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Jürg Fröhlich1(a) and Philipp Werner2

1 Theoretische Physik, ETH Zurich - 8093 Zürich, Switzerland
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Abstract – We study the response of quantum many-body systems to coupling some of their
degrees of freedom to external gauge fields. This serves to understand the current Green functions
and transport properties of interacting many-body systems. Our analysis leads to a “gauge theory
of states of matter” complementary to the well-known Landau theory of order parameters. We
illustrate the power of our approach by deriving and interpreting the gauge-invariant effective
actions of (topological) superconductors, 2D electron gases exhibiting the quantized Hall- and
spin-Hall effect, 3D topological insulators, as well as axion electrodynamics. We also use the
theory to elucidate the structure of surface modes in these systems.
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During the past several years, fascinating novel states
of condensed matter protected by topological properties
(but not describable by local order parameters) have been
predicted and found in experiments, see refs. [1–10] and
references given therein. The purpose of this letter is to
sketch an approach towards classifying states of condensed
matter, appropriately called “gauge theory of states of
matter”, that is complementary to the well-known Landau
theory of order parameters. It can be used to study states
of systems of condensed matter exhibiting “topological
order”. Its main field of application lies in the study of low-
temperature properties of systems with a bulk energy gap,
i.e., (topological) insulators and incompressible quantum
liquids. For this class of systems, our theory makes precise
predictions of response laws and transport equations
and of the structure of surface states. The main ideas
underlying our approach can also be used in the study
of superconductors [6,11], cold atom gases [12], etc.
The principal contours of a “gauge theory of states of

matter” have been developed in the 90s [13–17]. Here
we show how a suitable extension of this theory can
be used to interpret various recent theoretical predic-
tions and experimental findings in a novel way, indepen-
dently of the interaction strength in the system (for earlier
work, see also refs. [18–24]). While our theory predicts
the general form of the equations governing the transport
in systems with a bulk energy gap, it does usually not
yield quantitative predictions for the values of various
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transport coefficients, such as conductivities, dielectric
tensors or magnetic permeabilities. For quantized trans-
port coefficients of incompressible electron liquids or of
“non-trivial band insulators”, such predictions can some-
times be inferred from “k-space topology” (Chern numbers
of complex vector bundles constructed from one-particle
wave functions over k-space, indices, etc.) [1,2,5–9,25–28],
or from topological field theories arising as effective low-
energy theories of such systems [14,15,24,29]. The methods
developed in these references are complementary to those
described in this letter and tend to have a more limited
range of applicability than the approach presented here.
The purpose of this letter is to present a short, non-

technical account of the main features and new applica-
tions of our theory. A more technical discussion will appear
in [29]; see also [14]. We will explicitly consider electron
gases, but the theory also applies to other systems, such
as cold atom gases [14,30], the primordial plasma in the
universe [31], etc. Our main new results concern i) the
structure of edge spin currents in certain quantum Hall
fluids and in a variant of graphene with a bulk mobility
gap, ii) the structure of surface modes and the general
form of the effective action of 3D topological insulators
and superconductors, and iii) a class of magnetic topo-
logical insulators with domain walls carrying extended
states, which are described by axion electrodynamics.
Besides reporting on these new insights, we recall some
important findings presented in earlier papers, such as the
general theory of the spin-Hall effect (in-band insulators
with unbroken time reversal invariance) [13,14] that has
attracted much attention, during the past several years.
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The key idea underlying our theory is to analyze states
of electron gases by studying their response to turning
on various external gauge fields. The Pauli equation of a
non-relativistic, spinning electron moving in an external
potential reads i�∂tΨt =HtΨt, where the Hamiltonian is
given by Ht =

1
2m [

�

i
�∇]2+V (x, t), V is the potential and

Ψt(x) a two-component spinor. This equation is invari-
ant under global phase and SU(2) transformations of
Ψt. In accordance with Noether’s theorem, there are two
conserved current densities, the electric- and the spin
current density. We promote these global symmetries to
local gauge symmetries by introducing U(1)- and SU(2)-
gauge fields (vector potentials), a and w. In many appli-
cations, these gauge fields describe internal or external
electromagnetic fields, spin-orbit and Zeeman interactions,
exchange interactions (in magnetic materials), effects due
to the curvature of the sample (as well as dislocations and
disclinations), and the influence on electronic properties of
the motion of the ionic background harboring the electron
gas. They may be “intrinsic” and need not be small. In
other applications, they are “fictitious”, in the sense that
they do not correspond to actual gauge fields acting on the
system, but are introduced for the sole purpose of deriv-
ing response laws. In order to take into account effects
of the motion of the sample harboring the electron gas,
the Pauli equation can be written in moving coordinates
corresponding to the flow generated by a (divergence-free)
velocity field �v, which yields contributions to the gauge
fields a and w, as described below.
The resulting Pauli Hamiltonian is given by

Ht =
1

2m

[

�

i
�∇+�a+ �wKσK

]2

+ a0+w
K
0 σK . (1)

Here, σK , K = 1, 2, 3, are the usual Pauli matrices;
�a(x, t) = �A(0)(x, t)+ e

c
�Aem(x, t)+m�v(x, t), where �A(0)

may describe a static, homogeneous external electro-
magnetic field and/or geometrical properties of the

sample, �Aem is the vector potential of fluctuations in the
electromagnetic field, and �v is the velocity field describing
the motion of the ionic background1. The constant e
is the elementary electric charge, c the speed of light,
and m the electron mass. The potential a0 is given by
a0(x, t) =

e
c
ϕ(x, t)− m2 �v2(x, t)+ 1ρp(x, t), where ϕ is the

electrostatic potential, p the pressure and ρ the density
of the ionic background. The SU(2)-gauge field, w, is

�wKσK = �Π∧
��σ

2
+ �WKσK + �Ω

KσK , (2)

wK0 σK =
μ

�

(

�B+
mc

e
�∇∧�v

)

· ��σ
2
+WK0 σK , (3)

with �Π= ( geμB
�e
− 1
2mc )(

e
c
�E+m�̇v). The first term in eq. (2)

describes spin-orbit interactions and Thomas preces-
sion [32]. The fields WK0 and �WK describe magnetic
exchange interactions (WK0 is the “Weiss exchange field”),

1That the velocity field appears as a contribution to the U(1)-
vector potential can be understood by recalling that the Lorentz
and the Coriolis force have the same form.

while �ΩK is the spin connection describing parallel trans-
port of spins in a curved background and interactions
with dislocations and disclinations. Note that �v and 1

ρ
p

are gauge invariant under U(1)-gauge transformations.

The fields �Π and �W transform homogeneously under
SU(2)-gauge transformations, while �Ω transforms inho-

mogeneously ; ( �E and �B are the electric field and the
magnetic induction, respectively). All vector quantities in
eqs. (2) and (3) are expressed in local coordinate systems.
We emphasize that, in the presence of a non-vanishing
SU(2)-gauge field, the spin current is not conserved (it is
only covariantly conserved), and, as a consequence, the
total magnetization is not conserved.
Introducing the covariant derivatives Dj = �∂j + iaj +
iwKj σK and D0 = �∂t+ ia0+ iw

K
0 σK , we can write the

Pauli equation in the form

iD0Ψt =−
1

2m
√
g

⎛

⎝

∑

i,j

Di
√
ggijDj

⎞

⎠Ψt, (4)

where gij is the metric tensor of the sample background
and g its determinant (see ref. [13]). This equation displays
full U(1)em×SU(2)spin gauge invariance. It turns out to
be the Euler equation corresponding to the action

S0(Ψ
†,Ψ; a,w) =

∫

dt

∫ √
gdx

⎡

⎣Ψ†t(x) ·D0Ψt(x)

−
∑

i,j

gij

2m

(

DiΨt
)†
(x) ·DjΨt(x)

⎤

⎦ . (5)

In systems of interacting electrons, a term like

Sint(Ψ
†,Ψ)=−

∫

dt

∫√
gdx

∫ √
gdy|Ψt(x)|2U(x− y)|Ψt(y)|2,

where U is a two-body potential, must be added. Its precise
form is not relevant for the following considerations.
All that matters is that it is U(1)em×SU(2)spin gauge
invariant. The total action S = S0+Sint is then manifestly
U(1)em×SU(2)spin gauge invariant.
More generally, one may also gauge “emergent” symme-

tries of electron gases, besides those fundamental symme-
tries. In what follows, we mainly focus on electron gases
with a bulk mobility gap (insulators), and limit our study
to ground state properties of such systems, i.e., deter-
mine the form of the effective action at temperatures
T ≈ 0. For this purpose, we consider the expectation
of the propagator, Ua,w(t, s), of an interacting electron
gas, from time s to time t, in the presence of time-
dependent gauge fields a and w in the ground state, |ϕ0〉,
of the gas. One defines a “partition function” Z(a,w) :=
lims→−∞

t→+∞
〈ϕ0|Ua,w(t, s)|ϕ0〉. This quantity can also be

expressed as a functional integral by promoting Ψt(x) and

Ψ†t(x) to Grassmann variables and performing the Berezin

integral Z(a,w) = const ·
∫

DΨ†DΨe
i

�
S(Ψ†,Ψ;a,w).

The effective action is then defined as

Seff(a,w) =−i� lnZ(a,w). (6)
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It has the following general properties:
1) It is the generating function of connected Green

functions of the electric- and the spin-current densities jμ

and sμK :

∂Seff(a,w)

∂aμ(x)
= 〈jμ(x)〉a,w,

∂Seff(a,w)

∂wKμ (x)
= 〈sμK(x)〉a,w, (7)

while higher derivatives yield connected Green functions
of current densities. The functional derivative of Seff with
respect to the metric gij is the expectation value of the
stress tensor. (The role of the metric gij is underempha-
sized in this letter; some discussion can be found, e.g., in
refs. [14,29,33].) Equations (7) are transport equations.
2) It is gauge invariant:

Seff(aμ+ ∂μχ,UwμU
−1+U∂μU

−1) = Seff(aμ, wμ),

where χ is a real-valued function and U denotes a
space-time–dependent rotation in spin space. We note
that electromagnetic gauge invariance and electric-current
conservation are equivalent, while SU(2)-gauge invariance
is equivalent to the property that the spin current is
covariantly conserved [13].
3) Assuming that connected current Green functions

have appropriate cluster properties (which is the case for
electron liquids with a mobility gap above the ground state
energy, such as insulators) and passing to the limit of
large-distance and low-frequency scales (the scaling limit),
Seff(a,w) can be written as a sum of integrals over local
polynomials in a and w and derivatives thereof. These
polynomials are gauge invariant up to total derivatives,
which, for samples with non-empty boundaries, may give
rise to surface terms depending on the gauge transfor-
mation (gauge anomalies). However, since non-relativistic
electron gases have an exact U(1) and SU(2) local gauge
symmetry, the total effective action of such gases has to
be invariant under U(1)- and SU(2)-gauge transforma-
tions. It follows that there must exist boundary terms in
the effective action that gauge-transform in such a way as
to cancel the gauge-dependent surface terms coming from
the bulk effective action. This is called “anomaly cancel-
lation”. In a system confined to a region Λ of space-time
with non-empty boundary ∂Λ, the effective action thus
has the form

Seff(a,w) =
∑

n

(

S
(n)
eff,Λ(a,w)+S

(n)
eff,∂Λ(a|∂Λ, w|∂Λ)

)

,

where S
(n)
eff,Λ(a,w) is a local term of scaling dimension

n, and S
(n)
eff,∂Λ(a|∂Λ, w|∂Λ) is a corresponding boundary

term canceling an anomaly. The boundary terms contain
interesting information about degrees of freedom located
at the surface of a sample (surface modes).
4) In order to explore physics in the scaling limit, it

suffices to retain the leading (most relevant) terms in the
expansion of Seff .
We thus obtain an explicit expression for the low-

energy effective action, which allows us to make concrete
predictions on properties of electron liquids. The fields a
and w in Seff are classical and describe internal or external

sources conjugate to the electric- and spin-current density,
respectively; the effective action being the generating
functional of current Green functions. The action of the
low-energy effective quantum theory describing the system
can usually be inferred from exp(iSeff) by functional
Fourier transformation, see refs. [14,24,29,34].
While the starting point of Landau theory is the iden-

tification of global symmetries of a system and of a space
of order parameters on which these symmetries act, along
with the allowed patterns of spontaneous symmetry break-
ing [35,36], the starting point of our “gauge theory of
states of matter” is the idea that global transformations
acting on the degrees of freedom of an electron gas, which,
in the absence of gauge fields, describe (fundamental or
emergent) symmetries of the system, shall be gauged, and
the response of the system to turning on corresponding
gauge fields be analyzed (eq. (7)). This enables one to
identify states of matter exhibiting “topological order”.
In the following, we sketch a variety of examples (some
quite familiar, others new) of applications of the strategy
described in 1) through 4) to electron gases.
(2+ 1)D examples: i) We start by considering a two-

dimensional electron gas subject to a strong, uniform
magnetic field �B(0) =∇∧ �A(0) perpendicular to the
sample surface (and defining the local z-axis). The fields
w and �v are set to zero. We assume that, for appropriate
choices of the external field �B(0), the bulk Hamiltonian
of the gas has a mobility gap above the ground state
energy, with the spins of the electrons parallel or anti-
parallel to �B(0). We propose to study the response of the
electron gas to small fluctuations in the electromagnetic
field and in the curvature of the sample surface. The
total electromagnetic vector potential is denoted by
�Aem = �A(0)+ �A. If the sample surface of the gas has
non-vanishing Gauss curvature, the U(1)-gauge field aμ
contains a contribution describing parallel transport on
the sample surface (rotations around the local z-axes),

besides �A. Equation (6) leads to

Seff(a) =
σH
2

∫

Λ

dtdxεμνρaμ∂νaρ+Γ(a|∂Λ)

=
σH
2

∫

Λ

dtdx

[

εμνρAμ∂νAρ+
2

e
A0K

]

+Γ(a|∂Λ),

(8)

where σH is the Hall conductivity, ε
μνρ the Levi-Civita

anti-symmetric tensor, A0 =ϕ the scalar potential,
and K is the Gauss curvature of the sample. This
action describes the Quantum Hall Effect (QHE):
jμ = σH

[

εμνρ∂νAρ+ e
−1Kδμ0

]

. Curvature effects in
the context of the QHE have first been described
in refs. [13,14] (see also ref. [34]), and have recently
attracted renewed interest (see, e.g., ref. [33]). The
edge action Γ(a|∂Λ) is the well-known anomalous chiral
action in (1+1) dimensions, which cancels the gauge
anomaly of the first (bulk) term (the (2+1)-dimensional
Chern-Simons action) in eq. (8). It is the generating
function of Green functions of chiral electric edge currents
propagating along the boundary ∂Λ of the sample, first
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discovered in ref. [37] (see also [21,22])2. A similar analysis
applies to layers of atomic quantum gases if one replaces
�Aem by the velocity field, �v, corresponding to a rapidly
rotating sample. This led to the prediction [14] of a Hall
effect in rotating Bose gas layers confined by harmonic
traps canceling the centrifugal forces, see also [38].
If parity and time reversal are symmetries of the

system then the Chern-Simons terms in eq. (8) cannot
appear. For a two- or three-dimensional insulator, the
leading term is then given by

∫

dtdxǫ �E2−
∫

dtdx(1/μ) �B2,
where ǫ is the dielectric constant and μ the magnetic
permeability. If one drops the assumption that the system
has a bulk mobility gap, i.e., is an insulator, then a term
(2λ2)−1

∫

dtdx(�aT )2 may appear in the effective action,
which describes an ordinary superconductor. Here �aT is
the transverse part of �a and λ the London constant of
the superconductor. For two-dimensional systems, there
is an intriguing duality involving the low-energy effective
theory, which maps insulators to superconductors, and
conversely, and incompressible Hall fluids to themselves,
see ref. [14].
ii) Next, we introduce an SU(2)-gauge field, w, describ-

ing spin-orbit and/or exchange interactions, but, for
simplicity, omit the U(1)-gauge field a. The effective
action of two-dimensional gapped magnetic systems in
the scaling limit is then given by [13,14]

Seff(w) = χ

∫

dtdxTr(w0)
2+ χ̃

∫

dtdxTr(�w− �Ω)2

+
k

4π

∫

dtdxεμνρTr

(

wμ∂νwρ+
2

3
wμwνwρ

)

+edge action depending on w|∂Λ, (9)

up to “irrelevant” terms.
The coefficient χ is proportional to the magnetic suscep-

tibility of a paramagnetic insulator. The second term on
the right side describes the spin Hall effect [1–4,13,14]:
We consider a two-dimensional electron gas in the x-y
plane of physical space in the presence of a strong intrin-
sic electric field, E⊥, supported near the boundary of the
sample and perpendicular to it (E⊥ confines the electrons
to the sample). According to eq. (2), this electric field
corresponds to an SU(2)-gauge field, �w, parallel to the
sample’s boundary and supported near it, which describes
spin-orbit interactions. It is given by w‖ = const ·E⊥σz;
all other components of �w vanish, and �Ω= 0. According
to eq. (7), the response equation resulting from the second
term on the right side of eq. (9) is

〈s3‖〉= χ̃E⊥, (10)

while all other components of the spin current vanish. This
equation describes the spin Hall effect (see also ref. [28] for
mathematically rigorous results).
The third term on the right-hand side of eq. (9) is an
SU(2) Chern-Simons term that has a gauge anomaly at

2Effects of the motion of the sample harboring the electron gas
can be accounted for by adding the velocity field �v describing the
motion of the sample to the U(1)-connection [13,14].

the boundary of the sample and requires the addition of
an “edge action” canceling this anomaly. The coefficient
k must be an integer [39,40]. The edge action canceling
the anomaly of this term is the generating function of
Green functions of chiral current operators generating an
SU(2) current algebra at level k. The irreducible unitary
representations of an SU(2) current algebra at level k are
labeled by a spin quantum number s= 0, 12 , . . .

k
2 . Level

k= 0 corresponds to insulators without chiral boundary
currents, while k� 1 describes an interesting type of
topological insulator with chiral edge spin currents carried
by quasi-particles of, typically, spin 12 . Chiral edge spin
currents can be expected to be present in gapped systems
with broken time reversal, such as certain quantum Hall
fluids and graphene-like systems (with pairs of two-
component Dirac fermions with spin 12 and a small mass as
bulk quasi-particles), see refs. [18,41] and references given
therein.
(3+ 1)D examples: i) We first limit our considerations

to insulators, i.e., materials with a bulk gap, and deter-
mine their effective actions in the presence of U(1)- and
SU(2)-gauge fields. For simplicity, we set �v= 0. The effec-
tive action then reads

Seff(a,w) =
1

2

∫

Λ

dtdx

[

ǫ �E2− (1/μ) �B2+ γ

2π2
�E · �B

]

+
1

2

∫

Λ

dtdxTr

[

ǫw

3
∑

i=1

(Fw)
2
0i− (1/μw)

3
∑

i,j=1

(Fw)
2
ij

+
θ

16π2
εμνρσ(Fw)μν(Fw)ρσ

]

+ less relevant terms.

(11)

The third term in eq. (11) is a topological term (it
is really a surface term). For general values of γ,
it breaks parity and time reversal symmetry, except
when γ = 0, π. The SU(2)-field strength Fw is given
by (Fw)μν = ∂μwν − ∂νwμ+ i2 [wμ, wν ]. We note that,
because 1

32π2

∫

dtdxTr[εμνρσ(Fw)μν(Fw)ρσ] is an integer,
parity invariance of the bulk implies that θ= 0 or π, and
conversely, similarly as for γ. We assume that the sample
Λ has the geometry of a “slab” and denote its boundary
by ∂Λ. From Stokes’ theorem we find that
∫

Λ

dtdx�E · �B = 1
2

∫

∂Λ

dtdxεμνρaμ∂νaρ =: 2π
2Γ∂Λ(a),

(12)
1

4

∫

Λ

dtdxεμνρσTr[(Fw)μν(Fw)ρσ] =

∫

∂Λ

dtdxεμνρTr

[

wμ∂νwρ+
2

3
wμwνwρ

]

=: 4π2Γ∂Λ(w).

(13)

The boundary term given by πΓ∂Λ(a) is the effective
action of a charged, 2-component Dirac fermion [39]3.
Thus, γ/π determines the number of species of charged
Dirac fermions propagating along the boundary. On the

3Quasi-particles with the same properties also appear in
graphene, see ref. [18].
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right-hand side of eq. (13) we recognize the non-Abelian
Chern-Simons term: πΓ∂Λ(w) is the effective action of a
2D relativistic fermion with “SU(2) isospin”. We conclude
that the gauge-invariant action (11) predicts topological
insulators, for γ and/or θ �= 0 (γ, θ= 0 corresponds to
ordinary insulators).
If we set w= 0 and add a term 1

2λ2

∫

dtdx(�aT )2

in eq. (11) we obtain the effective action describing
topological superconductors for γ = π (while γ = 0 corre-
sponds to ordinary superconductors). In fact, Seff =
1
2λ2

∫

dtdx(�aT )2+ γ
32π2

∫

dtdxεμνρσFμνFρσ and eq. (7) lead
to the London equation

− e
2

mc
n( �Aem)T =�j, (14)

where λ2 =−mc/e2n, with n the condensate density.
In p-wave superconductors, electron pairs have spin 1,

and the SU(2)-gauge field w can no longer be neglected
in the effective action. The introduction of w-dependent
terms in the effective action yields a description of novel
topological p-wave superconductors.
It is of considerable interest to observe that a system

may respond to switching-on an external magnetic
field that increases its free energy by setting itself into
motion, thus generating a current or velocity field that
(partially) cancels the external gauge fields (generalized
“Lenz principle”). Examples of this phenomenon include
the Meissner-Ochsenfeld effect (super-current canceling
an external electromagnetic vector potential) and the
Einstein-deHaas-Barnett effect (velocity field whose
vorticity cancels an external magnetic field). Vortices in
superfluid helium can also be studied from this point of
view, in close analogy to Abrikosov vortices in a supercon-
ductor, but with �A replaced by �v, see [14,30]. Similarly,
the effect of sonoluminescence can be understood as an
electromagnetic response offsetting pressure and velocity
fluctuations in a gas.
ii) Axion electrodynamics: If we promote the coupling γ

in eq. (11) to a dynamical variable (field) φ, i.e., replace
γ
4π2

∫

dtdx�E · �B = γ
32π2

∫

dtdxεμνρσFμνFρσ by

1

32π2

∫

dtdxεμνρσ(γ+ lφ)FμνFρσ, (15)

where l is a parameter with the dimension of a length, and
add the term 1

α

∫

dtdx[12∂μφ∂
μφ+U(φ)], then we obtain

an action containing a coupling of electrons to an axion
field, see refs. [16,17]. The axion potential U(φ) is usually
periodic in φ with period 2π/l. If U �= 0 then our theory
predicts the existence of domain walls across which the
value of the axion field changes by an integer multiple
of 2π/l. These domain walls, which, for entropic reasons,
must occur in the bulk of axionic topological insulators
(or axionic topological superconductors), support massless
(i.e., extended) charged modes.
(4+ 1)D examples: The QHE has a (4+1)-dimensional

cousin first studied in refs. [16,17]. Let us consider a
five-dimensional system confined to a slab 0<x4 <L
consisting of very heavy charged four-component Dirac
fermions. If these Dirac fermions are coupled to an

external electromagnetic vector potential A(5) and are
then integrated out, the effective action, as given by
eq. (6), becomes

Seff(A
(5)) = S

(5)
EM (A

(5))−S(5)CS(A(5))+Γ∂Γ(A(5)|∂Γ),

with S
(5)
EM (A

(5)) =− 1
4Lα

∫

dtdx(F (5))μν(F (5))μν the (4+

1)-dimensional analogue of the Maxwell action (F
(5)
μν =

∂μA
(5)
ν − ∂νA(5)μ ), and S(5)CS(A(5)) proportional to the five-

dimensional Chern-Simons action

S
(5)
CS(A

(5)) =
N

96π2

∫

Λ

dtdxǫμνδρǫA(5)μ F
(5)
νδ F

(5)
ρǫ , (16)

where N = 1, 2, . . . is the number of fermion species.
The boundary term Γ∂Γ((A

(5)|∂Γ) must be introduced
in order to ensure the gauge invariance of the effective
action in the slab geometry. It describes massless chiral
fermions on the (3+1)-dimensional “top” and “bottom”
boundary components (or “branes”) of the slab. These
chiral fermions may acquire a mass through tunneling
between the two boundary components. Equation (7),
applied to the Chern-Simons action (16), yields the

(4+1)D analogue of Hall’s law, jμ = N
32π2 ǫ

μνδρǫF
(5)
νδ F

(5)
ρǫ .

This equation, together with the conservation of the
total current, jμtot = j

μ
bulk+ j

μ
brane, reproduces the so-

called chiral anomaly in (3+1)D: ∂μj
μ
brane = σH

�E · �B,
σH =N/4π

2. The chiral anomaly implies the relation
�jem =−σH(μL−μR) �B, where μL,R are chemical poten-
tials corresponding to left- and right-handed fermions [15].
Axion electrodynamics in (3+1)D can be recovered

from the (4+1)D theory discussed here by dimensional
reduction [16,17]: Suppose that the five-dimensional elec-
tromagnetic field is x4-independent. Then 1

L

∫

γ(4)
dx4A4,

with γ(4) a curve parallel to the x4-axis from one bound-
ary component to the other one, plays the role of the axion
field, φ, in the (3+1)D action of axion QED, and the
thickness, L, of the “slab” in (4+1)-dimensional space-
time is related to the parameter l in front of the axion
term in eq. (15). The (4+1)D formulation shows that
the time derivative of the axion field plays the role of
a (now space-time–dependent) chemical potential differ-
ence between left- and right-handed fermions: −L∂0φ=
−LE4 = μL−μR [16,17,31].
Instabilities: The equations of motion derived from

the Maxwell action combined with eq. (15), namely the
Maxwell equations for the electromagnetic field and the
equation

∂μ∂μφ=−
lα

4π2
�E · �B−U ′(φ), (17)

exhibit various instabilities that can be discovered
by linearizing the equations of motion around special
solutions. The first such instability was identified in
refs. [16,17], (see also [31,42]). If the equations are

linearized around �E = �B = 0 and a non-trivial, spatially
constant solution of the equation ∂μ∂μφ=−U ′(φ), (e.g.,
φ̇= const �= 0, for U(φ)≡ 0), one finds unstable Fourier
modes of the electromagnetic field, for small wave vectors,
describing the generation of rather homogeneous helical
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magnetic fields that may be relevant in cosmology4.
A related instability of more direct interest in condensed
matter physics has been analyzed in ref. [43]. Here, the
equations of motion for a compact sample of an axionic
topological insulator are linearized around a constant
electric field �E �= 0, with �B = 0, φ= 0. If the electric field
applied to the sample exceeds some critical strength then,
in the interior of the sample, it is screened by surface
charges, and a non-zero magnetic field is generated inside
the sample.

Conclusions. – The key idea explored in this letter is
to promote global transformations acting on the degrees
of freedom of systems of condensed matter, which, in
the absence of gauge fields, correspond to fundamen-
tal or emergent global symmetries, to local gauge trans-
formations, with the purpose of studying the response
of such systems to turning on the corresponding gauge
fields. These gauge fields may, but need not correspond
to physical fields. They are introduced in order to encode
transport equations of the system. By using very general
principles, in particular gauge invariance, anomaly cancel-
lation, cluster properties and power counting, one is able
to determine the general form of the effective action of such
systems in the scaling limit. This leads to a partial clas-
sification of states of condensed matter, including “topo-
logical phases”, and of the corresponding surface states.
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