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Abstract: We propose a correspondence between loop operators in a family of four di-

mensional N = 2 gauge theories on S4 — including Wilson, ’t Hooft and dyonic operators

— and Liouville theory loop operators on a Riemann surface. This extends the beautiful

relation between the partition function of these N = 2 gauge theories and Liouville cor-

relators found by Alday, Gaiotto and Tachikawa. We show that the computation of these

Liouville correlators with the insertion of a Liouville loop operator reproduces Pestun’s

formula capturing the expectation value of a Wilson loop operator in the corresponding

gauge theory. We prove that our definition of Liouville loop operators is invariant under

modular transformations, which given our correspondence, implies the conjectured action

of S-duality on the gauge theory loop operators. Our computations in Liouville theory

make an explicit prediction for the exact expectation value of ’t Hooft and dyonic loop

operators in these N = 2 gauge theories. The Liouville loop operators are also found to

admit a simple geometric interpretation within quantum Teichmüller theory as the quan-

tum operators representing the length of geodesics. We study the algebra of Liouville loop

operators and show that it gives evidence for our proposal as well as providing definite

predictions for the operator product expansion of loop operators in gauge theory.
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1 Introduction

The concept of duality has been a major driving force in the study of lattice models,

field theories as well as string theory. It is, in fact, the main idea uniting different field

theories and string/M-theory. As an early example, the dual resonance model, where

the search for an amplitude which can be interpreted as a sum over poles in the s-, t-

or u-channels, culminated in the celebrated Veneziano formula. The underlying structure,

worldsheet duality, is a consequence of the modular bootstrap of two dimensional conformal

field theory, which associates to an amplitude multiple inequivalent representations, each

corresponding to a different sewing of the Riemann surface from pairs of pants.

Ever since, duality has proliferated in supersymmetric gauge theories and string/M-

theory as a conjectured equivalence between dual theories evaluated at different spacetime

couplings. These dualities have greatly advanced our nonperturbative understanding of

gauge theories and string/M-theory. An elegant example is the S-duality of four dimen-

sional N = 4 super Yang-Mills [1–3]. The theory with gauge group G conjecturally admits

the action of a duality group ΓG ⊂ SL(2, R), which contains elements that exchange the

theory with gauge group G with the theory with dual gauge group LG [4].

Dualities are also expected to act on four dimensionalN = 2 supersymmetric conformal

field theories. Unlike gauge theories with N = 4 supersymmetry, which are unique given a

choice of gauge group G, the space of four dimensional N = 2 supersymmetric conformal

field theories is very rich. The first duality proposal was made for N = 2 SU(2) super

Yang-Mills with 4 fundamental hypermultiplets, conjectured by Seiberg and Witten to

admit the action of an SL(2, Z) duality group [5]. Other proposals for various N = 2 gauge

theories have been made since then (see e.g. [6, 7]), strengthening the hypothesis of duality

for N = 2 supersymmetric conformal field theories.

Gaiotto [8] has recently constructed a class of N = 2 theories, denoted by Tg,n, from the

data associated with a genus g Riemann surface with n-punctures, denoted by Cg,n.1 For

1Important ingredients for this construction are the results presented in [7, 9].
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this class of N = 2 gauge theories, which are based on SU(2) gauge groups,2 Gaiotto [8] has

conjectured that the spacetime duality of the gauge theory Tg,n corresponds to worldsheet

duality on the associated Riemann surface Cg,n:

S-duality ←→ worldsheet duality .

The construction identifies the parameter space of Tg,n with the moduli space of complex

structures of Cg,n, as well as the duality group Γ(Tg,n) of the four dimensional gauge theory

Tg,n with the mapping class group of Cg,n

Γ(Tg,n) ≃ MCG(Cg,n) . (1.1)

Given a theory Tg,n encoded by a Riemann surface Cg,n, Gaiotto associates a gener-

alized quiver gauge theory to a pants decomposition of Cg,n, describing the sewing of the

Riemann surface from pairs of pants. A choice of pants decomposition corresponds to a

choice of duality frame for Tg,n. At certain corners of the moduli space of Cg,n the surface

degenerates to a collection of 3g−3+n thin tubes connected to each other by pairs of pants.

In such singular limits the surface reduces to a graph with tri-valent vertices, where the

theory Tg,n has a weakly coupled Lagrangian description as a generalized quiver gauge the-

ory.3 Hence, the Tg,n theory admits multiple descriptions in terms of generalized quivers,

each valid in different corners of parameter space and involving different degrees of freedom.

The partition function of N = 2 gauge theories on S4 was derived by Pestun in [10]

using localization with respect to the Osp(2|2) supergroup. He showed that the partition

function reduces to a matrix integral over the zero modes of the scalar fields in the N = 2

vector multiplets of the product of the Nekrasov partition function ZNekrasov [11, 12] with

its complex conjugate. The partition function has an elegant interpretation in terms of the

product of a holomorphic contribution corresponding to the North pole and an antiholo-

morphic contribution corresponding to the South pole [10], akin to the holomorphically

factorized representation of two dimensional conformal field theory correlators.

In a paper by Alday, Gaiotto and Tachikawa [13], the partition function of a family

of Tg,n theories on S4 was identified with a Liouville conformal field theory correlation

function on the associated Riemann surface Cg,n

ZTg,n =
〈

n
∏

a=1

Vma

〉

Cg,n

, (1.2)

where Vma are vertex operators in Liouville theory associated with the punctures on the

Riemann surface.4 This observation points towards an intriguing connection between four

dimensional N = 2 gauge theories and the rich subject of two dimensional conformal

field theory. The identification was made in a particular choice of duality frame of Tg,n,

2This construction generalizes to higher rank gauge groups. This requires enriching the types of punc-

tures on the Riemann surface. See [8] for more details.
3For the case of the four punctured sphere, denoted by C0,4, there are three boundaries corresponding

to sewing the surface along the s-,t- and u-channels.
4As we review in section 2, m is related to the mass of a hypermultiplet.
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corresponding to a particular sewing of the Riemann surface from pairs of pants. The

modular bootstrap of Liouville conformal field theory correlators [14–16], which associates

to a correlator a different representation for each choice of sewing of the Riemann surface,

can then be used to demonstrate that the partition function ZTg,n is invariant under the

corresponding duality group Γ(Tg,n). This provides strong evidence for the action of S-

duality for this class of N = 2 gauge theories.

Since the supersymmetries imposed in the localization procedure are preserved by

a supersymmetric circular Wilson loop WR in a representation R of the N = 2 gauge

theory, Pestun’s computation also yields the exact result for the expectation value of a

Wilson loop [10]

〈WR〉 =
∫

[da] TrR e2πia ZNekrasov ZNekrasov , (1.3)

where a denotes the scalar components of the N = 2 vector multiplets in the gauge the-

ory. By inserting the trivial Wilson loop, one may recover the expression of the partition

function ZTg,n .

Loop operators in gauge theories play a pivotal rôle in understanding dualities. Since

they are characterized by a set of electric and magnetic charges, the action of S-duality

— being a non-abelian extension of electric-magnetic duality — naturally acts on them.

The study of Wilson [10, 17–20] and ’t Hooft loop operators [21–24] in N = 4 super Yang-

Mills has yielded quantitative evidence in favour of the S-duality conjecture, demonstrating

that the correlation function of Wilson loops and ’t Hooft loops are exchanged under S-

duality [23, 24].5 Characterizing loop operators in N = 2 gauge theories and computing

their expectation values provides a theoretical framework in which to study S-duality for

this class of theories.

In [25] a complete classification of loop operators in the Tg,n theories was performed.

It was shown that loop operators in Tg,n are geometrically in one-to-one correspondence

with homotopy classes of non-self-intersecting curves on the Riemann surface Cg,n. The

charges of a loop operator, which can be labeled by a vector d in a given duality frame,

were identified with the Dehn-Thurston data d of a closed curve γd on the Riemann surface

Cg,n in the corresponding choice of pants decomposition.

In this paper we identify loop operators Ld in the N = 2 gauge theory Tg,n with loop

operators L(γd) we construct in the Liouville conformal field theory on Cg,n. Our proposal

gives the following Liouville conformal field theory realization for the expectation value of

a gauge theory loop operator

〈Ld〉Tg,n
=
〈

n
∏

a=1

Vma · L(γd)
〉

Cg,n

. (1.4)

The identification of loop operators in N = 2 gauge theories with two dimensional con-

formal field theory correlation functions, introduces a theoretical framework in which to

compute exactly the expectation value of loop operators in certain N = 2 gauge theories.

The modular properties of the Liouville loop operators combined with modular invari-

ance of Liouville correlation functions [14–16] implies that the correlator on the right hand

5The explicit comparison was performed to next to leading order in the coupling constant expansion.
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side of (1.4) is invariant under a change of pants decomposition of the Riemann surface

Cg,n. In contrast, the precise identification of the loop operator Ld on the left hand side

of (1.4) — whether it is a Wilson, ’t Hooft or dyonic operator — depends very sensitively on

the choice of duality frame of Tg,n. We will show that, given a curve γd in Cg,n, there always

exists a choice of pants decomposition σW such that the result of the Liouville correlator

exactly reproduces Pestun’s computation for the Wilson loop expectation value (1.3)

〈WR〉Tg,n
=
〈

n
∏

a=1

Vma · L(γd)
〉

Cg,n

. (1.5)

This fits rather nicely with the field theory result stating that any dyonic operator in the

N = 2 theories Tg,n can always be mapped to a Wilson loop by the action of S-duality [25,

26]. In other duality frames, the Liouville correlator (1.4) computes the expectation value

of a dyonic operator.

The modular invariance of Liouville correlation functions in the presence of loop op-

erators, together with our proposal (1.4) implies for the gauge theory observables that

〈Ld,σ〉Tg,n
= 〈Ld′,σ′〉Tg,n

, (1.6)

where d and d′ are the charges of the loop operator in the Tg,n duality frames σ and σ′

respectively. Therefore, our proposal automatically incorporates the conjectured action of

the S-duality group Γ(Tg,n) on gauge theory loop operators.

The quantization of the Teichmüller space of the Riemann surface Cg,n, referred to

as quantum Teichmüller theory, provides a dual description of Liouville theory leading to

a geometric description of loop operators in Tg,n. In recent years, a precise correspon-

dence between Liouville conformal field theory and quantum Teichmüller theory has been

established [27–29].6 We will show that the loop operators L(γ) are in one-to-one corre-

spondence with the operators Lγ representing the geodesic length functions in the quantum

theory of the Teichmüller spaces, and that the expectation values (1.4) are equal to the

expectation values

〈 q |Lγ | q 〉 , (1.7)

with | q 〉 being the coherent state associated to the complex structure of the surface Cg,n

in quantum Teichmüller theory.

It follows that the algebra of length operators, which has been well-studied in the

literature, should be identified with the algebra of loop operators in gauge theory. We

show as a particular consequence that the gauge theory loop operators captured by Liouville

theory satisfy the ’t Hooft commutation relations, which are known to be obeyed by gauge

theory loop operators that are Hopf-linked in a constant time slice. We also demonstrate

that the charges of the operators that appear in the OPE, as determined by the algebra of

length operators, precisely matches the prediction of S-duality, thus providing a non-trivial

consistency check of our proposal.

The plan of the rest of the paper is as follows. In section 2 we briefly introduce the

necessary ingredients entering the construction of the N = 2 gauge theories Tg,n given a

6The existence of such a correspondence had been predicted in [30].
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Riemann surface Cg,n [8] and the relation to Liouville theory found in [13]. We then recall

the classification of loop operators in Tg,n and identification of loop operators with non-

self-intersecting closed curves in γ. In section 3 we introduce the notion of loop operators

in Liouville field theory, construct them in terms of the Lax connection and relate the

holonomy of the Lax connection around a closed curve with the monodromy of a degenerate

operator in the Liouville conformal field theory as it goes around the curve.

In section 4 we make the explicit identification relating loop operators in gauge the-

ory with loop operators in Liouville field theory. We put forth an exact prescription for

calculating the monodromies of degenerate operators and compare the result to the known

gauge theory expression for the Wilson loop. In section 5 we implement this general pre-

scription, first by providing the necessary tools and then study specific examples of Wilson

loops and ’t Hooft loops in N = 2∗ theory and N = 2 SU(2) gauge theory with four

fundamental flavours

A more abstract point of view on the problem is presented in section 6 which reviews

quantum-Teichmüller theory and the realization of loop operators as geodesic length oper-

ators. Section 7 uses the algebra of geodesic length operators to study the algebra of gauge

theory loop operators, and compares it to the explicit expressions we derived for the loop

operators in section 5.

We conclude with a discussion of our results in section 8. Some technical calculations

and relevant formulae are relegated to the appendices.

Note. We have coordinated the submission to the arXiv of our work and the related

work by Fernando Alday, Davide Gaiotto, Sergei Gukov, Yuji Tachikawa and Herman

Verlinde [31]. We would like to thank them for arranging the joint release of the two papers.

2 Gauge theories, Liouville theory and curves on Riemann surfaces

In this section we review the key elements in Gaiotto’s construction of the N = 2 theories

Tg,n and of the connection with Liouville theory [13]. We also recount the classification

of loop operators in Tg,n in terms of curves on the Riemann surface Cg,n [25]. Once

equipped with the key ingredients, we will proceed with the Liouville conformal field theory

realization of the gauge theory loop operators in the following sections.

2.1 Gauge theories and Liouville theory

In [8], Gaiotto has put forward an algorithm which associates a four dimensional N = 2

theory to a Riemann surface. Furthermore, he has interpreted the theory as the low energy

description of coincident M5-branes wrapping the Riemann surface. In this paper we

consider a special class of these theories, namely, those whose gauge group is the product

of several SU(2) groups. They arise from the A1 (2, 0) six dimensional conformal field theory

on a genus g Riemann surface with n punctures Cg,n in the presence of n codimension-

two defect operators in the (2, 0) theory. The theory associated with the Riemann surface

Cg,n is denoted by Tg,n. The Riemann surface Cg,n plays a key rôle in the construction.

There is a canonical double cover of Cg,n corresponding to the Seiberg-Witten curve of

– 5 –
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(a) (b) (c)

Figure 1. Examples of trivalent graphs (quiver diagrams) corresponding to Riemann surfaces: (a)

a 4-puncture sphere, (b) a once-punctured torus, (c) a genus two surface with no puncture.

Tg,n which determines the prepotential of the gauge theory. The curve Cg,n is therefore of

direct relevance for the physics of the four-dimensional gauge theory Tg,n.

A weakly coupled description of the Tg,n theory is encoded in a trivalent graph, also

referred as a (generalized) quiver diagram. Given a choice of sewing σ of Cg,n from 2g−2+n

pairs of pants one may associate a trivalent graph Γσ, whose thickening spans Cg,n in the

corresponding region in Teichmüller space.7 The trivalent graph has 3g − 3 + n internal

edges and n external ones. The field content of this description of the N = 2 Tg,n theory

can be read off from the trivalent graph by associating to each internal edge an SU(2)

gauge group and to each cubic vertex eight half-hypermultiplets in the trifundamental

fundamental representation of the SU(2)3 group associated to the three incoming edges.

When the edge is external the SU(2) symmetry corresponds to a global symmetry. Different

choices of pants decomposition of Cg,n give rise to different weakly coupled descriptions of

Tg,n.

The two simplest theories of this class are T1,1 and T0,4. The first case, T1,1 corresponds

toN = 2∗ super Yang-Mills, the mass deformation ofN = 4 super Yang-Mills. The relevant

Riemann surface C1,1 is the one-punctured torus whose pants decomposition involves only

a single pair of pants with two legs glued to each other. A quiver diagram for this theory

is shown in figure 1b. The T0,4 theory also has a single gauge group and it has four

fundamental hypermultiplets. The corresponding surface is C0,4 — the four-punctured

sphere — which can be decomposed into two pairs of pants glued at a single leg. This

leads to the quiver diagram in figure 1a.

The Riemann surface Cg,n encodes more information than the field content of the gauge

theory Tg,n. The space of couplings of the gauge theory is identified with the Teichmüller

space of Cg,n, i.e., the space of deformations of the complex structure of Cg,n through the

7More precisely, in order to fully specify the duality frame in which the weakly coupled description is

valid, we need to specify both a trivalent graph Γσ and a pants decomposition. The pair of these data is

called a “marking” (see e.g., [29]). In this paper σ really denotes a marking, but we will often refer to it by

the more familiar term “pants decomposition”.
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formula

qi = exp (2πiτi) i = 1, . . . , 3g − 3 + n (2.1)

where

τi ≡
θi

2π
+

4πi

g2
i

(2.2)

are the gauge coupling constants and qi are the gluing parameters associated with the pants

decomposition σ of Cg,n. Thus the physical parameter space of the gauge theory is precisely

the moduli space of Cg,n, obtained by modding the Teichmüller space by MCG(Cg,n) =

Γ(Tg,n). Furthermore, the duality group Γ(Tg,n) acting on Tg,n has an elegant geometrical

interpretation as the mapping class group MCG(Cg,n) of Cg,n.

In [13] the correspondence between a four dimensional N = 2 gauge theory and a

Riemann surface was extended to a correspondence between the four dimensional gauge

theory and the Liouville conformal field theory living on the Riemann surface.

The action describing Liouville field theory on an arbitrary genus g Riemann surface

with n punctures — henceforth denoted by Cg,n – is given by

S =
1

4π

∫

d2z
(

gab∂aφ∂bφ + QRφ + 4πµe2bφ
)

, (2.3)

where (z, z) is a local coordinate system on the Riemann surface, Q = b + 1/b and the

Liouville central charge is c = 1+6Q2 (See reference [14] for a review of Liouville field the-

ory). The operators creating delta function normalizable states are labeled by a quantum

number α ∈ Q/2 + iR+, and give rise to a continuous spectrum. These operators, which

are denoted by Vα, describe the quantization of the semiclassical expression

Vα(z, z) ≃ e2αφ(z,z) (2.4)

and have conformal dimension ∆(α) = α(Q− α).

Within the conformal bootstrap approach [32], any correlation function can be con-

structed by ”sewing” three point functions according to the pattern given by a pants de-

composition of the Riemann surface Cg,n, where “sewing” is defined by summing over the

vertex operator insertions representing a complete set of intermediate states. The summa-

tion splits into the integration over the different Virasoro primary fields, and the summation

over their descendants. The result of the summation over the descendants factorizes into a

holomorphic and an anti-holomorphic part, the so-called conformal blocks. For the correla-

tion function (1.2), we denote the conformal block [32] in the sewing of Cg,n given by σ by

F (σ)
α,E , (2.5)

where α ≡ (α1, . . . , α3g−3+n) are the labels of the representations associated to the internal

edges of Γσ while E ≡ (m1, . . . ,mn) label the external vertex operator insertions.

In this formulation the correlation function of Liouville theory is written as the integral

over the holomorphic and anti-holomorphic conformal blocks

〈

n
∏

a=1

Vma

〉

Cg,n

=

∫

dν(α)F (σ)
α,E F

(σ)
α,E , (2.6)

– 7 –
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where the measure ν(α) includes for each pair of pants the three point functions of the

primary fields, for which the explicit expression was proposed in [33, 34], and derived

in [15].

The conformal blocks F (σ)
α,E depend on the choice of pants decomposition σ, but the

complete correlator does not. This is a consequence of the modular properties in two

dimensional conformal field theory. The conformal blocks corresponding to two different

trivalent graphs Γσ and Γ′
σ are related by a change of basis, as proved in [15] for g = 0.

A key ingredient in the identification between Tg,n and Liouville theory is played by

the Nekrasov partition function Zinstanton [11, 12]. This partition function, which is de-

fined by localizing the N = 2 gauge theory with respect to a U(1) × U(1) subgroup of

the SO(4) rotation group with rotation parameters (ǫ1, ǫ2), is the product of the classi-

cal contribution Zclassical, the perturbative one loop contribution Z1-loop and the instanton

contribution Zinstanton

ZNekrasov = ZclassicalZ1-loopZinst . (2.7)

Given a choice of pants decomposition σ of the Riemann surface Cg,n, the equivariant

instanton partition function [11, 12] of the gauge theory Tg,n associated with the generalized

quiver diagram Γσ equals the BPZ conformal block [32] on Cg,n in the choice of pants

decomposition σ [13]8

Z
(σ)
instanton = F (σ)

α,E . (2.8)

The partition function Zinstanton depends on the zero mode of the 3g−3+n scalar fields in

the N = 2 vector multiplets9 ~a, on n mass parameters ~̂m and on the equivariant localization

parameters ǫ1 and ǫ2. The BPZ conformal block [32] depends on the conformal dimension

of the vertex operators decorating the 3g−3+n internal edges and n external edges of Γσ,

which carry Liouville momenta ~α and ~m respectively, as well as on the Liouville central

charge c. With the proposed dictionary

αi = Q/2 + ai i = 1, . . . , 3g − 3 + n

ma = Q/2 + m̂a a = 1, . . . , n

b = ǫ1

1/b = ǫ2 ,

(2.9)

the relation (2.8) was demonstrated up to several orders in a Taylor series expansion in

qi = exp(2πiτi) [13].10

The complete Liouville theory correlator on Cg,n also admits an elegant gauge theory

interpretation. It was found in [13] that the Liouville correlator on Cg,n (1.2) for b = 1 (or

8The definition of a conformal block also requires specifying how the graph Γσ is drawn on the decom-

posed Riemann surface. See footnote 7.
9In the gauge theory the parameters ai are traceless anti-hermitean matrices, and m̂a imaginary numbers,

of the same magnitude as the physical mass. Up to SU(2) transformations ai is given by one of the two

eigenvalues and we identify the matrix and its eigenvalue. In (2.9) ai is the eigenvalue and in (1.3) and (2.10)

it is a matrix with the appropriate Haar measure.
10The correspondence between the instanton partition in gauge theory and Liouville theory has been

extended to a class of asymptotically free theories in [35].
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equivalently c = 25) corresponds to the partition function of Tg,n on S4 computed in the

duality frame σ [10]11

Z(σ)
Tg,n

=

∫

[da]Z
(σ)
NekrasovZ

(σ)
Nekrasov =

〈

n
∏

a=1

Vma

〉

Cg,n

. (2.10)

Pestun’s partition function resembles the holomorphically factorized representation of two

dimensional conformal field theory correlators. Formula (2.10) makes this observation

precise. In making the identification, the authors of [13] noted that the product of three

point functions of primary operators in Liouville [15, 33, 34] precisely assemble themselves

to realize the measure in Pestun’s partition function (2.10).

It is important to note that the Liouville correlator 〈∏n
a=1 Vma〉 does not depend on

the choice of pants decomposition of Cg,n. Correlators in Liouville theory are invariant

with respect to the action of MCG(Cg,n), which relate different sewings of the surface [14–

16]. This implies that the partition function of Tg,n on S4 is invariant under the S-duality

group Γ(Tg,n)

Z(σ)
Tg,n

= Z(σ′)
Tg,n

, (2.11)

where σ and σ′ denotes a choice of pants decomposition of Cg,n.

2.2 Loop operators in gauge theory and curves on Riemann surfaces

The (2, 0) theory in six dimensions has surface observables (strings), which arise in M-

theory from M2-branes ending on the M5-branes whose low energy dynamics are governed

by this conformal field theory. Upon dimensional reduction, these observables become local

operators, loop operators or surface operators, depending on how many of the dimensions

are along the compact manifold and how many in the four dimensional space. In this paper

we focus on the case where one of the directions is on the Riemann surface and the other

is in the four dimensional space.

As far as the four dimensional theory is concerned, these are operators supported on

one dimensional curves, like Wilson loops. In fact in the present framework we can study

Wilson loops, ’t Hooft loops and dyonic loop operators in a unified fashion. We focus

on loop operators supported on a circle, which have the potential of preserving the most

supersymmetries, and study the possible shapes they can take on the internal manifold.

One would therefore expect that the classification of maximally supersymmetric loop

operators in the N = 2 gauge theory Tg,n is related to the classification of loop operators

in Liouville theory on the two dimensional surface Cg,n. Moreover, as mentioned above,

the S-duality symmetries of the gauge theory are the modular symmetries of the Riemann

surface. Understanding the duality map for loop operators in Liouville theory on Cg,n will

teach us the precise working of S-duality for gauge theory loop operators, generalizing the

exchange of a fundamental Wilson loop and an ’t Hooft loop in N = 4 super Yang-Mills.

The classification of loop operators in these gauge theories and the mapping to curves

on Riemann surfaces, as well as their transformation rules under S-duality were presented

in [25], as we review now.

11The precise agreement holds after a overall normalization constant for the vertex operators is removed.
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Loop operators in the gauge theory measure the response of the system to an external

particle which may be charged both electrically and magnetically under any of the gauge

groups. This gives the set of integers (pi, qi), where i = 1, . . . , 3g − 3 + n, with pi being

the magnetic charge12 in the ith group and qi the electric charge.13 Some extra conditions

are imposed on the set of magnetic charges pi, due to the presence of a Dirac string in a

monopole background. In order for the loop operator to be well-defined, all of the fields

of the theory, in particular the hypermultiplets in fundamental representations of different

SU(2) factors, should be single-valued even around the Dirac string. This implies that

for each trivalent vertex in the quiver diagram, the sum of the three magnetic charges

associated with the edges connected to it is even:

pi + pj + pk ∈ 2Z if i, j, k are three boundaries of a pair of pants. (2.12)

Beyond that, in each gauge group there is an unbroken Z2 Weyl symmetry which we have

to mod out by, and therefore we may assume that pi ≥ 0, and if pi = 0 that qi ≥ 0.

This set of data should match the classification of loop operators on the surface Cg,n,

or more precisely loop operators for the Liouville theory on this Riemann surface. At the

purely topological level the observation of [25] is that there is a one-to-one map between

the possible sets of charges of loop operators in Tg,n and homotopy classes of curves, not

necessarily connected,14 without self-intersections.

There is a beautiful classification of all such curves due to Dehn [36] and independently

to Thurston [37], in terms of precisely the same data

d ≡ (pi, qi)i=1,...,3g−3+n (2.13)

called Dehn-Thurston parameters, as those which label the charges of gauge theory loop

operators. The classification is performed for a given pants decomposition of the surface

and therefore is perfectly suited to our purposes of matching with the gauge theory data

in a given duality frame.

For a given pants decomposition one can choose open segments on the three boundaries

of each pair of pants. By a homotopy it is possible to arrange that all the components of

the curve going through the pair of pants cross the boundaries through these segments.

Then each component will follow one of the six possible paths illustrated in figure 5 (the

open segments are the upper halves of each of the circles). How many times the curve

crosses each boundary of the pair of pants uniquely specifies the combination of paths that

the curve contains. See [25] for more detailed explanation.

Clearly the total number of times the curve passes the boundaries of the pair of pants

is even, matching the Dirac condition on the magnetic charges pi, which are also all non-

negative. In gluing two pairs of pants there is a canonical identification of the curves on

12In [25] a generalization was presented which allowed for magnetic charges on the flavor groups, but we

will suppress this possibility in the present paper.
13It should be clear from the context whether qi refers to the electric charge or the gluing parame-

ter/modulus exp(2πiτi).
14In this section, we mean by a “curve” a one-dimensional submanifold that may have more than one

connected component. In the rest of the paper, a “curve” is assumed to be connected.
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the two sides due to the open segments, but one may choose to do a cyclic permutation (in

other words a twist around the boundary) on the lines before the identification, which can

then be associated to qi ∈ Z. Lastly when pi = 0, there are no lines crossing the boundary

between two pairs of pants, and it is possible to introduce qi ≥ 0 loops around the boundary

as components of the curve such that there is no intersection among components. Thus we

have a natural map between free homotopy classes15 of non-intersecting closed curves on

Cg,n and the charges of loop operators in the gauge theory Tg,n.

In particular the simple connected curve corresponding to the ith edge of the trivalent

graph represents the purely electric loop in the ith group — a Wilson loop. It is also impor-

tant for us to note that for any non-self-intersecting curve, there is a choice of pants decom-

position such that it is homotopic to the boundary of a pair of pants. Thus any loop opera-

tor in the gauge theory corresponding to such a curve is a Wilson loop in some duality frame.

The discussion above completely classifies the allowed set of charges carried by the loop

operators. Let us comment, though, that it does not specify fully what the operator is, as

a Wilson loop may be in the irreducible representation of that dimension or a product of

lower irreducible representations and similar refinements should apply also to ’t Hooft and

dyonic loops. Indeed as we shall see below, in Liouville theory it is also possible to associate

different loop operators to the same set of Dehn-Thurston data. The distinction between

them is simply different choices of bases for loop operators. For Wilson loop operators,

where the classification of loop operators in the gauge theory is complete, we have an exact

map between different bases in the gauge theory and in Liouville.16

For the most part we will concentrate below on the basis that mirrors the discussion

above and which is presented in the next section. We will comment about other bases and

their possible advantages in section 5.5.

3 Holonomy and monodromy in Liouville theory

In this section we introduce loop operators in classical Liouville theory and relate them to

the monodromy of a special class of operators in Liouville theory, the so called degenerate

operators. In the next section we will explain how to calculate the action of the Liouville

loop operators on conformal blocks in quantum Liouville theory, and use these operators

to calculate the expectation value of loop operators in N = 2 gauge theories.

The classical equations of motion of the Liouville field theory can be recast as the zero

curvature representation of a connection17

F = dA+A∧A = 0 =⇒ Equations of motion . (3.1)

15A free homotopy class is the set of closed curves that are related by a homotopy, without the condition

that the homotopy fixes a base point. The set of free homotopy classes coincides with the set of conjugacy

classes of the fundamental group.
16There does not exist to date a complete classification of ’t Hooft and dyonic loop operators in these

gauge theories which addresses these distinctions, so we can at best identify them by their charges.
17The Liouville equation of motion on an arbitrary background metric g determines the Weyl factor e2bφ

which renders the curvature of the metric ĝab = e2bφgab constant and negative.
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The flatness of the connection on the Riemann surface arises from consistency of the fol-

lowing system of linear equations, known as the Lax pair

∂Ψ

∂z
+AzΨ = 0 ,

∂Ψ

∂z
+AzΨ = 0 .

(3.2)

This system of equations implies that Ψ is covariantly constant under parallel transport

with respect to the Lax connection A on the Riemann surface Cg,n

(d +A)Ψ = 0 . (3.3)

The chiral quantum fields associated to the classical auxiliary fields Ψ represent build-

ing blocks in the construction of Liouville primary fields, and will play a key rôle in our

Liouville realization of loop operators in N = 2 gauge theories with SU(2) gauge groups.

For the Liouville field theory, the Lax connection A takes values in the Lie algebra

SL(2, R). The Lax connection can be recast in terms of the Liouville field φ through

A = eT+ + eT− + wT 3 , (3.4)

where e and w are the vielbein and spin connection of the two dimensional metric on the

Riemann surface Cg,n given by ĝab = exp(2bφ)gab, which has constant negative curvature.

{T 3, T+, T−} are SL(2, R) Lie algebra generators in the j = 1/2 representation.

The existence of an SL(2, R) Lax connection in Liouville field theory allows us to

parallel transport the fields Ψ between any two points x and y on the Riemann surface

Cg,n. Since the Lax connection is flat, the holonomy depends only on the homotopy class

of the path connecting x and y, and allows us to relate fields at different points on Cg,n

Ψ(x) = U(x, y)Ψ(y) , U(x, y) = P exp

∫ y

x
A . (3.5)

Of particular importance is the holonomy obtained by integrating the Lax connection

around an arbitrary non-self-intersecting closed loop γ on the Riemann surface Cg,n

U(γ) = P exp

∮

γ
A . (3.6)

In particular, the holonomy around a closed curve encircling a tube in the pants decompo-

sition of Cg,n is obtained by integrating

Ax =

(

b∂tφ µebφ

µebφ −b∂tφ

)

(3.7)

around the circle parametrized by x, where (t, x) are coordinates on the tube. Heuristically,

the holonomy around the tube measures the momentum of the state propagating across it.

The connection (3.7) is gauge equivalent to

Ax =

(

0 −b2T

1 0

)

, (3.8)
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where T is the Liouville stress tensor. This form will be useful when relating the auxiliary

fields Ψ with degenerate fields.

The discussion has thus far been restricted to classical Liouville theory, where b ≪ 1

(or equivalently b≫ 1). We are interested in performing the computation of the insertion of

a Wilson loop in the Liouville conformal field theory correlator in the quantum regime. In

particular we are interested in the case b = 1, when the Liouville correlator corresponds to

the partition function of the dual gauge theory on S4, which is very quantum in Liouville.

It is not easy, but possible to define the Wilson loop in the quantum theory by means

of a lattice regularization [38]. An alternative approach is to first quantize the chiral fields

Ψ, and to build the Liouville field out of these building blocks later [14, 27]. The loop

operator associated to the loop γ can then be defined in terms of the monodromy of chiral

fields Ψ. We introduce it here in the quantum theory (and define rigorously in the following

section) and explain why it reduces to the holonomy in the classical limit.

We recall that the fields Vα in Liouville giving rise to delta function normalizable states

are labeled by a quantum number α ∈ Q/2+ iR. Degenerate operators/fields, on the other

hand, are labeled by a pair of integers (r, s) ∈ Z>0 × Z>0. Their corresponding quantum

numbers are given by

2αr,s = Q− r

b
− sb . (3.9)

In this paper, we denote the chiral degenerate fields by Vr,s. The complete, conformal pri-

mary degenerate field is obtained by combining Vr,s with its anti-holomorphic counterpart,

but in this paper only the chiral degenerate field Vr,s is relevant. The defining property of

a degenerate field is that it contains a Virasoro descendant that is a null state (a state of

zero norm). Decoupling of null states imposes strong constraints on the correlation func-

tions of the theory. A chiral degenerate field Vr,s contains a null state at Virasoro level

rs, and decoupling of such a state is captured by the action of a differential operator of

order rs on the correlation functions of the theory containing the chiral degenerate field

Vr,s. The differential operators constraining the correlation functions are of Fuchsian type

and, therefore, their solutions are not single valued, rather they acquire monodromies when

encircling the singularities in the differential equation.

The monodromies of the chiral degenerate fields correspond precisely to the holonomy

acquired by transporting the Lax connection around a closed curve γ,

Ψ(x + 2π) = U(γ) ·Ψ(x) , (3.10)

where x ∈ Cg,n is a base point of the curve γ in Cg,n. This can be verified by noting that

the null decoupling differential equation

(

∂2 + b2T (z)
)

V1,2 = 0 , (3.11)

is precisely the equation for parallel transport with respect to the Lax connection in the

spin 1/2 representation (3.8).
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The relation between the differential equation associated to the V1,2j+1 chiral degen-

erate field and the parallel transport equation extends to arbitrary spin j.18 The Lax

connection has a counterpart in the spin j representation of SL(2, R), and the correspond-

ing system of 2j + 1 first order linear differential equations (3.2) for 2j + 1 fields Ψj,m can

be recast in terms of a single differential equation of order 2j +1. This differential equation

precisely coincides with the null decoupling equation for the V1,2j+1 chiral degenerate field

in the semiclassical approximation. This identifies the chiral degenerate field V1,2j+1 as the

quantization of the auxiliary fields Ψj,m.19 This establishes the correspondence

TrjU(γ) ⇐⇒ Monodromy of V1,2j+1 degenerate field , (3.12)

where TrjU(γ) is a Wilson loop in the spin j representation of SL(2, R).

While we perform our calculations for arbitrary values of b, we eventually focus our

analysis to b = 1, for which a gauge theory interpretation of the Liouville correlators is

available. Inspection of (3.9) shows that there is a large redundancy in the labeling of

degenerate fields for b = 1, as they depend actually only on the sum r + s. Without loss of

generality, we have chosen a basis of chiral degenerate fields spanned by V1,2j+1.

There are different types of Wilson loops that can be inserted into the Liouville confor-

mal field theory correlator, depending upon whether the Wilson loop along the curve γ is

in the spin j representation, multiply wound or multi-traced. The corresponding statement

in terms of degenerate fields is

Tr jU(γ) ⇐⇒ Monodromy of V1,2j+1 along γ

Tr[U(γ)k] ⇐⇒ Monodromy of V1,2 along k · γ
[Tr U(γ)]k ⇐⇒ k times the Monodromy of V1,2 along γ

(3.13)

One point that is worth mentioning is that based on the analysis of [25] we focus our

discussion on non-intersecting curves,20 even though there is no impediment to considering

the classical holonomy or a monodromy along curves with intersections. There are two

justifications for that. First based on the comparison with the gauge theory in [25], we

expect non-intersecting loops to provide a complete basis for loop operators. Moreover

intersecting curves lead to more severe divergences than smooth curves and require more

care to regularize in the quantum theory.

We expect the resolution of these singularities to invoke mixing between different

degenerate fields, which we comment on in section 5.5. We also address the issue of

intersecting curves in section 7, where we indeed show that they can be represented as

linear combinations of non-intersecting ones.

18As another example of this correspondence, the degenerate field V1,3 satisfies the semiclassical null

decoupling equation (∂3 + 4b2T + 2b2∂T )V1,3 = 0, which translates into flatness of the Lax connection in

the j = 1 representation.
19If, in particular, we are considering the complete, conformal primary degenerate field with label

(1, 2j + 1), it turns out to be possible to reconstruct this degenerate field from the 2j + 1 linearly indepen-

dent solutions Ψj,m(z), m = −j, . . . , j of the null vector decoupling equations and their anti-holomorphic

counterparts Ψj,m(z̄).
20Note though that when resolved, the multi-wound loop Tr Uk has intersections while (Tr U)k does not.
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In the next section we make the discussion of the monodromy more precise and provide

the explicit connection to the gauge theory loop operators.

4 Loop operators in gauge theories from Liouville theory

In this section we give an exact prescription for calculating the monodromy associated to

transporting a degenerate field along a simple connected curve γ on the Riemann surface by

introducing the notion of a quantum loop operator L(γ) associated with the closed curve.

In a duality frame where γ represents a Wilson loop, the definition we present exactly repro-

duces the result of Pestun (1.3) and for all other loops it provides a prediction for the gauge

theory observable. In the next section we follow this procedure in some simple examples.

4.1 Loop operators in Liouville theory

Our goal is to study the effect of inserting the monodromy of a degenerate field into the

Liouville conformal field theory correlator 〈∏n
a=1 Vma〉Cg,n

. We perform the calculations

using the conformal bootstrap approach as reviewed in section 2. We first define the

calculational procedure somewhat abstractly and then spell it out in explicit detail.

In order to calculate the monodromy of a degenerate field, we must first think about

enriching a conformal block with extra punctures corresponding to the degenerate fields

in question. Consider the simplest situation where two degenerate fields of type V1,2 are

used21 (the reason why two fields rather than one will become apparent shortly). We

denote the space of conformal blocks on Cg,n by C(Cg,n) and those on Cg,n+2 when two

extra punctures are of type V1,2 by Ĉ(Cg,n+2),

An important property of degenerate fields is that their OPE with a Liouville primary

operator truncates

[V1,2] · [Vα] = [Vα+b/2] + [Vα−b/2] . (4.1)

This equation implies that Ĉ(Cg,n+2) is isomorphic to C(Cg,n)⊗C
4 as a vector space. The

key observation to be made is that there is an embedding

ıg,n : C(Cg,n) →֒ Ĉ(Cg,n+2) , (4.2)

coming from the fact that the fusion of the two degenerate fields V1,2 contains the vacuum

representation.

This can be seen more explicitly as follows. Consider a pants decomposition σ̂ of the

Riemann surface Cg,n+2 in which both representations V1,2 are in the same pair of pants.

The OPE of these two degenerate fields contains only the identity state and the V1,3 state.

The conformal block F̂ (σ̂)
α,E associated to this pants decomposition vanishes unless the edge

connecting this pair of pants to the rest of the surface carries the representation V0 or

V1,3. The subspace spanned by the elements with the identity V0 as the intermediate state

is isomorphic to Ĉ(Cg,n+1), with the (n + 1)st boundary component being assigned the

vacuum representation V0. This space is canonically isomorphic to C(Cg,n).

21It is clear how the construction generalizes. One can add pairs of higher degenerate fields Vr,s.
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It follows from the existence of the embedding (4.2) that the mapping class group

action on Ĉ(Cg,n+2) can be projected onto C(Cg,n). The mapping class group MCG(Cg,n+2)

contains in particular the monodromies generated by moving the insertion point of one of

the representations V1,2 along a connected simple closed curve γ on Cg,n. The projection

of the action of these elements on Ĉ(Cg,n+2) down to C(Cg,n) defines operators on C(Cg,n).

These are the Liouville loop operators L(γ) we are interested in.

A key property of the Liouville loop operators, which is an immediate consequence of

this definition, is their modular invariance. The description above does not depend on a

pants decomposition of the Riemann surface Cg,n, it only requires to separate the two extra

degenerate fields on a pair of pants to get the canonical identification between Ĉ(Cg,n+2)

and C(Cg,n). Since Liouville theory is modular invariant [14–16], so are the loop operators.

In the explicit calculations below we will employ specific pants decompositions for the

entire surface and the details of the calculation will depend on it, but by this argument,

the final result is modular invariant.

We turn now to presenting a more concrete form of the loop operators in terms of their

action on the conformal blocks. Since we chose for the construction the chiral degenerate

operators, the monodromy acts non-trivially only on the holomorphic conformal block (2.5)

while it acts trivially on the antiholomorphic one22

F (σ)
α,E −→ [L(γ) · F (σ)]α,E ,

F (σ)
α,E −→ F

(σ)
α,E .

(4.3)

Once we have an explicit expression for L(γ), the Liouville correlation function (2.6)

gets modified by the insertion of Liouville loop operator to

〈

L(γ)
〉

Cg,n
=

∫

dν(α)F (σ)
α,E

(

L(γ) · F (σ)
α,E

)

. (4.4)

As we discussed in section 3, it is also possible to consider the monodromy of a higher

degenerate field V1,2j+1. Clearly it is possible to defined a more general Liouville loop

operator by replacing the lowest degenerate field V1,2 by V1,2j+1 in the above definition of

L(γ). We will denote the resulting loop operator by Lj(γ). In the special case j = 1/2, we

obtain L(γ) ≡ L1/2(γ) back. We will comment on different bases for loop operators which

utilize V1,2 or more general V1,2j+1 fields in section 5 and in section 7. For the most part,

though, we will focus on the basis mirroring the discussion in section 2.2, transporting V1,2

along non-intersecting curves on the surface. This also corresponds to the last line in (3.13),

4.2 Calculational scheme

In order to explicitly calculate the action of the Liouville loop operator L(γ) on the con-

formal blocks F (σ)
α,E we follow the following algorithm that was originally used to derive the

Verlinde formula [39]:

22One could equally well choose to act on the antiholomorphic blocks. They get acted on by the adjoint

of the operators D
(σ)
α defined in (4.5). The distinction completely disappears when the discussing length

operators in quantum Teichmüller theory (1.7), see section 6.
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1. Start by inserting the identity operator at a point in the trivalent graph which is

spanned by the curve γ. The corresponding conformal blocks transform under changes

of the marking exactly as F (σ)
α,E .

2. We represent the identity operator as the projection to the identity of the fusion of

two degenerate fields. This operation adds two external edges to the original trivalent

graph Γσ, associated to these degenerate fields, and yields a new trivalent graph Γσ̂.

We denote the conformal block corresponding to this enriched trivalent graph by F̂ (σ̂)
α,E .

3. We transport one of the degenerate fields around the trivalent graph Γσ to span the

curve γ, and return it to its original position. Each intermediate step involves a dif-

ferent trivalent graph Γσ̂′ , where the degenerate field is connected to different edges

in Γσ.

4. We fuse again the two degenerate fields to produce the identity operator.

Following the strategy we have described provides a concrete computational framework

in which to calculate
〈

L(γd)
〉

Cg,n
. In order to evaluate the monodromy (specifically step

3) we must find how conformal blocks based on inequivalent trivalent graphs are related

to each other. Trivalent graphs associated with a given Riemann surface Cg,n can be

transformed into each other by the action of the so-called Moore-Seiberg groupoid [40]

(see [41] for a review). The Moore-Seiberg groupoid is generated by three basic moves,

which act on the space of trivalent graphs. They are

• Fusion move

• Braiding move

• S-move

It is an important result in Liouville theory that the generators of the Moore-Seiberg

groupoid act on the space of conformal blocks [14–16]. Once the action of the generators

on the conformal blocks is known, the monodromy action on the conformal block [L(γ) ·
F (σ)]α,E can be obtained by concatenating the moves that are required to create the pair

of degenerate fields, move them around the trivalent graph and annihilate them again.

In section 5 we write down the expressions for the fusion and braiding moves on

the Liouville conformal blocks and use them to calculate the expectation value of various

loop operators.

The general fusion matrices are quite complicated, but they simplify significantly when

one of the legs is a degenerate operator. Due to the OPE property of the V1,2 degenerate

field (4.1), the basis change in each step in the calculation involves a sum over two terms,

of conformal blocks with representations shifted by ±b/2.

At the end of the calculation, after the degenerate fields are projected out we are

back at the original basis for C(Cg,n) being generated by the conformal blocks F (σ)
α,E , but

the representations α carried by the edges in the graph Γσ have been shifted by integer

multiples of −b/2. We conclude that the operator L(γ) can be represented as a difference
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operator D(σ)
α (γ) which acts by shifting the indices α on F (σ)

α,E and by multiplying the

conformal blocks with α and E-dependent factors:

[L(γ) · F (σ)]α,E = D(σ)
α (γ)F (σ)

α,E . (4.5)

Within this framework one may demonstrate the modular invariance of the Liouville

loop operators more explicitly as follows. The operators D(σ)
α (γ) were defined as projec-

tions of an operator Mσ̂(γ) on Ĉ(Cg,n+2), which represents the element in MCG(Cg,n+2)

corresponding to the monodromy associated to transporting a degenerate field along γ. We

are using the notation σ̂ for a pants decomposition (more precisely a marking, see footnote

8) on Cg,n+2 which becomes a pants decomposition on Cg,n by splitting off the pair of pants

containing the insertions of the two degenerate fields. Choosing another pants decomposi-

tion σ′ would yield an operator D
(σ′)
α (γ). The conformal blocks in Ĉ(Cg,n+2) associated to

σ̂ and σ̂′ are related by an operator Mσ̂′σ̂. The fact that the operators Mσ̂′σ̂ represent the

modular groupoid implies in particular the relation

Mσ̂′σ̂ ·Mσ̂(γ) = Mσ̂′(γ) ·Mσ̂′σ̂ . (4.6)

Projecting this relation to C(Cg,n) yields

Mσ′σ · D(σ)
α (γ) = D(σ′)

α (γ) ·Mσ′σ , (4.7)

where now Mσ′σ relates the conformal blocks in C(Cg,n) associated to σ and σ′. This shows

that the operators D(σ)
α (γ) are mapped to each other by the change of representation

induced by change of pants decomposition. They therefore represent an operator L(γ)

that is independent of the choice of pants decomposition on the Riemann surface.

As mentioned before, it is only the concrete realization of the operator as a difference

operator acting on α that may change when changing the pants decomposition σ. The

modular invariance of Liouville correlation functions [14–16] therefore implies the modular

invariance of the Liouville loop operator expectation values. The fact that the expectation

values 〈L(γ)〉Cg,n
defined in (4.4) are modular invariant allows us to regard the L(γ) as

natural observables in Liouville theory.

4.3 Relation to the gauge theory

As reviewed in section 2, loop operators in Tg,n are in one-to-one correspondence with

non-self-intersecting geodesics in Cg,n. Our proposal is that the expectation value of a loop

operator Ld in the N = 2 theory Tg,n is captured by inserting into the Liouville correlator

the loop operator L(γd)

〈Ld,σ〉Tg,n
=
〈

L(γd,σ)
〉

Cg,n
(4.8)

We note that for all the theories Tg,n, any loop operator Ld can always be transformed

into a duality frame σ where the operator is purely electric, and corresponds to a Wilson

loop in the four dimensional gauge theory. In this case the corresponding conformal block

F (σ)
α,E is an eigenstate of the loop operator L(γ)

[L(γ) · F (σ)]α,E = λ(α)F (σ)
α,E . (4.9)
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By explicit calculation, when the monodromy is that of a V1,2 degenerate field around the

curve γ the action is (5.15)

[L(γ) · F (σ)]α,E =
cos (πb(2α−Q))

cos (πbQ)
F (σ)

α,E . (4.10)

Using our proposal (4.8) we find that the Liouville correlator
〈

L(γd,σ)
〉

Cg,n
(4.4) in the

limit b = 1 exactly reproduces Pestun’s formula (1.3) for the expectation value of a Wilson

loop in the corresponding N = 2 theory.

Gauge theory operators carrying magnetic charge in a duality frame σ are captured by

the monodromy acquired by the conformal blocks when a degenerate field is transported

around a curve γ, homotopic to a path in Γσ. This implies that the quantum numbers of the

edges traversed by the degenerate field are shifted due to their OPE with the degenerate

field which is being transported. Therefore, the conformal blocks are not eigenstates of

Liouville loop operators exploring the trivalent graph. Nevertheless, their action on the

conformal blocks is rather simple, and involves elementary shifts of the quantum numbers

labeling the conformal block. These shifted conformal blocks capture ’t Hooft and dyonic

operators in the gauge theory.

We also note that our proposal, together with the modular invariance of the Liouville

loop operator correlators, implies the conjectured action of the S-duality duality group

Γ(Tg,n) on gauge theory loop operators, which states that

〈Ld,σ〉Tg,n
= 〈Ld′,σ′〉Tg,n

, (4.11)

where d and d′ are the charges of the loop operator in the Tg,n duality frames σ and σ′

respectively.

5 Computation of gauge theory loop operators

In this section we explicitly use the identification of loop operators in Liouville theory

on Cg,n with loop operators in Tg,n to calculate the exact expectation value of Wilson

loop operators in Tg,n and the expectation value of ’t Hooft operators in two interesting

examples: the N = 2 SU(2) theory with NF = 4 and the N = 2∗ theory. We then proceed

to define operators on a pair of pants, which by composing them, computes the expectation

value of complicated loop operator in any of the Tg,n theories.

5.1 Preliminaries

As explained in the previous section, the calculation of the monodromy of a degenerate

field as it moves around a closed curve in Cg,n can be broken into a set of moves on the

trivalent graphs on which the conformal blocks are defined. It is a non-trivial fact of two

dimensional conformal field theory that any allowed move can be obtained by composing

the basic moves: fusion, braiding and S-move. In this subsection we introduce the key

ingredients and formulas behind the basic moves we need.
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The moves are local on the trivalent graph. They involve at most five consecutive edges.

On such a graph we can define the s-channel and t-channel 4-pt BPZ conformal blocks (2.5)

F (s)
α

[

α3 α2
α4 α1

]

=

α4 α1α

α3 α2

(5.1)

F (t)
α

[

α3 α2
α4 α1

]

=

α4 α1

α3 α2

α (5.2)

In the explicit calculations in this section we employ for calculational convenience

a different set of conformal blocks G(σ)
α,E which absorb most of the Liouville three-point

function [15, 33, 34] into the blocks themselves.23

In terms of these conformal blocks, the Liouville correlation function (2.6) is written as

〈

n
∏

a=1

Vma

〉

Cg,n

=

∫

dµ(α)G(σ)
α,E G(σ)

α,E , (5.3)

where the measure is

dµ(α) =

3g−3+n
∏

i=1

dαi

(

4 sin (πb (2αi −Q)) sin
(π

b
(Q− 2αi)

))

(5.4)

The precise relation between the two involves multiplying the F blocks by one factor of

N(α3, α2, α1) for each vertex in the graphs Γσ where [42]

N(α1, α2, α3)=
Γb(2Q−α1−α2−α3)Γb(α1+α2−α3)Γb(α1+α3−α2)Γb(α2+α3−α1)

Γb(2Q− 2α1)Γb(2α2)Γb(2α3)
,

(5.5)

and Γb(x) is the Barnes double Gamma function (see appendix A for the definition and

a collection of properties of this function and the closely related Sb(x) and Υ(s)). The

function N(α1, α2, α3) is related to the Liouville three-point function C(α1, α2, α3) [33, 34]

through [42]

C(α1, α2, α3)=

(

πµ
Γ(b2)

Γ(1−b2)
b2−2b2

)

1
b
(Q−α1−α2−α3)

Υ′(0)|N(α1, α2, α3)|2
3
∏

i=1

Γb(2Q−2αi)

Γb(Q−2αi)
.

(5.6)

In the product of all the three-point functions for the different vertices, the only terms

which depend on the internal labels α are the N(α1, α2, α3) factors and some of the ratios

of Barnes functions, which give the measure (5.4). All the rest of the terms can be absorbed

in the normalizations of the external legs. Note also that for normalizable states, when

ᾱ1 = Q− α1, then |N(α1, α2, α3)|2 = |N(Q− α1, α2, α3)|2.
23These are also slightly different from the conventions of [13].
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In the case of the four-point s-channel and t-channel conformal blocks above the explicit

mapping is
G(s)

α

[

α3 α2
α4 α1

]

= N(α4, α3, α)N(α,α2, α1)F (s)
α

[

α3 α2
α4 α1

]

G(t)
α

[

α3 α2
α4 α1

]

= N(α4, α, α1)N(α,α3, α2)F (t)
α

[

α3 α2
α4 α1

]

,
(5.7)

A fusion move is a transformation that relates the s-channel conformal blocks to the

t-channel conformal blocks. They are related by a change of basis. The moves on the BPZ

conformal blocks for Liouville theory are

α4 α1α

α3 α2

→

α4 α1

α3 α2

α′
:= F (s)

α

[

α3 α2
α4 α1

]

=

∫

dα′ Fαα′

[

α3 α2
α4 α1

]

F (t)
α′

[

α3 α2
α4 α1

]

,

(5.8)

α4 α1

α3 α2

α →

α4 α1α′

α3 α2

:= F (t)
α

[

α3 α2
α4 α1

]

=

∫

dα′ F−1
αα′

[

α3 α2
α4 α1

]

F (s)
α′

[

α3 α2
α4 α1

]

,

(5.9)

where Fαα′

[

α1 α2
α4 α3

]

are called the fusion matrices. The forward and inverse transformation

are simply related by

F−1
αα′

[

α3 α2
α4 α1

]

= Fαα′

[

α1 α2
α4 α3

]

. (5.10)

The fusion matrices for the G blocks (5.7) are therefore

Gαα′

[

α3 α2
α4 α1

]

=
N(α4, α3, α)N(α,α2, α1)

N(α4, α′, α1)N(α′, α3, α2)
Fαα′

[

α3 α2
α4 α1

]

(5.11)

and satisfy the same symmetry properties as the fusion matrices for the F blocks

Gαα′

[

α3 α2
α4 α1

]

= Gαα′

[

α2 α3
α1 α4

]

= Gαα′

[

α4 α1
α3 α2

]

= Gαα′

[

α1 α4
α2 α3

]

. (5.12)

The other operation we will employ is the braiding move. This move exchanges two

consecutive edges in a planar graph. In what follows, we will usually perform braiding

twice, so we return to a diagram which looks like the original one, only that we do have

to remember that a “Dehn-twist” was performed along a tube on the Riemann surface.

Pictorically, the braiding move is given by

α1

α2 α3

→
α1

α3 α2

(5.13)

Braiding introduces the following phase into the conformal blocks

Bα2α3
α1

= eiπ(∆(α1)−∆(α2)−∆(α3)) , (5.14)

where ∆(α) = α(Q − α) is the conformal dimension of the operator Vα. Equipped with

the action of fusion and braiding on the conformal blocks we now proceed to calculate the

expectation value of Liouville loop operators.
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α α

→

α αα′

− b
2 − b

2

→

α α

→

α αα′

→

α α

Figure 2. Calculating the Wilson loop in the fundamental representation. The

solid lines carry arbitrary states, the wiggly ones are degenerate fields and the

dashed line carries the identity state.

5.2 Wilson loops from Liouville theory

In [25] the Wilson loop operators in Tg,n were identified with closed curves that wind around

any of the 3g − 3 + n cycles along which the surface Cg,n is sewn from pairs of pants. Let

us label a curve along one such cycle by γ0,1.

We first start by considering the simplest Wilson loop, which transforms in the j = 1/2

representation with respect to the SU(2) gauge group corresponding to the tube that the

curve γ0,1 encircles. The relevant gauge group is identified with an internal edge in the

generalized quiver Γσ.

We need to calculate the monodromy of a V1,2 degenerate field as it moves around the

curve γ0,1. As the operation is local on Γσ, we ignore the rest of the trivalent graph and

suppress all other indices in the conformal blocks, except for the quantum number labeling

the internal edge in the generalized quiver Γσ that corresponds to the desired SU(2) gauge

group, which we label by the quantum number α.

In order to probe the edge labeled by α we need to introduce a degenerate operator V1,2

and braid it around. Introducing a single operator will necessarily change the edge in a way

that if it carries on one side an intermediate state α, then on the other it will carry α±b/2,

which follows from the OPE of the V1,2 degenerate field (4.1). To avoid this, as explained

in section 4, we introduce a pair of V1,2 degenerate operators with their OPE projected to

the identity. This configuration is represented by the left-most diagram in figure 2.

By a fusion move we can then express the same configuration in the s-channel, where

we sum over the intermediate states α′ = α − sb/2 between the pair of degenerate fields,

where s = ±1. Now we perform a non-trivial operation of moving one of the degenerate

fields around, corresponding to a braiding move, fusing it back together with the other

degenerate field and projecting onto the identity.

Given this sequence of moves, we can calculate the action of the loop operator L(γ0,1)

on the conformal block by using the explicit form of the fusion matrices (see appendix B

for the explicit expression of all the fusion matrices required in our calculations). Since the

only relevant label in the conformal block is the one associated to the quantum number

α, we do not write explicitly all the other quantum numbers in the conformal block. The

action of the loop operator L(γ0,1) on the conformal block is given by the following sequence
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of fusion and braiding steps

[L(γ0,1) · G]α =
∑

s=±

G−1
0,α′

[

− b
2
− b

2
α α

]

(

B
− b

2
,α

α′

)2

Gα′,0

[

− b
2
− b

2
α α

]

Gα

=
∑

s=±

G−,s

[

α − b
2

α − b
2

]

eπbi(Q+s(2α−Q))Gs,−

[

− b
2
− b

2
α α

]

Gα (5.15)

=
∑

s=±

sin
(

πb2
)

sin (πb(2α −Q))
eπbi(Q+s(2α−Q)) sin (πb(2α′ −Q))

sin (2πb2)
Gα =

cos (πb(2α −Q))

cos (πbQ)
Gα .

Taking the b→ 1 limit, which corresponds to the partition function of Tg,n on S4, gives

[L(γ0,1) · G]α = cos(2πa)Gα , α =
Q

2
+ a . (5.16)

An interesting point about this formula is the normalization. It exactly matches the

Wilson loop in the spin 1/2 representation when the trace is normalized by dividing by the

dimension of the representation, which is two for j = 1/2. More generally, away from b = 1,

if we multiply the numerator by 2 then the denominator is 2 cos(πbQ) = eiπbQ + e−iπbQ,

which is the quantum dimension of the spin 1/2 representation of q-deformed SL(2, R).

The same expression would apply also to the conformal blocks with any of the other

normalizations, since the operator L(γ0,1) diagonalizes the conformal blocks, and acts by

a multiplicative factor.

Using the expression for the correlator of a Liouville loop operator (4.4), we find that

the result exactly matches Pestun’s formula [10] for the expectation value of a Wilson loop

in the j = 1/2 representation for one of the gauge groups24

〈

L(γ0,1)
〉

Cg,n
= 〈Wj=1/2〉Tg,n

=

∫

[da] cos(2πa)ZNekrasovZNekrasov , (5.17)

where we have used the identification between the Liouville correlator and the partition

function of the gauge theory without a loop operator found in [13].

We now proceed to calculate the expectation value of a Wilson loop in the spin j = q/2

representation of one of the SU(2) groups. As discussed in section 3, the degenerate

operator that must be moved around the Riemann surface is V1,q+1. Since the product

of two identical degenerate fields Vr,s always contains the identity operator, we can carry

out the same operation we did for the V1,2 degenerate field. A pair of them can also be

created in the same way as before, as discussed in detail in appendix B.1. The setup

is precisely the same as the one in figure 2, but now the degenerate fields have quantum

numbers −qb/2. In this case, between the two degenerate fields V1,q+1 the state α is shifted

to α− kb/2 with k = −q,−q + 2, . . . , q, due to the OPE expansion of a V1,q+1 degenerate

field and a primary field. The action of the loop operator L(γ0,1) on the conformal blocks

24We stress that the insertion of cos(2πa) is for only one of the gauge fields.
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is therefore25

[Lq/2(γ0,1) · G]α =
∑

k

G−1

0,α− kb
2

[

− qb

2
− qb

2
α α

]

(

B
−q b

2
,α

α−k b
2

)2

Gα− kb
2

,0

[

− qb

2
− qb

2
α α

]

Gα

=

∑

k exp[2πikb a]
∑

k exp[πikbQ]
Gα . (5.18)

As in the case of j = 1/2, the denominator is the quantum dimension of the spin q/2

representation of the q-deformed SL(2, R) (or the classical dimension for b = 1).

In the limit b → 1, where the Liouville correlator has an interpretation in term of

N = 2 gauge theories on S4 we get

[Lq/2(γ0,1) · G]α =
1

q + 1

∑

k

exp[2πik a]Gα . (5.19)

This result exactly matches Pestun’s formula [10] for the expectation value of the Wilson

loop in the spin j = q/2 representation for one of the gauge groups

〈

Lq/2(γ0,1)
〉

Cg,n
= 〈Wq/2〉Tg,n

. (5.20)

As discussed in section 3, there are two other natural bases of Wilson loop observables

with quantum number q, corresponding to the multi-wrapped loops and the multi-trace

loops. They also have a simple realization in terms of Liouville loop operators.

We can use the same degenerate field, and note that wrapping a single V1,2 field q

times around the curve gives extra braiding factors in (5.15). The result is

[L(q · γ0,1) · G]α =
∑

s=±

eqπbi(Q+s(2α−Q)) sin
(

πb2
)

sin (2πb2)

sin (πb(2α′ −Q))

sin (πb(2α−Q))
Gα

−→
b→1

cos (2πqa) Gα .

(5.21)

This yields the expectation value of the multi-wrapped Wilson loop in the N = 2 gauge

theory26

〈

L(q · γ0,1)
〉

Cg,n
= 〈1

2
Tr e2πiqa〉

Tg,n

. (5.22)

Instead, if we consider q pairs of independent degenerate fields we just get the qth

power of the previous result

[L(γ0,1)
q · G]α =

[

−cos (πb(2α −Q))

cos (πb2)

]q

Gα −→
b→1

cosq (2πa) Gα . (5.23)

This yields the expectation value of the multi-trace Wilson loop in the N = 2 gauge theory

〈

L(γ0,1)
q
〉

Cg,n
= 〈
[

W1/2

]q〉
Tg,n

. (5.24)

We thus have found a Liouville description for each of the three natural Wilson loops

with quantum number q:

25This expression was checked up to q = 5, see also equation (B.18).
26On the right-hand side we are using notations from Pestun’s matrix model calculation to represent the

corresponding field theory observable.
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α

m
→ α′

α

m
→

α′′
α′

α

m
→

α′

m

Figure 3. Calculating the ’t Hooft loop on the one-punctured torus.

1. The Wilson loop in the irreducible j = q/2 representation is given by generating a

pair of V1,q+1 degenerate fields, braiding one of them around and fusing them back

into the identity state.

2. The Wilson loop wrapped q times around the curve is given by generating a pair of

the basic V1,2 degenerate fields, braiding one of them around q times and fusing them

back into the identity state. This can be thought of as a q-times wound curve.

3. The qth product of the fundamental Wilson loop is achieved by generating q pairs of

the basic V1,2 degenerate fields, braiding one of each pair and fusing them back into

the identity states. This can be thought of as q parallel curves on the surface.

Combinations of any of these can be used to create all other Wilson loop operators.

5.3 ’t Hooft loop in N = 2∗ theory

As discussed earlier, from the Liouville point of view ’t Hooft loop operators are also

described by the monodromy of the conformal block associated to a degenerate field moving

around a closed curve. Although these are essentially the same calculations we performed

for the Wilson loop, once we choose a different pants-decomposition of the Riemann surface

the details change drastically.

Given a choice of pants decomposition σ of the Riemann surface, the curve that de-

scribes a loop operator carrying magnetic charges must move nontrivially around the corre-

sponding trivalent graph Γσ. For the case of the Wilson loop just considered, the associated

curve simply corresponds to a rotation around one the edges of Γσ. Since the degenerate

field does not move in Γσ, one would expect that the loop operator does not change the

quantum number propagating along the edge, which is what we have found. For an opera-

tor carrying magnetic charge the curve must explore the trivalent graph Γσ, which suggests

that the quantum numbers associated to the edges traversed by the curve are now affected

by the action of the loop operator. As we show, this intuitive picture is materialized in the

actual computation of the monodromy.

We now consider an ’t Hooft operator in N = 2∗, which corresponds to the once-

punctured torus. As usual we create a pair of degenerate fields which project to the

identity operator (see the first picture in figure 3). If in the second step, after fusion, we

move one of the degenerate fields around the graph without changing the location of the
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degenerate field on the graph, then this corresponds to the Wilson loop calculation we have

already carried out.

Transporting the degenerate field around the entire graph corresponds instead to the

’t Hooft operator. The procedure is illustrated in figure 3. A pair of degenerate fields,

which combine to the identity are rewritten in the dual channel with an intermediate state

α′ = α−sb/2, where s = ±1. Then one of the degenerate fields is fused across the puncture

(with label m). In principle one should allow for a new state α′′ there, but since we then

combine again the two degenerate fields and project onto the identity, this identifies the

two quantum numbers α′′ = α′.

There is a subtle point about this calculation, which is the exact identification of the

initial and final state. Great care has to be taken to guarantee that we follow exactly the

same path as in the Wilson loop calculation (in the dual channel), and do not permute

the two degenerate fields. Otherwise one ends up with extra phases (5.14) due to braiding

between these two fields. Note that the ambiguity is independent of α and m, so we can

examine the case of m = 0 (torus without a puncture), where the operator Mσ′σ in (4.7)

is just Fourier-transformation. In that case the transformation of the difference operator

D(σ)
α is obvious, and gives the formula below. This fixes the possible phase.27

This sequence of moves induces a monodromy on the conformal block of the once

punctured torus, which we denote by Gα,m. The fusion and braiding moves yield

[L(γ1,0)·G]α,m =
∑

s=±

G0,α− sb
2

[

α − b
2

α − b
2

]

G−1
α,α− sb

2

[

α−s b
2
− b

2
m α

]

Gα,0

[

α−s b
2

α−s b
2

− b
2

− b
2

]

Gα−sb/2,m

=
∑

s=±

G−,s

[

α − b
2

α − b
2

]

G−s,s

[

α − b
2

m α−s b
2

]

G−s,−

[

− b
2

− b
2

α−s b
2

α−s b
2

]

Gα−sb/2,m (5.25)

=
sin(πb2)

sin(2πb2)

(

sin(πb(2α −Q−m))

sin(πb(2α −Q))
Gα−b/2,m +

sin(πb(2α −Q + m))

sin(πb(2α −Q))
Gα+b/2,m

)

We note that, as expected, the loop operator shifts the value of the quantum number

associated with the edge along which the degenerate field is transported. Hence, unlike

the calculation of the Wilson loop, the functional prefactors are then dependent on the

normalization conventions for the conformal blocks, whether G, F or ZNekrasov.
28

In the limit b → 1, where the Liouville correlator has an interpretation in term of

N = 2∗ on S4, this yields

〈

L(γ1,0)
〉

Cg,n
=2

∫

dα sin(2πα)Gα,m

[

sin(π(2α −m))Gα−1/2,m+sin(π(2α + m))Gα+1/2,m

]

.

(5.26)

Our proposal (1.4) identifies the result of this calculation as the expectation value of an

’t Hooft operator T ≡ L1,0 in the N = 2∗ theory

〈T 〉Tg,n
=
〈

L(γ1,0)
〉

Cg,n
. (5.27)

27Also, since we know that the loop operators are Hermitian and positive definite (see section 6) this, in

principle fixes the phase.
28To be explicit, for the one-punctured torus Gα,m = N(α, m,α)Fα,m (5.5).
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m4 m1α

m3 m2− b
2

− b
2

→

m4 m1α

m3 m2

m′
3 →

m4 m1α′ α

m3 m2

m′
3 →

→

m4 m1α′

m3 m2

m′
3

m′
2

−→
braiding

m4 m1α′

m3 m2

m′
3

m′
2

→

m4 m1α′ α′′

m3 m2

m′
3 →

→

m4 m1α′′

m3 m2

m′
3

m3

−→
braiding

m4 m1α′′

m3 m2

m′
3 →

m4 m1α′′

m3 m2

Figure 4. Calculating the ’t Hooft loop on the four-punctured sphere as the mon-

odromy associated to moving a V1,2 field.

The ’t Hooft loop is given by a sum of two terms, one where the argument of the holo-

morphic contribution is shifted by 1/2 and the other by −1/2. In section 8, we provide a

possible gauge theory interpretation of this observation.

It is straightforward to generalize the calculation to the dyonic loop operator L(γ1,q)

by including an extra braiding factor. The result is

[L(γ1,q) · G]α,m = e−qπib2/2 sin(πb2)

sin(2πb2)

(

eπiqb(2α−Q) sin(πb(2α −Q−m))

sin(πb(2α −Q))
Gα−b/2,m

+ e−πiqb(2α−Q) sin(πb(2α −Q + m))

sin(πb(2α −Q))
Gα+b/2,m

)

.

(5.28)

In section 7 we provide some consistency checks for the validity of this calculation by

demonstrating that the dyonic operators satisfy the expected ’t Hooft commutation rela-

tions for b = 1 and the expected operator product expansion for b = 0.

5.4 ’t Hooft loop in the theory with one SU(2)C and NF = 4

The next theory we consider is T0,4, which is based on the four punctured sphere. This

theory admits a weakly coupled description in terms of an N = 2 SU(2) gauge theory

with four fundamental hypermultiplets. Our goal is to compute the expectation value of

an ’t Hooft loop in this theory.

The monodromy corresponding to the ’t Hooft loop is captured by the series of moves

illustrated in figure 4. First we insert a pair of degenerate fields in the edge labeled by m3.
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One of the degenerate fields is then moved across the trivalent graph and then transported

back. Note that when the degenerate field hits the vertex with external edges labeled by

m1 and m2 braiding around the punctures must be performed. Likewise, we must braid

when the degenerate field is back into the original vertex labeled by m3 and m4.

Using the formulae for the fusion and braiding moves we find that the expression for

the complete move is the following

Ts,s′ =
∑

s2,s3=±

G0m′
3

[

m3 − b
2

m3 − b
2

]

G−1
m3α′

[

m′
3 − b

2
m4 α

]

Gα,m′
2

[

− b
2

m2

α′ m1

]

(

B
− b

2
,m2

m′
2

)2

×G−1
m′

2α′′

[

− b
2

m2

α′ m1

]

Gα′m3

[

m′
3 − b

2

m4 α′′

]

(

B
− b

2
,m3

m′
3

)−2

G−1
m′

30

[

m3 − b
2

m3 − b
2

]

,

(5.29)

where

α′ = α− sb

2
, α′′ = α− (s + s′)b

2
, m′

2 = m2 −
s2b

2
, m′

3 = m3 −
s3b

2
, (5.30)

and s, s′, s2 and s3 are either 1 or −1.

The loop operator corresponding to the curve traced by this move — denoted by L(γ2,0)

— acts on the conformal blocks on the four punctured sphere, which we label by Gα (we

omit the labels m1, . . . ,m4 to avoid unnecessary clutter). The resulting monodromy is rep-

resented by the expression (5.29) multiplying the conformal blocks, where the intermediate

state α is replaced by α′′ = α−kb/2. We get the sum of three terms for k = 2, 0,−2 where

compared to (5.29) we use T2 = T++, T0 = T+− + T−+ and T−2 = T−−

[L(γ2,0) · G]α = T2 Gα−b + T0 Gα + T−2 Gα+b . (5.31)

Explicitly the prefactors are

T2 =− 4
sin
(

πb2
)

sin (πb(α + m2 −m1 − b)) sin (πb(α−m2 + m1 − b))

sin (2πb2) sin (2πb(α− b)) sin (πb(2α − b))

× sin (πb(α + m3 −m4 − b)) sin (πb(α−m3 + m4 − b)) (5.32)

T0 =

[

cos (πb(2α− b)) cos (πb(2m2 − b))− cos
(

πb2
)

cos (πb(2m1 − b))
]

cos2 (πb2) sin (2πb(α− b)) sin (2πbα)

×
[

cos (πb(2α− b)) cos (πb(2m3 − b))− cos
(

πb2
)

cos (πb(2m4 − b))
]

+
cos (πb(2m2 − b)) cos (πb(2m3 − b))

cos2 (πb2)
(5.33)

T−2 =− 4
sin
(

πb2
)

sin (πb(α + m2 + m1 − b)) sin (πb(α−m2 −m1 − b))

sin (2πb2) sin (2πbα) sin (πb(2α− b))

× sin (πb(α + m3 + m4 − b)) sin (πb(α−m3 −m4 − b)) (5.34)

In section 7 we provide some consistency checks for the validity of this calculation by

demonstrating that the Wilson and ’t Hooft loop operators satisfy the expected ’t Hooft

commutation relation for b = 1 and the expected operator product expansion for b = 0.
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In the limit b→ 1, where the Liouville correlator has an interpretation in term of the

N = 2 SU(2) gauge theory with NF = 4 on S4 we get

〈

L(γ2,0)
〉

Cg,n
=

∫

dα sin2(2πα)
[

Gα T ′
2Gα−1 + Gα T ′

0Gα + Gα T ′
−2Gα+1

]

, (5.35)

where

T ′
2 =

2

sin2 (2πα)
sin (π(α + m2 −m1)) sin (π(α−m2 + m1))

× sin (π(α + m3 −m4)) sin (π(α−m3 + m4)) (5.36)

T ′
0 =

[cos (2πα) cos (2πm2)− cos (2πm1))] [cos (2πα) cos (2πm3)− cos (2πm4))]

sin2 (2πα)

+ cos (2πm2) cos (2πm3)) (5.37)

T ′
−2 =− 2

sin2 (2πα)
sin (π(α + m2 + m1)) sin (π(α−m2 −m1))

× sin (π(α + m3 + m4)) sin (π(α−m3 −m4)) (5.38)

The ’t Hooft loop is given by a sum of three terms, one where the argument of the holo-

morphic contribution is shifted by 1, the other by −1 and one is unshifted. In section 8,

we provide a possible gauge theory interpretation of this observation.

5.5 More general loop operators

We have in previous subsections demonstrated the prescription of calculating the Liouville

loop operator L(γ). This procedure can be applied to any collection of non-intersecting

curves on the surface and by the conjectured relation between Liouville and the N = 2

gauge theories (as well as the explicit check on Wilson loops) calculate general Wilson,

’t Hooft and dyonic loop operators in these gauge theories.

As reviewed in section 2, the classification of non-intersecting curves on the Riemann

surface exactly matches the possible charges carried by loop operators in the gauge the-

ory [25]. But we pointed out in section 3 and in section 5.2, there is more than one loop

operator in Liouville theory associated to a given set of charges. The three cases we dis-

cussed are associated to the Wilson loop which is multi-wound, the multi-trace operator

and the loop in a higher dimensional irreducible representation.

The distinction between the different loop operators is simply a change of basis, which

can be seen both in the gauge theory and in Liouville theory. The multi-trace loops are

in a product of the spin 1/2 representation, which can be decomposed into irreducible

representations. Similarly, the algebra of the degenerate fields is the quantum deforma-

tion of sl(2, R).

In this regard our analysis is complete, we found a Liouville operator for gauge theory

operators with arbitrary charges, which should furnish a complete basis on both sides of

the correspondence.

The main advantage of the operators built out of the monodromy of the V1,2 degen-

erate field along non-intersecting curves is that this definition is modular invariant. The
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classification of loop operators matches Dehn’s classification of the curves and the explicit

transformation rules under a change of pants decomposition was presented by Penner [43].

Another technical simplification is the fact that the fusion rules for V1,2 are the simplest.

There could be other bases which have other advantages and we present now a proposal

for one. It has the advantage that it is local on the graph Γσ for a fixed pants decomposition

σ which simplifies the calculation in that duality frame. This comes clearly at the price of

not having simple modular properties. But such a description is likely to match specific

gauge theory descriptions in the corresponding weakly coupled limit of Tg,n.

We will consider loop operators made by splitting higher degenerate fields into collec-

tions of lower degenerate fields and fusing them back together along the Riemann surface. In

particular given a pants decomposition σ, it decomposes the curve into arcs on the different

pairs of pants, which is in fact a key step in Dehn’s theorem. This operation groups different

segments of the same curve as being parallel to each other on Γσ. It is then rather natural

to replace a collection of parallel segments, with a single line for a higher degenerate field.29

Consider the case of the ’t Hooft loop in the theory withN = 2 SU(2) gauge group with

NF = 4 discussed in section 5.4. The loop is labeled by γ2,0 and passes twice through the

central edge in Γσ (with the label α in figure 4). In fact one can consider a calculation where

both of the degenerate fields are transported around the m3, fused together, transported

along the central edge, unfused into a pair of V1,2 fields which then wrap the m2 line.

Note that the fusion of the two degenerate fields will give the sum of the identity state

and V1,3. The contribution of the identity state is independent of α, of m1 and of m4 and

is the term on the last line of (5.33). The V1,3 state gives all the other terms.

This decomposition of the loop operator into the contribution of the identity and

V1,3 along the intermediate edge should be mirrored by a decomposition of the analogous

’t Hooft operator in the gauge theory into a triplet and a signlet. This decomposition is

rather subtle and as we saw in the Liouville calculation requires the choice of a pair of

punctures with labels m2 and m3 (similarly this can be done with the pair m1 and m4).

As mentioned before, a fully detailed construction of loop operators in these gauge theories

does not exist and the subtleties in the reduction to irreducible representations have not

been addressed. We do find some indication for this decomposition in the algebra of loop

operators in section 7.

5.5.1 Building loops from smaller constituents

We would like to propose an algorithm that enables a relatively easy calculation of loop

operators where all the arcs of the loop in a given pants decomposition are fused to higher

degenerate fields (and roughly speaking should correspond to Wilson and ’t Hooft loop

operators in irreducible representations).

We recall the statement of Dehn’s theorem, which analyzes curves on surfaces with

specific pants decomposition. On each pair of pants there will be a collection of arcs going

between the three boundaries. By a homotopy one can guarantee that all the arcs on all

29A similar idea, of allowing lines to fuse and split, was presented to us by D. Gaiotto, in the context of

generalizing [25] to theories with gauge group factors SU(N) with N > 2.
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ℓ12 ℓ23 ℓ13

ℓ11 ℓ22 ℓ33

Figure 5. Basic arcs on a pair-of-pants

the pairs of pants will start and end on the upper half of the boundary circles as shown in

figure 5, and follow one of these six basic paths.

Given the number of lines crossing the three boundaries of the pair of pants, p1, p2

and p3, there is a unique collection of non-intersection arcs as in figure 5 with these num-

ber of endpoints.

If pi > pj + pk, then we can use

1

2
(pi − pj − pk)ℓii + pjℓij + pkℓik. (5.39)

On the other hand, if pj + pk ≥ pi for all permutations of {1, 2, 3}, then we can use

1

2
(p1 + p2 − p3)ℓ12 +

1

2
(p1 + p3 − p2)ℓ13 +

1

2
(p2 + p3 − p1)ℓ23. (5.40)

Instead of carrying the V1,2 field along an arc and then on to another pair of pants, we

want to treat all the arcs on this pair of pants in unison. For that we replace the pi lines

crossing the boundary i by a single line for the degenerate field V1,p+1. We then consider

the splitting and joining of these operators from one boundary to the other according to

the multiplicities of the ℓij curves.

More concretely we start by introducing pairs of degenerate fields V1,pi+1 at the center

of the ith edge which are connected to the original graph through a handle carrying the

identity state. If qi 6= 0, we split off a V1,qi+1 field, braid it around and refuse it back to
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a pair of V1,pi+1. This prescription is valid for pi ≥ qi, otherwise we start with a pair of

V1,qi+1, braid one around, split each to a pair V1,pi+1 and V1,qi−pi+1 and combine the latter

two and project the intermediate state to the identity.

We then have exactly the situation envisioned above, where at each boundary of a

pair of pants there is an extra degenerate field with V1,pi+1. They are split and fused with

each-other according to the degeneracies of the ℓij lines and projected on to the identity.

This prescription can be used in the calculation of the loop operators discussed in the

preceding subsections. In the case of the one-punctured torus, there is a single pair of pants

on which p1 = p2 = 1 and p3 = 0. The relevant curve is ℓ12. We define first the operator

ŵ1,0 as a map from the space of conformal blocks C(Cg,n) to the space of conformal blocks

with an extra pair of degenerate fields Ĉ(Cg,n+2), which is the inverse of the canonical

identification and then places them at the two sides of the glued pairs of pants. In our

case the two degenerate fields end up on the edges labeled 1 and 2 of the three-leg graph

representing the pair of pants.

We next consider the operator ℓ̂12 acting on the enlarged space of conformal blocks on a

single pair of pants, moves one degenerate field from boundary number 2 to boundary num-

ber 1, combines the two and projects down back to the original space of conformal blocks.

Explicitly we can illustrate the action of ℓ̂12 by the fusion and projection steps (in the

case of the torus we also identify α1 = α2, but for now we keep it generic)

α′
1 α3α1

− b
2
− b

2

α′
2

α2
→

α′
1 α3α1 α′

1

− b
2 − b

2 α′
2

→

α′
1 α3

α′
2

→

α′
1 α3

α′
2

(5.41)

Taking α′
1 = α1 − s1b/2 and α′

2 = α2 − s2b/2 with si = ±1 we have for the renormalized

conformal blocks G (5.7)

[ℓ̂12 · Ĝ]α1,α2,α3 = G−1
α2,α′

1

[

− b
2

α′
2

α1 α3

]

Gα1,0

[

− b
2
− b

2

α′
1 α′

1

]

Gα′
1,α′

2,α3
. (5.42)

Using the expressions (B.5) and (B.7) in appendix B this is

[ℓ̂12 · Ĝ]α1,α2,α3 = s1s2
sin(πb(α3 − Q

2 + s1s2
Q
2 − s1(α2 − Q

2 )− s2(α1 − Q
2 ))

sin(2πb2)
Gα′

1,α′
2,α3

(5.43)

Similarly one can define analogous operators ℓ̂23 and ℓ̂31 which are given by permuting the

indices, and these operations for other degenerate fields.

Using this operator we can immediately reproduce the ’t Hooft loop on the one-

punctured torus calculated in section 5.3. We take α1 = α2 = α and α3 = m. Then

we have to act on the conformal block with ŵ1,0, which will introduce s = s1 = s2 and

then act by ℓ̂12

Gα,α3 → [ŵ1,0 · G]α,m =
∑

s=±

Ĝs
α′,α,m → [ℓ̂12 · ŵ1,0 · G]α,m =

∑

s=±

Gα′,m . (5.44)
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Using (5.43) and including the action of ŵ1,0 (B.6) we get

[

ℓ̂12 · ŵ1,0 · G
]

α,m
=
∑

s=±

sin(πb(m− s(2α−Q)))

sin(2πb2)
× s

sin
(

πb2
)

sin (πb(2α−Q))
Gα−sb/2,m

=
∑

s=±

sin(πb2)

sin(2πb2)

sin(πb(2α −Q− sm)

sin(πb(2α −Q))
Gs

α−sb/2,m .

(5.45)

This indeed agrees precisely with (5.25).

In the case of the four-punctured sphere there are two pairs of pants. The loop con-

sidered in section 5.4 has p = 2 on one boundary of each pair of pants. In our present

approach of doing the calculation with the highest possible degenerate fields we need to

create a pair of V1,3 fields with ŵ2,0.

Then on each pair of pants we need to act by the operator ℓ̂11 which takes the V1,3

degenerate field attached to the first edge, replace it by a pair of V1,2 fields, transports one

of them around the second edge, fusing it back to the other degenerate field and projecting

on to the identity

α′′
1 α3

− b
2

α1

− b
2

α2

−b →

α′′
1 α3α′

1 α1

− b
2 − b

2
α2

→

α′′
1 α3α′

1

− b
2
− b

2

α2

α′
2

→

α′′
1 α3

− b
2

α′
1

− b
2

α2

α′
2

→

α′′
1 α3α′

1

− b
2
− b

2

α2

α′
2

→

α′′
1 α3α′

1 α′′
1

− b
2 − b

2
α2

→

α′′
1 α3α′′

1

α2

→

α′′
1 α3

α2

(5.46)

To write it down we take α′
1 = α1 − s1b/2, α′′

1 = α′
1 − s′1b/2 and α′

2 = α2 − s2b/2. Then

we have

[ℓ̂11 · Ĝ]α1,α2,α3 =
∑

s1,s2=±

G−1
−b,α′

1

[

− b
2
− b

2

α′′
1 α1

]

Gα1α′
2

[

− b
2

α2

α′
1 α3

]

(

B
− b

2
,α2

α′
2

)2

×G−1
α′

2α′′
1

[

− b
2

α2

α′
1 α3

]

Gα′
10

[

− b
2
− b

2

α′′
1 α′′

1

]

Gα′′
1 ,α2,α3

=
∑

s1,s2=±

G+,s1

[

α1 − b
2

α′′
1 − b

2

]

Gs2,−s1

[

α2 − b
2

α3 α′
1

]

eπbi(Q+s2(2α2−Q))

×Gs′1s2

[

α′
1 − b

2
α3 α2

]

G−,−s′1

[

− b
2
− b

2

α′′
1 α′′

1

]

Gα′′
1 ,α2,α3

(5.47)

To find an explicit expression one uses (B.5) and (B.7) and performs the sum over s1

and s2. To simplify the final expression it is convenient to consider separately the cases

with α′′
1 = α1 − kb/2 with k = −2, 0, 2. For k = ±2 we need to take s1 = s′1 = ±1 while

for k = 0 we need to sum over the two possibilities of s1 = −s′1. The result is

[ℓ̂11 · Ĝ]α1,α2,α3 =−2ieiπb2 sin (πb(α1+α2−α3−Q)) sin (πb(α1−α2+α3−Q))

sin (2πb2)
Gα1−b,α2,α3
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+ 2ieiπb2 cos (πb(2α1−b)) cos (πb(2α2−b))−cos
(

πb2
)

cos (πb(2α3−b))

sin (2πb2)
Gα1,α2,α3

+ 2ieiπb2 sin (πb(α1 + α2 + α3 −Q)) sin (πb(α1 − α2 − α3 + Q))

sin (2πb2)
Gα1+b,α2,α3 (5.48)

To complete the calculation of the loop operator on the four punctured sphere we have

to include the action of ŵ2,0 (B.12), then take a pair of these ℓ11 operators, one for each

pair of pants, and sum over the three different values of k.

This gives the same as the loop calculated in section 5.4 without the term on the last

line of (5.33). Indeed as stated before, this last term corresponds to the contribution from

the identity state, or the trivial ’t Hooft loop and the expression we derive here should

correspond to the loop operator in an irreducible representation.

The operators ℓ̂22 and ℓ̂33 can be defined in a similar fashion, as can the operators for

higher degenerate fields.

6 The Liouville-Teichmüller theory

Liouville theory has a dual representation in terms of a quantum mechanical problem,

the quantum theory of the Teichmüller spaces. We first explain the basic quantization

problem for the Teichmüller spaces based on their natural symplectic structures. We also

explain how to describe the length of geodesics on a Riemann surface as functions on

Teichmüller space. Then we recall the connection between Liouville theory and quantum

Teichmüller theory established in [28, 29]. Quantum Teichmüller theory possesses canonical

observables, namely geodesic length operators. We show that they are precisely the Liouville

loop operators we introduced in section 4, up to rescaling.

6.1 Classical Liouville-Teichmüller theory on Riemann surfaces

6.1.1 Complex-analytic picture

Teichmüller space is the space of deformations of the complex structure on a topological

surface Σg,n. For each complex structure on a surface Σg,n there exists a unique metric of

the form

ds2 = eϕdzdz̄ , (6.1)

which has constant negative curvature. A metric of the form (6.1) will have constant

negative curvature −8πµb2 iff it satisfies the classical Liouville equation

∂∂̄ϕ = 2πµb2 eϕ . (6.2)

The classical Liouville field ϕ is related to the quantum field φ used earlier by ϕ = 2bφ.

We may therefore identify the Teichmüller space Tg,n with the space of solutions of the

Liouville equation on the surface Σg,n.

We will consider the space of all solutions to the classical Liouville equation on a

surface Σg,n as the phase space Tg,n we are aiming to quantize. The Liouville action

functional Scl
[

ϕ],

Scl
[

ϕ] =
1

8π

∫

Cg,n

d2z
( 1

2
(∂aϕ)2 + 8πµb2eϕ

)

+ [boundary terms] , (6.3)
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Figure 6. Triangulation of the once-punctured torus.

with choice of boundary terms as given in [44, 45], defines a natural symplectic form ω on

Tg,n,

ω = 2πi ∂∂̄Scl, (6.4)

where ∂, ∂̄ are the holomorphic and anti-holomorphic components of the de Rham differen-

tial on Tg,n respectively. The symplectic form ω coincides [44, 45] with the Weil-Petersson

symplectic form , which is natural from the point of view of Teichmüller theory, ω = ωWP.

The problem to quantize Liouville theory on a surface Σg,n is therefore equivalent to the

problem of quantizing Teichmüller space with Poisson-bracket given by the Weil-Petersson

symplectic structure.

6.1.2 Hyperbolic picture

Uniformization offers a complementary picture on the Teichmüller spaces: Instead of the

complex structure let us now focus on the associated hyperbolic metric as the relevant

geometric structure on Cg,n. Natural coordinates for the Teichmüller spaces can then

be defined in terms of the lengths of geodesics on the surface with hyperbolic metric.

These coordinates offer two big advantages concerning the intended quantization of the

Teichmüller spaces: They are real, so one may expect to find self-adjoint operators as their

quantum representatives, and the Poisson bracket associated to the symplectic form (6.4)

becomes very simple (linear) if the class of geodesics is suitably chosen.

A particularly useful set of coordinates was introduced by R. Penner in [46]. They can

be defined for Riemann surfaces that have at least one puncture. One may assume having

triangulated the surface by geodesics that start and end at the punctures. As an example

we have drawn in figure 6 a triangulation τ of the once-punctured torus. The length of

these geodesics will be infinite. In order to regularize this divergence one may introduce one

horocycle around each puncture and measure only the length of the segment of a geodesic

that lies between the horocycles. Assigning to an edge e its regularized length le gives

coordinates for the so-called decorated Teichmüller spaces. These are fiber spaces over

the Teichmüller spaces which have fibers that parameterize the choices of the “cut-offs” as

introduced by the horocycles.

A closely related set of coordinates for the Teichmüller spaces themselves was intro-

duced by Fock in [47]. The coordinate ze associated to an edge e of a triangulation can be

expressed in terms of the Penner-coordinates via ze = la + lc − lb − ld, where a, b, c and d

label the other edges of the triangles that have e in its boundary as indicated in figure 7.
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Figure 7. The labeling of the edges

Instead of triangulations of the Riemann surfaces it is often convenient to consider the

corresponding fat graphs, which are defined by putting a trivalent vertex into each triangle

and by connecting these vertices such that the edges of the triangulation are in one-to-one

correspondence to the edges of the fat-graph.

6.1.3 Symplectic structure in the hyperbolic picture

As already mentioned, the Teichmüller spaces carry a natural symplectic form, called

Weil-Petersson symplectic form. We are therefore dealing with a family of phase-spaces,

one for each topological type of the Riemann surfaces. One of the crucial virtues of the

Penner-coordinates is the fact that the Weil-Petersson symplectic form has a particularly

simple expression in these coordinates [48]. The corresponding Poisson-brackets are in fact

constant for Fock’s variables ze [47],

{ze, ze′} = ne,e′, where ne,e′ ∈ {−2,−1, 0, 1, 2}. (6.5)

The value of ne,e′ depends on how edges e and e′ are imbedded into a given fat graph. If

e and e′ don’t have a common vertex at their ends, or if one of e, e′ starts and ends at the

same vertex then ne,e′ = 0. In the case that e and e′ meet at two vertices one has ne,e′ = 2

(resp. ne,e′ = −2) if e′ is the first edge to the right30 (resp. left) of e at both vertices, and

ne,e′ = 0 otherwise. In all the remaining cases ne,e′ = 1 (resp. ne,e′ = −1) if e′ is the first

edge to the right (resp. left) of e at the common vertex.

If one considers a surface Σg,n with genus g and n boundary components one will

find n central elements in the Poisson-algebra defined by (6.5). These central elements

ca, a = 1, . . . , n are constructed as ca =
∑

e∈Ea
ze, where Ea is the set of edges in the

triangulation that emanate from the ath boundary component. The value of ca gives the

geodesic length of the ath boundary component [47].

6.1.4 Length functions

Having identified the phase space of Liouville theory on Cg,n with the Teichmüller space

Tg,n suggests to look for interesting observables. The lengths of closed geodesics, considered

as functions on Tg,n, are certainly interesting objects from the geometric point of view.

A nice feature of the Fock coordinates is that they lead to a particularly simple way to

reconstruct the length functions lγ(P ) corresponding to the point P in Teichmüller space

that is parametrized by the variables ze(P ). Assume given a path ̟γ on the fat graph

homotopic to a simple closed curve γ on Cg,n. Let the edges be labelled ei, i = 1, . . . , r

30The orientation is induced by the imbedding of the fat-graph into the surface.
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according to the order in which they appear on ̟γ , and define σi to be 1 if the path

turns left at the vertex that connects edges ei and ei+1, and to be equal to −1 otherwise.

Consider the following matrix,

Xγ = VσrE(zer) . . . Vσ1E(ze1), (6.6)

where the matrices E(z) and V are defined respectively by

E(z) =

(

0 +e+ z
2

−e−
z
2 0

)

, V =

(

1 1

−1 0

)

. (6.7)

One may then calculate the hyperbolic length of the closed geodesic isotopic to c via [47]

Lγ ≡ 2 cosh

(

1

2
lγ

)

= |tr(Xγ)|. (6.8)

6.2 Kähler quantization

A quick way to anticipate that the solution of the problem to quantize the Teichmüller

spaces is related to conformal field theory goes as follows, see [28] for a more detailed

discussion. Let us restrict to the case g = 0 with n conical singularities for notational sim-

plicity. Complex analytic coordinates for the moduli spaceM0,n of Riemann surfaces with

genus 0 and n punctures are given by the positions of the conical singularities z1, . . . , zn−3

if the remaining three are assumed to be located at 0, 1 and ∞, respectively

M0,n =
{

(z1, . . . , zn−3); zi 6= 0, 1 and zi 6= zj for i 6= j
}

(6.9)

The corresponding canonically conjugate momenta w.r.t. ω can be defined as

Ci = −∂zi
Scl . (6.10)

Indeed, since Scl is the Kähler potential for ω we have the following Poisson-brackets

{ zi, zj } = 0 = {Ci, Cj }, { zi, Cj } =
1

2πi
δij . (6.11)

An observation from [44, 49] which is important for us is the fact that the momenta Ci

parameterize the classical energy-momentum tensor Tϕ(z) ≡ −1
4(ϕz)

2 + 1
2ϕzz associated to

a solution ϕ of (6.2). Indeed, it can be shown (see e.g. [50]) that Tϕ(z) can be expanded as

Tϕ(z) =

n−1
∑

i=1

(

δi

(z − zi)2
+

Ci

z − zi

)

. (6.12)

The asymptotic behavior of Tϕ(z) near z =∞ may be represented as

Tϕ(z) =
δn

z2
+

Cn

z3
+ O(z−4) . (6.13)

The so-called accessory parameters Ci are highly nontrivial functions on the moduli space

M0,n which are restricted by the relations

n−1
∑

i=1

Ci = 0,

n−1
∑

i=1

(ziCi + δi) = δn,

n−1
∑

i=1

(z2
i Ci + 2δizi) = Cn. (6.14)
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In analogy to the coherent state representation of quantum mechanics it is then natural

to consider a quantization scheme in which states are represented by holomorphic multi-

valued wave-functions

Ψ(z) = 〈 z |Ψ 〉 , z = (z1, . . . , zn−3) , (6.15)

such that the operators zi corresponding to the classical observables zi are represented as

multiplication operators, ziΨ(z) = ziΨ(z). The state | z 〉 introduced in (6.15) is thereby

identified as an analog of a coherent state (eigenstate of the ”creation operators” zi) in

quantum mechanics.

The operators Ci associated to the momenta Ci conjugate to zi should be represented

by the differential operators b2∂zi
in such a representation. The energy-momentum tensor

Tϕ would then be represented by the operator b2T(z), where

T(z) =

n−1
∑

i=1

(

∆αi

(z − zi)2
+

1

z − zi

∂

∂zi

)

. (6.16)

We have introduced the quantum conformal dimensions ∆αi
which are related to the δi by

δi = b2∆i + O(b2). This makes the space of holomorphic wave-functions obtained in the

Kähler quantization of the Teichmüller spaces into a module over the ring of holomorphic

differential operators on T0,n.

This should be compared with the well-known statement that the Virasoro confor-

mal blocks can be represented by means of holomorphic functions on T0,n denoted by

〈T (x)Ψαn(zn) . . . Ψα1(z1)〉 which form a module over the ring of holomorphic differential

operators on T0,n as is expressed by the conformal Ward indentities

〈

T (x)Ψαn(zn) . . . Ψα1(z1)
〉

=

n−1
∑

i=1

(

∆αi

(x− zi)2
+

1

x− zi

∂

∂zi

)

〈

Ψαn(zn) . . . Ψα1(z1)
〉

.

(6.17)

Comparison of (6.16) and (6.17) suggests that wave-functions in the Kähler quantization

of T0,n can be identified with Virasoro conformal blocks. The precise correspondence will

be reviewed in subsection 6.5 below.

6.3 Quantization in a real polarization

It is very difficult to describe the quantization of the length operators directly in the Kähler

quantization above. The basic reason is that the relation between complex analytic coor-

dinates for Tg,n and the geodesic length functions involves uniformizing the surface Cg,n,

which generically is highly transcendental. It turns out to be possible, however, to bypass

this difficulty by first studying the quantum theory obtained by directly quantizing the Te-

ichmüller spaces using real coordinates, and then establishing the link of this quantization

scheme with the Kähler quantization.

6.3.1 Algebra of observables and Hilbert space

The simplicity of the Poisson brackets (6.5) makes part of the quantization quite simple.

To each edge e of a triangulation of a Riemann surface Cg,n associate a quantum operator
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ze. The algebra of observables A(Cg,n) will be the algebra with generators ze, relations

[ze, ze′ ] = 2πib2{ze, ze′}, (6.18)

and hermiticity assignment z
†
e = ze. The algebra A(Cg,n) has a center with generators ca,

a = 1, . . . , n defined by ca =
∑

e∈Ea
ze, where Ea is the set of edges in the triangulation

that emanates from the ath boundary component. The representations of A(Cg,n) that we

are going to consider will therefore be such that the generators ca are represented as the

operators of multiplication by real positive numbers la. Geometrically one may interpret

la as the geodesic length of the ath boundary component [47]. The vector l = (l1, . . . , ln) of

lengths of the boundary components will figure as a label of the representation π(Cg,n,Λ)

of the algebra A(Cg,n).

To complete the definition of the representation π(Cg,n,Λ) by operators on a Hilbert

spaceH(Cg,n) one just needs to find linear combinations x1, . . . , x3g−3+n and p1, . . . , p3g−3+n

of the ze that satisfy [pi, xj ] = (2πi)−1δij . The representation of A(Cg,n,Λ) on H(Cg,n) :=

L2(R3g−3+n) is defined by choosing the usual Schrödinger representation for the xi, pi.

It is very important to make sure that the resulting quantum theory does not depend on

the underlying triangulation in an essential way. This can be done by constructing a family

of unitary operators Uτ2,τ1 that describe the change of representation when passing from

the quantum theory associated to triangulation τ1 to the one associated to τ2 [29, 51–53].

6.4 Geodesic length operators

Length operators were first studied in the pioneering works [51, 54]. On first sight the

problem looks rather simple. We may observe that the classical expression for Lγ ≡
2 cosh 1

2 lγ as given by formula 6.8 is a linear combination of monomials in the variables

e±
ze
2 of a very particular form,

Lγ =
∑

ν∈F

Cτ,γ(ν) e(ν,z) , (ν, z) =
∑

e

νeze (6.19)

where the summation is taken over a finite set F of vectors ν ∈ (1
2Z)3g−3+2n with half-

integer components νe. The coefficients Cτ,γ(ν) are positive integers. In the quantum case

one is interested in the definition of length operators Lτ,γ which should be representable

by expressions of the form,

Lτ,γ =
∑

ν∈F

Cτ,γ(ν) :e(ν,z) :b =
∑

ν∈F

Cb
τ,γ(ν) e(ν,z) , (ν, z) =

∑

e

νeze , (6.20)

where the notation : O :b indicates use of a quantum ordering prescription. In the second

expression we have moved the effect of the ordering into a quantum deformation Cb
τ,γ(ν)

of the coefficients Cτ,γ(ν).

Note, on the other hand, that the following additional properties seem to be indis-

pensable if one wants to interpret an operator of the general form (6.20) as the quantum

counterpart of the functions Lτ,γ = 2cosh 1
2 lγ :
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(a) Spectrum: Lτ,γ is simple and takes values in [2,∞). This is necessary and sufficient

for the existence of an operator lτ,γ - the geodesic length operator - such that Lτ,γ =

2cosh 1
2 lγ .

(b) Independence of triangulation:

U−1
τ2τ1 · Lτ1,γ · U−1

τ2τ1 = Lτ2,γ ,

where Uτ2τ1 is the unitary operator relating the representation associated to triangu-

lation τ1 to the one associated to τ2.

Property (b) ensures that the collection of length operators Lτ,γ associated to the different

triangulations τ ultimately defines an operator Lγ that is independent of the triangulation.

It was observed in [51, 54] that the deformation of the coefficients Cb
τ,γ(ν) which is necessary

for having the properties (a) and (b) can be quite nontrivial in general, in the sense that

it can not be obtained from a simple ordering prescription.

A general construction of length operators which fulfils the requirements above was

given in [29]. This construction coincides with the one in [51, 54] whenever both can be

applied.

6.4.1 The length representation

It can be shown that the length operators associated to non-intersecting simple closed

curves commute with each other. This together with the self-adjointness of the length

operators allows one to introduce bases of eigenfunctions for the length operators.

One gets one such basis for each pants decomposition of Cg,n. A key result for the

connection between quantum Liouville and quantum Teichmüller theory is that for each

marking σ there exists a basis for Hg,n spanned by | l 〉σ, l = (l1, . . . , l3g−3+n) which obeys

the factorization rules of conformal field theory [29]. This means in particular that for

any pair σ2, σ1 of markings one can always decompose the unitary transformation Vσ2σ1

which relates the representation corresponding to marking σ1 to the one corresponding to

σ2 as a product of operators which represent the elementary fusion, braiding and S-moves

introduced in section 5.1. The unitary transformation Vσ2σ1 can be represented as an

integral operator of the form

| l2 〉σ2 =

∫

dµ(l1) Vσ2σ1(l2, l1)| l1 〉σ1 . (6.21)

The explicit expressions for the kernel Vσ2σ1(l2, l1) are known for the cases where σ2 and

σ1 differ by one of the elementary moves.

6.5 Relation between length representation and Kähler quantization

When discussing the more general case of g ≥ 0 in the following we will use the gluing

parameters qi as generalizations of the holomorphic coordinates zi used in 6.2. The co-

herent states |q〉 are the eigenstates of the operators qi corresponding to the holomorphic

coordinates qi, and the wave-functions are holomorphic functions31 Ψ(q) = 〈Ψ|q〉 on Tg,n.

31More precisely sections of a projective line bundle on Tg,n.
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The change of representation from length representation to the holomorphic represen-

tation is described by means of the matrix elements

Ψσ
l (q) = 〈 l | q 〉σ . (6.22)

The following characterization of these matrix elements was obtained in [28]:

Ψσ
l (q) = G(σ)

α,E(q) , (6.23)

where G(σ)
α,E(q) is the Liouville conformal block32 (2.5) associated to a marking σ with

external representations labeled by E = (m1, . . . ,mn) and fixed intermediate dimensions

given by the parameters α = (α1, . . . , α3g−3+n). These parameters are related to the lengths

ca of the boundary components and to the lengths li around the curves defining the pants

decomposition respectively as

ma =
Q

2
+ i

ca

4πb
, αi =

Q

2
+ i

li
4πb

=
Q

2
+ ai , (6.24)

where a = 1, . . . , n and i = 1, . . . , 3g−3+n. The main nontrivial result underlying (6.23) is

the fact that both sides transform in the same way under a change of marking σ. Comparing

also the asymptotic behavior at the boundaries of Tg,n then allows one to conclude that

the holomorphic functions Ψσ
l (q) and G(σ)

α,E(q) must coincide [28].

Let us then consider the resolution of the identity, the so-called Bergman kernel, de-

fined as

B(q̄, q′) =

∫

dµ(l) 〈 q | l 〉σ σ〈 l | q′ 〉 =
∫

dµ(l) (Ψσ
l (q))∗ Ψσ

l (q′) . (6.25)

Comparing with (2.6) we see that the correlation functions of Liouville theory on a Riemann

surface Cg,n can be represented as

〈

n
∏

a=1

Vma

〉

Cg,n

= B(q̄, q) . (6.26)

The relation (6.23) can be generalized to a direct relation between the geodesic length

operators Lγ from quantum Teichmüller theory and the Liouville loop operators L(γ),

(LγΨσ
l )(q) = κ(L(γ)G(σ)

α,E)(q) , κ = 2cos πbQ . (6.27)

This relation is easily verified by considering the case where γ is one of the curves defin-

ing the pants decomposition associated to σ, say γi. Both the operators Lγi
and κL(γi)

are then diagonal in this basis and are represented by multiplication with 2 cosh(li/2) and

2 cosh πb(2αi−Q) respectively (5.15), which are indeed equal (6.24). The validity of (6.27)

in general then follows from the fact that both sides transform the same way under changes

of the marking.

32We indicate here that the dependence on the complex structure q which is suppressed in the rest of

the text.
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We finally arrive at the following interpretation of the loop operator expectation values

within quantum Teichmüller theory.

κ 〈L(γ) 〉Cg,n = 〈 q |Lγ | q 〉 . (6.28)

This means that the expectation value of the Liouville loop operator has the geometric in-

terpretation as the expectation value of the geodesic length operator Lγ in the coherent state

|q〉 which corresponds to a fixed complex structure parameterized by q. It therefore solves

the natural quantum counterpart of the classical problem to calculate the geodesic length of

γ in the metric associated by uniformization to the complex structure parameterized by q.

7 Algebra of loop operators in Liouville-Teichmüller theory

Given a set of operators, it is very natural to study the algebra formed by them. For loop

operators in gauge theory, this problem goes back to ’t Hooft’s original paper [55] where

magnetic loop operators were first introduced. There it was found that Wilson and ’t Hooft

loops in a spatial slice at constant time, acting on the Hilbert space of gauge theory, give rise

to interesting commutation relations. The relations, which will be referred as the ’t Hooft

commutation relations, encode information about the electric and magnetic charges of the

loop operators as well as how the loops are linked in the spatial slice. Another interesting

algebraic property to consider is the operator product expansion (OPE) of loop operators.

The OPE captures the decomposition of the product of two loop operators defined on two

curves in spacetime into a basis of loop operators in gauge theory in the limit where two

operators are brought together.

In previous sections we have explicitly computed the action of Liouville loop operators

supported on curves on the Riemann surface on the conformal blocks. The action involves

multiplication by functions of αi, ma as well as shifts of αi, where αi and ma label the

internal and external edges of the trivalent graph characterizing the conformal block. Such

multiplication and shifts can be thought of as operators acting on the space of conformal

blocks, and form an algebra that can be computed explicitly in examples. The description

of this algebra in terms of quantum Teichmüller theory is equivalent to that in Liouville

theory, as discussed in section 6.

In this section we study the algebra of loop operators in Liouville theory and provide

a physical interpretation of the algebra in gauge theory. First we explain the fundamental

relation satisfied by the Liouville loop operators. The relation, known as the quantum

skein relation, completely determines the algebra of loop operators.

We then show that the commutation relations that follow from the quantum skein

relation at b = 1 are precisely the ones found by ’t Hooft for the gauge theory loop

operators that are Hopf-linked in a three-dimensional constant time slice.

Furthermore, the quantum skein relations can also be viewed as a prediction for the

OPE of loop operators in gauge theory. We compare this to the OPE of loop operators in

the gauge theory deduced from S-duality, by generalizing an argument given for a special

case in [56]. We point out that the Liouville loop operators that appear in the product of
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= e−πib2/2 + eπib2/2

Figure 8. A graphical expression of the quantum skein relation among the length operators.

two loop operators agree, but that the numerical prefactors do not, and propose that the dif-

ference has to do with whether the loops are Hopf-linked or not. We illustrate these general

results, by considering the concrete expressions derived earlier for the Liouville loop opera-

tors in N = 2∗ super Yang-Mills theory and the N = 2 SU(2) gauge theory with NF = 4 .

7.1 Quantum skein relation

It is known from quantum Teichmüller theory [51, 54] that the geodesic length operators

form a closed algebra with basic relation being the so-called quantum skein relation, see [57]

for a nice review of the necessary results and references. As explained in section 6.5, the

Liouville loop operator L(γ) corresponding to a geodesic γ is exactly the geodesic length

operator Lγ , up to rescaling by the constant κ = 2cos(πbQ), when we identify the Hilbert

space of quantum Teichmüller theory with the space of Liouville conformal blocks. It

follows that the Liouville loop operators satisfy the quantum skein relation.

To explain the relation, let us first consider a pair of connected closed non-self-

intersecting curves γ and γ′ on the Riemann surface Cg,n that intersect at one point. There

are two distinct ways to remove the intersection and reconnect the two curves as shown in

figure 8, where the line on top in the left hand side is identified with γ. Let us denote by

γ ⋆γ′ and γ ◦γ′ the two resulting curves corresponding to the first and second terms in the

right hand side of figure 8, respectively. Then the four length operators Lγ ,Lγ′ ,Lγ⋆γ′ and

Lγ◦γ′ satisfy the quantum skein relation

Lγ · Lγ′ = e−πib2/2Lγ⋆γ′ + eπib2/2Lγ◦γ′ . (7.1)

It is also possible to derive the relation for the Liouville loop operators directly using the

moves described in previous sections.33 When γ and γ′ have more than one intersection,

33The composition of operators L(γ)·L(γ′) can be realized as an operation that splits the identity into two

degenerate fields V1,2(z1) and V1,2(z2) at the intersection, moves V1,2(z1) around along γ, fuses them back

to the identity, splits it again, moves V1,2(z1) around along γ′, and finally fuses them back to the identity.

The operator L(γ ⋆γ′) on the other hand is an operation that splits the identity into V1,2(z1) and V1,2(z2)

at the intersection, moves V1,2(z1) around along γ back to the intersection point, moves V1,2(z1) around

along γ′, and finally fuses them back to the identity. Here we have assigned orientations to γ and γ′ such

that they consistently define an orientation of γ ⋆ γ′.

Similarly the operator Lγ◦γ′ can be represented as an operation that splits the identity into V1,2(z1) and

V1,2(z2) at the intersection, moves V1,2(z1) around along γ back to the intersection point, moves V1,2(z2)

around along γ′, and finally fuses them back to the identity. Note that it is z2, not z1, that is moved

around along γ′.

Writing out the fusion matrices corresponding to these moves, one can derive the quantum skein relation.
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γ

γ′

= +e−πib2

+eπib2 +

Figure 9. The quantum skein relation for two curves γ and γ′ that intersect at two points. LγLγ′

on the left hand side is expanded in length operators for non-intersecting curves. Note that the

ordering of γ and γ′ matters in this relation.

one should apply the skein relation locally for all the intersections at the same time as in

figure 9. A contractable curve is assigned the value −e−πib2 − eπib2 = 2cos(πbQ). See [58]

for more examples.

Let us note that there is a natural basis of length/loop operators in which we can apply

the quantum skein relation. The operators in this basis are in one-to-one correspondence

with the homotopy classes of non-self-intersecting closed curves on the Riemann surface

Cg,n labeled by Dehn-Thurston parameters. Let γ be such a curve. Then γ in general has

more than one connected components. We denote by KI the number of components whose

homotopy class is that of a curve γ(I). Then the operator that corresponds to γ is given by

Lγ ≡
∏

I

L
KI

γ(I) . (7.2)

Now let γ and γ′ be not-necessarily-connected simple closed curves. The components of γ

generically intersect those of γ′ at several points. By repeatedly using the quantum skein

relation above, one can express the product of any operators of the form (7.2) as a sum of

operators of the same form.

7.2 Comparison with gauge theory

7.2.1 The commutation relations

It follows that when b = 1, we have

Lγ · Lγ′ = (−1)#(γ∩γ′)Lγ′ · Lγ , (7.3)

where #(γ ∩ γ′) is the number of intersections between γ and γ′.

We wish to provide a gauge theory interpretation for the commutation relations (7.3)

satisfied by the length operators. As we now explain, this is precisely the commutation

relation satisfied by loop operators that are linked in a constant time slice, as originally

studied by ’t Hooft [55].
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Let us briefly review the commutation relations found by ’t Hooft. It suffices for us to

consider a single gauge group SU(2). Let L0,1 be the pure Wilson loop along curve 1 and

L1,0 the pure ’t Hooft loops along curve 2. The two curves 1 and 2 are taken to be lie in

the three-dimensional space and we assume that they are Hopf-linked.34 We are interested

in the canonical quantization of SU(2) gauge theory with matter that is neutral under the

center Z2 of the gauge group. The product

L0,1L1,0 (7.4)

corresponds to inserting the Wilson loop L0,1 at time ǫ > 0 and the ’t Hooft loop L1,0 at

time zero. Likewise,

L1,0L0,1 (7.5)

corresponds to inserting the Wilson loop L0,1 at time −ǫ < 0 and the ’t Hooft loop L1,0

at time zero. The ’t Hooft loop L1,0 is defined by a background field configuration that

is singular along the curve 2 at time zero. The singular configuration is such that at any

time t > 0, there is a non-trivial background holonomy along a spatial curve that links the

curve 2.35 Thus the Wilson loop L0,1 inserted at time ǫ > 0 picks up the holonomy −1

relative to the Wilson loop inserted at time −ǫ < 0, implying the commutation relation

L0,1L1,0 = −L1,0L0,1 (7.6)

for the loop operators acting on the Hilbert space of gauge theory.

The argument generalizes to more than one SU(2) factor in the gauge group and higher

charges. Let γ and γ′ be connected simple closed geodesics with Dehn-Thurston parameters

d and d′, respectively. We can choose a pants decomposition where γ is a boundary of a

pair of pants. In other words, the gauge theory loop operator Ld is a pure Wilson loop in,

say the first SU(2) gauge group. In this case we have the commutation relation

LdLd′ = (−1)p
′
1Ld′Ld, (7.7)

where p′1 is the magnetic charge of Ld′ in the first gauge group. Clearly p′1 is the intersection

number of γ and γ′.

Thus we can write the commutation relation in a frame-independent form as

LdLd′ = (−1)#(γ∩γ′)Ld′Ld. (7.8)

We see that the loop operators in gauge theory, supported on spacetime loops that are

Hopf-linked obey precisely the same commutation relations — the ’t Hooft commutation

relations – as those for the corresponding geodesic length/Liouville loop operators at b = 1.

This observation will lead to a conjecture and a definite prediction, which we will formulate

in section 8.
34’t Hooft’s analysis is applicable in any gauge theory, also without supersymmetry. To relate it to

Liouville theory we need Hopf-linked loops in N = 2 gauge theory which share some supersymmetry.

Luckily this is the case for a pair of non-intersecting loops on S3, as was shown for N = 4 SYM in [59, 60].

The same argument carries over to our case.
35In Euclidean spacetime, the spatial ’t Hooft loop is obtained by inserting a magnetic monopole along

the loop. We can let the family of Dirac strings extend in the positive time direction. Thus at any positive

time, the Dirac string singularity is along the spatial loop, and going around it produces a phase (sign).
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7.2.2 The operator product expansion

As remarked at the end of section 7.1, there is a natural basis of geodesic length/Liouville

loop operators labeled by not-necessarily-connected closed geodesics. In this basis, the

quantum skein relation allows one to decompose the product of operators into the sum of

operators. The correspondence of gauge theory and Liouville loop operators proposed in

section 4 then leads us to view the quantum skein relation as providing a rule for how to

perform the corresponding decomposition, namely the operator product expansion (OPE)

of loop operators in gauge theory.

We observed above that the commutation relations at b = 1 that follow from the

quantum skein relation are precisely those for gauge theory loop operators on Hopf-linked

spacetime loops. At this value of b, the quantum skein relation further requires that the

gauge theory loop operators satisfy the OPE

2Ld Ld′ = −iLd⋆d′ + iLd◦d′ , (7.9)

where we have denoted by d, d′, d ⋆ d′ and d ◦ d′ the sets of Dehn-Thurston parameters of

the curves γ, γ′, γ ⋆ γ′ and γ ◦ γ′, respectively. The OPE (7.9) then is a prediction for the

gauge theory loop operators, to be discussed fully in section 8.

In fact we can compute the OPE of loop operators in the setup where the loops are

not linked, by generalizing an argument used in [56] for N = 4 super Yang-Mills. Since

the loops are not linked, the results do not necessarily have to agree with the Liouville

loop operators. Interestingly, as we show below, the OPE of the non-linked loop operators

exactly matches the classical skein relations, namely the relation (7.1) at b = 0.

In our N = 2 gauge theories, S-duality provides a specific identification of the algebra

of loop operators with the group algebra of

(Λm × Λw)/W, (7.10)

where Λw ≃ Z
3g−3+n is the weight lattice and W ≃ (Z2)

3g−3+n is the Weyl group, both

associated with the gauge group G = SU(2)3g−3+n. We have also defined the lattice

Λm of magnetic charges (p1, . . . , p3g−3+n) ∈ Z
3g−3+n subject to the Dirac quantization

condition (2.12), so that (7.10) is the space of allowed Dehn-Thurston parameters d =

(pi, qi).
36 Let us represent the group algebra of Λm by polynomials of Xi,X

−1
i , and the

group algebra of Λw by polynomials of Yi, Y
−1
i where i = 1, . . . , 3g − 3 + n. There is an

obvious action of the Weyl group that in particular exchanges Xi with X−1
i and Yi with

Y −1
i . The variable Yi carrying the electric charge is interpreted as the Abelian Wilson

loop with unit charge for the ith SU(2) group, in the Coulomb branch of the gauge theory

where the SU(2) is broken to a U(1) subgroup. Since the Wilson loop Ldi
with the Dehn-

Thurston parameters all vanishing except for qi = 1 is in the fundamental representation

of the ith SU(2) gauge group, which has two weights of opposite signs, we associate to Ldi

the polynomial (Yi + Y −1
i )/2:

Ldi
7→ (Yi + Y −1

i )/2. (7.11)

36The Weyl group action replaces the conditions that pj ≥ 0, and that if pj = 0 then qj ≥ 0.
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The factor of 1/2 reflects the normalization of Ldi
in (5.17). For ’t Hooft loops, a similar

interpretation is more subtle and involves “monopole bubbling” [22]. As explained in [56],

however, S-duality allows us to determine the polynomials corresponding to an arbitrary

non-linked loop operator Ld associated to a connected simple closed geodesic, and hence

in fact a general closed non-self-intersecting geodesic which always consists of connected

components. This is because as in the case of N = 4 super Yang-Mills with SU(2) gauge

group considered in [22], in the theories Tg,n any loop operator can be transformed to a pure

Wilson loop by a duality transformation, which acts on the Dehn-Thurston parameters [25].

Thus to an arbitrary loop operator corresponding to a connected simple closed geodesic γd

with d = (pi, qi), we associate a polynomial as

Ld 7→
1

2

(

∏

i

Y pi

i Xqi

i +
∏

i

Y −pi

i X−qi

i

)

. (7.12)

Given this identification of loop operators and the group algebra, the OPE of non-linked

loop operators is simply given by the multiplication rules of the group algebra.

Let us now demonstrate that the algebra of non-linked gauge theory loop operators is

precisely that of the geodesic length/Liouville loop operators. This is done by considering

two connected simple closed geodesics γ and γ′ that share a single intersection point. As

before we choose a pants decomposition such that γ is the closed geodesic corresponding

to the first gauge SU(2) group. Let d = (0, δi1) and d′ = (p′i, q
′
i) be the vectors of Dehn-

Thurston parameters for γ and γ′, respectively. Then the OPE of the gauge theory loop

operators Ld and Ld′ is given by decomposing the product of the associated polynomials:

(

Y1 + Y −1
1

)

(

∏

i

Xpi

i Y qi

i +
∏

i

X−pi

i Y −qi

i

)

(7.13)

=

(

∏

i

Xpi

i Y qi+δi1
i +

∏

i

X−pi

i Y −qi−δi1
i

)

+

(

∏

i

Xpi

i Y qi−δi1
i +

∏

i

X−pi

i Y −qi+δi1
i

)

.

Thus we get loop operators associated with new Dehn-Thurston parameters (pi, qi + δi1)

and (pi, qi − δi1). These are precisely the Dehn-Thurston parameters for γ ⋆ γ′ and γ ◦ γ′.

Thus the OPE of the loop operators in this case is given by

2LdLd′ = Ld⋆d′ + Ld◦d. (7.14)

This is exactly what follows from the classical skein relation, the skein relation for b = 0.

We note that the operators which appear on the right hand side of (7.9), which is valid

at b = 1, are exactly the same as those appearing in the above equation at b = 0, with mod-

ified coefficients. The fact that the same operators appear in the gauge theory calculation

above supports our identification of loop operators in Liouville and the gauge theory and

the conjectured form of the quantum OPE relations (7.9). It also lends some hope that the

relation (7.9) at b = 1 could be shown to hold for linked loop operators in the gauge theory.
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7.3 Examples

7.3.1 N = 2∗ theory

Let us study the algebra of loop operators in the N = 2∗ SU(2) gauge theory. The

Liouville theory realization was computed for Wilson loops in section 5.2, and for the

minimal ’t Hooft loop as well as some dyonic loops in section 5.3. We have the following

Liouville loop operators expressed as multiplication and difference operators:

L(γ0,1) =
cos(2πba)

cos(πbQ)
, (7.15)

L(γ1,q) = e−
q

2
πib2 sin(πb2)

sin(2πb2)

(

e2πiqba sin(2πb(a−m/2))

sin(2πba)
e−

b
2
∂a

+ e−2πiqba sin(2πb(a + m/2))

sin(2πba)
e

b
2
∂a

)

. (7.16)

One can check that the quantum skein relation (7.1) is satisfied.37 At b = 1, the Liouville

loop operators in (7.15) and (7.16) precisely satisfy the ’t Hooft commutation relation

L(γ1,q)L(γ0,1) = −L(γ0,1)L(γ1,q). (7.17)

7.3.2 N = 2 SU(2)C with NF = 4

Next, we consider N = 2 SU(2) super Yang-Mills with four hypermultiplets in the fun-

damental representation. The Wilson loops L(γ0,1) have the same expressions as for

N = 2∗ (7.15). The minimal ’t Hooft loop L(γ2,0) (recall that the magnetic charge p

has to be even by Dirac quantization) computed in (5.31) is given by

L(γ2,0) = T2e
−b∂α + T0 + T−2e

b∂α (7.18)

with T2, T0, T−2 given below (5.31). It is easy to check that the expected ’t Hooft commu-

tation is satisfied when b = 1.

8 Conclusions and discussion

In this paper we have extended the correspondence [13] between the N = 2 theories Tg,n

constructed by Gaiotto and Liouville theory on Cg,n to include physical observables in

the two theories. We have advanced a precise correspondence between gauge theory loop

operators — for Wilson, ’t Hooft and dyonic operators — and operators in the Liouville con-

formal field theory.38 We have found a one-to-one correspondence between loop operators

in Liouville theory, which we have explicitly constructed, and gauge theory loop operators

loop operator in Tg,n ⇐⇒ Liouville loop operator in Cg,n.

37As discussed in section 3, we have chosen the precise phases of the Liouville loop operators so that they

match those of the length operators.
38This is based on the one-to-one map found in [25] between the electric and magnetic charges of gauge

theory loop operators and non-self-intersecting geodesics on the Riemann surface.
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Our construction of Liouville loop operators, which are supported on geodesics in Cg,n, is

modular invariant, and provides a natural basis for non-local observables in the Liouville

conformal field theory. Using the relation between Liouville conformal field theory and

quantum Teichmüller theory, we have also found a mapping between loop operators in

gauge theory and geodesic length operators in quantum Teichmüller theory.

We have shown that our computation of Liouville loop operators exactly reproduces

the expectation value of Wilson loop operators in the Tg,n theories in [10]. The modular

invariant construction of the Liouville loop operators provides us with a framework in

which to calculate the expectation value of any dyonic operators by choosing a different

pants decomposition of Cg,n, which maps the Wilson operator to a dyonic operator in

the corresponding duality frame of Tg,n. Our proposal, together with modular duality in

Liouville theory [14–16] yields the expected action of the S-duality group Γ(Tg,n) on the

loop operators in the Tg,n theory.

For specific examples of Tg,n, we have explicitly computed the expectation value of

’t Hooft and dyonic operators. We have considered N = 2∗ and N = 2 SU(2) gauge theory

with NF = 4. Since no calculations of ’t Hooft operators have been performed beyond the

ones for N = 4 super Yang-Mills in [23, 24], our computations constitute predictions that

would be interesting to confirm by a direct gauge theory analysis. A general algorithm for

calculating ’t Hooft and dyonic operators in an arbitrary Tg,n theory has also been proposed,

whereby the computation can be broken into a sequence of operations that depends on the

details of the theory and on the choice of loop operator.

We have also advanced a four dimensional field theory interpretation of the algebra

of Liouville loop operators and geodesic length operators in quantum Teichmüller theory,

which satisfy the quantum skein relation. The ’t Hooft commutation relations of gauge

theory loop operators [55], which describe the relations satisfied by loop operators that are

Hopf-linked at a constant time slice in the four dimensional theory, have been identified with

those that follow from the quantum skein relation of geodesic length operators at b = 1.

’t Hooft commutation relations of

linked loop operators in Tg,n
⇐⇒ commutation relations from the

quantum skein relation at b = 1.

Furthermore, we have shown that the OPE of non-linked gauge theory loop operators,

predicted by the proposed action of S-duality [25], precisely matches the classical skein

relation of geodesic length operators (at b = 0).

OPE of commuting loop operators in Tg,n ⇐⇒ classical skein relation.

We conjecture that gauge theory operators corresponding to the Liouville loop operators

at b = 1 are Hopf-linked with each other on the equatorial S3 in S4. Furthermore, we

conjecture that the OPE coefficients of loop operators that correspond to Liouville loop

operators at b = 1 are given by the quantum skein relations at b = 1.

An important open problem for the future is to extend Pestun’s localization calcula-

tion [10] for the Wilson loops of N = 2 gauge theories to general dyonic loop operators.

Our Liouville calculation of the expectation value of loop operators provides some hints.

As we have shown, the expression for the ’t Hooft operators is quite similar to that for
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Wilson loops. For ’t Hooft loops, there are extra terms in the matrix integral with shifted

arguments which one may speculate correspond to the contribution of the various weights

characterizing the magnetic charges of the loop operator. This interpretation is consistent

with the calculation of ’t Hooft operators in N = 4 super Yang-Mills [23, 24], where it was

found that there are multiple saddle point in the path integral. The physical interpretation

of the extra saddle points has to do with monopole screening, whereby the singularity pro-

duced by the insertion of an ’t Hooft operator is screened by regular monopoles, resulting

in saddle points with weaker singularities and which is in one-to-one correspondence with

the weights labeling the representation of the ’t Hooft loop. Another important open prob-

lem is to provide a gauge theory interpretation of the prefactors multiplying the conformal

blocks, which should correspond to the one loop determinant of fluctuations around the

localization calculation for the ’t Hooft loop.

It is of importance to attain a deeper understanding of the physical and mathematical

foundations that underlie the gauge/Liouville correspondence. A possible point of contact

is the parallel that exists between their Hilbert spaces and their inner products. The ex-

pression (1.3) for the Wilson loop expectation value that follows from localization in gauge

theory on S4 has a natural interpretation as the expectation value of the loop operator

evaluated for the wave function defined by the Nekrasov instanton partition function. Let θ

be the latitude on S4. The instantons that contribute to the holomorphic part are localized

at the North Pole θ = 0, and the anti-instantons at the South Pole θ = π. The Wilson

loop is located at an arbitrary latitude on the S4, which without loss of generality can be

taken to be in the “equator” S3 at θ = π/2. Thus it is natural to interpret the holomorphic

(anti-holomorphic) Nekrasov partition function as the wave function of a state, obtained

by performing the gauge path-integral on the Northern (Southern) Hemisphere, in the BPS

Hilbert space of the gauge theory canonically quantized on S3.

It is then very suggestive to compare the resulting picture for the gauge theory loop

expecation value with the form the expectation value takes in quantum Teichmüller theory,

equation (6.28). It seems natural to propose identifying the Hilbert space of quantum Te-

ichmüller theory with the BPS Hilbert space HBPS and the coherent state |q〉 with the state

in HBPS created by performing the gauge theory path-integral over the lower hemisphere.

The geodesic length operators would thereby directly be related to the projection of the

gauge theory loop operators onto the BPS Hilbert space.

Extensions of our results to higher rank gauge groups would also be worth pursuing.

On the Riemann surface they involve conformal field theories with W-symmetry [13, 61].

Increasing the rank of the gauge groups also admits an interesting generalization of quan-

tum Teichmüller theory [62], which quantizes the moduli space of SL(N) flat connections

for N > 2 [63]. The corresponding gauge theories constructed out of the Riemann surface

contain building blocks with no weakly coupled Lagrangian description [8]. Understanding

the loop operators in the two dimensional conformal field theory as well as the gener-

alization of the length operators in the quantization of the moduli space of SL(N) flat

connections is bound to shed light in this interesting class of gauge theories.

Clearly it is of great interest to obtain a more direct interpretation of the correspon-

dence between gauge theory and Liouville theory. Finding a more first principles interpre-
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tation may also provide hints of how to extend the two dimensional interpretation of four

dimensionalN = 2 gauge theories away from the choice of localization parameters satisfying

ǫ1/ǫ2 = 1 relevant for the correspondence in Liouville. Progress in realizing the Nekrasov

instanton partition function [11, 12] for arbitrary ǫ1 and ǫ2 have been made in topologi-

cal string theory, where amplitudes sewn from a “refined” topological vertex [64, 65] were

shown to reproduce Nekrasov’s partition function. It would be interesting to incorporate

the insights developed in that context to extend these exciting correspondences.
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A Special functions

A.1 The function Γb(x)

The function Γb(x) is a close relative of the double Gamma function studied in [66, 67]. It

can be defined by means of the integral representation

log Γb(x) =

∞
∫

0

dt

t

(

e−xt − e−Qt/2

(1− e−bt)(1 − e−t/b)
− (Q− 2x)2

8et
− Q− 2x

t

)

. (A.1)

Important properties of Γb(x) are

(i) Functional equation: Γb(x + b) =
√

2πbbx− 1
2 Γ−1(bx)Γb(x). (A.2)

(ii) Analyticity: Γb(x) is meromorphic,

poles: x = −nb−mb−1, n,m ∈ Z
≥0. (A.3)

(iii) Self-duality: Γb(x) = Γ1/b(x). (A.4)

A.2 The function Sb(x)

The function Sb(x) may be defined in terms of Γb(x) as follows

Sb(x) = Γb(x) /Γb

(

Q− x) . (A.5)

An integral that represents log Sb(x) is

log Sb(x) =

∞
∫

0

dt

t

(

sinh t(Q− 2x)

2 sinh bt sinh b−1t
− Q− 2x

2t

)

. (A.6)
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The most important properties for our purposes are

(i) Functional equation: Sb(x + b) = 2 sin πbx Sb(x). (A.7)

(ii) Analyticity: Sb(x) is meromorphic,

poles: x = −(nb + mb−1), n,m ∈ Z
≥0. (A.8)

zeros: x = Q + (nb + mb−1), n,m ∈ Z
≥0.

(iii) Self-duality: Sb(x) = S1/b(x). (A.9)

(iv) Inversion relation: Sb(x)Sb(Q− x) = 1. (A.10)

(v) Asymptotics: Sb(x) ∼ e∓
πi
2

x(x−Q) for Im(x)→ ±∞ (A.11)

(vi) Residue: resx=cb
Sb(x) = (2π)−1. (A.12)

A.3 Υ function

The Υ may be defined in terms of Γb as follows

Υ(x)−1 ≡ Γb(x)Γb(Q− x) . (A.13)

An integral representation convergent in the strip 0 < Re(x) < Q is

logΥ(x) =

∫ ∞

0

dt

t

[

(

Q

2
− x

)2

e−t − sinh2(Q
2 − x) t

2

sinh bt
2 sinh t

2b

]

. (A.14)

Properties:

(i) Functional equation: Υ(x + b) =
Γb(bx)

Γb(1− bx)
b1−2bx Υ(x). (A.15)

(ii) Analyticity: Υ(x) is entire analytic,

zeros: x = −(nb + mb−1), n,m ∈ Z
≥0. (A.16)

x = Q + (nb + mb−1), n,m ∈ Z
≥0.

(iii) Self-duality: Υ(x) = Υ1/b(x). (A.17)

B Fusion matrices

In the following we will use the fusion coefficients involving some degenerate fields with

α = −b/2. We define

Fs,s′

[

α3 − b
2

α4 α1

]

≡ F
α1−

sb
2

,α3−
s′b
2

[

α3 − b
2

α4 α1

]

, (B.1)

where s, s′ = ±.

F++ =
Γ(b(2α1 − b))Γ(b(b− 2α3) + 1)

Γ(b(α1 − α3 − α4 + b/2) + 1)Γ(b(α1 − α3 + α4 − b/2))

F+− =
Γ(b(2α1 − b))Γ(b(2α3 − b)− 1)

Γ(b(α1 + α3 + α4 − 3b/2) − 1)Γ(b(α1 + α3 − α4 − b/2))

F−+ =
Γ(2− b(2α1 − b))Γ(b(b− 2α3) + 1)

Γ(2− b(α1 + α3 + α4 − 3b/2))Γ(1 − b(α1 + α3 − α4 − b/2))

F−− =
Γ(2− b(2α1 − b))Γ(b(2α3 − b)− 1)

Γ(b(−α1 + α3 + α4 − b/2))Γ(b(−α1 + α3 − α4 + b/2) + 1)

(B.2)
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Equivalently for the renormalized fusion coefficients we define

Gs,s′

[

α3 − b
2

α4 α1

]

≡ G
α1−

sb
2

,α3−
s′b
2

[

α3 − b
2

α4 α1

]

, (B.3)

These are very simple [42]

G++ =
sin
(

πb(α4 + α3 − α1 − b
2)
)

sin (πb(2α3 − b))

G−+ =
sin
(

πb(α3 + α1 − α4 − b
2)
)

sin (πb(2α3 − b))

G+− =
sin
(

πb(α4 + α3 + α1 − 3b
2 )
)

sin (πb(2α3 − b))

G−− =
sin
(

πb(α3 − α1 − α4 + b
2)
)

sin (πb(2α3 − b))

(B.4)

which can also be written as

Gs1,−s2 = s1
sin
(

πb(α4 + s1α3 + s2α1 − (1 + s1 + s2)
b
2)
)

sin (πb(2α3 − b))
. (B.5)

Even more special cases involve a pair of degenerate fields. Creating them out of the

identity is given by (α′ = α− sb/2)

α α

→

α αα′

− b
2 − b

2

≡ G−1
0,α′

[

− b
2
− b

2
α α

]

= G−,s

[

α − b
2

α − b
2

]

= s
sin
(

πb2
)

sin (πb(2α−Q))
,

(B.6)

Analogously fusing them back to the identity

Gα′,0

[

− b
2
− b

2
α α

]

= Gs,− = s
sin (πb(2α′ −Q))

sin (2πb2)
,

Gα,0

[

− b
2
− b

2

α′ α′

]

= G−s,− = −s
sin (πb(2α −Q))

sin (2πb2)
.

(B.7)

B.1 Higher degenerate fields

Other quantities we will need involve the higher degenerate fields with −qb/2. The splitting

of the identity into a pair of −qb/2 fields can be done recursively

α α

− (q−1)b
2

− qb
2

− b
2

− qb
2

→

α α

− qb
2

− b
2
− (q−1)b

2

− (q−1)b
2

→

α αα(k′)

− (q−1)b
2

− (q−1)b
2

→

α αα(k) α(k′)

− qb
2
− b

2 − (q−1)b
2

→

α αα(k)

− qb
2

− qb
2

(B.8)
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Using α(k) = α− kb/2, α(k′) = α−m′b/2 and k = k′ + sq, we have for these fusion steps

G0,α− kb
2

[

α − qb

2

α − qb

2

]

= G
− qb

2
,−

(q−1)b
2

[

− qb

2
− b

2

0 −
(q−1)b

2

]

G−1

0,α− k′b
2

[

−
(q−1)b

2
−

(q−1)b
2

α α

]

×G−1

−
(q−1)b

2
,α− kb

2

[

− qb

2
− b

2

α α− k′b
2

]

G
α− k′b

2
,− qb

2

[

− b
2

−
(q−1)b

2

α− kb
2

α

]

(B.9)

= G+−

[

− qb

2
− b

2

0 −
(q−1)b

2

]

G
0,α− k′b

2

[

α − (q−1)b
2

α −
(q−1)b

2

]

G−,sq

[

α− k′b
2

− b
2

α − qb

2

]

G−sq ,+

[

−
(q−1)b

2
− b

2

α α− kb
2

]

Using the explicit expressions for the fusion matrices we find

G0,α− kb
2

[

α − qb

2

α − qb

2

]

= −sq
sin2(πb2(sqq + k)/2)

sin(πb2q) sin (πb(2α − (k′ + 1)b))
G

0,α− k′b
2

[

α − (q−1)b
2

α − (q−1)b
2

]

. (B.10)

Writing k = s1 + · · ·+ sq we get for the full product

G0,α− kb
2

[

α − qb

2

α − qb
2

]

= (−1)
q+k

2

q
∏

i=1

sin2
(

πb2(isi + (s1 + · · ·+ si))/2
)

sin(πb2i) sin (πb(2α − (1 + s1 + · · ·+ si−1)b))
, (B.11)

which has to be summed over all orderings of the si.

For example, for q = 2 summing over the choices of s1 and s2 gives

G0,α−b

[

α −b
α −b

]

=
sin(πb2) sin(2πb2)

sin (πb(2α− 2b)) sin (πb(2α− b))

G0,α

[

α −b
α −b

]

= − sin3(πb2)

sin (2πb2) sin (πb(2α − b))

(

1

sin (πb(2α− 2b))
+

1

sin (2πbα)

)

= − sin2(πb2)

sin (πb(2α− 2b)) sin (2πbα)

G0,α+b

[

α −b
α −b

]

=
sin(πb2) sin(2πb2)

sin (2πbα) sin (πb(2α− b))

(B.12)

Similarly we can go in the opposite direction

α αα(k)

− qb
2

− qb
2
→

α αα(k) α(k′)

− qb
2
− b

2 − (q−1)b
2

→

α αα(k′)

− (q−1)b
2

− (q−1)b
2

→

α α

− qb
2

− b
2
− (q−1)b

2

− (q−1)b
2

→

α α

− (q−1)b
2

− qb
2

− b
2

− qb
2

(B.13)

This is represented by the fusion matrices

Gα− kb
2

,0

[

− qb

2
− qb

2
α α

]

= G−1

− qb

2
,α− k′b

2

[

− b
2

−
(q−1)b

2

α− kb
2

α

]

G
α− kb

2
,− (q−1)b

2

[

− qb

2
− b

2

α α− k′b
2

]
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×G
α− k′b

2
,0

[

− (q−1)b
2

− (q−1)b
2

α α

]

G
−

(q−1)b
2

,− qb

2

[

− b
2

−
(q−1)b

2

− qb
2

0

]

(B.14)

= G+,−sq

[

α− kb
2

− b
2

α −
(q−1)b

2

]

Gsq ,−

[

− qb
2

− b
2

α α− k′b
2

]

G−+

[

− (q−1)b
2

− b
2

0 − qb

2

]

G
α− k′b

2
,0

[

−
(q−1)b

2
−

(q−1)b
2

α α

]

Explicitly this is

Gα− kb
2

,0

[

− qb

2
− qb

2
α α

]

=−sq
sin2

(

πb(2α− (sqq + k + 2) b
2 )
)

sin(πb2(q + 1)) sin (πb(2α− (k + 1)b))
G

α− k′b
2

,0

[

−
(q−1)b

2
−

(q−1)b
2

α α

]

.

(B.15)

Writing k = s1 + · · ·+ sq we get for the full product

(−1)
q−k

2

q
∏

i=1

sin2
(

πb(2α − (2 + isi − (s1 + · · · + si))
b
2 )
)

sin(πb2(i + 1)) sin (πb(2α − (1 + s1 + · · ·+ si)b))
, (B.16)

which has to be summed over all orderings of the si.

For example, for q = 2 summing over the choices of s1 and s2 gives

Gα−b,0 [−b −b
α α ] =

sin (πb(2α − 2b)) sin (πb(2α − 3b))

sin (2πb2) sin (3πb2)

Gα,0 [−b −b
α α ] = −sin (2πbα) sin (πb(2α− 2b)) [sin (2πbα) + sin (πb(2α− 2b))]

sin (2πb2) sin (3πb2) sin (πb(2α − b))

= −sin (2πbα) sin (πb(2α− 2b))

sin (πb2) sin (3πb2)

Gα+b,0 [−b −b
α α ] =

sin (2πbα) sin (πb(2α + b))

sin (2πb2) sin (3πb2)

(B.17)

While we did not simplify these expressions in the general case, we did find by experi-

mention the following useful formula for the product of two fusion steps with fixed k (and

checked it up to q = 5).

G−1
0,α− kb

2

[

− qb

2
− qb

2
α α

]

Gα− kb
2

,0

[

− qb

2
− qb

2
α α

]

=
−1

∑

k′ eπik′bQ

sin(πb(2α − kb−Q))

sin(πb(2α −Q))
. (B.18)

The sum in the denominator is over k′ = −q,−q+2, . . . q. Using this equation it is possible

to derive the expression for the Wilson loop in the spin j = q/2 representation (5.18) in

section 5.2.

Each of the pair of −qb/2 degenerate fields can also be split recursively into q of the

basic degenerate fields

α(q) α

− (q−1)b
2

− b
2

− qb
2

→

α(q) αα(1)

− (q−1)b
2

− b
2

→ · · · →

α(q) αα(q−1) · · · α(1)

− b
2 − b

2

· · ·
− b

2 − b
2

(B.19)
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Taking α(q) = α− kb/2 with k =
∑q

i=1 si, we have for the first fusion step

G−1
−qb/2,α(1)

[

−
(q−1)b

2
− b

2

α(q) α

]

= G+,s1

[

α − b
2

α(q) −
(q−1)b

2

]

=
sin
(

πb2(2α − b + (qs− k)b/2)
)

sin (πb2(2α− b))
.

(B.20)

Splitting up the field with −qb/2 into q fields with −b/2 is given by the product

1

sinq−1 (πb2(2α− b))

q
∏

i=2

sin
(

πb2(2α − b + (isi − (s1 + · · ·+ si))b/2)
)

. (B.21)

Clearly for s1 = · · · = sq the product is just unity.

We can also go in the other direction, fusing q basic degenerate fields and projecting

on the symmetric combination, which is a single qb/2 field

α(q) αα(q−1) · · · α(1)

− b
2 − b

2

· · ·
− b

2 − b
2

→ · · · →

α(q) αα(1)

− (q−1)b
2

− b
2

→

α(q) α

− (q−1)b
2

− b
2

− qb
2

(B.22)

Taking α(q) = α− kb/2 with k =
∑q

i=1 si, we have for the last fusion step

Gα(1) ,−qb/2

[

− (q−1)b
2

− b
2

α(q) α

]

= Gs1+ =
sin
(

πb2(q + s1k)/2
)

sin (πb2q)
. (B.23)

Doing this q times we get the product

q
∏

i=2

sin
(

πb2(i + si(s1 + · · · + si))/2
)

sin(πb2i)
. (B.24)

Though this is not manifest, the product on the right hand side is symmetric under ex-

change of any of the si ↔ sj. If we take s1, . . . , s(q+k)/2 to be positive and the rest to be

negative, then the numerator of the first (q+k)/2 terms will be sin(πb2i) and the subsequent

ones sin(πb2(2i− q − k)/2). The first (q + k)/2 will cancel against the denominator giving

q−|k|
2
∏

j=1

sin
(

πb2j
)

sin
(

πb2(j + q+|k|
2 )

) . (B.25)

Clearly for s1 = · · · = sq the product is just unity.

For example for q = 2

Gα(1),−b

[

− b
2

− b
2

α−
(s1+s2)b

2
α

]

=
sin
(

πb2(3 + s1s2)/2
)

sin (2πb2)
=







1 , s1 = s2

1
2 cos(πb2) , s1 = −s2 .

(B.26)

Combining three −b/2 fields to a single −3b/2 field gives

sin
(

πb2(3 + s1s2)/2
)

sin
(

πb2(4 + s3(s1 + s2))/2
)

sin(2πb2) sin(3πb2)
=







1 , s1 = s2 = s3

sin(πb2)
sin(3πb2)

, otherwise.
(B.27)
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