp triangulation. One just adds the angles surrounding the vertex.)

Note that C1 and C2 both commute with U and v. Moreover, prior to enforcing the condition

C1 = C2 = 2πi, there is an automatic relation C1 + C2 = 4πi, so that one of the two gluing

constraints is redundant. In general, for every closed torus cusp in a 3-manifold M , there

will be one such redundant gluing constraint. In the end, for our figure-eight example, we see

that P∂M = PT 2 = P{∂∆i}

//
(C1 = 2πi) = P{∂∆i}

//
(C2 = 2πi).

The Lagrangian submanifold for the figure-eight knot complement is obtained by the

symplectic reduction procedure described at the end of Section 2.2 above. One starts with

the product Lagrangian

L{∆i} = {z + z′−1 − 1 = 0, w + w′−1 − 1 = 0} ⊂ P{∂∆i} , (2.31)

where z = eZ , z = eZ
′
, w = eW , and w′ = eW

′
; rewrites the equations in terms of m2 = eU ,

ℓ = −ev, and one of the gluing monomials cj = eCI ; eliminates all remaining variables that

do not commute with cj ; and sets cj = 1. The end result is

LM = {ℓ− (m4 −m2 − 2−m−2 +m−4) + ℓ−1 = 0} ⊂ PM , (2.32)

and this equation is the well known “A-polynomial” of the figure-eight knot [19, 8].
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2.5 Changing the triangulation

We have explained, in principle, how to construct 3-manifolds M , phase spaces P∂M , and

Lagrangians LM by gluing together ideal tetrahedra ∆i. It would be useful to verify that

such constructions do not depend on a precise choice of triangulation {∆i}. Geometrically,

once we fix the triangulation of geodesic boundaries, any two triangulations of M are related

by a sequence of “2–3 Pachner moves,” cf. [21]. These replace two tetrahedra glued along

a common face with three tetrahedra glued along three faces and a common edge, and vice

versa, as shown in Figure 15.
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Figure 15: The 2–3 Pachner move

Invariance of phase spaces and Lagrangians under the 2–3 move was verified8 in detail

in (e.g.) [12], guaranteeing the internal consistency of our present gluing constructions. For

example, for phase spaces, the essence of the argument is that the product phase spaces

corresponding to the bipyramid on the left of Figure 15 is the symplectic reduction of the

product phase space on the right,

P∂(bipyramid) = P∆R
× P∆S

=
(
P∆Z

× P∆W
× P∆Y

)//
(C = 2πi) , (2.33)

where C is the gluing constraint coming from the internal edge. In fact, we already described

the right-hand side of (2.33) in Section 2.3. The left-hand side is even easier to analyze. In the

same two polarizations Πeq and Πlong of Figure 12, we now find coordinates for P∆R
× P∆S

:

positions momenta

Πeq : X1 = R+ S′′ , X2 = R′′ + S P1 = R′′ , P2 = S′′

Πlong : X ′
1 = R , X ′

2 = S P ′
1 = R′′ , P ′

2 = S′′

(2.34)

The two equivalent descriptions (2.22)–(2.34) of P∂(bipyramid) are related by combining or

splitting the coordinates associated to the external dihedral angles, for example splitting

Z ↔ R′′ + S′′.

8Again we note that the invariance of Lagrangians comes with a few subtle caveats, as discussed in [10, 11]

and reviewed in Sections 4–5 of [12]. For sufficiently generic triangulations, these caveats can be safely ignored.
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The 2–3 Pachner moves always preserve the triangulations of geodesic boundaries of M .

In contrast, they do not preserve the “small” triangulations of cusp boundaries; but the

triangulations of cusp boundaries are never important for defining phase spaces here, or 3d

gauge theories later on.

If we want to change the triangula-
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Figure 16: Flipping an external edge by attaching

a tetrahedron.

tion of a geodesic boundary C ⊂ ∂M , we

must consider another type of fundamen-

tal move: a flip. The flip acts by gluing an

additional tetrahedron ∆F onto a quadri-

lateral in C, as in Figure 16, and effectively

“flipping” the diagonal of this quadrilat-

eral. In the process of attaching ∆F , a new

internal edge IF is created, which imposes

a new gluing constraint CIF . The flipped

phase space PC′ is therefore related to PC
by a symplectic reduction

PC′ =
(
PC ×P∂∆F

)//
(CIF = 2πi) . (2.35)

Obviously PC′ and PC must be isomorphic, but the two have different “natural” polarizations.

To illustrate this explicitly, if we start with a polarized phase space PC in which one of

the canonical position–momentum pairs (X,P ) corresponds to dihedral angles as in Figure

16, then gluing on the tetrahedron ∆F yields an internal edge constraint

CIF = X + Z → 2πi . (2.36)

Now, let us attach a new position coordinate X ′ to the newly flipped diagonal, and its

conjugate momentum P ′ to the same edge as P . After the symplectic reduction (in particular,

imposing (2.36)), we find that

X ′ = 2πi−X , P ′ = −(P + Z ′) . (2.37)

If we also keep track of Lagrangians, we would find that the flipped LM ′ is related to LM by

substituting x→ x′−1, p→ p′−1(1− x′) in the defining equations for LM .9

The flip transformation, described here from a 3-dimensional viewpoint, is very familiar

in 2-dimensional Teichmüller (and quantum Teichmüller) theory, cf. [22, 18, 23, 24, 15]. This

should not be surprising, given the above observation that shear coordinates of Teichmüller

theory should be identified with 3d dihedral angles.

3. Operations on 3d abelian theories

Our next goal is introduce the basic ingredients and building blocks necessary to understand

the field theory side of the correspondence (M,Π)↔ TM,Π. We will see a clear parallel with

9We suggest the verification of this statement as an exercise for the reader.
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the construction of 3-manifolds in Section 2, which will lead us to the definition of the theory

TM,Π in Section 4.

3.1 An Sp(2N,Z) action on 3d CFTs with U(1)N flavor symmetry

3.1.1 Generalities

There is a beautiful SL(2,Z) action on the space of 3-dimensional conformal field theories

with U(1) flavor symmetry. This action was first described in [25] as a way to understand

the meaning of different choices of boundary conditions for an abelian gauge field in AdS4 in

the context of AdS4/CFT3.

To be precise, SL(2,Z) acts on the space of 3d theories equipped with a specific way to

couple a U(1) flavor symmetry to a background U(1) gauge field. The SL(2,Z) action can

be defined by specifying the action of its generators S and T , which obey the relations

S4 = (ST )3 = id. (3.1)

The generator T does not change the underlying 3d CFT. It only modifies the prescription of

how to couple the theory to the background gauge field A, by adding to the conserved current

for the background flavor symmetry the Hodge dual field strength ∗F = ∗dA. In terms of a

Lagrangian, this is simply accomplished by adding a background Chern-Simons interaction

at level k = 1,

T : L → L+
1

4π
A ∧ dA . (3.2)

In contrast, the S generator changes the structure of the 3d theory by making the back-

ground gauge field A dynamical.10 The new 3d theory is then prescribed a coupling to a new

background U(1) gauge field Anew: the new flavor current is the Hodge dual field strength ∗F

of the old, now dynamical, gauge field. Equivalently, one prescribes a Lagrangian coupling

S : L → L+
1

2π
Anew ∧ dA (A dynamical) . (3.3)

It is the monopole operators for A that are charged under the new U(1) flavor symmetry;

thus this U(1) is sometimes called “topological.” From the definitions of S and T , one can

prove that the relations S2 = C and (ST )3 = id. hold, where the transformation C (charge

conjugation) just inverts the sign of the background gauge field. We will generally denote the

action of an SL(2,Z) group element g on a theory T as g ◦ T .

There is a useful alternative interpretation of this SL(2,Z) action: it is the action of

electric-magnetic duality on the space of conformally invariant boundary conditions for a free

abelian four-dimensional gauge theory. Indeed, given a three-dimensional CFT with a pre-

scribed coupling to a background gauge field, we can build a boundary condition by coupling

the CFT to the value of the 4d gauge field at the boundary. This gives a generalization of

10One can add a Yang-Mills kinetic term at intermediate stages in the calculation. But for S to have the

correct properties, one must flow to the IR at the end, and then gYM → ∞ and this term is removed.
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Neumann boundary conditions: the normal component of the 4d field strength at the bound-

ary becomes proportional to the conserved current of the 3d CFT. If we denote the 3d theory

as T , we can denote the resulting boundary condition as B[T ].

Next, we can do an electric-magnetic duality transformation g ∈ SL(2,Z) in the four-

dimensional bulk, and ask how the boundary condition B[T ] looks in the new duality frame.

This “new” boundary condition g ◦ B[T ] turns out to coincide with B[g ◦ T ]. This fact can

be shown readily with the help of “duality domain walls” [26]: the action of bulk dualities on

boundary conditions can be interpreted as the collision (or OPE) of these domain walls with

the boundary, as illustrated in Figure 17. For an abelian gauge theory the duality walls are

very easy to construct from the definition of electric-magnetic duality. The collision with the

boundary then reproduces the SL(2,Z) action defined above.

gT g ◦ T=

Figure 17: The action of duality domain walls on boundary conditions. A duality transformation

g ∈ Sp(2N,Z) maps a generalized Neumann boundary condition defined by coupling to a 3d theory

T into a boundary condition associated with a boundary CFT g ◦ T .

The SL(2,Z) action on boundary conditions is a little bit more general than the SL(2,Z)

action on 3d theories with a coupling to a background gauge field. For example, there exists

an extra SL(2,Z) orbit of boundary conditions which includes the pure Dirichlet boundary

condition on the 4d gauge field. This boundary condition is invariant under T , and it is sent

to the pure Neumann boundary condition by S.

Now, it is rather obvious how to generalize this SL(2,Z) action to an Sp(2N,Z) action

on boundary conditions for a general four-dimensional U(1)N abelian gauge theory, or to an

action on 3d CFTs with U(1)N flavor symmetry: it is the action of the electric-magnetic

duality group of the U(1)N four-dimensional gauge theory. Notice that in this case, there

are several orbits of boundary conditions which involve at some point Dirichlet boundary

conditions for some of the bulk gauge fields. These orbits will look a bit singular from the

point of view of an action on 3d CFTs. Concretely, they signal situations where the flavor

symmetry is spontaneously broken to a subgroup in the IR [26].

To make this a little more explicit, suppose we are given a Lagrangian description of a

3d CFT with U(1)N global symmetry, whose current is coupled to N background gauge fields
~A = (A1, ..., AN ). The generators of Sp(2N,Z) fall into three basic categories: “T -type,”

“S-type,” and “GL-type” (cf. [27]). Representing them as matrices in N ×N blocks, we find
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Lagrangian transformations

“T -type” g =

(
I 0

B I

)
, B symmetric : L[ ~A]→ L[ ~Anew] +

1

4π
~Anew ·B d ~Anew ; (3.4)

“S-type” g =

(
I − J −J

J I − J

)
: L[ ~A]→ L[ ~A] +

1

2π
~Anew · J d ~A (3.5)

(where J = diag(j1, ..., jN ) with ji ∈ {0, 1}, and we have gauged every Ai for which ji = 1,

replacing its U(1) with a new topological flavor symmetry); and

“GL-type” g =

(
U 0

0 U−1 t

)
, U ∈ GL(N,Z) : L[ ~A]→ L[U−1 ~Anew] . (3.6)

The latter GL-type action simply redefines the flavor currents by an invertible, integral trans-

formation.

3.1.2 Adding supersymmetry

The Sp(2N,Z) action can be supersymmetrized to give an Sp(2N,Z) action on supersym-

metric 3d theories equipped with a supersymmetric coupling to a background abelian gauge

supermultiplet. This can be done for any amount of supersymmetry, but it is important to

make a specific choice, as different choices give different group actions.

In the reference [26] this was applied to theories with N = 4 supersymmetry. As a

useful example of the S action in the context of N = 4 theories, we can consider a single

hypermultiplet of unit flavor charge canonically coupled to an N = 4 background gauge field.

If we make the N = 4 background gauge field dynamical — performing an S operation — we

have a familiar 3d theory: N = 4 SQED with one flavor. This is the canonical setup for 3d

mirror symmetry [28, 29], which provides an alternative description of the theory in terms of

a free twisted hypermultiplet that arises as a monopole operator in the original description.

In particular, it carries unit flavor charge under the new N = 4 background gauge field. So

the transformation S acts rather trivially on this simple 3d theory: it sends it back to itself

[30]. On the other hand, T acts non-trivially.

Any N = 4 statement can be reinterpreted as an N = 2 statement, but a little care

is needed: the N = 4 3d gauge multiplet consists of an N = 2 3d gauge multiplet plus a

chiral multiplet. The N = 4 Sp(2N,Z) action is the combination of an N = 2 Sp(2N,Z)

action plus additional operations involving 3d chiral multiplets and superpotential couplings.

This anticipates a central theme of this paper: the interplay between the “gauge” Sp(2N,Z)

action and a “matter” action which involves adding new chiral multiplets with appropriate

superpotential couplings. Indeed, the 3dN = 2 theories TM associated to 3-manifoldsM with

boundary will be coupled both to background gauge fields and background chiral multiplets.

As a first step towards understanding this statement, let us describe the “gauge” Sp(2N,Z)

action for N = 2 theories. Suppose we have a theory with U(1)N flavor symmetry, coupled to
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N background vector multiplets Vi. Each Vi, containing a real scalar field σi and two Majo-

rana fermions λα
i in addition to the gauge field Ai, can also be dualized to a linear multiplet

[31, 32]

Vi ↔ Σi = D
α
DαV , (3.7)

where the lowest component of Σi is σi. Now, in order to supersymmetrize the Sp(2N,Z)

action (3.4)–(3.6), one simply has to substitute AdA′ → V Σ′ for all relevant Chern-Simons

or FI terms:

“T -type” g =

(
I 0

B I

)
: L[~V ]→ L[~Vnew] +

1

4π

∫
d4θ ~Σnew ·B ~Vnew ; (3.8)

“S-type” g =

(
I − J −J

J I − J

)
: L[~V ]→ L[~V ] +

1

2π

∫
d4θ ~Σnew · J ~V (3.9)

“GL-type” g =

(
U 0

0 U−1 t

)
: L[~V ]→ L[U−1~Vnew] . (3.10)

Note that a GL(N,Z) linear transformation U−1 can be applied both to a collection of vector

multiplets ~V and linear multiplets ~Σ, wherever they occur in the Lagrangian.

3.2 A Z2 action on 3d N = 2 theories with a chiral operator

The basic “matter” action on 3d N = 2 theories begins with a theory that has a coupling to

a background 3d chiral multiplet φ. In practice, what we mean is a choice of chiral operator

O that can be inserted in a superpotential

W = φO . (3.11)

Here and elsewhere, we will not keep track of the normalization of superpotential terms. In

particular, we will view a rescaling of O as a trivial operation.

We can define an operation F that makes φ dynamical (thus, setting O effectively to

zero). The new theory can be coupled to a new background chiral field φ′ by coupling to the

new chiral operator O′ = φ, namely by the superpotential

W = φ′φ . (3.12)

It is easy to see that F 2 = 1. We can simply look at the combined superpotential

W = φ′′φ′ + φ′φ+ φO (3.13)

and integrate out φ′.

Much like the “gauge” Sp(2N,Z) action of the previous subsection, the operation F can

be given an interesting four-dimensional interpretation. One can consider possible boundary

conditions on a four-dimensional hypermultiplet. If we split the four real scalar fields in the

hypermultiplet into two complex scalar fields, which we can denote as X and Y , then the two

– 23 –



basic boundary conditions are either Neumann for X and Dirichlet for Y , or vice versa. A

way to understand this is that Y sits in a multiplet of the unbroken supersymmetry which

contains the normal derivative of X.

If we introduce extra degrees of freedom at the boundary, say a 3d theory with a preferred

chiral operatorO, then we can consider a deformed Dirichlet boundary condition Y = O. This

will be accompanied by a corresponding deformation of the Neumann boundary conditions

for X, involving the corresponding piece of the supermultiplet O. This defines a certain class

of boundary conditions which we denote BY , so that the boundary condition associated to a

3d theory T is denoted by BY [T ]. An alternative way to describe this boundary condition

is to start with the undeformed boundary condition and add the boundary superpotential

coupling

W = XO . (3.14)

Naively, one can construct a completely different class of boundary conditions BX as

Dirichlet boundary conditions with X = O′, where O′ is a chiral operator in a 3d boundary

theory T ′. It turns out that these two classes actually coincide, as every member BY [T ] of

one class has a mirror BX [T ′] in the other class. One simply takes T ′ to be the image of T

under F , with O′ = φ; then we claim that

BY [T ] = BX [F ◦ T ] . (3.15)

To see this, we simply follow the definition of F ◦ T to obtain an overall superpotential

coupling

W = Y φ+ φO . (3.16)

Integrating out φ sets Y = −O. Furthermore, the boundary condition X = φ means that we

can simply “absorb” φ into X, thus relaxing the Dirichlet boundary conditions. It takes a bit

more work to make sure that X acquires Neumann boundary conditions, but it follows from

the fact that the normal derivative ∂nX plays the role of auxiliary field in the Y supermul-

tiplet. In summary, if we begin with Dirichlet boundary conditions for X and perform an F

transformation — adding a single boundary chiral multiplet φ and a superpotential W = Y φ

— we will flow in the IR to Dirichlet boundary conditions for Y .

3.3 Useful N = 2 mirror symmetries

From the above, it should be clear that the N = 4 S operation consists of a combination of

N = 2 S and F operations. Indeed, the N = 4 conserved current supermultiplet contains a

complex moment map operator µ, which is a chiral operator for an N = 2 subalgebra. The

N = 4 gauge multiplet contains an N = 2 chiral multiplet φ, which is coupled to the complex

moment map operator µ by the superpotential coupling

W = φµ . (3.17)

Thus, for example, the basic N = 4 mirror symmetry statement of Section 3.1.2 can be recast

as a statement about a 3d N = 2 theory T2 of two chiral multiplets u and ũ with opposite
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flavor charges, and an operator O = µ = uũ. This theory is invariant under the combined

N = 2 S and F operations, i.e. it satisfies SF ◦ T2 = T2.

A basic consequence, pointed out in [31, 33], is that the two theories that are obtained

from a S operation or from a F operation on the theory of two chiral multiplets are actually

the same in the IR, i.e. they are N = 2 mirror duals.11 The theory S ◦ T2 is just N = 2

SQED with Nf = 1. The theory F ◦ T2, or rather CF ◦ T2, is the so-called XYZ model, a

theory of three chiral fields φ, u, ũ with a superpotential

W = φuũ . (3.18)

These two theories are mirror to each other:

SQED (S ◦ T2) : gauged U(1) with two chirals of charge + 1 and − 1

XYZ (CF ◦ T2) : three chirals with superpotentialW = φuũ
(3.19)

There is actually a bit more structure to this problem. In N = 2 language, each of the two

chiral multiplets in T2 can be rotated independently, and the theory really has U(1)2 flavor

symmetry. Similarly, the XYZ model has a U(1)2 flavor symmetry that rotates the phase

of φ, u, ũ and leaves the superpotential W invariant. The two U(1)’s map via the mirror

symmetry (3.19) to an axial U(1) and a topological U(1) in Nf = 1 SQED. In terms of SQED,

the topological U(1) symmetry is carried by two chiral monopole operators v± with charges

±1. It is slightly nontrivial (cf. [31]) to see that the monopole operators also transform with

charge −1 under the axial U(1). We summarize these various flavor symmetries in Table 2.

Nf = 1 SQED

u ũ µ v+ v−

U(1)gauge 1 −1 0 0 0

U(1)axial 1 1 2 −1 −1

U(1)top 0 0 0 1 −1

XYZ

φ u ũ

U(1)axial 2 −1 −1

U(1)top 0 1 −1

Table 2: Correspondence of symmetries in Nf = 1 SQED and the XYZ model. The designations

“axial” and “topological” in the XYZ model are only introduced for comparison to SQED.

Eventually, we will investigate the properties of these theories under Sp(4,Z) transfor-

mations. For now, we would like to derive yet another useful N = 2 mirror pair by a mass

deformation of this theory.

We aim to understand the properties of a simple theory, consisting of a single chiral

multiplet φ of charge 1. In order to define a coupling to a background gauge field, we need to

face a subtlety: a single chiral multiplet canonically coupled to a background gauge field has

an anomaly, which can be cancelled by adding a half-integral Chern-Simons coupling for the

background gauge field. This fact is closely related to another important fact. If we integrate

11Notice that the coupling of the background gauge field to T2 is unaffected by charge conjugation C.
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out a massive chiral multiplet coupled with charge q to a background gauge field, we generate

an effective (supersymmetric) Chern-Simons interaction at level k = 1
2 q

2 sign(m).

Thus we define an N = 2 theory T1 as a chiral field of charge 1, coupled to a background

field with an extra Chern-Simons interaction at level −1
2 . We want to show that ST ◦ T1

coincides with T1. This is certainly compatible with (ST )3 = 1. In particular, we want to

show that a U(1) CS theory at level k = 1
2 coupled to a single chiral multiplet of charge +1

is mirror to a free chiral multiplet of charge +1. To demonstrate this statement, we will go

back to the XYZ model.

Figure 18: The quantum moduli space of N = 2 SQED is identical to the moduli space of vacua in

the XY Z model. It has three branches, permuted by the quantum Z3 symmetry.

The XYZ model, or Nf = 1 SQED, has a triality property. In the XYZ model this is just

permutation of the three chiral fields. The theory has three 1-complex-dimensional branches

of SUSY vacua. Indeed, the superpotential (3.18) leads to the scalar potential

V =
∣∣∣∂W
∂φ

∣∣∣
2
+
∣∣∣∂W
∂u

∣∣∣
2
+
∣∣∣∂W
∂ũ

∣∣∣
2
= |φu|2 + |φũ|2 + |uũ|2 (3.20)

which is minimized on field configurations where one of the chiral fields has a vev, while the

other two vanish. The resulting three branches parametrized by the vevs of φ, u, or ũ meet at

the origin. In the Nf = 1 SQED, on the other hand, the classical moduli space is controlled

by the term σ2(|u|2 + |ũ|2) in the scalar potential

V =
e2

2

(
|u|2 − |ũ|2 − ζ

)2
+ σ2|u|2 + σ2|ũ|2 (3.21)

that forces either σ = 0 or u = ũ = 0. The quantum corrected moduli space of the Nf = 1

SQED is the same as that of the XYZ model, as shown in Figure 18. One of the branches in

the moduli space of SUSY vacua is the Higgs branch, parameterized by the vev of the meson

µ = uũ. The other two are halves of the Coulomb branch, where σ is real and positive, or
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real and negative. The two halves of the Coulomb branch are parameterized by the vevs of

the corresponding vortex-creation (monopole) operators.

Now, if one turns on opposite twisted mass12 for two of the chiral fields in the XYZ

model, it kills two branches and makes the third smooth:

MSUSY = (3.22)

In the Nf = 1 SQED description, this statement can take three equivalent forms. The first

form is simple: an FI parameter is the same as a twisted mass for the monopole operators.

It kills the Coulomb branch and smoothens the Higgs branch. The other two forms of the

statement — which are really what we need — are more subtle. We must to turn on twisted

masses for the other two choices of flavor symmetry in the XYZ description. They rotate

only one of the monopole operators, and the meson.

Let us start with the XYZ model. By consulting Table 2, we see that if we turn on a

large and (say) positive twisted mass maxial for the axial U(1), and an equal mass mtop for

the “topological” U(1),

maxial ≈ mtop ≫ 0 , (3.23)

we can integrate out the chirals φ and ũ. We are left with a single free chiral u, which still

transforms under the difference of U(1)top and U(1)axial. Explicitly, defining a new background

gauge multiplet V ′
top ≡ Vtop − Vaxial, which can still have a small twisted mass parameter

m′
top = mtop −maxial, we find that u is coupled to V ′

top with charge 1. Integrating out the

multiplet ũ generates a background Chern-Simons term k
4π

∫
d4θΣ′

top V
′
top at level k = −1/2.

Thus we obtain our theory T1. (Alternatively, we could have chosen maxial = −mtop ≫ 0,

which would allow us to integrate out u and keep ũ. This leads to an equivalent description

of T1.)

In terms of Nf = 1 SQED, the topological mass mtop ≈ −maxial becomes an FI parameter

2

4π

∫
d4θΣtop Vgauge =

1

2π

∫
d4θmtop Vgauge . (3.24)

It is this large FI term which ultimately allows us to keep the monopole v+ light. This may

look a bit mysterious, but it is easily motivated by looking at what happens to the fundamental

matter fields of Nf = 1 SQED in the presence of a large axial mass. Both u and ũ become

very heavy, unless we tune σ to ±maxial, so that either ũ is light and u is heavy, or vice

versa. Let us choose σ = −maxial; or, more appropriately, let us redefine the dynamical gauge

multiplet as Vgauge → Vgauge−Vaxial = Vgauge−θθ̄ maxial. Then we can integrate out ũ, and in

the process generate a Chern-Simons term of level 1/2 for the combination −Vgauge +2Vaxial,

under which ũ is charged. Hidden in the cross-term of the supersymmetric Chern-Simons

12By “twisted mass” in three dimensions, we mean a mass term arising as a background value for the real

scalar field in a vector multiplet. Sometimes this is also called a “real mass.”
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interaction is an FI term − 1
2π

∫
d4θmaxial Vgauge, which cancels (3.24), leaving behind a small

difference 1
2π

∫
d4θm′

top Vgauge ! Thus we end up with a fundamental chiral u, coupled with

charge 1 to a U(1) gauge multiplet Vgauge, which has a level 1
2 Chern-Simons interaction

1
8π

∫
d4θΣgauge Vgauge. The theory has a single light monopole operator v+, transforming with

charge 1 under the new topological U(1)′top. This is precisely the description of ST ◦ T1. We

have therefore derived

ST ◦ T1 ≃ T1 (3.25)

as a consequence of the basic N = 2 mirror symmetry (3.19).

In section 3.1, we discussed the interpretation of the Sp(2N,Z) action on a 3d theory T as

the action of electric-magnetic duality in 4d abelian gauge theory on a corresponding boundary

condition B[T ]. In this interpretation, our simple 3d theory T1 can define a boundary condition

for a 4d theory with gauge group U(1) — by identifying the 4d gauge symmetry with the

3d flavor symmetry. If we start with a 4d duality frame in which the chiral multiplet of T1
carries 4d electric charge, then by acting with SL(2,Z) duality we obtain all other variants

of the theory T
(p,q)
1 , where a distinguished chiral operator transforms as a dyon of electric

charge p and magnetic charge q. In particular, the ST element of SL(2,Z) acts as

T
(1,0)
1

ST
−−→ T

(0,1)
1

ST
−−→ T

(−1,1)
1

ST
−−→ T

(1,0)
1 . (3.26)

The mirror symmetry (3.25) actually guarantees that, just like T
(1,0)
1 , the theories T

(0,1)
1

and T
(−1,1)
1 are equivalent to theories of free chirals coupled to the appropriate (magnetic or

dyonic) 4d U(1) gauge field with Chern-Simons level −1
2 . The chain of equivalences (3.26)

should remind us of (2.9).

This concludes our quick tour of the basic operations and mirror symmetries in 3d N = 2

gauge theories. Of particular importance in the rest of the paper is the basic relation ST ◦T1 =

T1 and the mirror symmetry between the XYZ model and Nf = 1 SQED. These basic duality

relations admit many generalizations in various directions (to theories that include larger

gauge groups and / or larger spectrum of matter fields), which have an elegant interpretation

in terms of triangulations of 3-manifolds.

One simple generalization, which we mention only briefly, is that the XYZ model and

Nf = 1 SQED appear as the first mirror pair in the infinite family of mirror abelian gauge

theories:

Theory A : U(1)r with k neutral chirals and N charged hypermultiplets (3.27)

Theory B : Û(1)N−r with N − k neutral chirals and N charged hypermultiplets

where the charges of the hypermultiplets in the two theories, Ra
i and R̂a

i , obey the “orthogo-

nality” constraints
N∑

i=1

Ra
i R̂

b
i = 0 ∀ a, b . (3.28)
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In addition, both mirror theories A and B have gauge invariant cubic superpotential of the

form

W =
k∑

α=1

N∑

i=1

yαi φαQ̃iQi (3.29)

with Yukawa couplings yαi (resp. ŷβi) which obey a relation similar to (3.28):

N∑

i=1

yαiŷβi = 0 ∀ α, β . (3.30)

All four matrices R, R̂, y, and ŷ are assumed to be of maximal rank. It is easy to see that

if we take N = r = 1 and k = 0, then Theory A is N = 2 SQED with Nf = 1, whereas

Theory B is the XYZ model. The next simplest case, N = r = k = 1, gives another prominent

pair of mirror 3d theories that we also mentioned earlier: a free hypermultiplet and N = 4

SQED. More generally, in this class of examples Theory A contains a total of 2N + k chiral

multiplets (with charges −1, 0, and +1), whereas Theory B contains a total of 3N − k chiral

multiplets. For this reason, the mirror symmetry of such a mirror pair could be referred to

as a “(2N + k)− (3N − k) move.”

4. Construction of TM

In this section, we will now combine the ingredients of Sections 2 and 3 to provide the map

from a pair (M,Π), where M is a 3-manifold and Π a polarization of its boundary phase space

P∂M , to a 3d SCFT TM,Π, with specified couplings to background gauge fields and chiral

multiplets. We will do so in two steps. First, we attach a 3d theory to any triangulation

{∆i}
N
i=1 of the three-manifold M , and then we show that different triangulations of the same

three-manifold give mirror descriptions of the 3d SCFT.

4.1 Definition

In order to implement the first step, we begin by defining a theory T∆,ΠZ
that we associate

to a single tetrahedron ∆ in polarization ΠZ (as in (2.9)):

T∆,ΠZ
= T1 . (4.1)

Recall from Section 3.3 that T1 is a theory of a single chiral multiplet coupled to a background

U(1) gauge field, with a level −1
2 Chern-Simons term turned on. We will say from now on

that the free chiral is associated to the edges of the tetrahedron ∆ labelled by Z, and denote

it as φZ or OZ . It is also useful to think of the twisted mass of OZ as Re(Z), and its R-charge

as Im(Z)/π, where Z is the classical edge/shape parameter of ∆. We use this interpretation

here as an intuitive aid to motivate our gluing construction; it will be made much more precise

in Sections 5 and 6.
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We can extend the definition (4.1) to any other polarization Π obtained by an (affine)

SL(2,Z) transformation g on ΠZ :

T∆,g◦ΠZ
= g ◦ T1 (4.2)

For example, in a polarization Π−
Z as in (2.10), we would find T∆,Π−

Z
= T ◦T1 to be the theory

of a free chiral coupled to a background U(1) with Chern-Simons level k = +1
2 . This definition

is consistent with the Z3 symmetry of the tetrahedron: the triality symmetry permutes three

equivalent polarizations ΠZ , ΠZ′ , ΠZ′′ in (2.9) which, on the N = 2 gauge theory side,

correspond to the three duality frames (3.26) of the theory T1 permuted by the ST element

of SL(2,Z).

The second step is the definition of T{∆i},Π̃
, the theory associated to the union of N

tetrahedra ∆i, in a generic polarization Π̃. We can always write Π̃ = g ◦ {Πi} for some

g ∈ Sp(2N,Z), where {Πi} is a polarization defined as a product of independent polarizations

Πi of the individual tetrahedra. We choose each Πi to be either ΠZi
, ΠZ′

i
or ΠZ′′

i
. Then we

define

M =

N⋃

i=1

∆
(Π)
i  T{∆i},Π̃

= g ◦
N⊗

i=1

T∆i,Πi
(4.3)

where we regard the product of N copies of T1 theories as a theory with a canonical coupling

to a U(1)N background gauge field. We should think of each U(1) as corresponding to an

independent position coordinate in the polarization Π̃. This definition is independent of the

choice of Πi ∈ {ΠZi
,ΠZ′

i
,ΠZ′′

i
} due to the the symmetry ST ◦ T1 = T1.

In order to define the actual SCFT TM,Π associated to the 3-manifold M , we need to

implement a field-theory version of the gluing constraints CI → 2πi for each internal edge I

in the triangulation. The basic idea is to choose a polarization Π̃ = g ◦ {Πi} for the collection

of tetrahedra such that

1) it is compatible with the final desired polarization Π of the boundary P∂M ; and

2) all the internal edge coordinates CI are “positions” in Π̃.

If we are careful, we can then construct operators OI in the theory T{∆i},Π̃
, one for each

internal edge. These operators will be charged under a subset of U(1) flavor symmetries, also

associated to the edges CI — or rather to independent linear combinations of them. We can

then define TM,Π by adding a superpotential to T{∆i},Π̃
of the form

W =
∑

I∈ internal
edges of M

OI . (4.4)

This superpotential breaks all the U(1) symmetries under which the OI are charged. It also

sets the R-charge of each OI equal to 2. We will see later that this is precisely equivalent to

setting CI = 2πi.
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In addition to the internal edge operators OI , the theories T{∆i},Π̃
and TM,Π also have

a set of operators OE associated to the external edgesthat are “positions” in Π ⊂ Π̃. These

operators are charged precisely under the U(1) gauge symmetries that persist as symmetries of

TM,Π — one for each independent position in Π. Indeed, it is easy to see that the flavor group

of TM,Π will contain exactly 1
2 dimP∂M U(1)’s. In summary, we have built a correspondence:

geometry gauge theory

∆, ΠZ T∆,ΠZ
= T1

{∆i}, {Πi} T{∆i},{Πi} = ⊗iT∆i,Πi

positions, e.g. Zi operators OZi
with U(1) symmetries

{Πi} → Π̃ = g ◦ {Πi} T{∆i},{Πi} → T{∆i},Π̃
= g ◦ T{∆i},{Πi}

internal edges CI operators OI

external positions, e.g. XE operators OE

CI → 2πi (sympc reduction) W =
∑

I OI

M = ∪i∆i, Π TM,Π = T{∆i},Π̃
+ superpotential W

(4.5)

The construction of operators OI (and also OE) in the product theory T{∆i},Π̃
is a little

tricky. In order to describe it, we must distinguish two classes of edges. We call an edge “easy”

if its classical coordinate CI (or XE) is a sum containing at most one of the edge parameters

Zi, Z
′
i, Z

′′
i for any tetrahedron ∆i; otherwise the edge is “hard.” Thus, CI = Z1 + Z2 or

CI = 2Z ′′
1 + Z3 + Z ′

4 would be examples of easy edges, while the internal edges (2.30) in the

standard triangulation of the figure-eight knot complement are hard.

Suppose that a triangulation M = {∆i}
N
i=1 only contains easy edges, and let us focus

on the internal ones CI . For every edge I, we can define a polarization {ΠI
i } so that the

tetrahedron parameters appearing in CI are all position coordinates. Due to the definition

of easy edges, we can always choose Πi ∈ {ΠZ ,ΠZ′ ,ΠZ′′} so that the product polarization

has this property. Then, in the theory T{∆i},{ΠI
i }

there will automatically exist an operator

OI for the edge CI , constructed as a product of elementary chiral fields. For example, if

our easy edge is CI = 2Z ′′
1 + Z3 + Z ′

4, we choose a product polarization {ΠI
i } that includes

ΠI
1 = ΠZ′′

1
, ΠI

3 = ΠZ3 , and ΠI
4 = ΠZ′

4
. Then T{∆i},{ΠI

i }
will have operators OZ′′

1
, OZ3 and

OZ′
4
, all elementary chiral fields, from which we define OI = (OZ′′

1
)2OZ3OZ′

4
.

Now, we are really interested in the theory T{∆i},Π̃
, associated to the polarization Π̃ in

which every internal edge is a position coordinate. For each individual CI , there exists an

(affine) Sp(2N,Z) transformation gI such that

Π̃ = gI ◦ {Π
I
i } , T{∆i},Π̃

= gI ◦ T{∆i},{ΠI
i }
. (4.6)

This is not quite an arbitrary transformation. In particular, since CI is a position coordinate in

both {ΠI
i } and Π̃, the action of gI cannot gauge any of the U(1) flavor symmetries under which
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the operator OI transforms. Therefore, we can easily pull OI through the transformation on

the right of (4.6) to define the corresponding internal edge operator in T{∆i},Π̃
.

If a triangulation only contains easy edges, we can repeatedly use this construction to

define all the operators appearing in the superpotential (4.4). Notice, however, that we define

each OI using a different mirror Lagrangian description of T{∆i},Π̃
. In any given description,

one of the internal edge operators is “simple,” being a gauge-invariant product of elementary

chiral multiplets. The other operators may appear more complicated, and will in general take

the form of monopole operators.

Just as we defined operators for internal edges, we can also define operators OE for any

easy external edges (or cusp holonomies) that are positions in Π ⊂ Π̃. In various mirror

duality frames, they will appear either as products of chiral fields or monopole operators, and

they will be charged under the flavor symmetries of TM,Π that correspond to the positions

XE (or U , etc.).

Currently, we only have a rigorous construction of operators OI and OE for triangula-

tions with easy edges. Indeed, it appears that if we try to define a theory TM,Π using a

triangulation of M with hard edges, the theory will be slightly degenerate — and potentially

missing some expected operators. We will see an example of this behavior in Section 4.6.

Fortunately, it seems that we can always refine a given triangulation of a 3-manifold M so

that no hard edges are present, and then use this triangulation to construct TM,Π.

One of our central claims is that the theories TM,Π constructed here are topological in-

variants of a three-manifold M (and a polarization of its boundary), which do not depend on

the actual triangulation being used to define them — or on the choice of refinement, should

a given triangulation include hard edges. In particular, we claim that different triangula-

tions lead to different mirror-symmetric descriptions of the same underlying 3d SCFT. To

understand this, we now proceed to analyze the simplest and most important example of a

triangulated 3-manifold: the bipyramid.

4.2 The bipyramid and the 2–3 move

Let’s consider the theory of the bipyramid, as constructed from two different triangulations.

To keep things simple, we will focus on the “equatorial” polarization Π = Πeq for the bipyra-

mid, as defined in (2.22) or (2.34). In particular, the three equatorial edges of the bipyramid

are position coordinates in Π. We keep the same notation as in Section 2, and repeat Figure

15 here as a visual reference.

If we decompose the bipyramid into three tetrahedra, then according to our rules T{∆i},Π

is a theory of three free chiral multiplets, coupled to a background U(1)3, with some extra CS

couplings determined by our choice of momenta in Π. The operator associated to the unique

internal edge is simply the product of the three chiral fields. Hence TM,Π is simply the XYZ

model, with appropriate coupling to the unbroken U(1)2 flavor symmetry. The operators

associated to the external edges are the three chiral multiplets themselves.
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Figure 19: Decompositions of the bipyramid, with labelled edge coordinates (Figure 15).

Being more explicit, we can start with a product polarization {Πi} = {ΠZ ,ΠW ,ΠY }, such

that Z,W, Y are coordinates and Z ′′,W ′′, Y ′′ are momenta. In the equatorial polarization Πeq,

we know that X1 = Z and X2 = W are positions while P1 = Z ′′ + Y ′ and P2 = W ′′ + Y ′

are momenta; we therefore choose a compatible polarization Π̃ on P{∂∆i} with positions

X1, X2, C and momenta P1, P2,Γ, where C = X+Y +Z and Γ = −Y ′. The affine symplectic

transformation g from {Πi} to Π̃ is encoded as




X1

X2

C

P1

P2

Γ




=




1 0 0 0 0 0

0 1 0 0 0 0

1 1 1 0 0 0

0 0 0 1 0 −1

0 0 0 0 1 −1

0 0 0 0 0 1







1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 1 0 0 1







Z

W

Y

Z ′′

W ′′

Y ′′




+




0

0

0

iπ

iπ

−iπ




, (4.7)

which involves a T -type transformation, a GL-type transformation, and a shift that will not

be visible at the level of Lagrangians. Thus, starting with a Lagrangian description

L{Πi}[VZ , VW , VY ] =
1

4π

∫
d4θ
(
−

1

2
ΣZVZ −

1

2
ΣWVW −

1

2
ΣY VY

)
+

∫
d4θ
(
φ†
Ze

VZφZ + φ†
W eVW φW + φ†

Y e
VY φY

)
(4.8)

for T{∆i},{Πi}, we construct the Lagrangian for T{∆i},Π̃
= g ◦ T{∆i},{Πi} simply as

LΠ̃[VX1 , VX2 , VC ] = L{Πi}[VX1 , VX2 , VC−VX1−VX2 ]+
1

4π

∫
d4θ(ΣC−ΣX1−ΣX2) (VC−VX1−VX2) ,

(4.9)

in other words by adding a level 1 Chern-Simons term for VY , and redefining VZ = VX1 , VW =

VX2 , and VY = VC − VX1 − VX2 . It is trivial to see that the elementary operator

OC ≡ φZφWφY (4.10)

exists in T{∆i},Π̃
, as do the individual operators φZ , φW , φY associated to the equatorial

external edges. The bipyramid theory TM,Πeq is then defined by adding the superpotential
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W = OC to (4.9), which forces VC = θθ̄mC = 0; direct calculation then shows

LM,Πeq [VX1 , VX2 ] =
1

4π

∫
d4θΣX1VX2 +

∫
d4θ
(
φ†
Ze

VX1φZ + φ†
W eVX2φW + φ†

Y e
−VX1

−VX2φY

)

+

∫ (
d2θ φZφWφY + c.c.

)
. (4.11)

This is the promised XYZ model, with slightly redefined U(1)2 symmetries, and a mixed

Chern-Simons term.

If we decompose the bipyramid into two tetrahedra instead of three, we need no superpo-

tential. On the other hand, the transformation g from the polarization {ΠR,ΠS′′} for the two

tetrahedra to Πeq is non-trivial: as the positions are X1 = R+S′′, X2 = R′′+S, and R′+S′,

it is easy to see that g involves gauging (with no CS coupling) the U(1) under which the two

chiral multiplets have opposite charge. Hence with this definition TM,Π is simply Nf = 1

SQED, with appropriate coupling to the U(1)2 flavor symmetry. The operator associated to

the edge coordinate X1 = R+ S′′ is simply the meson operator.

Again, one can go through explicit Lagrangian manipulations as above. Starting from a

polarization {Πi} = {ΠR,ΠS′′} ∼ (R,S′′;R′′, S′) we reach the equatorial polarization Πeq ∼

(X1, X2;P1, P2) via a symplectic transformation g = gS gT gU , with

gS =




1 0 0 0

0 0 0 −1

0 0 1 0

0 1 0 0


 , gT =




1 0 0 0

0 1 0 0

0 0 1 0

0 1 0 1


 , gU =




1 1 0 0

0 1 0 0

0 0 1 0

0 0 −1 1


 . (4.12)

Therefore, we obtain LM,Πeq [VX1 , VX2 ] by starting with

L{∆i},{Πi}[VR, VS′′ ] =
1

4π

∫
d4θ
(
−

1

2
ΣRVR −

1

2
ΣS′′VS′′

)
+

∫
d4θ
(
φ†
Re

VRφR + φ†
S′′e

VS′′φS′′

)
,

(4.13)

redefining the U(1)2 symmetry, adding a Chern-Simons term, and gauging a U(1). A straight-

forward calculation produces13

LM,Πeq [VX1 , VX2 ] =
1

4π

∫
d4θ
(
ΣX1VX2 + (ΣX1 + 2ΣX2)V

)

+

∫
d4θ
(
φ†
Re

V+ 1
2
VX1φR + φ†

S′′e
−V+ 1

2
VX1φS′′

)
, (4.14)

with the U(1) gauge multiplet V dynamical. This is precisely Nf = 1 SQED, with a mixed

Chern-Simons coupling, and slightly redefined U(1)2 symmetry. The meson operator OX1 ≡

φRφS′′ is obviously charged under VX1 . We know that SQED also has two monopole operators

13In the last step of the derivation of (4.14), we shifted the dynamical gauge multiplet V → V + 1
2
VX1

,

thereby adding to the ‘X1’ flavor current a half-integral multiplet of the gauge current. This non-integral shift

is not necessary, but can be made sense of because the multiplet VX1
= θθ̄mX1

is nondynamical. In the form

(4.14) of the Lagrangian, the identification of 1
2
VX1

with an axial flavor multiplet becomes immediate.
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v+ and v−, and from the form of the FI term in (4.14) we see that they must be charged

under the combinations VX2 and −VX1 − VX2 , respectively. Thus, they correspond to the

remaining two equatorial edges.

Thanks to the basic N = 2 mirror symmetry statement (3.19), our construction gives the

same theory TM,Π for the bipyramid, no matter how we triangulate it. By carefully comparing

the Lagrangian descriptions (4.11) and (4.14), we see that the three equatorial edge operators

— elementary fields in the XYZ model and a meson/monopoles in SQED — are mapped to

each other by mirror symmetry, and their coupling to the background U(1) gauge multiplets

VX1 and VX2 coincide perfectly.

One can also repeat the exercise for the longitudinal polarization. The two triangulations

give respectively N = 4 SQED with Nf = 1 and the theory of a free hypermultiplet, i.e. the

basic N = 4 mirror pair. This is a useful exercise in order to show that the operators

associated to longitudinal edges by the two polarizations are also mapped into each other by

mirror symmetry.

With this result, we are in position to argue that the theories TM,Π defined by different

triangulations of the same three-manifoldM are mirror to each other. Different triangulations

are related by a sequence of 2 − 3 moves.14 Two triangulations that differ by a 2 − 3 move

give two definitions of the theory TM,Π that differ only by a basic mirror symmetry relation.

The mirror symmetry acts on the degrees of freedom associated to the particular bipyramid

that is decomposed in two different ways in the course of a 2− 3 move.

4.3 The flip

Just as 2 − 3 moves change the internal triangulation of a 3-manifold, the flips described in

Section 2.5 can change the triangulation of its (geodesic) boundary. This has a very simple

effect on a theory TM,Π.

For example, suppose that TM,Π has an operator OX , charged under a global symmetry

U(1)X , that corresponds to an external edge with position coordinate X. We want to add a

tetrahedron ∆Z to flip this edge, as in Figure 16. Following our gauge theory dictionary, this

means that we form the combined theory TM,Π ⊗ T∆Z ,ΠZ
, and add a superpotential coupling

W = OXφZ . (4.15)

The new theory now has a chiral operator φZ that transforms under the anti-diagonal sub-

group of U(1)X × U(1)Z that is unbroken by (4.15).

This transformation simply describes the F operation of Section 3.2. Just as F 2 is a trivial

operation on a 3d SCFT, flipping a diagonal twice is a trivial operation on the boundary of

a 3-manifold.

14Strictly speaking, we should only consider triangulations that have easy edges, as discussed in Section 4.1.

It is very plausible — although not mathematically proven — that to connect two “easy” triangulations, one

can always find a chain of 2− 3 moves that only pass through other easy triangulations.
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4.4 TM as a boundary condition

In section 3 we learned some useful facts about the relation between three dimensional theories

and boundary conditions for four-dimensional theories. We saw that all the 3d theories in an

orbit of the Sp(N,Z) action can be thought of as representing the same boundary condition in

different electric-magnetic duality frames of a four-dimensional abelian gauge theory. We also

saw that the F transformation on three-dimensional theories can be thought of as relating

two mirror description of the same boundary condition for one hypermultiplet.

We can use these facts to try to liberate TM,Π from the dependence on the polarization

Π, and even on the choice of triangulation of the geodesic boundary C of M . To remove

the polarization dependence, we can couple TM,Π to a four-dimensional gauge theory, whose

symplectic lattice of electric-magnetic charges is modeled on the lattice generated by the edge

coordinates of the triangulation of C, the geodesic boundary of M . In order to remove the

dependence on the triangulation of C, we need to couple TM,Π to a set of hypermultiplets as

well, one for each edge of the triangulation of C. In order for the flip to coincide with an F

move, each hyper must be coupled by a superpotential toOE , and hence have four-dimensional

gauge charges equal or opposite to the charge associated to the edge itself.

Thus we find it natural to couple TM,Π to an apparently bizarre four-dimensional theory:

an N = 2 abelian gauge theory coupled to hypermultiplets of several dyonic charges, one for

each edge of the triangulation of C. This theory is less bizarre than it seems. Indeed, [34],

the symplectic lattice generated by a triangulation of C coincides naturally with the lattice

of IR electric-magnetic charges for the four-dimensional theory obtained from two M5 branes

wrapping C. Furthermore, in a large patch of the 4d Coulomb branch, the whole spectrum

of IR BPS particles can be thought of as bound states of a basis of hypermutliplet particles,

each associated to an edge of the triangulation, and carrying the corresponding charges.

Thus there is a sense in which the abelian gauge theory with the hypermultiplets asso-

ciated to the edges of the triangulation is a complete IR description of the four-dimensional

theory associated to C. And thus TM,Π can be thought as the description of a boundary

condition for the four-dimensional theory, in a given duality frame. This is a property which

we surely expect to be true of T [M, su(2)]. In later sections we will reinforce the connection

further. For example, the moduli space of vacua of TM,Π compactified on a circle naturally

defines a boundary condition for the four-dimensional gauge theory compactified on a circle.

4.5 The octahedron

We include two more brief examples of three-manifold theories. The first, the octahedron,

demonstrates how 2−3 moves can be used in the interior of a manifold, resulting in interesting

chains of N = 2 SCFT dualities. The second, the figure-eight knot complement, will illustrate

how potential difficulties with “hard” edges can be resolved.

The simplest way to construct an octahedron is from four tetrahedra, glued together

along a central edge (Figure 20). Suppose we we work in an equatorial polarization Πeq

as shown, with independent positions (X,Y, Z,C), where the internal edge has parameter
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Figure 20: The octahedron from four tetrahedra

C = X+Y +Z+W . The resulting theory Toct,Πeq is a simple generalization of the bipyramid

theory (4.11). It starts with four chirals φX , φY , φZ , φW and four background gauge multiplets

VX , VY , VZ , VW . The multiplet VW is redefined as VW → VC − VX − VY − VZ − VW , and then

we add a quartic superpotential

Weq = φXφY φZφW (4.16)

to break the global symmetry U(1)C . We are still left with U(1)X × U(1)Y × U(1)Z .

To be more specific, we should fix conjugate momenta in Πeq, taking (say) (X+W ′′, Y +

W ′′, Z +W ′′,−W ′′). This choice of momenta will add some background Chern-Simons cou-

plings to the Lagrangian of Toct,Πeq , which we encourage the careful reader to work out.

Now, if we change to a different polarization Π×, as in the center of Figure 21, we must

perform an Sp(6,Z) transformation on the theory Toct,Πeq . This transformation, call it g×,

gauges the U(1) symmetry under which (φX , φY ) transform as a hypermultiplet. Thus, we

obtain a new theory Toct,Π×
= g× ◦ Toct,Πeq which has a subsector that looks like Nf = 1

SQED. By the basic N = 2 mirror symmetry (acting on this subsector), if must be equivalent

to a theory of five chirals, with no dynamical gauge group, and superpotential

W× = φTφZφW + φTφRφS . (4.17)

From the perspective of SQED, φT ≡ φXφY is a meson, and the new fields φR, φS are

monopole operators; the second term in (4.17) is just the “XYZ” superpotential that we

must add during mirror symmetry.

By looking at the left-hand side of Figure 21, we should immediately identify the de-

scription of Toct,Π×
using five chirals as arising from a five-tetrahedron triangulation of the

octahedron. The two terms in the superpotential W× come directly from the two internal

edge coordinates C1 = T + Z +W and C2 = T +R+ S in this triangulation.

To go a bit further, we notice that there another possible triangulation into five tetrahe-

dra, shown on the right side of Figure 21. In a sense, it is maximally incompatible with the

polarization Π×. If we try to use triangulation to define Toct,Π×
, we will again start with five

chirals φR̃, φS̃ , φT̃ , φZ̃ , φW̃ , but will have to gauge the two U(1) symmetries which treat the
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Figure 21: The octahedron from five tetrahedra, two ways. Positions of the polarization Π× are

indicated in the middle.

respective pairs φR̃, φS̃ and φZ̃ , φW̃ as hypermultiplets. What results is a mirror description

of Toct,Π×
as a dynamical U(1)2 gauge theory with two hypermultiplets and a neutral chiral

φT̃ , coupled by a superpotential

W ′
× = φT̃φZ̃φW̃ + φT̃φR̃φS̃ . (4.18)

It is not too hard to recognize that these two descriptions of Toct,Π×
correspond to the case

N = 2, r = 0, k = 1 of the infinite family of mirror pairs (3.27).

There are infinitely more splittings of the octahedron, all giving dual descriptions of

Toct,Π×
and its Sp(6,Z) images. We could similarly analyze triangulations of larger polyhedra

or more general 3-manifolds to generate a huge class of 3d N = 2 mirror symmetries. We

expect, in particular, that the family of dual theories mentioned in (3.27) is realized as a

(small!) subset of these.

4.6 Figure-eight knot

As our final example, we consider the theory associated to a manifold with a torus cusp

boundary: the complement of the figure-eight knot M = S3\41.

The minimal triangulation of M into two tetrahedra, discussed in Section 2.4, has two

internal edges and both of them are hard:

C1 = 2Z + Z ′′ + 2W +W ′′ , C2 = 2Z ′ + Z ′′ + 2W ′ +W ′′ . (4.19)

We could certainly try to write down a gauge theory from this triangulation. Indeed, starting

with T∆Z ,ΠZ′ ⊗ T∆W ,ΠW
, we can change the polarization to Π̃ with (positions; momenta)=

(U,C1; v,Γ), where U = Z ′ −W , v = Z − Z ′ as in (2.29), and Γ1 = −W is the conjugate to

C1. The resulting theory T
(2)

41,Π̃
is a U(1) gauge theory with two chiral matter fields both of

charge +1, and no dynamical Chern-Simons coupling. The factors in the global symmetry

group U(1)vector×U(1)top correspond to position coordinates 1
2U and −C1−

3
2U , respectively.
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Explicitly, we find a Lagrangian

L
(2)

41,Π̃
[VU , VC1 ] =

1

4π

∫
d4θ

(
−

3

2
ΣUVU − (2ΣC1 + 3ΣU )V

)

+

∫
d4θ
(
φ†
Z′e

V+VUφZ′ + φ†
W eV φW

)
, (4.20)

with V dynamical. Unfortunately, we are hard-pressed to find two monopole operators

OC1 , OC2 in this theory that could be added to a superpotential. Their existence is cru-

cial to break the (essentially topological) U(1)C1 symmetry, to set VC1 → 0 and to complete

the gluing procedure.
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Figure 22: The torus cusp for the figure-eight knot complement, triangulated into six tetrahedra. The

cyclic order of edge parameters (z, z′, z′′), etc., is always the same, so we only indicate one parameter

per vertex triangle.

To resolve this problem, we must resolve the triangulation. For example, we have found a

decomposition of the figure-eight knot complement into six tetrahedra, such that all internal

edges are easy. We sketch a developing map of the resulting cusp neighborhood in Figure 22,

from which we read off the six internal edge coordinates15

C1 = X +W + 2(R′ + S′ + Z ′′) , C2 = R+ Y + 2(Z ′ +W ′ + S′′) ,

C3 = S +W + 2(R′′ +X ′′ + Y ′) , C4 = R+ Z + 2(Y ′′ +W ′′ +X ′) ,

C5 = X + Y , C6 = S + Z .

(4.21)

We also find eigenvalues for the meridian and longitude cycles on the boundary T 2,

U = S′ +R′ −X ′′ + Y ′′ −W ′ + Z ′′ , v = X +R′ − S −R′′ . (4.22)

Using the combinatorial data for this gluing, it is straightforward (if tedious) to follow the

rules of Section 4.1 to define the actual figure-eight knot theory T41,Π, where Π has position

U and momentum v. This theory has six operators OC1 , ...,OC6 that can be added to the

superpotential to break the U(1) symmetries corresponding to the internal edges.

15We invite the reader to check that this triangulation produces the same A-polynomial as in (2.32).
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5. Moduli space on R2 × S1

One simple way to test the correspondence M ←→ TM is to associate a moduli space to

each side. In the analogous construction [1] of the 4d N = 2 superconformal theory from

a Riemann surface C, there is a similar test of the correspondence C ←→ T (C) based on

comparing the moduli space of complex (equivalently, conformal) structures on C with the

moduli space of marginal couplings of the theory T (C).

In the present case, there is a similar test of the correspondence M ←→ TM based

on comparing moduli spaces of complex flat connections on M and the moduli space of

supersymmetric vacua of the theory TM . To be more precise, the space of complex flat

connections on M can be identified with the space of SUSY moduli in the theory TM on

R2 × S1 [4]:

Mflat(M,SL(2,C)) = MSUSY(TM ) . (5.1)

While the definition of the moduli space Mflat(M,SL(2,C)) is clear (and was reviewed in

section 2) we need to properly interpret the right-hand side of (5.1).

Upon compactification on R2 × S1, the N = 2 theory TM becomes effectively two-

dimensional. Supersymmetry then requires that the vevs of chiral and twisted chiral fields,

whether dynamical or not, are complex valued. For example, 3d real mass parameters as-

sociated to a background U(1) gauge multiplet V become complexified by the holonomies

of the background photon on S1. Therefore, moduli spaces parametrized by vevs of chiral

and twisted chiral fields are always complex manifolds. Here, we are mostly interested in the

moduli space parameterized by vevs of twisted chiral fields — the descendants of 3d gauge

multiplets — and denote this spaceMSUSY.

For example, if M is a closed 3-manifold without boundaries or cusps, the corresponding

field theory TM on R2 × S1 has the moduli space of supersymmetric vacua MSUSY(TM )

obtained by minimizing the twisted superpotential W̃. Since the twisted superpotential is a

holomorphic function, the variety defined by the equations ∂W̃ = 0 is a complex variety, just

like the moduli space of flat SL(2,C) connections on M .

More generally, if M is a 3-manifold with boundary C = ∂M , it is natural to project the

moduli spaceMflat(M,SL(2,C)) onto the moduli space of flat connections on C, i.e. consider

those flat connections on C which can be extended to all of M . In Section 2, this projection

was cut out by the Lagrangian submanifold

LM ⊂ P∂M =Mflat(C, SL(2,C)) . (5.2)

Correspondingly, in the N = 2 gauge theory TM , it is natural to ask for which values of the

parameters vi (= vevs of non-dynamical fields) the theory TM has SUSY vacua on R2×S1. In

order to answer this question, we introduce the effective twisted superpotential W̃eff obtained

by minimizing W̃ with respect to all dynamical fields, and then define [35]:

M
(param)
SUSY (TM ) : ui =

∂W̃eff

∂vi
. (5.3)
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In the the case where vi is the twisted mass in a background U(1) gauge field, the coordinate

ui should be thought of as the background FI parameter for this field; then it is clear that

(5.3) is the condition for unbroken supersymmetry. As we illustrate in a number of examples

below, W̃eff is a transcendental function, generically a sum of dilogarithm functions. However,

after taking the derivatives in (5.3) and introducing the new coordinates

ℓi = evi , mi = eui (5.4)

(which are natural, because the complexified vevs ui and vi are periodic), one finds a nice

algebraic variety that is identical to LM .

Geometrically, it should be clear that the Lagrangian submanifold LM cannot depend

on the coordinates and polarization used to describe the phase space P∂M when M has

a boundary. Changing coordinates will simply re-parametrize LM . Similarly, the space

M
(param)
SUSY (TM,Π) should not depend on the polarization Π (or boundary triangulation, etc.)

used in previous sections to define a theory TM,Π. One way to see this is to interpret

TM,Π on R2 × S1 as describing a boundary condition B[TM,Π] for a 4d N = 2 theory T [C]

(C = ∂M) compactified on R3 × S1, as in Section 4.4. With a little bit of work, one can

show that the coordinates ℓi, mi become boundary values of natural coordinates (e.g. XE

of [2, 16]) on the moduli space of the compactified 4d theory. From this point of view,

M
(param)
SUSY (TM ) = LM becomes a complex Lagrangian submanifold in the four-dimensional

moduli space16 MSUSY(T [C]) ≃ P∂M . This Lagrangian characterizes the boundary condition

itself, rather than any specific realization of it via a 3d SCFT. In particular, changing the

polarization Π merely shifts the duality frame of the combined 4d-3d system, and must map

M
(param)
SUSY (TM ) to an isomorphic space.

The present discussion of supersymmetric vacua, particularly as given by equations (5.3)

with W̃ a sum of dilogarithm functions, is highly reminiscent of recent work relating effective

2d field theories to quantum integrable systems [36, 37, 38]. For example, 3d N = 2 theories

much like TM compactified on a circle are related to the XXZ spin chain. A precise connection

between our present constructions and integrable systems would be very interesting, but has

yet to be established.

5.1 The tetrahedron

Now, let us illustrate this in a few concrete examples, starting with the theory T∆,ΠZ
that we

associate to a single tetrahedron. The theory T∆,ΠZ
is a single chiral multiplet φZ coupled to

a U(1) background gauge field that also has a (supersymmetric) Chern-Simons interaction at

level −1
2 . On a circle of finite radius β, this theory has the effective twisted superpotential

(cf. [39, 40, 36, 35])

T∆,ΠZ
: W̃eff(Z) = Li2(e

−Z) = Li2(z
−1) , (5.5)

16As discussed (e.g.) in [2, 16], this 4d moduli space actually has the structure of a hyperkahler manifold.

The space M
(param)
SUSY (TM ) is then embedded into MSUSY(T [C]) as a brane of type (A,B,A).
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where

Z := β m̃Z (5.6)

is proportional to the twisted mass in the 2d background gauge multiplet (which contains the

real mass mZ = Re(m̃Z) of the 3d chiral φZ). Note that the superpotential (5.5) includes an

infinite tower of Kaluza-Klein modes on the circle S1, which have been re-summed.

According to (5.3) the effective complexified FI parameter in the IR is given by

Z ′′ =
∂W̃eff

∂Z ′
= log(1− e−Z) (5.7)

The relation between Z and Z ′′ can be conveniently written as

M
(param)
SUSY : eZ

′′

+ e−Z − 1 = z′′ + z−1 − 1 = 0 , (5.8)

and, as promised, describes a nice algebraic curve in the variables (5.4). This is precisely the

curve (2.8) that describes the space of SL(2,C) structures on a tetrahedron. Hence, we just

verified (5.1) in a basic example of a tetrahedron and its gauge theory counterpart T∆,ΠZ
:

L∆ = M
(param)
SUSY (T∆,ΠZ

) . (5.9)

Equation (5.8) appears to allow any value of the twisted mass Z (given appropriate FI

parameter Z ′′) except Z = 0. At Z = 0, we hit a singular point, where it looks like the

FI parameter must run off to infinity to preserve supersymmetry. This can be understood

directly in the gauge theory: at Z = 0 the chiral field φZ is massless, and hence we were not

supposed to integrate it out. The effective description of a gauge theory theory with massive

vacua breaks down there.

Had we chosen any other polarization for the tetrahedron theory, say Π′ = g ◦ ΠZ with

position X and momentum P such that
(
X

P

)
=

(
a b

c d

)(
Z

Z ′′

)
, (5.10)

the Lagrangian (5.8) would be mapped to the isomorphic curve

pax−c + pbx−d − 1 = 0 . (5.11)

As a beautiful example of this behavior, we can consider the particular transformation

σ :

(
Z

Z ′′

)
7→

(
Z ′

Z

)
=

(
−1 −1

1 0

)(
Z

Z ′′

)
+

(
iπ

0

)
, (5.12)

which is an affine extension of ST =
(
−1 −1
1 0

)
∈ SL(2,Z) that generates the triality symmetry

(3.26). (Note that, just like ST itself, σ satisfies σ3 = id.)

From the general Sp(2N,Z) action on theories TM,Π (3.8)–(3.10), it is easy to see how

the twisted superpotentials W̃eff on R2 × S1 should transform. For example, the element T
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adds a level 1 Chern-Simons term 1
4π

∫
d4θΣZVZ to the Lagrangian of T∆,ΠZ

, which descends

(with proper normalization) to

T : W̃eff(Z) 7→ W̃ ′
eff(Z) = W̃eff(Z) +

1

2
Z2 . (5.13)

Similarly, S adds a mixed Chern-Simons term 1
2π

∫
d4θΣZ′VZ and makes VZ dynamical. Since

we now should extremize with respect to Z, this must act as a Legendre transform,

S : W̃eff(Z) 7→ W̃ ′
eff(Z

′) =
[
W̃eff(Z) + Z ′Z

]
∂
∂Z

=0
. (5.14)

Finally, we have affine shifts. While these were unimportant for defining Lagrangians on R3,

the do show up in the theory on R2×S1. Namely, shifts by iπ in “position” and “momentum”

coordinates appear as half-integral shifts in Wilson loops and theta angles, respectively. Thus,

for the tetrahedron theory on R2 × S1, it is the affine σ in (5.12) that implements mirror

symmetry,

σ ◦ T∆,ΠZ
≃ T∆,ΠZ

, (5.15)

rather than simply ST

Putting together the above ingredients, we find that

σ : W̃eff(Z) 7→ W̃ ′
eff(Z

′) ≡

[
W̃eff(Z) +

1

2
Z2 + (Z ′ − iπ)Z

]

∂
∂Z

=0

. (5.16)

Setting Z = ∂W̃eff(Z
′)/∂Z ′ and exponentiating, we obtain

M
(param)
SUSY (T∆,ΠZ′ ) : z + z′−1 − 1 = 0 . (5.17)

As expected, this transformation leaves the moduli space invariant.

5.2 The bipyramid

To find the moduli space for the bipyramid theory, let us work in the equatorial polarization

Πeq, as discussed in Section 2 and Section 4.2. We closely follow the notation in those

sections. We can start with the decomposition into two tetrahedra, and use the Lagrangian

description (4.14) of TM,Πeq as Nf = 1 SQED, with a shift V → V − VX1/2, to obtain a

twisted superpotential

W̃(X1, X2;σ) = Li2(e
σ) + Li2(e

−σ+X1) +
1

2
σ2 + (X2 − iπ)σ . (5.18)

Here we have extended the symplectic transformation (4.12) with an affine shift by −iπ for

the twisted mass X2. By requiring ∂W̃/∂σ = 0 (because σ is the vev of a dynamical field),

and setting P1 = ∂W̃/∂X1 and ∂W̃/∂X2, it is straightforward to derive the moduli space

M
(param)
SUSY (TM,Πeq) : p1 +

p2
x1
− 1 = 0 , p2 +

p1
x2
− 1 = 0 . (5.19)
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This is the same as the Lagrangian LM appearing in (2.23). An easier way to derive (5.19)

would be to begin with the product of moduli spaces for two tetrahedra

r′′ + r−1 − 1 = 0 , s′ + s′′−1 − 1 = 0 , (5.20)

and simply apply the affine Sp(4,Z) transformation r → x1
p2
, r′′ → p1, s2 → p2, s1 → −

p1
x2p2

.

Equivalently, we can take the decomposition of the bipyramid into three tetrahedra, and

the corresponding XYZ model. The twisted superpotential corresponding to the Lagrangian

(4.11) is

W̃eff(X1, X2, C) = Li2(e
−X1) + Li2(e

−X2) + Li2(e
C−X1−X2) + iπ(X1 +X2 − C) . (5.21)

Note that, according to the shifts in the symplectic transformation (4.7), we have turned on a

half-integral theta angle for the combination ΣX1 +ΣX2 −ΣC . Setting P1 = ∂W̃/∂X1, P2 =

∂W̃/∂X2, Γ = ∂W̃/∂C and exponentiating, we find equations

γp1 +
1

x1
− 1 = 0 , γp2 +

1

x2
− 1 = 0 , −

γx1x2
c

+
x1x2
c
− 1 = 0 . (5.22)

Now, however, the (ordinary) cubic superpotential of the XYZ model tells us that we must

set the twisted mass C = 0 (modulo 2πi), or c = eC = 1. By appending this to equations

(5.22) and eliminating γ, we then obtain

(x1 − 1)
(
p1 +

p2
x1
− 1
)
= 0 , (x2 − 1)

(
p2 +

p1
x2
− 1
)
= 0 . (5.23)

These are equivalent to (5.19) as long as x1 6= 1 and x2 6= 1. We recall, however, that x1,2 = 1

(or X1,2 = 0) are precisely the analogues of the singular points in moduli space discussed

below (5.8). There, either supersymmetry is broken or new Higgs branches of dynamical

vacua open up. Away from this singular locus, equations (5.23) reduce to (5.19).

6. S3
b partition functions

In the previous section, the correspondence (M,Π) ↔ TM,Π was tested by comparing moduli

spaces attached to each side of the correspondence. A more refined test could be obtained

by associating certain functions to each side. For example, on the gauge theory side one can

associate either an equivariant partition function or an index (an analog of the elliptic genus)

to the 3d N = 2 theory TM , by analogy with what was done in [3] or [41, 42] in the context

of 4d N = 2 gauge theory. Then, these functions are expected to match the corresponding

topological invariants of M .

In this section, we discuss one such test based on comparing the partition function of

the 3d N = 2 theory TM,Π on a squashed three-sphere (or “ellipsoid”) S3
b with the SL(2)

Chern-Simons partition function of the 3-manifold M :

Z
SL(2)
CS (M) = ZS3

b
(TM,Π) , (6.1)
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where the squashing parameter b is related to the Chern-Simons coupling coupling strength

~ as

~ = 2πib2 . (6.2)

This relation is a direct generalization of the AGT correspondence [3] to three dimensions.

In fact, it is fully consistent with the AGT correspondence, which corresponds to taking

M = R× C to be a product of the “time” direction and a Riemann surface C (possibly with

punctures), through a somewhat lengthy chain of correspondences [43], [35], reviewed e.g. in

[44]

Various aspects of partition functions in SL(2) Chern-Simons theory are discussed in

[8, 9, 45, 12]. Given a 3-manifold M with boundary phase space P∂M , as defined here in

Section 2, Chern-Simons theory should promote P∂M to a Hilbert space

P∂M  H∂M , (6.3)

and the partition function Z
SL(2)
CS (M) can be thought of as a distinguished wavefunction

in H∂M . In particular, Z
SL(2)
CS (M ;X1, X2, ...) is a function of half the coordinates on P∂M ,

the “positions” in a given polarization Π. An affine Sp(2N,Z) change of polarization acts

on Z
SL(2)
CS (M ;X1, X2, ...) in the standard Weil representation [46, 47]; for example, S-type

elements act as Fourier transform, and T -type elements act as multiplication by quadratic

exponentials ∼ exp
X2

i

2~ .

Similarly, the S3
b partition function of TM,Π depends on the twisted masses mO of various

chiral operators that transform under U(1) flavor symmetries. These real masses are naturally

complexified by the R-charge, due to the background curvature of the ellipsoid [48, 5]. Indeed,

if we describe S3
b geometrically as

b2|z1|
2 + b−2|z2|

2 = 1 , z1, z2 ∈ C , (6.4)

then ZS3
b
(TM,Π) depends holomorphically on the combinations m̃O ≡ mO + iQ

2 RO, with

Q = b + b−1. These complexified masses become identified with the “positions” in P∂M or

H∂M , as17

X = 2πb m̃OX
= 2πbmOX

+
(
iπ +

~

2

)
ROX

, (6.5)

where OX is (say) the operator we associated to a boundary positionX in Section 4.1. We will

see that the ellipsoid partition function ZS3
b
(TM,Π; m̃X1 , m̃X2 , ...) transforms as a wavefunction

under changes of the polarization Π, in exactly the same way as Z
SL(2)
CS (M ;X1, X2, ...).

Both sides of (6.1) are eminently computable. In fact, [12] developed a general state

integral model for SL(2) Chern-Simons theory that directly quantizes the semi-classical con-

struction of flat connections from ideal tetrahedra, as described in Section 2. Similarly, [5]

derived a prescription for ellipsoid partition functions of Chern-Simons-matter theories, using

17Throughout this section, we work in units such that the “average” radius of the ellipsoid is ρ = 1.

Otherwise, it would appear on the right-hand side of (6.4), and would multiply mOX
in (6.5).
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equivariant localization. It is not hard to see that the two constructions become equivalent

when applied to our theories TM,Π. We proceed to study a few aspects of this equivalence,

starting with basic T∆ building blocks and then forming more general theories/manifolds.

6.1 Chirals and tetrahedra

Consider a free chiral multiplet φZ with twisted mass mZ for a U(1) flavor symmetry, and

R-charge RZ . This R-charge assignment enters in a fundamental way when putting the chiral

on an ellipsoid. We set m̃Z = mZ + iQ
2 RZ , and find a partition function18 [5]

ZS3
b
(chiral multiplet) = sb

( iQ
2 − m̃Z

)
, (6.6)

where

sb(x) =
∏

m,n∈Z≥0

mb+ nb−1 + Q
2 − ix

mb+ nb−1 + Q
2 + ix

= e−
iπ
2
x2

∞∏

r=1

1 + e2πbx+2πib2(r−
1
2 )

1 + e2πb
−1x+2πib−2(

1
2−r)

(6.7)

is a variant of the noncompact quantum dilogarithm function [49, 50] commonly used in

Liouville theory.

Two of the properties enjoyed by the function sb(x) are

sb(x)sb(−x) = 1 , (6.8a)

sb(x) ∼

{
eiπx

2/2 as x→ +∞

e−iπx2/2 as x→ −∞ ,
(6.8b)

which have a nice interpretation in 3d N = 2 gauge theory. According to (6.6), the first

property (6.8a) implies that the partition function of two chiral fields φ, φ′ of opposite flavor

charge and R-charge adding to 2 is trivial. Indeed, this R-charge assignment allows one to

add a marginal superpotential

W = Mφφ′ (6.9)

which makes both fields arbitrarily massive and decouples them. The second property (6.8b)

agrees with an important fact: a Chern-Simons action of level k for the background gauge

field gives a contribution

e−iπkm̃2
(6.10)

to the partition function. Therefore, we see that at large positive σ the chiral multiplet

contributes as a Chern-Simons coupling of level +1
2 , while at large negative σ as a Chern-

Simons coupling of level −1
2 , as expected [31] (cf. our discussion of such couplings in Section

3.3). In a similar way, many beautiful identities obeyed by the special function (6.7) — in

turn related to the combinatorics of 3-manifolds triangulations — find physical interpretation

as dualities among 3d N = 2 gauge theories.

18Here and in the following, we will ignore overall numerical constants in front of the partition function.
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The actual theory T∆,ΠZ
associated to a tetrahedron has an extra level −1

2 Chern-Simons

coupling for the background gauge field, leading to a partition function

ZS3
b
(T∆,ΠZ

; m̃Z) = eb
( iQ

2 − m̃Z

)
≡ e

iπ
2

(
iQ

2
−m̃Z

)2
sb
( iQ

2 − m̃Z

)
. (6.11)

With the identification (6.5), this is equivalent to the Chern-Simons partition function of a

single tetrahedron, found in [12].

In order to consider other polarizations for T∆, we should analyze how the SL(2,Z) action

on gauge theories affects partition functions. It is already clear from (6.10) that the T -move

sends

T : ZS3
b
(m̃) 7→ Z ′

S3
b
(m̃) = e−iπm̃2

ZS3
b
(m̃) . (6.12)

Similarly, the S-move adds a factor e−2πim̃m̃′
to the partition function, and dictates that we

integrate over the vev m, since its gauge multiplet has become dynamical. In other words, S

acts as a Fourier transform:

S : ZS3
b
(m̃) 7→ Z ′

S3
b
(m̃′) =

∫
dm̃ e−2πim̃m̃′

ZS3
b
(m̃) . (6.13)

Note that this an integral along the real line, which could be deformed to a contour in the

complex plane. In addition to S and T , affine shifts in polarization also act nontrivially on

the ellipsoid, by redefining the R-charge used to couple a theory to background curvature.

For example, a classical shift by ±iπ in a position coordinate Z corresponds to sending

RZ 7→ RZ ± 1, or m̃Z 7→ m̃Z ±
iQ
2 .

The above action of the affine symplectic group shows that the ellipsoid partition function

transforms as a wavefunction under changes of polarization, precisely as claimed. In partic-

ular, the above transformations are identical to those that appear in SL(2) Chern-Simons

theory. As a simple example, we can consider the affine ST action that sends the polarization

ΠZ to ΠZ′ for the tetrahedron theory. This affine action was called σ in (5.12). We find

ZS3
b
(T∆,ΠZ′ ; m̃Z′) = σ ◦ ZS3

b
(T∆,ΠZ

)

=

∫
dmZ e−iπm̃Z(m̃Z+2m̃Z′−iQ) eb

( iQ
2 − m̃Z

)

= eb
( iQ

2 − m̃Z′

)
, (6.14)

up to a constant factor. The last equality follows from a standard functional identity for eb(x)

[51], and verifies the prediction from mirror symmetry that the transformation σ leaves the

tetrahedron theory invariant.

6.2 Gluing and bipyramids

In Section 3.3, we derived ST -invariance of the tetrahedron theory T1 ≃ T∆,ΠZ
by starting

with N = 4 mirror symmetry, translating to N = 2 mirror symmetry for the XYZ model

and SQED with Nf = 1, and and then reducing further to the theories T1 and ST ◦ T1 via
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a mass deformation. It is somewhat instructive to now do the same at the level of partition

functions. In the process, we will see how gluing of partition functions should work.

Let’s begin with the partition function of a hypermultiplet, with (complex) vector twisted

mass denoted by x and axial twisted mass by y:

ZS3
b
( hypermultiplet ) = sb

( iQ
2 − x− y

)
sb
( iQ

2 + x− y
)
. (6.15)

The N = 2 R-charge and axial charge are a linear combination of the Cartan generators of

the SU(2)H × SU(2)C R-charges of the N = 4 theory. We are using a convention where in

the N = 2 language the R-symmetry of chiral multiplets in the standard hypermultiplet is

absorbed in their axial twisted mass y. Then the scalar field in the vectormultiplet has “bare”

R-charge 2, and axial charge −2, i.e. complex twisted mass iQ− 2y. This is also required for

the basic superpotential coupling required by an N = 4 gauging.

Hence if we add a full N = 4 gauge multiplet to gauge the flavor symmetry, the chiral

multiplet in it contributes a sb(2y − iQ/2). The partition function is

sb(2y − iQ/2)

∫
sb(iQ/2− x− y)sb(iQ/2 + x− y)e−2iπzxdx . (6.16)

The basicN = 4 mirror symmetry should match this to the partition function of a twisted

hypermultiplet, i.e. a hypermultiplet with the opposite axial charge [28]. The chiral fields in

a twisted hypermutliplet have “bare” R-charge 1 and axial charge −1, i.e. complex twisted

mass iQ
2 − y. Hence we should replace y with iQ

2 − y in (6.15) and write the basic N = 4

mirror symmetry relation as

sb(2y − iQ/2)

∫
sb(iQ/2− x− y)sb(iQ/2 + x− y)e−2iπzxdx = sb(y − z)sb(y + z) (6.17)

As a check, we are supposed to obtain either the partition functions of N = 2 SQED with

Nf = 1 flavor or the partition function of the XYZ model by acting with S or with F on the

above relation. If we act with S, i.e. with the Fourier transform, we get

sb(2y − iQ/2)sb(iQ/2− x− y)sb(iQ/2 + x− y) =

∫
sb(y − z)sb(y + z)e−2iπzxdx . (6.18)

The left-hand side is the partition function of the XYZ model. The real masses of the three

chiral fields add to zero, and the R-charges to 2, as it should be to allow the superpotential

interaction W = µuũ, cf. Section 3.3. Equation (6.18) happens to be another well known

identity for quantum dilogarithm functions [51, 52].

Now, if we redefine x → x − y, z → z + y − iQ
2 , and take y to be large and positive

in (6.17), we replicate the mass deformation that reduces us to the theory T1 ≃ T∆,ΠZ
.

Expression (6.17) becomes

∫
dx e−iπx

(
x+2(z− iQ

2
)
)
eb
( iQ

2 − x
)
= eb

( iQ
2 − z

)
, (6.19)
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which is precisely (6.14), expressing the mirror symmetry σ ◦ T1 ≃ T1.

We could also add Chern-Simons terms on both sides of (6.18) in order to reproduce the

exact partition function of the bipyramid theory, as discussed in Section 4.2. Namely, we find

an identity

eiπ(iQ)m̃3eb
( iQ

2 − m̃1

)
eb
( iQ

2 − m̃2

)
eb
( iQ

2 − m̃3

)∣∣∣
m̃3=iQ−m̃1−m̃2

(6.20)

=

∫
dσ e−iπσ2−2πiσ

(
m̃2−

iQ

2

)
eb
( iQ

2 + σ
)
eb
( iQ

2 − σ + m̃1

)

The two sides correspond to the theories of three and two tetrahedra, respectively, both in the

equatorial polarization Πeq, with external edge positions X1 = 2πb m̃1 and X2 = 2πb m̃2. For

the left-hand side, the superpotential W = OC = φZφWφY (4.10) implements the constraint

m̃1 + m̃2 + m̃3 = iQ.

More generally, the rules for constructing theories TM,Π in Section 4 lead to the following

rules for calculating the corresponding ellipsoid partition functions:

1) Multiply together partition functions ZS3
b
(T∆i,Πi

; m̃Zi
) = eb

( iQ
2 − m̃Zi

)
, one for each

tetrahedron in the triangulation of M .

2) Act with Sp(2N,Z) in the Weil representation (i.e. by generalizing the quadratic expo-

nentials and Fourier transforms of (6.12)–(6.13)), to transform to the polarization Π̃ in

which all internal edges are “positions.”

3) Set the complex masses m̃I now associated to internal edges equal to iQ.

We note that the specialization in Step 3 is the only consequence of adding a superpotential

W =
∑

I OI to the theory TM,Π. Indeed, such a superpotential sets the real masses of the OI

to zero and the R-charges equal to 2. Otherwise, the ellipsoid partition function is completely

independent of superpotential terms, and cares only about gauge and matter content.

These rules for constructing ZS3
b
(TM,Π) are identical to the rules presented in [12] for

building the SL(2) Chern-Simons partition function of M . One can see even subtle quantum

effects matching in the two descriptions. For example, in quantum Chern-Simons theory, the

classical internal edge constraints CI = 2πi become corrected to CI = 2πi+~, and this follows

immediately from the dictionary (6.5) between edge parameters and complexified masses m̃I .

6.3 Figure-eight knot

We should be able to reproduce the well known Chern-Simons wavefunction for the figure-eight

knot complement from the theory T41,Π described in Section 4.6. The definition of the actual

theory, including internal edge operators, required a decomposition of the knot complement

into six tetrahedra. However, since ellipsoid partition functions do not depend in a crucial

way on superpotential terms, we might hope to get away with the simpler decomposition into

two tetrahedra, also discussed in Section 4.6. Indeed, this turns out to work.
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From the Lagrangian (4.20), we can immediately write down a partition function

ZS3
b
(T41,Π; m̃U ) =

∫
dσ eiπ

(
m̃2

U+(2m̃C−iQ+2m̃U−σ)σ
)
eb
( iQ

2 − σ − m̃U

)
eb
( iQ

2 − σ
)
. (6.21)

Now, there are no operators in the theory to force m̃C1 = iQ, but we can put this in by hand.

Up to a factor of due to a small change of polarization, the result is then identical to the

figure-eight wavefunctions described in [53, 9, 12] (see also [54, 55]).

6.4 Relation to moduli spaces on R2 × S1

Finally, we point out that our tests of the proposed duality (M,Π) ↔ TM,Π here and in

section 5 are not entirely unrelated. Indeed, in the semi-classical limit ~ = 2πib2 → 0, the

partition function of the theory TM behaves exactly in the same way as the partition function

of Chern-Simons theory on M ,

ZS3
b
(TM )

~→0
∼ exp

(1
~
W̃eff +O(log ~)

)
, (6.22)

where W̃eff is the effective twisted superpotential of the theory TM on R2×S1. Hence, if W̃eff

matches the classical SL(2) Chern-Simons action on M ,

W̃eff(TM ) = S0(M) , (6.23)

then the relation between moduli spaces (5.1) follows automatically. Indeed, the moduli space

Mflat(M,SL(2,C)) is a graph of dS0 and, similarly, the moduli spaceMSUSY(TM ) is a graph

of dW̃eff . In terms of gauge theory, the reason for (6.22) is that, in the limit b → 0, the

squashed 3-sphere S3
b degenerates into R2 × S1,

S3
b  R2 × S1 . (6.24)

The relation between moduli spacesMflat(M,SL(2,C)) =MSUSY(TM ) of Section 5 has

a “quantum” analog that does not require taking the limit ~→ 0. Indeed, the full quantum

partition functions discussed here obey a set of q-difference equations:

Âi Z = 0 (6.25)

for some operators Âi that in the classical limit become defining polynomials of our moduli

spaces. In Chern-Simons theory, (6.25) is known as the generalized / quantum volume con-

jecture [8] (sometimes also called the AJ-conjecture [56, 57] in the math literature), whereas

in N = 2 gauge theory it expresses Ward identities for line operators. We consider these line

operators next.
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7. Line operators and q–difference equations

In order to understand the meaning of operator identities (6.25) in 3d N = 2 theory, we need

to incorporate line operators in our correspondence (1.2).

Given a triangulated 3-manifoldM with nonempty boundary ∂M , each equation in (6.25)

is written in terms of quantum holonomy operators19 that, from the viewpoint of Chern-

Simons theory on M , are obtained by quantizing the space of flat SL(2,C) connections P∂M
on the boundary. These operators act on the Hilbert space (6.3). We illustrate this with a

simple example that plays a key role in this paper, namely with the N = 2 theory T∆,ΠZ
that

we associate with a single tetrahedron.

In particular, in the previous section we identified the S3
b partition function of this theory

(6.11) with the wave function of the SL(2) Chern-Simons theory on a tetrahedron. From the

explicit form of the partition function (6.11), it is easy to see that it satisfies the functional

equation20

Z(m̃Z + ib
)
=
(
1− e−2πbm̃Z

)
Z(m̃Z) . (7.1)

Using Ẑ ′′ = ib∂m̃Z
and Ẑ = 2πbm̃Z , we can write this equation in a more convenient form:

(
eẐ

′′

+ e−Ẑ − 1
)
Z(m̃Z) = 0 , (7.2)

which is clearly reminiscent of the familiar equation (5.8) that describes the space of SUSY

moduli in the theory T∆,ΠZ′ . Indeed, for reasons that we reviewed at the end of section 6, in

the semi-classical limit ~ ∼ b2 → 0 the equation (7.2) gives precisely (5.8):

MSUSY : eZ + e−Z′

− 1 = 0 . (7.3)

In terms of geometry, we know from Section 2 that Z and Z ′ are the complexified “shear

coordinates” or edge parameters on the boundary ∂∆ of the tetrahedron; and indeed (7.2) is

just the quantization of the tetrahedron’s classical Lagrangian (2.8) [12]. More generally, if

a 3-manifold M has a triangulated geodesic boundary, it is the quantization of external edge

coordinates exp(X̂E) on the boundary that appears in the operator equations (6.25).

From a different perspective, the classical external edge coordinates xE = exp(XE) on

a triangulated geodesic boundary C = ∂M also correspond to vevs of line operators in the

four-dimensional N = 2 theory T [C, su(2)]; and the quantized x̂E = exp(X̂E) correspond to

the quantum line operators themselves [58, 59, 60, 34]. To be more precise, it was shown in

[16, 34] that every edge E of C determines an IR line operator exp(X̂E) in the abelian N = 2

theory on the Coulomb branch of T [C, su(2)]. This operator carries the electric and magnetic

charges associated to the edge E, exactly as described in Section 4.4. Using this relation, we

propose to interpret operator equations (6.25) as Ward identities for line operators in a 4d

theory coupled to the 3d boundary theory TM .

19For example, in the context of knot complements, these operators are often denoted as m̂ = eû and

ℓ̂ = −ev̂.
20We simply abbreviate ZS3

b

(T∆,ΠZ
, m̃Z) as Z(m̃Z).
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TM

T [C]

H

W

Figure 23: Line operators in 4d becoming identified in the boundary theory TM .

In the presence of boundary conditions, not all line operators of the bulk N = 2 gauge

theory in four dimensions are independent. Indeed, one can start with a line operator L (or,

more generally, a collection of line operators Li) in the 4d N = 2 gauge theory and then

bring it to the three-dimensional boundary where the theory TM lives (Figure 23). Due to

the boundary conditions (which e.g. may identify some of the 4d fields), vevs of line operators

that were independent in the bulk become related on the boundary. This can be summarized

in the form of Ward identities ∑
ciLi = 0 . (7.4)

For example, in our favorite example of the theory T∆ the equation (7.2) can be written in

the form (7.4) as

W +H−1 − 1 ≃ 0 (7.5)

where we used the identification of Ẑ, Ẑ ′, and Ẑ ′′ with the corresponding abelian Wilson / ’t

Hooft line operators:

edge line operator

ẑ = eẐ W = Wilson

ẑ′ = eẐ
′

Wilson-’t Hooft

ẑ′′ = eẐ
′′

H = ’t Hooft

(7.6)

(Thus, ẑ−1 = H−1 denotes an ’t Hooft operator of magnetic charge −1. Similarly, W 0 =

H0 = 1 denotes a trivial line operator.) The above dictionary (7.6) corresponds to the

polarization ΠZ for T∆. The triality symmetry of T∆ (3.26), generated by the ST element

of the 4d electric-magnetic duality group SL(2,Z), permutes Wilson, ’t Hooft, and Wilson-’t

Hooft operators.

To explain the origin of Ward identities like (7.5), it is instructive to simplify the theory

T∆ (which consists of a chiral multiplet and Chern-Simons coupling) even further and consider

only the Chern-Simons part of the theory. As we discussed in section 6, a supersymmetric

Chern-Simons interaction at level k for the background gauge field contributes to the partition
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function a factor (6.10):

ZCSk
= e−iπkm̃2

. (7.7)

Much like the partition function of the theory T∆, it obeys the following q-difference equation:

(
ẑ′′ − q

k
2 ẑk

)
ZCSk

=
(
eib∂m̃ − eiπb

2k+2πbkm̃
)
ZCSk

= 0 . (7.8)

According to (7.6), this identity should be interpreted as a statement that at a 3d boundary

with Chern-Simons term at level k a ’t Hooft operator with one unit of a magnetic flux is

equivalent to a Wilson operator of electric charge k,

H − eiπb
2k W k ≃ 0 . (7.9)

This is indeed correct, as one can easily verify by doing a direct path integral manipulation.

Notice, it is important here that supersymmetric Chern-Simons theory lives on the boundary

of the 4d space-time where Wilson and ’t Hooft operators belong.

TM

T [C]T [C�]

S

L

S
�

M

C

γL
pSpS�

C
�

Figure 24: Line operators in both M and TM .

Most of our discussion in this section was based on interpreting TM as a boundary theory

in the 4d N = 2 theory on the Coulomb branch of T [C, su(2)], where C = ∂M is the geodesic

boundary of M . This interpretation can be easily extended to 3-manifolds with “small”

boundaries (a.k.a. cusps) and also to 3-manifolds with several boundary components. For

example, in the latter case, each boundary component is a 2-dimensional Riemann surface C

to which we associate either IR or UV limit of the 4d N = 2 gauge theory T [C] depending on

whether the boundary C is “big” or “small.”

Within this framework, we could also look at a different class of line operators, corre-

sponding to curves in a 3-manifold M itself. In general, a 1-dimensional curve γL inside

a cobordism M may have end-points on various boundary components of M , as shown in

Figure 24. In order to find its interpretation in 3d N = 2 theory TM , we recall that a point

p ∈ C defines a surface operator in 4d N = 2 theory T [C], whereas the cobordism itself defines

a domain wall between two different N = 2 theories in four dimensions (cf. Figure 1). In

– 53 –



four-dimensional space-time, a surface operator meets the domain wall over a 1-dimensional

curve, which is precisely the line operator L associated to γL ⊂ M , see Figure 24. In this

description of TM as a theory on a duality wall, the line operator L arises as an interface

between two different surface operators.

The interplay between line operators on M and line operators in 3d N = 2 theory TM

can be easily motivated by thinking about TM as the effective theory T [M, su(2)] obtained by

reduction of the six-dimensional (2, 0) theory on a 3-manifold M . This is very similar to the

correspondence between line operators in Liouville theory on C and line operators in 4d N = 2

theory T [C, su(2)], where 6d theory again turns out to be very useful [58, 59, 60]. Indeed, six-

dimensional (2, 0) theory contains two-dimensional surface operators. Upon compactification

on a d-dimensional manifold Md, the support of a surface operator can have the form γL×L,

where γL ⊂ Md is a 1-dimensional curve on Md and L ⊂ R6−d is a line in the (6 − d)

dimensional space-time where the theory T [Md, su(2)] lives. Surface operators of this form

give rise to a large class of line operators in T [Md, su(2)] labeled by curves γL on Md.
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