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Abstract

In this thesis we study complex analogues on Calabi-Yau manifolds of gauge
theories on low-dimensional real manifolds. A formal picture is set up in which
it is shown that in many ways a Calabi-Yau is the correct complex analogue of a
real oriented manifold, while a Fano variety with anticanonical divisor plays the
role of a manifold with boundary. This works particularly well for transferring
gauge theories over from real n-manifolds to complex n-folds, and we describe
holomorphic versions of most of the gauge theories studied by mathematicians in
the last fifteen years.

The technical problems in rigorously extracting invariants from these theories
are described, and then tackled in the central theory of the holomorphic Casson
invariant, which should count (stable) holomorphic bundles on a Calabi-Yau 3-
fold. Examples of moduli spaces of bundles are calculated on the quintic 3-fold,
the intersection of a quadric and quartic in CP®, and K3 xT?, before turning to
the general case.

Using the recent work of Li and Tian [LT] we apply excess intersection theory to
create virtual moduli cycles in moduli spaces of sheaves on an algebraic Calabi-Yau
3-fold, with the “correct” dimension zero even though the moduli spaces themselves
have too high a dimension. The main technical result required is a two step locally
free resolution of the cotangent sheaf of the moduli space M, of the right virtual
dimension. This is obtained in some generality via the Quot scheme used in Simp-
son’s construction of M, and then applied to a Calabi-Yau 3-fold. This allows us
to count sheaves, but we must subtract a correction term to count bundles. This
and deformation invariance are discussed.

Since knot theory now has a gauge-theoretic description (albeit via a path
integral [W1]) it has a complex analogue which is discussed in an appendix. A
path integral is formally manipulated to give quantities we can study in their own
right. The holomorphic linking number suggested some years ago by Atiyah [At1]
is recovered, as is the Ray-Singer holomorphic torsion [RS2]. Higher invariants of
Calabi-Yau 3-folds, and their embedded complex curves, are then discussed.
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0.1 Introduction and acknowledgements

Gauge theories in low dimensions have been the focus of enormous mathematical
interest over the past fifteen years, and have provided some of the most impor-
tant recent advances in differential geometry and topology. This thesis is mainly
concerned with complex analogues of these real field theories on low dimensional
Calabi-Yau manifolds, and their interpretations.

Broadly speaking there are striking analogies between differential geometry
on n-dimensional manifolds, and Kahler geometry on Calabi-Yau n-folds. Very
naively, the trivialising (n,0)-form 6 acts as a complex volume form, we replace
z by z, d by 0, and wedge everything with . This is particularly successful at
giving us complex analogues of all the familiar gauge theories, and it is these which
we study. Also to a certain extent a good complex analogue of a manifold with
boundary is a Fano variety with anticanonical divisor (this is what we think of as
the boundary, and is Calabi-Yau).

Chapter 1 sets up the formal picture, often somewhat imprecisely as deep tech-
nical issues to do with compactness and stability are postponed to Chapters 2 and
3. But the analogies and structure should be apparent. Formally at least, there
is a holomorphic analogue on a Calabi-Yau three-fold of the Casson invariant of a
three manifold, counting (stable) holomorphic bundles (“9% = 0”) instead of flat
connections (“d%4 = 0”). Such integrable structures occur as the critical points of
a functional C'S on the space of all 0-operators on a fixed bundle, where CS is a
complex analogue of the Chern-Simons functional. On a real three manifold the
gradient flow lines of this functional can be used to define Floer homology (with
Euler characteristic twice the Casson invariant), mimicking the usual calculation of
the homology of a space by Morse theory. The complex analogue of Morse theory is
the Picard-Lefschetz theory of monodromy of Lefschetz fibrations, and an infinite
dimensional version of this is discussed.

Just as the gradient flow equations of the Chern-Simons functional are a special
case of the anti-self-duality equations, similarly there exist analogous equations on
a Calabi-Yau 4-fold. Solutions are “half-integrable” d-operators, and are in fact
integrable if and only if the bundle admits a single holomorphic structure (just as
instantons are flat if and only if the bundle admits a single flat connection). They
also satisfy the natural analogue of the Yang-Mills equations, which are the FEuler-

Lagrange equations of a Lagrangian. Similarly there is a Bogomolny equation on
a Calabi-Yau 3-fold.

There is also an analogue of the definition of the Casson invariant via a Hee-



gard splitting, where a singular Calabi-Yau is represented as the union with nor-
mal crossings of two Fano varieties along a common anticanonical divisor S. (A
good example is provided by degenerating a smooth quintic in CP* into the union
(across a K3 surface) of a cubic and a quadric.) The complex symplectic form
on the Calabi-Yau surface S induces a complex symplectic form on the space of
holomorphic bundles on S, and Tyurin has shown the subspaces of bundles extend-
ing to the Fano varieties are complex Lagrangian. Thus, in direct analogy with
the real case, we would like to interpret the intersection of these subspaces as the
(holomorphic) Casson invariant, counting the bundles on S which extend to both
Fanos. We also describe a striking analogue of this for counting curves in such
singular Calabi-Yau manifolds. In fact the complex analogue of a manifold with
boundary being a Fano variety with anticanonical divisor extends somewhat. The
exact homology sequence of the pair (manifold, boundary) is replaced by the sheaf
cohomology sequence defined by the anticanonical section and its divisor. In this
context some other formulae for C'S are given, relating it to py A § on a Fano con-
taining our Calabi-Yau as an anticanonical divisor, in parallel with those relating
the Chern-Simons functional to p; on a bounding manifold with boundary. There
is also a natural analogue of parts of the Atiyah-Floer conjecture.

Motivated by the discussions of Casson invariants in Chapter 1, Chapter 2
contains calculations of certain moduli spaces of holomorphic bundles on some
Calabi-Yau 3-folds using the more powerful tools of algebraic geometry.

Firstly we study a quintic 3-fold X € CP*. The Serre construction is described,
relating rank two bundles to curves, via the zero set of a section. We then study
(semi-stable) bundles whose corresponding curves are degree three tori, and show
the spaces of bundles and tori coincide in general. The main part of this calculation
is to show that all such bundles have a section; this is done by passing down to
successive hyperplane sections where calculations of bounds on cohomology groups
and Riemann-Roch eventually yields sections. These pull up to sections on the
blow up of X along the base-curve of a pencil, and it is then shown that these
can be pushed back down to X. Finally it is shown these bundles are isolated by
examining their deformation theory.

Next we study another example of both analogues of the Casson invariant.
There is a beautiful description due to Mukai of the bundles of a particular type on
intersections of quadrics in CP®. This was reinterpreted by Donaldson as showing
that the bundles on the singular Calabi-Yau formed from the union of two quadric
hypersurfaces in a fixed quadric (which is two Fanos glued along an anticanonical
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divisor) are just the restrictions of the two tautological bundles A and B on the
fixed quadric (viewed as a Grassmannian). This is an example of the Casson
invariant defined via Tyurin’s work, and smoothing the Calabi-Yau we would like
it to coincide with the other definition by showing the stable bundles on a smooth
quartic in the quadric are just the restrictions of A and B. Given a stable bundle
of the same topological type, we show it has sections vanishing on curves by similar
methods to those of the last example. The difficult part is to show the curves we
produce are the intersection of the quartic with one of the A or B planes in the
Grassmannian (these are the zero sets of sections of A and B). Having done this it
is easy to see the bundle is the restriction of either A or B. Lastly a little geometry
of the Grassmannian shows the deformation theory of these bundles is isolated so
we may count them each once.

Finally in this Chapter we study bundles on K3x7T? motivated by some physics
[VW] and an observation of Donaldson that relates numbers of these bundles to
modular forms.

Chapter 3 describes the issues involved in making a rigorous general definition
of the invariants described in Chapter 1. These are compactness and smoothness
of moduli spaces of connections. The analytical results available are described,
along with their limitations. The results we expect to be true and the structure
of a natural compactification are described. However this programme seems to
be out of reach at present — the results obtainable in dimensions higher than four
are only useful in the integrable case at the moment, but to have enough pertur-
bations to get a smooth moduli space of the correct dimension we would like to
work with almost-complex structures too. There is no hope of a result similar to
Donaldson’s for Kéhler surfaces (that the moduli space is generically smooth of the
right dimension for large enough Chern class), because, seen in terms of the Serre
construction, points on a surface are unobstructed, but curves on a 3-fold usually
have deformations of the wrong dimension. There is some hope of this working on
Fano 3-folds (those that are “convex” have curves with unobstructed deformations)
and we discuss this.

So we resort to algebraic geometry, where we can use the compactifications of
the moduli space of bundles of Maruyama and Simpson. As we cannot now hope
for the moduli space to be of the right dimension we have to use excess intersection
theory on the moduli space to create a virtual moduli cycle of the right dimension
(zero for a Calabi-Yau). Recent work of Li, Tian and others does precisely this,
if we are given a two-step locally free resolution (of the right virtual dimension)

4



of the cotangent sheaf of the moduli space. Using Simpson’s construction of the
moduli space via a Quot scheme, we prove a theorem which shows under exactly
which conditions such a resolution exists, on a general variety. These conditions
are satisfied for a Calabi-Yau 3-fold allowing us to count stable sheaves. The de-
formation invariance of this number and the correction term we need to subtract
to count less non-locally-free sheaves are then discussed.

A traditional piece of 3-manifold theory, knot theory, now has an analytical
basis due to Witten’s path integral derivation of the Jones polynomial ([W1]).
This opens it up to our programme of “wedging with #”, and in an appendix we
write down this Chern-Simons-type theory on a Calabi-Yau 3-fold. As yet there
is no mathematical justification for the Path Integral, but invariants we extract
by formal manipulation we can take as definition for mathematical purposes. On
a bare Calabi-Yau 3-fold we obtain the holomorphic torsion of [RS2], then ana-
logues of the invariants of [AS1]. There is still much work to be done here to prove
finiteness of these numbers and study metric-independence. There is an alterna-
tive definition of the invariants of [AS1] on a 3-manifold due to Kontsevich [K]
using a real differential geometric analogue of a construction in complex geome-
try, and so it seems natural to look for a version on a Calabi-Yau. We discuss
this and the difficulties that arise. Finally the analogue of knots are introduced
into the path integral, namely complex curves in the Calabi-Yau, and the first in-
variant obtained is shown to coincide with the suggestion some years ago [At1] for
a holomorphic linking number of such curves. Higher invariants are then discussed.
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Vakil and Wilson Sutherland for useful conversations, their generosity in educating
me and their misplaced interest in my work.

I am also grateful to the EPSRC for financial support.

Finally thanks to my family and friends, and in particular Angela Ballantyne,
for putting up with my vector bundles for most of the last three years.



0.2 Notation

Complex manifolds will usually be called n-folds (often X or Y) to distinguish
them from real differential manifolds, which will be called n-manifolds (M or N).

By a Calabi-Yau manifold we will mean a smooth compact Kéahler n-fold X with
holomorphically trivial canonical bundle K x = A™°, with a Ricci-flat Kihler metric
as provided by Yau’s solution of the Calabi conjecture. We will fix a trivialising
holomorphic (n,0)-form €, which can be taken to be parallel with respect to the
Levi-Civita connection due to the Ricci-flat metric.

We do not insist that h%! = 0 for a Calabi-Yau 3-fold X, but will restrict to
this case to define some invariants — this is analogous to only defining invariants
for homology spheres (b; = 0) in the theory of real 3-manifolds.

The form 6 gives us a Hodge star x : Q% — Q%P defined by xs = * (s A 6),
where * is the usual antilinear Hodge star * : AP? — A""P"~49  This splits the
(0,2)-forms on a Calabi-Yau 4-fold into 41-eigenspaces A%+ of %, and similarly
H%? since x commutes with the Laplacian. This is a real splitting, not complex (in
fact multiplication by i switches the eigenspaces); in the language of representation
theory A%? is a real representation of SU(4), the complexification of A%,

We shall use the term Fano variety loosely (even incorrectly); all we require is
that its anticanonical divisor be effective, i.e. K% admits a holomorphic section.
(The usual definition is that K% be ample.)

o/ will denote spaces of connections — usually SU(2) connections on a real
manifold or the space of d-operators (often with fixed determinant) on a bundle on
a complex manifold. The appropriate gauge group of bundle automorphisms will
be denoted ¢ or ¥, with Z = &/ /9. Similarly M will denote a moduli space;
flat or Yang-Mills connections on a real manifold, and (semi-) stable holomorphic
bundles (or sheaves) on a complex manifold. gy (with complexification g%) will be
the adjoint bundle of a G-bundle E; namely the trace free skew endomorphisms
for G = SU(N), or Endy(F) or End (E) on a complex manifold. The curvature
of A is F,, while for a J-operator 0, we let FS’Q = 0. This is the (0,2)-part
of the curvature of any connection compatible with 0,. A metric on E uniquely
determines a connection compatible with a given d0-operator. Often when we are
working only with 0-operators we will slip into calling them connections.

We may confuse a holomorphic bundle with its locally free sheaf of sections, but
usually F, F, L will denote bundles, and &, %, . their sheaves of sections. The
sheaf of holomorphic functions and the trivial line bundle on a complex manifold
X will be denoted O or Oy, and &(t) is & twisted by ¢ powers of the hyperplane
bundle O(1) if X has a (fixed) embedding in CP".
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Chapter 1

Some (Gauge Theory on
Calabi-Yau Manifolds

1.1 Introduction

This chapter outlines a formal picture which will motivate some rigorous mathe-
matics, some of which will be dispersed throughout, but most of which will form
Chapters 2 and 3. So it will often be deliberately vague and imprecise, but the
main ideas and analogies should be clear. For instance, we will gloss over issues
of stability in talking about moduli spaces of holomorphic bundles, but these will
be properly defined and studied in later chapters. And we will be occupied for the
whole of Chapter 3 by the harmless looking statement “Thus with an appropri-
ate perturbation and compactness theorem we might hope to count the number of
bundles on a Calabi-Yau 3-fold” that appears in the next section.

So for now we only concern ourselves with the overall picture which is, very
naively, that if the analogue of a real n-manifold is a complex n-fold, then the
analogue of an oriented manifold is a Calabi-Yau. The trivialising (n,0)-form 6
acts as a complex volume form, we replace z by Z, d by 0, and wedge everything
with 6. In particular this gives us complex analogues of the familiar gauge theories
that have been so important in the study of low dimensional topology in the last
fifteen years, and it is mainly these which we study. In terms of holonomy SU(n)
is the complex analogue of SO(n), and some of what we discuss also has an ex-
tension to manifolds of exceptional holonomy (due to Joyce, Donaldson and Lewis
— see [DT]; here we will look only at Calabi-Yau manifolds and Kéhler geometry).
Also to a certain extent a good complex analogue of a manifold with boundary
is a Fano variety Y with anticanonical divisor X (this is what we think of as the
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8 CHAPTER 1. SOME GAUGE THEORY ON CALABI-YAU MANIFOLDS

boundary, and is Calabi-Yau), as will be seen in a few instances. Here the long
exact homology sequence of a manifold and its boundary is replaced by the sheaf
cohomology sequence of the sequence

0Ky >0y —0x—0

induced by the anticanonical section defining X C Y.

The gauge theories operate in dimensions 2, 3 and 4, and it is the central one,
to which the other two relate, which we concentrate on rigorising in later chapters,
since the technical issues involved are typical of those in the other dimensions. It
is also in dimension 3 that we begin.

1.2 OJ-operators on a Calabi-Yau 3-fold

In this section we begin with the case of a Calabi-Yau 3-fold X, as defined in
the notation section. A standard example is a smooth quintic hypersurface in
CP*: by the adjunction formula the canonical bundle of a divisor X € |O(d)]| is
Kx 2 0x(d) ® Kgpt = Ox(d — 5), which is trivial for d = 5.

The triviality of Ky has many consequences for holomorphic vector bundles E
over X. Firstly, the deformation complex of F is self dual:

0 o gy 25 (g, B 02(g,) 2B 03(g,) — 0

02y 029 029 b2

0 ¢ Ogy) gy B ) S Q(gs) 0
+ + + i
C C C C (1.2.1)

in the sense that all the pairings commute by Stokes’ theorem, so “0% = 0p”.
(Here the pairings are by trace on the Lie algebra gz of the structure group of E
(which makes gj self-dual) and integration against the fixed holomorphic (3, 0)-
form #.) Thus, in particular, the complex has zero index, its cohomology groups
are Serre-dual to each other (H%(g,) = H%37*(gj)), and the virtual dimension
of the moduli space is zero. Thus when the complex is acyclic we get a smooth
zero dimensional space of bundles (the obstruction space really is H%?, and not
cokerdp C Q%2 because of the Bianchi identity pFy” = 0). Thus with an
appropriate perturbation and compactness theorem we might hope to count the
number of bundles on a Calabi-Yau 3-fold. We shall restrict attention to rank two
bundles for the rest of this section, for convenience.
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If, however, F is a line bundle, then (1.2.1) is the Dolbeault complex, and the
topology of the Calabi-Yau prevents the cohomology groups vanishing. Therefore
the condition h®»' = 0 is often included in the definition of a Calabi-Yau. The
analogy with flat bundles (d%, = 0 instead of 94 = 0) on real 3-manifolds is clear —
there we again have a self-dual complex with dg instead of Oz and Poincaré duality
replacing Serre duality, a finite number of flat bundles (twice the Casson invariant)
under favourable conditions, and the restriction b; = 0 to avoid reducible connec-
tions (where (1.2.1) becomes the deRham complex). Thus the Casson invariant is
usually only defined for homology spheres.

A self dual complex is often associated to the critical points of a (locally defined)
function f on some (infinite dimensional) manifold Y. At a point p € Y where
df = 0, the tangent space to the critical submanifold of f is the kernel (1st homology
group) of

TY — TY (1.2.2)
v — V,(df) (intrinsically defined since df = 0).

The symmetry of the Hessian of a function translates into the self-duality of this
map.

This is no accident; on a 3-manifold flat connections are the critical points of
the Chern-Simons functional and (1.2.1) is just (1.2.2) with the action of a symme-
try group. We shall find a similar picture on a Calabi-Yau 3-fold, mimicking the
3-manifold story by “wedging with 6#”. A good reference for the 3-manifold theory
of the Chern-Simons functional and the gauge-theoretic Casson invariant is [T1];
we sketch the basic idea now.

The space .7 of connections on a bundle F over a 3-manifold M (with structure
group G, Lie algebra g) is an affine space modelled on Q'(g;). Fixing a basepoint
Ay (a flat connection F,, = 0 for simplicity), we have

d:AO+Ql(gE)7 Tﬂ:%XQI(QE)-

Also let # = o /9r denote the equivalence classes of connections under the action
of the automorphism group (gauge group) of E. Now consider the one form o on
o/ defined at A € &/ by

O'A((L)Z/ tr Fa A a, a € N(gp).
M

This is zero along gauge orbits:

O'A(dA¢)Z/];/ItI“FA/\quﬁ:/Md(tI‘FA/\(ﬁ):O,
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using the Bianchi identity. It therefore descends to a one form on %, which we
also call o. Since the rate of change of (a) in the direction of b € Q'(gz),

/Mtr(dAb/\a):/Md(trb/\a)—tr(b/\dAa)=/tr(dAa/\b),

M

is symmetric in ¢ and b it follows that o is closed.
Therefore, globally on .« and locally on &, 0 = 4n2dCS for some function
CS(A), the Chern-Simons functional. We have

grad, (47°CS) = *Fy,

and the functional is given by

1

1 1
/tr(—dAa/\a+—aAa/\a).
Y 3

On a Calabi-Yau 3-fold X there is an almost identical story, with a f term
added:

The space & of D-operators (equivalently, unitary connections if E has a metric)
on a bundle E — X is an affine space modelled on Q2%'(g,,), where g, will denote
the endomorphisms of FE, trace-free if we are fixing det E. Fixing a basepoint Ag
(with FX’OQ = 0, for simplicity), we have

d = Ay + Q% (gg), T = %0 (gg).

Also let # = o/ /95 denote the equivalence classes of d-operators under the action
of the automorphism group of E. Now consider the one form (in fact (1,0)-form)
o on & defined at A € &/ by

o4(a) :/ tr P2 Aanl,  ac Q% (gp).
X
This is zero along gauge orbits:
o4(0,0) = / tr FO* NG o A6 = / d(r FY* Np)AO =0,
X X

using the Bianchi identity. It therefore descends to a one form on %, which we
also call 0. Since the rate of change of o(a) in the direction of b € Q%! (g5),

/tr(@Ab/\a)/\Oz/atr(b/\a)/\H—tr(b/\aAa)/\Hzftr(aAa/\b)/\H,
X X X
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is symmetric in a and b it follows that o is closed.

Therefore, globally on & and locally on %, 0 = 472d CS = 47?0 C'S for some
holomorphic complex valued function for which we use the same notation C'S(A).
We have

grad,(4m2CS) = % (F3* A G) = x Fy?,

where we are defining the complex gradient by df (v) = v.f = (v, grad f), we have
fixed a metric on E, and x = ¥ (- A 0) is our Hodge star Q% — Q03—+,

1.3 Chern-Simons A\f

A short calculation shows that, for A = Ay + a and CS(Ay) set to 0,

CS(A) = #/}(tr(%@AoaAa—f—%a/\aAa)/\H. (1.3.1)
We will often confuse C'S with the form of which it is the integral. Although we
shall not need them, we shall spend a little time finding other interpretations of
C'S to make it more familiar. On &/, CS is constant on connected components of
the gauge orbits 4.A (since o vanishes on tangents to the orbits), but we shall see
below it may change under a “large” gauge transformation, as the Chern-Simons
functional does on a 3-manifold.
The Chern-Simons functional on a 3-manifold is the “transgression class” asso-
ciated to p; on a 4-manifold, in the following sense. If M is bounded by a 4-manifold
N with a connection A on a bundle E restricting to A on £ — M then

1 1 1
CS(A)—CS(Ay) = 4—7T2/Mtr (idAoa/\a—i-ga/\a/\a) :/Npl(A)—pl(Ao), (1.3.2)

where p;(A) = ﬁtr Fy A Fy. This follows from the calculation

1 1
dtr(ia/\dAOa—i-ga/\a/\a) =tr (FANFs— Fay N Fy,). (1.3.3)

From (1.3.2) we can see a mod Z ambiguity in CS: If (IV;,E;, A;) are two dif-
ferent extensions then we get a bundle and connection glued over a small collar
neighbourhood of M, and the difference in the two values of (1.3.2) will be p; of
this bundle on N = N; Ups No. In particular if Aq is the trivial connection on a
trivial bundle E we may take E, Ay to be trivial and set C'S(Aq) = 0 to recover
the familiar formula

CS(4) = /N P(A).
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Since the same calculation (1.3.3) holds with some 6’s and 0’s, C'S can have
a similar (though rather unnatural) topological interpretation. If X bounds a 7-
manifold Y with a class [0] € H*(Y;C) restricting to [#] on X, then CS is the
transgression of p; —[0];

CS(A) = OS(4y) = /

pL(A) A O — / pi(Ag) A0, (1.3.4)

Y
where A is a connection extending 9, over a bundle E over Y extending E.

We will give a much more natural formula for C'S in Theorem 1.3.7 below,
based in complex geometry and perhaps the correct analogue of (1.3.2), with a
Fano 4-fold playing the role of the 4-manifold, with “boundary” an anticanonical
divisor X. There is also the formula (1.3.6) below which is another illustration
of the principle “dC'S = p; A 67, but there is one instance in which the above
topological picture is useful, namely finding the gauge dependence of C'S.

Given an automorphism g of E, we form the bundle E on X xS! by using ¢ to
glue E|xxo} 10 E|xxq1} in 7*E — Xx [0, 1]. Then any connection A on E restricting
to A on X x{0} (and so to g(A) on X x{1}) will have

(p1(A)~7*[0], [X xS']) = CS(A) — CS(g(A)), (1.3.5)

by (1.3.4). Decomposing p;(A) according to the (integral) Kiinneth formula on
X x St, we see that CS is well defined on %2 modulo the periods

{/09 : UEH?,(X;Z)}

of §. Unfortunately these will usually be dense in C, and in many ways CS is best
thought of as an element of the dual Albanese variety

(H2,1 oy H3,0)* /Hg(X,Z),
by considering all § € H>'@ H3?, so that it is well defined modulo a discrete lattice
of periods. This, however, requires £ to be Hermitian so that we can define CS
on all # by using the metric to form a unitary connection from 9, and writing

2

1
CS(A0+a)=4L/tr(FAO/\b+%d,40b/\b+§b/\b/\b)/\0, b=a—a"
X

This reduces to the previous formula (1.3.1) for § € Q*° and F}” = 0.
This is completely analogous to the case of a line bundle, topologically trivial for
simplicity, on a Riemann surface ¥. Then the appropriate Chern-Simons functional



1.3. CHERN-SIMONS A8 13

is a — [yaAwforwe HYO(X). While this is not very well defined as a function
of one w (the periods of w are likely to be dense) it is well defined modulo only a
discrete lattice when considered as a function of a basis (w;) of H'®. That is, the
function should correctly be thought of as lying in the torus

(HY)" / H\(Z; Z).

In this case we also have the alternative formula [GH pp 331-332]

/ aNw= /w modulo periods,
by vy

where v is a path connecting the points that are the zeroes and poles of a section
that is meromorphic with respect to the holomorphic structure 0+a. That is, if the
holomorphic structure defined by a on the line bundle corresponds to the divisor
> ai(p;), with a; € Z and p; € X, then 0y = ) a;(p;). In a special case there is an
analogous formula on a Calabi-Yau 3-fold, for a rank 2 holomorphic bundle E.

Proposition 1.3.6 Suppose A = Ay + a is an integrable (Fg’2 = 0) O-operator
on E with trivial determinant, and (E,A), (E,A) admit holomorphic sections
S8, 8o, with transverse zero sets (s)o, (So)o. Then CS defined by (1.8.1) may also
be described as follows. As the zero sets are homologous, write (s)o — (S9)o = 0A
for some singular 3-chain A. Then, modulo periods, CS(A) = fA 0.

Proof. The idea of the proof is that, on a space of connections, dCS = p; A, and
when det E' is trivial, p; = ¢y represents the Euler class of E, as does the Dirac
delta current Poincaré dual to the zero set of a section.

Over a small open set U away from the zero set of s we can pick a comple-
mentary, non-vanishing holomorphic section ¢ of E, so that (s,t) trivialises F|y.
Rescaling ¢ if necessary we can assume without loss of generality that s A ¢ is the
restriction to U of the global holomorphic trivialising section of A2E. Now define
a connection extending 0, by requiring that s and ¢ are parallel.

Fix 0 > 0. Patching together such connections by a partition of unity over open
sets covering X minus a d-neighbourhood v;(s) of (s)o, and extending over (s)o,
we get a connection d4, with (0, 1) part ,, such that d4s = 0 outside v;(s).

We can repeat this for sy, and then also for a section o of E = 7*E — X x [0, 1]
that we choose to restrict to s and sq at the two ends, with transverse zeroes (o) in
X %[0, 1]. Thus we obtain a connection A on E with trivial determinant, satisfying
dpyo = 0 outside v4(0), and also a parallel section 7 outside v5(o) such that (o, 7)
trivialises A and E on X x [0, 1]\ vs(0).-
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Thus Fyo = 0 on X x [0,1]\ vs(0). Locally, therefore, with respect to a basis
containing o, Fy must be of the form ( 8 I ), and in fact ( 8 ; >, since tr F, = 0.

This implies that 47%p;(A) = tr(Fy A Fy) = 0 away from v;. Using (1.3.5) we have
then, modulo periods,

CS(4) = CS(A) — CS(A) = /

Xx[0,1]

pi(A) A0 = / ea(A) A0,
vs(o)
We would like to show that we can choose A so that the form cy(A) converges
to the current [ (o) ] representing the Poincaré dual of the zero set (¢)g, as 6 — 0.

For then we would have
CS(A) = / 0 = / 0,
(o)o A

where A = 7,(0), satisfies A = (s)y — (s¢)o- Since the integral of 6 against any
other such A differs only by a period, this would complete the proof. This is where
it gets a little messy, however, and since we do not need the proposition again, we
only sketch the details.

By the tubular neighbourhood theorem, for § sufficiently small, ¢ induces a
diffeomorphism between v55 and a neighbourhood of the zero set in the total space
of E(4),. In fact, pick a metric on E|¢,),. Then we can choose vy to be the 26-ball
bundle of E over (o), for ¢ sufficiently small. Picking an orthonormal trivialisation
over a coordinate patch of (0)g, vos looks like R? x Bys(C?), E looks like C2, and
the section o is the identity (21, 22) : C? — C?, restricted to Bys(C?) and pulled
back in the R?® direction.

Working in such a coordinate patch, we can now take A to be of a standard form
on vys. For instance, pull back the standard one-instanton ([DK]| pp 116-7), with
half its energy inside a ball By of radius 62 in C2, to R®xBys. If we pick a different
orthonormal trivialisation the pull back differs by a gauge transformation ¢ that
varies only in the R? direction, in which A is just the exterior derivative. Patching
together these two connections by a patching function 1), again only varying the
R? direction, the curvature changes by a bounded amount

Fa_yyatpgn) — Fa = g7 dyp Adyg,

which therefore tends to zero as a current as § — 0 (we can fix one ¢ for all 9),
since its support v5 shrinks. Thus we can work on such a coordinate patch, and
glue together the connections at the end.
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This connection does not decay at infinity in C2 = R* as it is in a gauge which
extends over 0 € R*, and not oo € S*. That is, in our C2? model, the trivialis-
ing sections of the gauge are (1,0) and (0,1), instead of (21, 22) and (5, —3,-)-
Changing to this second trivialisation, i.e. changing gauge by a degree one map
S% — SU(2), the connection form decays like §*/|z|*. We may choose the original o
and 7 to be the sections (21, z2) and (i, —i) in vo5 \ 5 (there was a lot of choice
in ¢ and 7, the only problem is choosing them to be holomorphic on restriction
to the ends of the product X x I, but choosing the connections and sections to be
pull-backs in a small collar neighbourhood of the two ends satisfies this). In this
gauge we smoothly cut off the connection by a patching function ¥ on R* which is
O(1) with dip = O(67 "), changing A to YA in Bs\ Bs/o, with curvature

Fyn —YFy = (0* — ) AANA +dyp AA

where all the terms on the right are bounded since A decays as §*/|z|*> = O(§) in
this region. Thus the ¢y form of this connection converges, as 6 — 0, to the current

[(0)0], since ¢y of the instanton tends to the Dirac delta measure at the origin of
R*. U

Finally we have another formula for C'S, the complex analogue of (1.3.2). First
we rephrase (1.3.2) in a way which will make the analogy more apparent. The long
exact homology and cohomology sequences of the pair (N = N* M = ON) give
rise to the following commutative pairings:

[€5(A)] = [p(A)=p1(Ao)]

= H¥3M) % HYN,M) =0

® ®
« HyM) <& H,(N,M) +« 0.
M e [N]

That is, since the fundamental class of M is in the image of the lower map, coming
from the fundamental class of N, to find [,, CS(A) we can map the class [C'S(A)]
into H*(N, M) (using the calculation (1.3.3)) and evaluate on [N], giving (1.3.2).
We now replace the exact sequence of the pair (N, M) by the sheaf sequence of
the pair (Y, X) in the case that X is an anticanonical divisor in a Fano 4-fold Y.

Theorem 1.3.7 Suppose that the Calabi-Yau 3-fold X is a smooth effective anti-
canonical divisor in a 4-fold Y defined by s € H'(Ky'). If E — X is a bundle that
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extends to a bundle B — Y, then for a 0-operator A on E, let A be any 0-operator
on E extending A. Then we have, modulo periods,

1
CS(A4) = /Y tr Fg? AFp? Ast

Proof. We have the sequence
0—)Kyi>OY—>oX—>O,

where s € H°(K') is the section defining X, and also H*(Oy) = H°(Ky)* = 0 (if
t € H'(Ky) then s.t is a holomorphic function on Y vanishing on X; thus ¢ = 0).
So we get the following commutative diagram of Serre duality pairings:

[CS(A)] = [p1(A)—p1(Ao)lAsT!
— H3}Ox) — HYKy) — 0

® ® (1.3.8)
+— H°Ox) «— H°Oy) «— 0,

(1] ~ (1]

(where the first pairing is by integrating against ) since the upper map takes a
holomorphic (0, 3)-form on X, extends it to a C* form on Y, and takes 9(-) As~*
of the result. Fixing constants by setting CS(Ag) = [, p1(Ao) gives the theorem. [

Just as the real case CS(A) = [, pi(A) can be proved directly by Stokes’
theorem, the above amounts to an application of Stoke’s theorem and the Cauchy
residue theorem [Kh] (hence reducing dimensions by two). If v5(X) denotes a small
tubular neighbourhood of X C Y then [, pi(A) As™' = [, d(CS(A) As™!) =
limg_yo . ou, CS(A) A s~ 1, which can be integrated first over the fibres of the circle
bundle vs — X, by Cauchy’s reside formula, then along X, to give [ < CS(A) 0.
(Here s™! induces a canonical volume form # on X [GH p 147].)

Diagram (1.3.8) shows we have a canonical lifting to C of our badly defined
functional C'S given by this formula. Different extensions E; and Y; of the bundle
E|x will give different liftings, and the ambiguity in C'S derives from the difference
in these values. Given two such extensions we can glue them together across X to
get a singular Calabi-Yau Y = Y] Ux Y5 as will be described in a similar setting in
Section 1.5. Tts holomorphic (4,0)-form 6y is s;' on Y;, and the difference in the
values (1.3.7) for C'S is

i/ tr FO A FO2 A Gy = (p1(E) < [0y], V).
Y

472
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Thus we see the ambiguity as periods of # in a form similar to (1.3.5), and directly
analogous to the Z ambiguity in the real Chern-Simons functional mentioned ear-
lier.

1.4 The Casson invariant A6

In [T1], the Casson invariant is given as a sensible definition of (one half of) the
number of non-trivial flat SU(2) connections on the trivial bundle on a homology
3-sphere. Flat connections are the zeroes of the gradient of the Chern-Simons
functional, and Taubes perturbs this vector field on 4 to obtain a finite number of
transverse zeroes, which can be counted with sign. Only the relative signs are well
defined (in infinite dimensions the determinant of the Hessian does not exist) by
spectral flow, but then the trivial connection is assigned a positive sign (but not
counted as it is highly reducible).

The key to the success of Taubes’ method is the compactness of the space of
flat connections, and the choice of suitably controlled compact perturbations that
do not alter the gradient field from being a Fredholm section of T and do not
introduce any zeroes at infinity, while breaking up the zero set into transverse
points. This compactness also ensures the number of these points is finite, so can
be counted.

By analogy, we would like to be able to count the holomorphic bundles on a
Calabi-Yau 3-fold as the zeroes of

grad CS = x F)”

on #A. The analytical details are, however, much harder than in Taubes’ case due
to the lack of a suitable compactness theorem for moduli of Hermitian-Yang-Mills
connections (which correspond to stable holomorphic structures on a bundle, but
this is in some sense most of them). We discuss this compactness issue in Chapter
3, but to allow suitable perturbations we would like a compactness result for per-
turbed equations too, or for the natural generalisation (3.1.4) of the equations on
a symplectic manifold, so that we could perturb the Kahler metric. If this could
be done it should be possible to push Taubes’ method through.

The approach we take, in Chapter 3, is an algebraic one. There is an alge-
braic compactification of the moduli space M of stable bundles, using sheaves, but
we lose the benefits of perturbations, so the moduli space may well have strictly
positive dimension, and be singular, etc. But algebraic geometry copes well with
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singularities, and we know what to do about components of M of positive dimen-
sion if they are smooth — take their Euler characteristic. This is because if we have
a function f on a (finite dimensional) manifold Y with a smooth critical submani-
fold Z = (f),, it is the Euler charactersitic of Z that gives the Euler characteristic
of Y (i.e. the number of critical points of a perturbation of f) since the cokernel
of V(grad f) on Z is naturally isomorphic to 7Z. In fact we are interested in the
zeroes of a holomorphic cotangent vector field df rather than the vector field grad f
so our cokernel bundle will be the cotangent bundle of Z, as can be seen from the
duality (1.2.2),

05TZ =TY I 7y 77 0.

Thus it is the Euler number of 7*Z in which we are interested. In our infinite
dimensional set-up, the point is that the cokernel of the derivative of d C'S = Fg’Q
at a critical point will be naturally isomorphic to the cotangent space to the space
of critical points M by the duality (1.2.1). Namely on a Calabi-Yau 3-fold we have
the Serre duality

H?*Endy E) = H'(Endy E)* = TpM

for a vector bundle E, and a generalisation for sheaves using Ext groups.

So if we could find a small transverse perturbation of d C'S it would break up
the moduli space into a number of isolated points corresponding to the zeroes of
a small section of the cokernel bundle over M. These points would correspond to
the Euler class of the cokernel bundle, i.e. e(T*M), giving x(M) to within a sign,
as claimed.

Chapter 3 will set up the machine to handle all these issues correctly to give a
definition of this holomorphic Casson invariant. To show it is a sensible definition
we would then like to show it is deformation invariant, as any definition using Fred-
holm analysis and perturbations would immediately be. While we cannot expect
the moduli space to be completely independent of the complex structure as in one
or two complex dimensions (where the Hermitian-Yang-Mills equations have extra
symmetry and are the projectively flat equations and ASD equations respectively,
independent of the complex structure), we do expect certain topological quantities
to be conserved. Again, this is best seen from the PDE point of view, and we
would only expect the moduli space of solutions of a complex PDE to change at
points of real codimension two in a family, so the generic moduli spaces should be
diffeomorphic.

This deformation invariance is discussed for smooth Calabi-Yau manifolds in
Section 3.5; what we would really like to do is be able to deform to a Calabi-Yau
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with normal crossing singularities and show that the invariant there equals the one
discussed in the next section.

1.5 Handlebodies and Calabi-Yaus with normal
crossing singularities

The original definition of the Casson invariant used a Heegard splitting of M =
H, Ug H, along a surface S. Then the space Mg of equivalence classes of flat
(GG-connections on S is, at smooth points, a symplectic manifold with tangent space
H'(gy), and symplectic form

QA(a,b)zftraAb, a,be Q'(S;gy), daa = 0= db, (1.5.1)
s

t [A], for a,b € TaMs = H'(gg). (This is easily seen to be closed, and is
symplectic on 7. Restricting to the flat connections (the zero set of the moment
map) it is degenerate precisely along gauge orbits, so passing to the quotient Mg
it is well defined and symplectic.) More algebraically, this is of course just the
non-degenerate skew pairing H'(g;) x H}(g;) — R given by Poincaré duality.

Proposition 1.5.2 The images My, C Mg of flat connections on the handlebod-
tes H; restricted to S are, at smooth points, Lagrangian submanifolds of Mg.

Proof. Let A be a flat connection on Hy, and a,b € Q' (Hy;g5), daa = 0= dab be
tangent vectors to Mpy,. Then

QA(a,b)z/tra/\bz/ trdgaa Ab—tra Adsb=0.
s o

Conversely, if ((a,b) =0 Va € TyMpy, (ie. a € Q'(Hy;95), daa = 0) we would
like to show b is tangent to Mp,. Extending b to some b e Q'(Hy; gp), the above
equation shows that dub is zero in the relative cohomology group HY(Hi, S;gz).
Therefore d b = dc for some ¢ vanishing on S. Thus d4(b—c) =0,s0b = (b—c)|g
is tangent to My, C Mg. O

Remark. It is clear that some exact sequences and Lefschetz and Poincaré duality
are lurking behind this rather hands-on proof. We will see this more clearly in
the corresponding Calabi-Yau set-up (1.5.3) below, which we shall handle more
algebraically.
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So, in analogy with intersection theory in a smooth manifold, we would like
to be able to make the My, meet, after a small perturbation, in a finite number
of points corresponding to flat bundles on all of M = H; Us Hy. Problems with
reducible connections mean we must restrict to homology spheres; then the inter-
section theory can be made sense of, and the resulting intersection number is twice
the Casson invariant.

A beautiful observation of Donaldson and Khesin [DT, Kh] shows there is an
analogue of this for counting holomorphic bundles on a Calabi-Yau, using a con-
struction of Tyurin [Ty]. [Kh] also outlines some complex analogues of real geom-
etry in the spirit of this work.

Tyurin considers a Fano threefold X with a section s of K% with zero set a K3
surface S C X. As mentioned before, we will think of this as the complex analogue
of a manifold with boundary. Then for the analogue of gluing along a common
boundary we take two Fano 3-folds X, playing the role of the handlebodies, inter-
secting with normal crossings along a K3 surface S, which is the analogue of the
surface S in the 3-manifold case, and is Calabi-Yau.

The resulting 3-fold

X =X, Us Xo

is a singular Calabi-Yau. A good example of this is a degenerate Calabi-Yau quintic
in CP* which is the union of a cubic and a quadric. By the adjunction formula
their intersection will have trivial canonical bundle and is in fact a K3 surface.
The construction in [Ty], using Mukai’s theorem [Mu], is then the following.
Here M denotes the moduli space of stable holomorphic bundles of fixed determi-
nant, so g, = End (F), and the Zariski tangent space to M is TgM = H%'(g,,).

Proposition 1.5.3 Consider a smooth 3-fold X with a smooth effective anticanon-
ical divisor S C X. About a bundle on X which is stable on S, Mx injects into
Mg by restriction. At any smooth point E of Mx (i.e. H*(X;g,) =0), Mg is a
smooth complex symplectic manifold, and Mx a complex Lagrangian submanifold.

Proof. The complex symplectic pairing ([Mu]) on the tangent space H'(gg) to
M comes from Serre duality — it is its own Serre-dual since Ky is trivial. More
analytically, for a,b € H'(g,), the pairing is

Q(a,b) :/tra/\b/\e,
s

which should be compared to (1.5.1), and where 6 is a fixed trivialising holomorphic
(2,0)-form.
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Now suppose F is a smooth point of Mx, so that H?(X;gz) = 0. Then the
sequence
0>Kx —>0x >05—0

defining S, tensored with g, yields
0— H'(gg) — H'(8pls) = H* (g5 ® Kx) — 0, (1.5.4)
since H'(gy ® Kx) vanishes by Serre duality. Thus we have
0—=TpMx = TpMg — (TgeMx)" — 0,

and locally Mx injects into Mg. In fact taking the Serre-dual of (1.5.4) gives us
the commutative pairings

0 — TEMX — TEMS — (TEM)()* — 0

&® ® ®

0 <« (TgMx)* < TgMs < TgMx <+ 0. (1.5.5)
{ { {
C C C

Therefore, by exactness, the annihilator of H'(g,) & TpMx under the central
pairing (which is the complex symplectic form Q) is precisely itself.

Finally, higher terms in the long exact sequence show that the vanishing of
H?*(X;gy) implies the vanishing of H?(S;gy) for E stable on X, from which the
smoothness statement follows. O

Remark. More generally the same proof shows that the map My — Mg al-
ways has Lagrangian image (the pairing defines a symplectic structure even at
non-smooth points [Mu]). Also the earlier terms in the long exact sequence (1.5.4)
show that for a smooth point F € Mx, F|g is simple (has no trace-free endomor-
phisms), which in many cases is equivalent to stability.

It is now obvious we would like to take the intersection number of the two My,
in Mg to define a complex Casson invariant counting holomorphic bundles on this
singular Calabi-Yau 3-fold, at least when we can ensure the restriction map exists.
We would also like this to be the same as the number of bundles on a smooth
Calabi-Yau in a family degenerating to this manifold, as discussed above.

While Mg is well understood ([Mu, HL]), is smooth (so supports intersection
theory), and has a natural compactification Mg, the problem is to assign middle
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dimensional homology classes to the Mx,. Maruyama’s theorem gives us compact-
ifications My, of these spaces, and Theorems 3.3.4 and 3.4.6 of Chapter 3 will
give us “virtual moduli cycles” of the correct dimension (this will be explained in
Chapter 3) inside the My,. The problem, then, is to ensure there is a map from
these to Mg, i.e. that stable sheaves restrict to semi-stable sheaves (of the right
Hilbert polynomial).

In many cases this can be shown to hold; for instance the remark following the
last proposition shows the restriction map often exists at smooth points of My,
and Theorem 2.2.10 will show that for the generic S the restriction of ma stable
bundle is semi-stable (and so stable for rank and degree coprime, for instance).
The problem is to show that the map exists on all of My for fixed S. Stability of
the restriction is one problem, and another is that the restrictions of non-locally
free sheaves may have the wrong Hilbert polynomial.

In some cases (such as the extended example of Section 2.3) M x itself is com-
pact, and all restrictions are stable, and we do not need to consider sheaves. How-
ever the intersection number obtained may not be deformation invariant since we
have not considered all of M x, and points may wander off “to infinity”. Similarly
we could consider the closure of the birational image of Mx in Mg, but again
deformation invariance of the resulting intersection number would be unclear.

1.6 An analogous construction to count curves

Understanding compactness etc., of moduli spaces of (pseudo-)holomorphic curves
is a little easier than for bundles — the space of bundles is, roughly, made up of
fibrations over different spaces of curves, by the Serre construction of Chapter 2.
Different strata correspond to the different twists needed to first get a section of a
particular bundle, and stability bounds these twists.

So this suggests it might be easier to carry out the method of the last section to
count curves in Calabi-Yau manifolds, which also have moduli of virtual dimension
zero. Gromov-Witten invariants are now defined for all algebraic varieties, and in
fact [LT] gives a “virtual moduli cycle” (see Chapter 3 for this theory), of the correct
dimension and with all the right properties, in the moduli space of curves on an
algebraic variety. In particular we get such a cycle on a Fano (where in fact older,
less sophisticated techniques often work, for instance if the Fano is “semi-positive”
or “convex”).

So fix a class 3 € Hy(X) in a 3-fold X and a section s € H(K ') with zero set
a Calabi-Yau surface S. Let n denote §.[S], and let U be the Zariski-open subset
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of the moduli space of curves on X, of homology class (3, corresponding to curves
that have a zero dimensional intersection with S. Then intersection with S gives
us a map from U to the Hilbert scheme Hilb™S, and we have (compare (1.5.3)):

Theorem 1.6.1 The image of the above map is a complex Lagrangian in the com-
plex symplectic manifold Hilb"S. If the curve represents a smooth point of the
moduli space then the map is locally an injection.

Remark. When the curve corresponds (via the Serre construction) to a stable
bundle on X, and the n-tuple of points corresponds to the bundle restricted to S,
this theorem is essentially the same as (1.5.3). Relating the deformation theory
of the bundle to that of the points, this amounts to saying that the symplectic
structure on the moduli of bundles is induced by that on S (and more generally on
Hilb"S) — vectors tangent to M induce vectors on Hilb™S which can be contracted
with its symplectic form.

Proof. 'We have assumed the section s vanishes only on a set of points (more
precisely a zero dimensional subscheme) Z on C, giving us a sequence

0—)V0®Kx|c—)l/c—>l/c|z—>0,

on C', where v¢ is the normal bundle to C'in X. Taking the long exact cohomology
sequence and its dual, and using the fact that the Serre-dual bundle to vc ® Kx|¢
is v¢ (since K¢ & Kx|c ® A%v¢), yields

0— H'(v.)* - H'v.) — wvolz — H°(w)* — H'(v.) —0

b2y 02 b2y 029 029

0+ H'(v.) <+ H%w)* « wvelz « H%Ww.) <+ HY(v.)* «0,
1 \J 1 \J \J
C C C C C

where the pairings commute, and the bottom sequence is the same as the top. The
central pairing is via the trivialisation of A%vg|z = A2T;S given by the Calabi-Yau
form on S, i.e. it is the natural holomorphic symplectic structure on Hilb™S. Thus
we see that the image of H%(v¢) is its own annihilator under this pairing. Since
this is the Zariski tangent space at C' to the moduli space of curves on X, with
the map being the obvious one (the derivative of the map assigning to a curve its
intersection with S), the result follows.
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H'(v¢) is the obstruction space for deformations of C, so if C' is a smooth point
in the moduli space of curves on X then this vanishes and the above sequences re-
duce from five terms to three, taking the shape of (1.5.5) and proving injectivity. [J

So again it is clear what we would like to do given two such pairs (Xj, 5;) and a
common anticanonical divisor S of the X; along which we glue. The intersection of
the Lagrangians in Hilb™S should be a finite number N of points corresponding to
those zero-cycles which lie on curves on both of the X;. Gluing these curves gives
N nodal curves of homology class 3; + (2. On deformation these curves deform
to curves in the smoothed Calabi-Yau, if, for instance, their obstruction spaces
vanish. The hard part would be to show that this is all of them.

Thus for Fanos with smooth moduli spaces of curves (e.g. “convex” Fanos like
projective space and the Grassmannian with the property that H'(TX|c) = 0 for
all embedded curves) compactness and smoothness issues do not arise. But we still
must deal with those curves that do not intersect S in points but have components
in common with it. Passing through the Serre construction yet again this often
corresponds to stable bundles restricting to non-stable bundles on S, as can be seen
by trying to restrict the Koszul resolution (2.1.2) to S, so we see a similar problem
arising to that in the last section. At least though we have more control over it
— in many cases dimension counts and repeated use of the word generic will avoid
such intersections.

This then looks like a very promising construction. However I have not pursued
it since Paul Seidel has informed me that Tian has done some work on something
very similar.

1.7 Some gauge theory N0

The following sections outline a formal picture of other parts of gauge theory that
have complex versions on Calabi-Yau manifolds. Having mentioned the central
3-dimensional case and passed down to two dimensions, we now pass up to four
dimensions via Floer theory.

Floer theory A6

A generalisation of the Casson invariant is the Floer homology of a 3-manifold.
We refer to [At2] for a nice overview of the subject, but the main idea is to mimic
Witten’s method of computing the homology of a compact manifold on the infinite
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dimensional space of connections Z, finding its “middle dimensional homology”
using the Chern-Simons functional as a Morse function. The Euler characteristic
of the resulting Floer groups is then (twice) the Casson invariant. Thus we have
a chain complex generated by the critical points, i.e. the flat connections, and
boundary operator defined via the gradient flow lines between them. That is,
consider the family of connections A; on M? xR satisfying

atAt = *FAt- (171)

Spectral flow of V(d C'S) along such paths defines a relative grading of the critical
points (only defined mod 8 due to the spectral flow around a closed loop being
a multiple of 8, the index of the ASD equations (1.7.1) on M x S'). Then the
boundary operator takes a critical point A to 0A =Yz napB, where B runs over
the critical points of relative index 1, and n4p is the number of gradient lines from
A to B, with an appropriate sign.

The complex analogue of Morse theory is the Picard-Lefschetz theory of Lef-
schetz fibrations over CP!, i.e. meromorphic functions on the total space with
isolated critical points satisfying a Morse lemma. Whereas Morse theory builds up
a space’s topological type by passing through critical points, here we can go round
any critical point and so all the non-singular fibres are diffeomorphic. What we
study instead is the monodromy around critical points and vanishing cycles — these
are cycles in a smooth fibre that get transported to zero in a singular fibre — see
the first chapter of [AGV] for a gentle overview of this. Intersecting a cycle a in a
non-singular fibre with a vanishing cycle b associated to a critical point determines
the “monodromy reflection” around the corresponding singular fibre: the image (in
homology) of a under the monodromy is

a— a— 2(a.b)b.

This middle dimensional intersection theory might be hard to make sense of in
infinite dimensions, but it also has a description via gradient flow lines.
Namely, consider the deformed pseudo-holomorphic curve equation

for a map u of the tube {(s,t) € S'xR} = C/Z into the total space M of a (local)
Lefschetz fibration 7 : M — C, with initial and final points two critical points of
7. Here the gradient is a real vector defined by the complex equation

drn(X) = (X,grad7), where (a,b) = (a,b) + i{a, Jb),
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and as such is in fact grad(Ren) = J grad(Im 7), since 7 is holomorphic. (There is
only an asymmetry singling out a real direction due to the natural real ¢-direction on
the tube.) As the Morse indices are all the same, since the function is holomorphic,
we will generically have no solutions for “thin tubes” homologous to s-invariant
solutions (i.e. lines between critical points), but in the one parameter family of such
equations obtained by multiplying 7 by unit complex numbers (i.e. considering all
possible real directions) we generically obtain a finite number of solutions after
dividing out by the translations.

Deforming the equations so that the tube becomes thin and du/ds small, what
we have is approximately the gradient flow equation

ou

5 = grad (Re)

for Rem. Projecting down to C we move in the direction of the real axis:

w =Doum= <g—?,grad (Re7r)> = || grad (Re) ||?,
so generically missing the second critical value. But on multiplying 7 by unit
complex numbers we rotate the real axis and pass through the second critical value
in the one parameter family.

Now the number of such solutions is equal to the intersection number of the
vanishing cycles of the two points, transported to a common non-singular fibre
by the gradient flow (or equivalently by the lift of the straight line in C between
the images of the critical values). This is because the vanishing cycle is just the
unstable sphere of the critical point, as a small calculation in local coordinates
about the critical point shows, and intersections of these spheres correspond to
gradient flow lines between the critical points, just as in Morse theory.

So we could try to mimic this picture in infinite dimensions with the holomor-
phic Chern-Simons functional C'S on 4, or a cover on which C'S is single-valued,
as our complex analogue of Floer theory.

This would give us the gradient flow equations

fa _ FPA0) =% FY? (1.7.2)
Fri * (Fy =% )7 .
for a family A = Ay + a(z) of connections on X xC /Z, with coordinate z on C/Z,
the Calabi-Yau analogue of the real line. For this to make sense we need a metric
on E to give a notion of adjoint on gz, so that % is the usual * on forms tensored
with * on g,. Then (1.7.2) is not an equation on the space of isomorphism classes
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of 0-operators since the equation is not invariant under the full complex gauge
group, just the unitary one. So we can, for instance, fix the metric on F using the

standard equation
iAFY = )M,

where )\ is a constant proportional to the degree of the bundle, and F) is the
curvature of the connection induced by the metric and the J-operator. Another
possibility is discussed in the next section.

Multiplying the Calabi-Yau form 6 by unit complex numbers gives the S* family
of such equations (1.7.2) which should then have a generically zero dimensional
space of solutions converging to fixed holomorphic connections at either end of the
tube. This follows from ellipticity of the equations modulo gauge (see the next
section on ASD equations), and the fact that the spectrum of the Hessian

V(dCS)

is symmetric about 0 as C'S is holomorphic, so J switches eigenspaces of opposite
signs (this is the statement that the real part of a holomorphic function is har-
monic), so the spectral flow is zero. We would then like to count solutions, com-
puting an infinite dimensional analogue of monodromy around the critical points
— the holomorphic bundles. The issue is, then, the compactness and smoothness
of the moduli space of gradient flow lines, i.e. the equations (1.7.2). But these are
essentially just the ASD equations of the next section.

ASD NG, Yang-Mills Af, etc.

We can write down the following analogue of the ASD equations on a Calabi-Yau
4-fold Y with holomorphic (4,0)-form 6;

*F? =% (Fy? A) = —FY°. (1.7.3)

Again this uses a metric on E, reducing the symmetry (gauge) group, so to fix the
metric and make the equations elliptic we supplement them with

ALl
iANFy = Al
These are now first order elliptic equations for A modulo unitary gauge transfor-
mations, with linearisation the elliptic complex
0(~C éA 0,1(~cC 52‘ 0,4+
0 — Q%(g%) — Q7 (g%) — 2 (gp) = 0

(1.7.4)
VI 00(g,) >0,
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where Q%% is the +1 eigenspace of x on Q%2 and 9§ = 1/2(1 +%)3,. Whereas the
usual ASD equations are related to the intersection form H?>x H? — Z, (a, 3) —
f a A (3, these equations are related to the bilinear form

HO?x HO? - C, (a,ﬂ)H/a/\ﬂ/\H. (1.7.5)
Y

The form is real positive definite on #%* and negative definite on 5%, and
these two spaces are interchanged by multiplication by i. (%% are the spaces of
harmonic 41 eigen-2-forms of x, using the fact that x commutes with the Laplacian
as 6 is parallel.)

Just as solutions of the ASD equations satisfy the Yang-Mills equations d% Fy =
0, solutions of (1.7.3) satisfy a Yang-Mills Af equation

I =0,
which is the Euler-Lagrange equation for critical points of the Lagrangian

| FY%)% = / tr FO2 Ax FY2 A 6.
Y

This equals
4m*(p(B)~[01,Y) + 2| Ey |,

so is clearly minimised by connections satisfying (1.7.3). This also demonstrates
that on a bundle admitting a holomorphic connection (more generally those with
(p1(E) ~ [0],Y) = 0) the “half-integrable” connections Fy* = 0 are actually
holomorphic, F2’2 = 0, just as ordinary instantons are flat on a bundle admitting
a single flat connection.

Thus, with the extra term to fix the metric, these half-instanton equations on
a Calabi-Yau 4-fold,

FYT =0, AFy =),

reduce to the Hermitian Yang-Mills equations on bundles with p;.6 = 0. These
equations, for A = 0, in fact have a symmetry under Spin(7) and can be written
down on any manifold with exceptional holonomy Spin(7) (see [DT] for the work
of Donaldson, Joyce and Lewis on this). Calabi-Yau 4-folds are Spin(7) manifolds:
the splitting A%? = A%+ @ A%~ exhibits SU(4) as a double cover of SO(6) (as
AOT = RS), so SU(4) sits inside Spin(7) as Spin(6). So in this particular case
solutions of the Hermitian-Yang-Mills equations do not depend directly on the
complex structure of the Calabi-Yau 4-fold but only its Spin(7) structure (which



1.7. SOME GAUGE THEORY N 29

is the 4-form 6 + 6 — w A w). This is again suggestive that the moduli space of
stable bundles should have topology independent of the complex structure on the
original manifold — see the discussion at the end of Section 1.4.

If X is a Calabi-Yau 3-fold then X x C/Z is canonically a Calabi-Yau 4-fold,
with holomorphic (4,0)-form 770x A m3dz, in the obvious notation. By a change
of gauge (parallel transporting down C/Z) we may make a connection take the
standard form in the C /Z direction, so on X xC /Z it may be written in terms of a
family Ao+a(z), z € C/Z of connections on X, as 04,4, (dZ ® 2) (in “temporal
gauge”). Then the equation (1.7.3) is precisely the gradient flow equation (1.7.2)
for the family a(z). The only difference is that there we fixed the metric using

AFAt = th_nFAt

on each 3-fold slice X; (with K&hler form wy, ), whereas the ASD equation fixes the
metric using AFy = waFy, with w the Kéhler form on all of X xC/Z. There are
obvious equations interpolating between these two, discussed in [DT], but anyway
the general idea and similarities are clear.

We can also consider the equations invariant in one complex direction to obtain
complex analogues of the Bogomolny equations on a Calabi-Yau 3-fold,

0, = *Fg’Qa ® e Qgp),

again supplemented by an equation on AF4 to fix the metric. Other dimensional
reductions of the equations give non-abelian Seiberg-Witten equations and Vafa-
Witten equations [VW] in four dimensions [DT].

The Atiyah-Floer conjecture A0

There is a similar Floer theory [At2] to compute “middle” dimensional homology of
the space of paths between two Lagrangian submanifolds in a symplectic manifold,
using the symplectic action functional. This has critical points the constant paths,
i.e. the points of intersection of the submanifolds, and the gradient flow traces out
pseudo-holomorphic curves in the symplectic manifold, once a compatible metric is
fixed. Given a Heegard splitting M = H,; Ug H, of M3 and applying this theory to
the space Mg of flat connections on S with its two Lagrangian submanifolds Mg,
gives another Floer homology of M. The Atiyah-Floer conjecture ([At2]) is that
these two homology groups should be naturally isomorphic. As described in [At2],
a path in Mg gives a path of connections on S, and so a connection on a neck SxI.
The paths we consider in the gradient flow end in the My, and so this connection
extends over the handlebodies H; to give a connection on HiUgy; Ho = M.
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So the gradient flow of the symplectic action functional gives a family of connec-
tions interpolating between two flat connections on M, just as the gradient flow of
the Chern-Simons functional does. The two families of connections will be different,
but it can be shown that their various indices, and the boundary operators, etc.
agree; see [DS] for a version of this. The main idea is to study the ASD equations
(which give the Chern-Simons gradient flow involved in the original Floer theory)
on the neck times R, i.e. SxIXR, in the limit of scaling down the metric on S,
or equivalently on stretching the length of the neck I. These tend towards flat
connections on the S factor, giving a map from I xR to Mg, and the equations for
these flat connections are the Cauchy-Riemann equations for a pseudo-holomorphic
curve in Mg. (In fact the curve is holomorphic — the Riemann surface is Kéhler,
essentially because of the isomorphism U(1) = SO(2), and this makes the space of
flat connections Kéhler. Similarly everything below will not not just be complex
symplectic but hyperkéhler, as Sp(1) = SU(2).)

We can speculate on analogues of this for our complex Casson invariant. Just
as the symplectic structure on the Riemann surface above induced a symplectic
structure on the space of flat bundles, the holomorphic symplectic structure on
the K3 surface S makes the moduli space Mg of holomorphic bundles complex
symplectic, and so Calabi-Yau (the top power of the symplectic form trivialises the
canonical bundle). Complex curves in Mg correspond, at least locally, to bundles
on SXA (A a neighbourhood of 0 € C). If there is a smooth deformation of
the singular Calabi-Yau X = X; Ug X, that contains S then S has trivial normal
bundle, so that a small neighbourhood will look like S x A, at least to first order.
Then the ASD Af equation on S xA; xA,, with the Kahler metric on S scaled by
€, takes the form

(F%Q)s =€x (F,%?)

oA 04
0z 07y

A1XAgn?

in the obvious notation. Thus, schematically, we take the limit ¢ — 0 to obtain a
family of holomorphic connections on the S factor, and thus a map AxA — Msg.
Since x on Q%! is just the quaternionic J derived from the complex symplectic
structure, this map satisfies the quaternionic equation

0A 0A
a— J—_ = 0,

82’1 622

an elliptic quaternionic analogue of the pseudo-holomorphic curve equation. Thus

we get a quaternionic curve in the hyperkahler manifold Mg.
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So there is a complex version of this adiabatic-limit part of the story. Perhaps
hoping for a complex Floer theory for Lagrangian intersections and analogies of
the full Atiyah-Floer conjecture are a little too much to hope for.

For paths with boundary lying in the Lagrangians we might substitute CP'’s
with two points (this is a Fano plus anticanonical divisor notice) lying in the two
Lagrangians. This does not seem to sit well with the quaternionic mapping picture
above however. Perhaps a holomorphic symplectic action functional, defined by
integrating the complex symplectic form against a holomorphic 2-form on a Fano
variety with suitable anticanonical divisor, is also too much to expect.

The last few sections have been deliberately vague as there are so many technical
details we have glossed over. So we need to tackle these in one case, namely the
holomorphic Casson invariant, which should be representative of the key issues
in trying to extract invariants from many of these gauge theories, and which will
now concern us for the next two chapters. Finally we will end with an appendix
describing some physics which motivates some more definitions and still-to-be-done
mathematics which is the complex analogue of knot theory.



Chapter 2

Holomorphic Bundles on a
Calabi-Yau 3-fold

2.1 The Serre construction

In this chapter we look at some examples of counting holomorphic bundles on
Calabi-Yau 3-folds. Our main technique for studying rank two bundles will be the
Serre construction. This is the codimension-two analogue of the correspondence
between line bundles and divisors — a section of a rank two bundle not vanishing
on a divisor defines a codimension two subscheme, and Serre gives the converse
construction of a bundle from the subscheme, once certain necessary and sufficient
conditions are satisfied.

Since it will be used repeatedly in dimensions 2 and 3, we briefly review it here.
This is a purely algebraic description, by no means comprehensible to anyone not
familiar with Ext groups, who should refer to [DK], pp 389-395, for an elegant
geometric treatment in the case of points on a surface.

The basic idea is that we would like an extension (2.1.2) below, which away
from the codimension two subscheme Y is an extension of O by ., classified by
H'(£*), and we find this group gives the choices of all the extensions with fixed
data on Y. On Y, this data turns out to just be a number on each component of
Y, giving a locally free extension (i.e. a vector bundle) if and only if these numbers
are all non-zero. So we have a sequence

H'(¥£*) — {Extensions} — H°(Oy),

and there exists a locally free extension if and only if an everywhere non-zero
element of H°(Oy) is in the image of the second map. The conditions in the

32
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theorem are just a Serre-duality criterion for determining this.

Theorem 2.1.1 Let Y C X, with components Y = |JY;, be codimension 2 sub-
variety of a complex n-fold X, with normal bundle v — Y. Suppose that A?v
extends to a line bundle L on X. Then there exists a rank 2 bundle E with
co(E) N [X] = [Y], A°E = L and section s vanishing precisely on Y if and
only if there exist non-zero complex numbers (a;) such that Y a; lew = 0 for
allwe H"?(L ® Kx).

Remarks.

1. Although we will usually consider only smooth subvarieties the results easily
generalise ([OSS] pp 90-101) to local complete intersection subschemes, where
locally we have a section of a rank 2 vector bundle cutting out Y scheme-
theoretically. In particular this is true for zero dimensional subschemes which
need not be reduced for the result to hold. So in later sections “n points”
will mean a length n zero-dimensional scheme, and a curve containing these
points will be tangent at any double points, etc.

2. We are using the fact that, on restriction to Y, w € H" ?(.Z ® Kx) becomes
an element of H"?(L ® Kx|y) & H"*(Ky).
Proof. Let .#y be the sheaf of ideals defining Y. We are looking for a Koszul
resolution ([GH] p 688)
050625 20 .9 —0, (2.1.2)

with & a rank 2 locally free sheaf, s a section defining Y, and L = A2E. Such
extensions of O by .Z ® .# are classified by the group Ext'(.Z ® %, Q) ([GH] p
725). It is traditional at this point (JOSS] p 94, [GH] p 728) to examine the spectral
sequence of the hypercohomology of &xt sheaves to recover Ext! (% ® #y, Q), but
since the general Serre duality theorem ([GH] p 708) is no more difficult a concept,
it seems simpler to note that

Ext' (Z® %,0) 2 H" (¥ ® % @ Kx)*. (2.1.3)
Then the exact sequence 0 - Q@ Sy @ Kx - L@ Kx — £ ® Kx|y — 0 yields
— H"2(¥Y®Kx) —» H" ?(Kyly) > H (Y@ % Kx) - H" (X®Kx) —

X ® X X

—  H)Z) <+ H°Oyly) « Ext'(¥®%4,0) « H (¥ <+
1 \J \J \J
C C C C

(2.1.4)
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where the second sequence is the Serre-dual of the first (using (2.1.3)); the pairings
commute by functoriality.

Not any extension will do, of course. 0 € Ext' corresponds to the extension
& =00 % ® F which is clearly not locally free. The necessary and sufficient
condition for an element of Ext'(.Z ® .#y,0) to define a locally free extension
is ([OSS] p 98) that it restrict, at each € Y, to a generator of the O,~-module
St (£ @ Sy, 0) = Ext' (S, 0,) ® ZF. From the sequence 0 — S — O —
Oy — 0 at z this group is isomorphic to Ext?(Oy, 0,) ® £,

Analysing the Koszul complex at x shows ([GH| p 690) that this is isomorphic
to (A?r @ Oy ® %), & Oy,z. Of course the restriction map to x factors through
the map Ext!(¥ ® #,0) — H°(Oy) in the sequence (2.1.4), so the condition
that & be locally free is that we can choose H°(Qy) 3 a = (a;) € @, H*(Oy;) in
the image of this map, such that all the a; are non-zero.

Thus we are left with showing that there are non-zero a; such that (a;) €
H°(Oy) maps to zero in H?(.£*). But by the Serre duality of (2.1.4) this is equiv-
alent to showing that its image is annihilated by all elements of H"?(.¥¢ ® Kx),
that is Y a; [, w =0 Yw € H"*(Z ® Kx). O

Remarks.

1. If Y is connected the conditions of the theorem reduce to wa =0 Yw €
H ”_2(L ® Kx).

2. If n = 2 then Y is a finite number of points (x;) in a surface X, and the
formula reduces to the usual residue formula (see for instance [DK] pp 392
395, where a much more attractive geometric proof is given). That is we
must pick bivectors (a;) in (L ® Kx)*|,, such that ) (wl|s;,a;) = 0 for all
w € H°(L® Kx). To make contact with the above theorem we must identify
L* with Kx (and so (L ® Kx)* with C) at the z; via the determinant of the
intrinsically defined derivative of s at its zeroes.

3. The image of H'(L*) in Ext! in (2.1.4) gives the different choices of extension
for a given set of (a;). This is best illustrated in the case Y is empty; then
extensions 0 = O — & — £ — 0 are well known to be classified by H'(L*).

Corollary 2.1.5 If Y is a smooth curve in a projective 3-fold X C CP* the
corresponding bundle ezists if and only if TY = O(a)|y for some power a of the
hyperplane bundle. The bundle is unique up to isomorphism if and only if Y 1is
connected.
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Proof. By the adjunction formula the extendability of A%v is equivalent to the
extendability of TY. But by the Lefschetz hyperplane theorem over Z, the line
bundles on X are just those on CP*.

We have on CP* the sequence, for d =deg(X),

0— O(k—d)— O(k) = Ox (k) — 0.

But as the cohomology of line bundles on CP" all lies in dimensions 0 and n ([OSS] p
8) the exact cohomology sequence shows that H!(Ox (k)) = 0 = H?(Ox(k)). Thus
(2.1.4) shows that the Ext group is just H°(Oy). The result follows. O

2.2 Bundles on a quintic 3-fold, and Mirror
Symmetry

We now look at a particular example of counting bundles. It should be noted
that in this example the bundles will not be strictly stable, and so will not fit into
the general theory of Chapter 3 without some modification. It is an instructive
example, however, clearly motivated by the holomorphic Casson invariant, and the
example in the next section will deal with strictly stable bundles.

A bundle is slope stable if all subsheaves of its sheaf of sections have strictly
smaller slope=degree/rank, and semi-stable if the non-strict inequality holds. (We
will describe the similar condition of Gieseker stability in Chapter three, but shall
only consider slope stability in this chapter.) For a rank two bundle we need only
consider subsheaves that are line bundles (though not necessarily subbundles). This
is because we need only consider rank one subsheaves, whose double duals are also
subsheaves of the same slope but are line bundles. Also, twisting a bundle by a
line bundle clearly does not affect stability.

So on a projective variety whose only line bundles are the O(n), we can normalise
any rank two bundle to have determinant A?& either O or O(—1). Considering
subsheaves O(t) — & we then see that & is stable if and only if it has no sections,
and is semi-stable if H%(&(—1)) = 0 in the first case (if A6 = O(—1) then semi-
stablity is equivalent to stability).

We consider bundles on a smooth quintic Calabi-Yau 3-fold X in CP* defined
by degree d, genus g curves C C X. We require that 7'C' extends to a line bundle
O(a) on X, which will pull back to a degree da = x(C) = 2 — 2g bundle on
C (more generally in the l.c.i. curve case we require that the determinant of its
normal bundle extends to O(—a)). Therefore d must divide 2 — 2¢g, and the bundle
will exist and be unique by (2.1.5).
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Proposition 2.2.1 Let C be a union of smooth curves in X with TC = O(a)|c (so
in particular each component has degree and genus satisfying da = x(C) =2 —2g
for some fized a). Then C defines a holomorphic bundle E — X with section s
cutting out C, A°’E = O(—a), and

1. If a s even then E is

5a

stable if and only if g > 2 and C' lies in no degree —= surfaces in X,

a

semi-stable if and only if g = 1,2 or C lies in no degree —5 (5 + 1) surfaces
mn X.

2. If a is odd then E is (semi-)stable if and only if g > 2 and C does not lie in

any degree —5 (“—;’1) surfaces in X.

Proof. (For a even only, the odd case is similar).
AE|e 2 A% 2 K} |c @ T*C 2 T*C = O(—a) e

shows we have A’E = O(—a).
Thus we have 0 -+ O — & — Fo(—a) — 0. Tensoring with O (%) and taking
cohomology,

o (0(2)) = (£(2)) o (2 () o

as H'(O(k)) vanishes on X, as shown in Corollary 2.1.5.
If g > 2 then a < 0, s0 h° (E (£)) = h® (I (%)) is non-zero if and only if C

lies in a divisor in |O (—%) |, i.e. a degree (—57“) surface in X (the 5 comes from

the degree of X ¢ CP*). But as A? (E (%)) =0, FE (%) is stable if and only if it
has no sections.

As the stability of E is equivalent to that of any of its twists we are done for
g>2. If g <1 then a>0and A2E = O(—a) is nonpositive, but E has a section,
so is not stable.

The semi-stability statement is similar, tensoring with O (% — 1) and using the
fact that E is semi-stable if and only if E (2 — 1) has no sections, as the O(k) are
the only line bundles on X. O

It is not at all clear that, generically, bundles defined by curves of genus g > 2
should exist. The virtual dimension of the moduli space of curves in a Calabi-Yau
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is zero, and we must cut down this space to those whose tangent bundles extend to
X. For genus 0 and 1 the tangent bundle is fixed, but for higher genus the condition
on the tangent bundle should cut down the space of relevant curves to negative
dimensions, unless the curves that exist in a Calabi-Yau are precisely those whose
tangent bundles extend.

It may be that here the analytical approach described in Section 3.1, using
(almost-) Hermitian-Yang-Mills connections on the bundles, and perhaps pseudo-
holomorphic curves, is more useful, allowing perturbations. It is not clear, however,
that on perturbation the condition “T'C extends” does not get perturbed to some
other condition precisely satisfied by the perturbed curves.

It is also quite feasible that bundles in fact correspond precisely to non-generic
families of curves of positive dimension that often exist. This is what happens
in the case studied in Section (2.3). For instance on a quintic 3-fold there is a
large family of quintic curves given by intersection with two hyperplanes. These,
however, almost by construction, correspond to unstable bundles.

In the absense of a proper understanding of ¢ > 2, and since we have seen
rational and quintic curves form unstable bundles, we concentrate on tori. Then
the bundles are all semi-stable, so should still form a moduli space.

The first mathematical accounts of Mirror Symmetry made only predictions
about rational curves in Calabi-Yau manifolds, and in fact much of this work
started out as a (failed) attempt to relate Mirror Symmetry and counting curves
to counting bundles. More recently Bershadsky, Cecotti, Ooguri and Vafa have
extended these predictions to higher genus curves (see [V] for example). Since
we might hope to count curves by counting the corresponding bundles, the first
interesting case in [V] is that of degree 3 tori in the quintic 3-fold, of which there
are predicted to be 609250.

To relate this number to counting bundles, and for us to be able to get a good
hold on the moduli space of all such bundles, we would like all bundles of this
same topological type to have a section vanishing on a degree 3 torus, and for
compactness of the moduli space we would like the bundles to be generated by
their sections after a fixed twist.

Theorem 2.2.2 Let E be a rank 2 bundle on a smooth quintic 3-fold X C CP*,
with A*E trivial and {c3(E)~w,[X]) = 3. Then E is semi-stable, and has a section
cutting out a union of tori of total degree 3 in X. Conversely, any degree 3 union
of smooth tori (or, more generally, locally complete intersection curves with trivial
determinant of their normal bundle) in X determines such a bundle. Also, all such
bundles are generated by their sections after twisting by a fized line bundle.
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Remark. We also analyse the dimension and smoothness of the space of such
bundles at the end of this section.

The converse part of the theorem has already been dealt with by Corollary
2.1.5 and Proposition 2.2.1, since the tangent bundle to any holomorphic torus is
trivial. Similarly if a bundle of this topological type has a section its zero locus C
has TC = K% ® A’E*|¢ = O¢, so must be a union of tori.

To study bundles on X we follow the standard procedure of passing down to
hyperplane sections and studying the simpler problem there. See, for example,
[Ha2]. His method is more general in that he studies all bundles (on CP?), and
it can’t be followed through in all generality on a quintic 3-fold (though see the
comments at the end of this section). Even in our simple case of degree 3 tori, the
problem becomes much harder and we have to diverge from his methods at one
stage and use what [OSS] call “the standard construction”.

Choose a generic smooth hyperplane section S C X, a quintic surface in CP?
with canonical bundle O(1). Let F denote E|s. Then cy(F) =3, A2F = Q and a
messy calculation gives the Riemann-Roch formula for F(t) as

RY(F(t)) — hY(F(t)) + h°(F(1 —t)) = 5t> — 5t + 7 > 0. (2.2.3)
Proposition 2.2.4 F = E|s has a section.

Proof. Substituting ¢ = 0 into the Riemann-Roch formula shows that F'(1) must
have a section. Suppose it vanishes on a divisor. Since we may choose S to be
sufficiently general, we can assume that all the line bundles on S are multiples of
O(1) (as the Noether-Lefschetz theorem [GH2] applies: since H*? = H°(O(1)) # 0,
the integer lattice H?(S;Z) C H?(S;C) generically misses the part of H>!(S)
orthogonal to ¢;(O(1))). Therefore we can untwist by the divisor to get a section
of some F'(—k) and so of F.
So we now suppose that F' has no section and F'(1) has a section vanishing only
in codimension two,
0= 03 Z(1) = H((2) — 0, (2.2.5)

where g is the ideal belonging to the zero set of s (8 points (z;) counted with
multiplicities — see the first remark after Theorem 2.1.1). By Theorem 2.1.1 such
an extension defines a vector bundle if and only if 3(a;)?, € (C*)® such that
Sais(z;) =0 Vs € H°(O(3)). (The identification of O(3) with O at each =; is
discussed in Remark 2 following the proof of Theorem 2.1.1.)
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Therefore such extensions exist if and only if the restriction map H°(O(3)) —
@° | 0,,(3) on S is not onto. The exact sequence 0 — Ogps(—2) = Ogps(3) —
O5(3) = 0 on CP? shows that A°(0g(3)) = A°(Ocps(3)) = 20, so the extensions
exist only when the kernel of the restriction map is > 13 dimensional. That is,
there must be a 12 parameter family of divisors in |O(3)| containing the z;.

Lemma 2.2.6 The x; lie in a 12 parameter family of cubics in |O(3)| if and only
if they either lie in the 10 point intersection of an element of |O(1)| and a coprime
element of |O(2)|, or if five of them lie on the intersection of two hyperplanes in

0(1)].

Proof. Suppose the z; lie on the intersection of the zero sets of s € H°(O(1))
and t € H°(O(2)) with s and ¢ coprime. Then they also lie in |s.H°(O(2))| and
|t.H°(O(1))|. The intersection of these spaces is the span of (s.t), so the z; lie in
an h°(0(2)) + h°(O(1)) =1 — 1 =10+ 4 — 2 = 12 dimensional space of divisors.

Similarly if five of the points lie on the intersection of s;, s € H°(O(1)) then
they lie in |s1.H%(O(2))] and |s2.H%(O(2))|. The intersection of these spaces is
|81.50.H(O(1))| giving a linear system of cubics of dimension h°(9(2))+h%(0(2)) —
R%(O(1)) — 1 = 15 containing the five points. Thus all eight points lie on at least
a 12 parameter family of cubics.

The converse is a known result in enumerative geometry whose proof is quite
long and too much of a digression to go into here [RV]. O

Proof of Proposition. If the z; lie on a hyperplane we may tensor (2.2.5) with O(—1)
and take cohomology to see that H°(F) =2 H%(.%3(1)) is non-zero, a contradiction.
So five of the points lie on the intersection of two hyperplanes given by sections
s1, 8o € HY(O(1)).

Since H°(F') = 0, the Riemann-Roch formula (2.2.3) shows that h°(F (1)) > 7,
which implies, by the above sequence defining F, that h%(.%(2)) > 6. But if %
denotes the ideal corresponding to the 5 points lying on the two hyperplanes, then
h°(#5(2)) = 7 by the sequence

0—-0—-01)®0(1) — H(2) — 0
that is the quadratics vanishing on the 5 points are
{s1.a+ 5.8 : o, € H(O(1))}, (2.2.7)

of dimension 2h°%(O(1)) — 1 = 7. Pick a sixth point zg from the eight. Since the
intersection of two hyperplanes in the quintic surface S is 5 points, z¢ does not also
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lie in the intersection. But by taking a linear combination of s; and s, if necessary,
we may assume without loss of generality that si(xs) = 0 (and sy(zg) # 0). Then
the quadratics vanishing on all 6 points are the quadratics of (2.2.7) with §(zs) = 0.

Thus h%(.%(2)) = 6, and yet h®(F(2)) > 6, so H*(#(2)) = H°(F(2)) and
the quadratics (2.2.7) with 5(zs) = 0 must vanish on all eight points. Therefore
they must all, like z¢, lie on the hyperplane s; = 0. Thus h°(F) = h%( (1)) =1
and F' has a section. O

We note at this point that the moduli space of such bundles ' — X that are
also semi-stable is therefore quite simple, at least over an open set. They all have
a section vanishing only on points x; of total multiplicity 3 where the restriction
H®(O(1)) = 6D, 9,,(1) is not onto and so the kernel is at least 2 dimensional. Thus
the z; lie on a pencil of hyperplane sections. T'wo hyperplanes generically intersect
in 5 points, and we have (g) = 10 choices of the 3 points from these 5. Thus an
open set of the moduli space is a 10-sheeted cover of P H?(O(1))xP H°(O(1)) =
CP?xCP3.

Following [Ha2] we now obtain bounds on h'(F(—t)) in order to pass up to
bounds on h'(E(—t)) which we can use in the Riemann-Roch formula on X to get
sections of E(t). To do this we shall first assume F' has a section not vanishing
on a divisor for some smooth S; later we shall show this is a consequence of the
semi-stability of F on X. (Thus F = E|g is semi-stable and the above description
of the moduli space of such bundles should be useful in describing the moduli space
of bundles £ on X. Very few such F’s come from an F; for instance those that
do must have the same extension data at each of the eight points (i.e. a; =1 Vi)
since we will show that E has a section vanishing on a connected curve C' whose
intersection with S is the eight points, and the extension data 1 € H°(Og) on X
restricts to the same at the eight points.)

Lemma 2.2.8 For a bundle F' — S with trivial determinant and a section van-
ishing on 8 points, H'(F(—t)) =0 V¢ > 0.

Proof. While twisting 0 - O - # — %3 — 0 by O(—t) and taking cohomology
(as in [Ha2]) is of no help because H?(F(—t)) & H°(F(1 +t)) is large, we may
twist by O(1 + ¢) and use Serre duality:

0> HY (F(1+1) — HY(SAOQA+1)— HAO(1+1)
R 1
HY(F(-1))* HO(0(-1))*
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Thus, for t > 0, h'(F(—t)) = h'(F(1 +1)).
But 0 —» £ — O — O3 — 0 (where Oy is the structure sheaf of the three
points) gives us

0 — H(A(1) — H(O(1)) = 05(1) — H(A(1)) — 0,

so that
h'(A5(1)) = dim coker [H°(O(1)) — O3(1)]

and it is now sufficient to show this is zero VI > 2.

These are not any three points, however. They define a locally free extension
Z and so by Theorem 2.1.1 we know that the restriction H°(O(1)) — O3(1) is not
onto; that is the three points lie on a pencil of hyperplane sections of S, i.e. on the
intersection of a line in CP? with S.

We can now play the game in reverse, passing up to the CP? hyperplane in CP*
that contains S, where we consider three points lying on a line. The problem is now
easy, however — sections of Og(n) all come from sections on CP?® which restrict to
the degree n polynomials in one variable on the line. We then know we can make
a quadratic, and so any higher degree polynomial, take on any prescribed value at
3 points on a line, so the above cokernel is zero. Il

Proposition 2.2.9 If E|s = F has a section not vanishing on a divisor then
E — X has a section.

Proof. We have the exact sequence
0— HY(E(-1-1)) = H(E(-t)) = H'(E(-t)|s) =0

for t > 0, by Lemma 2.2.8. Thus h'(E(—t)) = h*(E(—t—1)) V¢ > 0, and of course
h*(E(—t)) = 0 for t sufficiently large. Therefore h*(E(—t)) =0 Vt > 0.

The Riemann-Roch formula now becomes h°(E(t)) — h*(E(t)) — h%(E(—t)) =
£(5t* 4 16) showing that E(1) has a section.

It has nothing to say about FE, however, but the vanishing of H'(F(—1)) im-

plies that H(E) — H°(FE|s) is onto. Thus by Proposition 2.2.4, F has a section. [J

We now turn to the case of E|s = F having a section vanishing on a divisor for
generic S; we would like to show it pulls up to a section of E — X. However, the
above calculations were on the borderline of working and will not extend to the case
of F(—k) having a section vanishing on points; in fact they give large values for
h*(F(—t)) which are of no use to us in lifting sections to X. So we need to appeal
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to the semi-stability of £ on X. The idea is that if E(—1)|s has a section for all
generic hyperplane sections S in a pencil, we can try to glue them together to give
a section of F(—1) on X, contradicting semi-stability. Of course this will not work
in general, either because of the word “generic” above (compare the phenomenon of
jumping lines on CP? ([OSS] pp 26-38)) or because of the base-curve of the pencil.
What this will give us is a subsheaf of the pull-back of F(—1) to the blow-up of X
along the base-curve, but it could be twisted over the exceptional divisor. In our
case, however, the sections agree over the base-curve and we can show that they
push down to X using the “standard construction” (see [OSS] pp 46-53 for the
case of a point).

Theorem 2.2.10 Suppose that for some k > 0 and a nonempty Zariski-open sub-
set of the hyperplane sections S, F(—k) = E(—k)|s has a section vanishing only
on points. Then E(—k) has a section over X.

Remark. As we shall need to appeal to a similar result again in the next section,
notice the proof works in more generality: a rank two bundle of negative determi-
nant on a threefold has a section if its restriction to the generic hyperplane section
has a section vanishing in codimension two. Thus on a variety whose generic hy-
perplane sections have only O(¢) line bundles, a (semi-) stable bundle is semi-stable
on restriction to the generic hyperplane.

Proof. Choose a smooth hyperplane section S on which we have the sequence
0—-0— F(—k)— I(—2k) =0, (2.2.11)

for some zero dimensional ideal .#. Now choose a smooth hyperplane section of
this S (which will be a curve C') which misses the support of O/.#. Let these two
hyperplanes together define our pencil of surfaces in X, with base-curve C.

Then restricting (2.2.11) to C shows (since #|c = O¢) that h%(F(=k)|¢) = 1
and the restriction H(F(—k)) — H%(E(—k)|¢) is an isomorphism for a generic
smooth S for which we have a sequence (2.2.11). We need more than this, however,
to prevent “jumping line” type phenomena from occurring.

Now for any other S in the pencil, the sequence

0— H°(F(—t—1)) = H(F(-t)) = H*(F(-1)|¢)
shows that HY(F(—t)) =0 Vit >k +1 (as H*(F(—k — 1)|¢) = 0), and that

0 — HY(F(—k)) = H(F(—k)|c)-
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Therefore h°(F(—k)) < 1 but by upper semicontinuity ([Hal] p 288; using the fact
that the F’s form a flat family over the linear system of hyperplane sections since
E is locally free), h®(F(=k)) > 1 for all S in the pencil. Thus H°(F(-k)) —
H°(E(—k)|c) is an isomorphism for all S in the pencil.

Now we can follow [OSS] pp 46-53. Blowing up X along C gives part of the
“standard diagram”

X 2 x
pzi
CP!

Using the fact that the natural map & — (p1).pié& is clearly an isomorphism, we
have

HY(X;&(—k)) = H(X;(p)pié(—k)) =2 H(X;pié(—k))
= HY(CPY; (p2)«pi&(—k)) = HY(CP; (po).pi&(—k)Ip),

where D is the exceptional divisor p; 'C, and the last isomorphism follows from
the isomorphism
HY(E(=k)|s) — H(E(=F)|c)
inducing
H(piE(=k)|5) — H°(pi E(=k)|p)
and so
(P2)sPTE(=k) — (p2)P1E(=k)|p.

HY(E(=k)|¢) ® Ogp since D = CP'xC 2 CP'.
H(E(=k)|¢) = C. O

But (p2).plE(=k)[p =
Therefore H*(X; &(—k)) &

It is instructive to compare the above result with the case of jumping lines
in CP? ([OSS] pp 26-38). For example a bundle defined by the sequence 0 —
O(-1) - & - .# — 0, where .# is the ideal of a number of points, has generic
splitting type O @ O(—1) (and so one section) on restriction to generic lines. But
on a line passing through n of the points, it has type O(n) & O(—n — 1) and so
more than one section. However, on restriction to a basepoint of a pencil of lines
the bundle would always have two sections, no matter how much it is “untwisted”,
and the restriction map would not be an isomorphism of sections. Therefore the
above method would not give the bundle a section that it did not have on CP2.

Lemma 2.2.12 HY(FE) = 0 if and only if the curve defining E is connected.
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Proof. The sequence 0 — O — & — #¢ — 0 of E shows that H'(F) & H'(.%).
But then 0 — %o — O — O¢ — 0 gives

0 — H°(0) — H°(O¢) —» H' (F) — 0,
which shows that H'(.%¢) = 0 if and only if C is connected. O

In fact the quintic 3-fold generically contains no tori of degree 1 or 2 ([V]), so
in this case we have set up a correspondence between degree 3 tori and bundles of
a particular topological type. We can now use the above lemma to show that any
such F is generated by its sections after a fixed twist. The best I have managed is

Proposition 2.2.13 E(63) is generated by its sections.

Proof. Since I have nothing to add to the exposition in [Kl] pp 616-619, and could
not really improve on it for this special case, I shall just quote Kleiman’s results.

Since, by Lemma 2.2.8, Theorem 2.2.10, and Serre duality, h'(F(n)) = 0 =
h*(F(n)) Vn > 2, F = E|s is “m-regular”, in the notation of [Kl], for all m > 4.
Therefore FE is m-regular, and so generated by its sections, for all m > 4+h'(E(3)).
That our space of bundles forms a bounded family, generated by sections after a
fixed twist, comes down, therefore, to the fact that we have a priori bounds on E’s
cohomology.

We have, therefore, to bound h'(FE(3)). We have the sequence

0— H(E(n—1)) = H°(E(n)) — H°(F(n))
— H'(E(n —1)) —» HY(E(n)) — H*(F(n)).
Letting hf =dim H'(FE(n)) and f! =dim H(F(n)), we see that
b =Ty < fo = o+ o —ho_y.
Adding all such inequalities over n = 1,2, 3 gives

3
hy—hy < (fa—12) +h§ —h).
n=0

That is, 3
hy—hy <> (fa— 1) —1,
n=0

since hy = 0, hy = 1. But, similarly,

o= 0 <Y R(ER)) = B(ER)lc),
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which, by Riemann-Roch, equals — >} ,(10k — 10) = —5(n + 1)(n — 2). So
3
hy <h§—1-5) (n+1)(n—2)=h]—11.
n=1

But 0 — H°(O(3)) = H°(E(3)) — H°(#(3)) — 0 shows that h < 2h°%(0(3)),
which equals 2h°(O¢p(3)) = 70 by the exact sequence defining X in CP*.

Therefore E is generated by its sections after twisting 4 + h'(F(3)) <4+ 70 —
11 = 63 times. 4

This number can surely be improved, but it does demonstrate how the size of
various cohomology groups can grow very quickly, and how difficult it is to bound
them usefully. This is why, at present, studying the general case of bundles on a
quintic 3-fold seems out of reach. The method of [Ha2] is to relate the sizes of
all cohomology groups of E and then enforce h'(E(n)) = 0 for n > 0. A crucial
step, Lemma 5.2, breaks down on a quintic 3-fold. It concerns basepoint-free linear
systems on a line in CP?; in our case we need a similar result for basepoint-free
linear systems on a quintic curve in X C CP* While I can find a proof that
works for a linear system that generates the line bundle at five distinct points on
the curve, I cannot at the moment generalise this to just one point. It is possible,
however, that by looking at only linear systems that do generate the fibre at five
points (in our case O(n) for n > 8 on the quintic curve), Hartshorne’s method can
still produce something useful.

Theorem 2.2.14 If E is a bundle corresponding to a (connected) torus of degree
three in X, then H'(Endy (F)) 2 H°(vc) and H*(End, (E)) = H' (ve).

Proof. We now have H'(F) = 0 and a section giving0 — & - £Q& — £Q.Ic —
0. This yields
0— H'(End &) = H' (6 ® Fc) — 0.

Then 0 » & Q@ Io — & — &|c — 0 gives
0— H(&® S:) = H (&) = H(&|c) » H' (E @ Fo) — 0.
But the first map is an isomorphism, so that
H'(End &) =2 HY (& ® So) 2 H(&|c) = H  (ve).

Since H'(O) = 0 this gives H'(End, (F)), and taking duals gives H?. O
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So for a connected torus the deformation and obstruction theory of the bundle is
reduced to that of the curve, and for the generic quintic with only isolated connected
degree three tori we have H'(End, (F)) = 0 = H?(End (E)). Thus we would like
to identify the number of such bundles with the number of tori. There is still
some work to be done here, however, as the bundles are not simple (s ® s is a non-
scalar endomorphism of E, where s is its section) so that H%(End, (E)) and H? are
both one dimensional and should be taken into account. We should really consider
triples consisting of holomorphic bundles and elements of these cohomology groups,
and apply perturbations (or excess intersection theory) to the space of solutions
to deduce that we can count each of our bundles above as contributing one to the
total.

2.3 Bundles on a quartic in Gr (2,4)

The last example, while clearly motivated by the material of Chapter 1, would need
more work to fit into the general framework we will develop in Chapter 3 for the
holomorphic Casson invariant, due to the bundles being unstable. Thus we study
another example on a quartic hypersurface X of the Grassmannian G = Gr (2, 4) of
2-planes in C*, which is embedded as a quadric in CPP® via the Pliicker embedding.

A beautiful construction, due to Mukai [Mu] amongst others, of moduli spaces
of ((semi-)stable) bundles on certain intersections of quadrics in CP°, has been
reinterpreted by Donaldson (see [DT]) as an example of the Tyurin-Casson invari-
ant. Smoothing the union of two quadrics in G to a quartic X, this suggests what
the bundles (of the right topological type) should be on X, and would be an ex-
ample of both the other holomorphic Casson invariant and a case where both were
equal. Therefore in this section we describe the construction, and prove the natural
conjecture about bundles on the quartic X.

We begin with some standard geometry of quadrics, see for example [GH]. All
smooth even dimensional quadric hypersurfaces of projective space contain two
families of linear subspaces of half the dimension, which we call A-planes and B-
planes. In fact there is a complete symmetry between the two, and on degeneration
to a singular quadric they “coalesce” into a single family of planes and are swapped
by monodromy in the space of quadrics about the singular divisor (i.e. A — B is
the vanishing cycle).

Now the Pliicker embedding exhibits the Grassmannian G =Gr(2,4) as a
quadric in CP® = P(A2C*) (in fact as any smooth quadric since any two non-
degenerate quadratic forms are conjugate). On G there are two tautological 2-plane
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bundles, the subspace bundle (whose dual we denote A) and the quotient bundle
B:
0> A* >C*—> B—0.

Sections of A are given by linear functionals f € (C*)*, whose vanishing locus
is easily seen to be
Gr (2, Ann f) 2 Gr (2,C?) = CP?,

while sections of B are given by elements v of C* with zeroes
{A €Gr,(2,4): A>v}=2P(C*/C.w) 2 CP~

Thus we have two families of planes in G which are of course precisely the A- and
B- planes.

The Pliicker embedding is given by the linear system of A2A = A%B, so this
is the hyperplane bundle O(1) on G. Restricted to an A or B plane this is the
standard hyperplane bundle on CP? i.e. the planes have degree one. (For instance
a two form 1) € A?(C*)* gives a section of Og(1) which on restriction to the B-
plane P(C*/ C.v) gives the section of O¢p2(1) corresponding to the linear functional
w— Y(v Aw) on C*/C.v.)

Thus a quartic hypersurface of G intersects the generic A- or B- plane in a
quartic curve. So we see that on a Calabi-Yau 3-fold X that is a smooth quartic
in GG, the A- and B- bundles have sections vanishing on smooth curves of genus 3,
which we shall use later.

The construction

Fix a smooth quadric G = @, in CP®, in a CP?family of quadrics spanned by
o, @1 and @2, say. The singular quadrics in the family lie on the sextic curve

C = {[)\0; )\1; )\2] € (C]P2 s det ()\()Qo + /\1Q1 + )\QQQ) = 0} C CPQ

where the determinant of the quadratic form defining the quadric becomes singular.
Thus for every point of CP?\ C we get two bundles A and B over the corre-
sponding quadric and so over the K3 surface

S=QoNQ1NQs.

On the other hand, points of C' give us only one bundle (corresponding via its zero
set to the single family of planes on a singular quadric). In fact these A and B
bundles give a double cover M of CP? branched along the sextic curve C' (so M
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is another K3) as the moduli space of bundles of this topological type over the K3
surface S = Qo N Q1 N Q5.

The Fano X; = @y N @ lies in the pencil spanned by )y and @), which is a
line CP! in our CP? family. The 2-fold branched cover M; of this line induced by
M — CP? is the set of A and B bundles on the quadrics in this pencil, and again
this actually exhibits this cover as the moduli space of bundles on the intersection
X; of the quadrics. (The cover M, is a genus 2 curve whose moduli space is well
known to be, dually, the intersection of two quadrics, the duality being set up by
the universal bundle on X; x M;.) Clearly the embedding M; — M is induced
by restriction of bundles from X; to S, and M, is trivially a complex Lagrangian
subspace of the complex symplectic K3 surface M, as in Section 1.4.

We have a similar picture for Xy = Qg N @2, with My the cover of the line in
CP? corresponding to the Qg, Q- pencil. But S is an anticanonical divisor of the
Xi’s, as Kx, = O(—2), and their union across S is a singular quartic (i.e. a singular
Calabi-Yau) in G = Q. Just as in Section 1.4 we define the moduli space of bundles
(of the right topology) on X = X; U X5 to be the space of (semi-stable=stable)
bundles on X; L X, that are isomorphic on S, that is the intersection of the M;
and M, in M. But this is the double cover of the intersection of the two lines in
CP?, i.e. the two points corresponding to the two bundles A and B on Q.

(Alternatively note that since X is X; glued to itself along S, we want the self
intersection number of the genus 2 curve M; in M, which is the Euler number of
its normal bundle. This is the Euler number of its cotangent bundle —yx(M;) =
2g — 2 = 2, as required.)

Deforming this singular quartic in G' to a smooth Calabi-Yau we would like,
then, to prove the following.

Theorem 2.3.1 The bundles A and B restrict to stable bundles of the same topo-
logical type on X, a smooth quartic hypersurface of G = Gr(2,4). These are

the only (semi-)stable bundles of the same topological type, and they are isolated:
Hl(EndO A) =0= Hl(EndO B)

Proof. We have shown in the introduction to this section that bundles £ = A or
B have sections vanishing on genus 3 curves C' in G, giving us a presentation

0—-0—8&— F(1) — 0. (2.3.2)

This shows F(—1) has no sections, and since, by the Lefschetz hyperplane theorem,
the O(n) are the only line bundles, £ must be stable.
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Next we would like to show that F is isolated. We will use repeatedly the facts
that A°’E = O(1), E* & E(—1), and the canonical bundle of X is trivial. Also,
being a 3-dimensional complete intersection, H'(O(n)) = 0 = H?*(O(n)) for all n
(prove this by noting it is true in projective space and holds on passing down to
hypersurfaces).

Lemma 2.3.3 For E either of A or B, H'(E) = 0.

Proof. By Serre duality it is sufficient to show H?(E(—1)) = 0. But the sequences
(2.3.2) and 0 —» Fc — O — O¢ — 0 yield

0 — H*(E(-1)) - H*(S) —» H3(O(-1)) —» H3(E(-1)) = H}(H:) —» 0 .

I 1 1 12
H'(0c)  HO(O(1))" HO(E)* H3(0)

Thus h'(E) = h*(E(-1)) =3 -6+ h%(E) =1 = h%(E) — 4 = h%(H(1)) — 3, again
by (2.3.2). Let P be an A- or B- plane in G whose intersection with the quartic
is C. Then we relate H(.#;(1)), i.e. the hyperplane sections of X containing C,
with H°(#p(1)), the hyperplane sections of G containing P. We have

0= HIp(1) — H°Os(1) — H°Op(1))

) ! )
0— HI(1)) — H°Ox(1)) — H°(0u(1)),

where the last two vertical arrows are isomorphisms by 0 — O(-3) — O(1) —
Op(1) — 0sequences on G and X (here D is a quartic divisor in G or X). Therefore
by the 5-lemma the first arrow is also an isomorphism and h'(E) = h%(#(1))—3 =
h?(Fp(1)) — 3.

Suppose that P is an A-plane, represented as in the introduction by f € (C*)*.
Then the sections of O(1) (represented by elements 1) € A?(C*)*) vanishing on P
are

{v:onf=0}=fA(CH =(C")/C.],
so that h%(#p(1)) = 3, and h'(E) = 0 (the B-plane case is similar). O

We can also show that H'(F(—1)) = 0 using (2.3.2) and the fact that C is
connected. Therefore tensoring (2.3.2) with E(—1) and taking cohomology gives

0— H'(End&) - H (S ® &),
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and the sequence 0 = I ® & — & — &|c — 0 yields
H(&) — H°&|¢) = H (S ® &) — H'(&).

The last term vanishes, by the lemma, so to show that H'(Endy &) = H'(End &)
is zero it is sufficient to show that the restriction map H°(&) — H°(&|¢) is onto.
Let P =P ((C*)*/C.f) = P(V) be the A-plane as before, so that C is a quartic
curve in P (the B-plane case is similar). We first show the restriction of H°(A)
from G to P is onto.
From the description of A as the universal quotient bundle of (C*)* on G (0 —
B* — (C%)* — A — 0), we see that on P, A is given by

0—-0(-1) >V —->A—=0. (2.3.4)

Thus V = H°(P; A) and H°(G; A) = (C*)* — (C*)*/C.f =V is onto.

So we are left with showing that H°(P; A) — H°(C; A) is onto, for which it is
sufficient that H'(P; A(—4)) vanishes. But this is dual to H'(P; A) which vanishes
by the sequence (2.3.4).

Therefore we have shown that A and B are isolated on X; what remains is to
show that given a stable bundle E of the same Chern classes it must be one of A or
B. As in the quintic example we first show it has sections, using Riemann-Roch.
To do this we must control E’s cohomology groups by studying E on restriction to
hyperplane sections.

Proposition 2.3.5 Let S be a generic hyperplane section of X, and let F = Eg.
Then H'(F(—t)) =0 V¢ > 1.

Proof. We proceed just as in the quintic 3-fold example in the last section. By
Theorem 2.2.10 and the remark there, the stability of £ implies that E is semi-
stable (and so stable) on restriction to the generic S, whose only line bundles are
powers of the hyperplane bundle by the Noether-Lefschetz theorem. Thus F’s
sections, which are guaranteed by the Riemann-Roch formula

RY(F) =4+ h'(F)/2 > 4,
cannot vanish on divisors, and we get a sequence
0-0—>% — (1) =0,

from a section vanishing on 4 points (more precisely, a subscheme of length 4).
Taking cohomology h°(.#;(1)) = h%(F) — 1 > 3, so the points lie on a web of
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hyperplanes in S (and S is the intersection of a quartic and a quadric in (CIF’4).
Therefore the points lie on a line in CP*.
The above sequence gives us, for ¢ > 2,

0— HYF({t-1))— HY(A) —» H*(O(t—-1)) =0,

R R
HY(F(1-1t))* H°(O(2 —t))*

since H?(F(t — 1)) & H°(F(1 — t))* vanishes by stability. Thus it is sufficient to
show that h'(#(t)) vanishes for t > 3 and is 1 for ¢ = 2.

But this is easy since the points lie on a line in CP*. Given values at 4 points
on a line (or 3 values and a derivative if there is a double point, etc.) there are
polynomials in one variable of any degree ¢ greater than or equal to 3 taking those
values at the points, and all these polynomials come from sections of O(¢) on CP*,
which restrict to sections on S. Thus

H(0(t)) — H®(04(t))

is onto and H'(.#,(t)) = 0. By the same argument h!'(.#,(2)) = 1, and we are
done. 0

Now the sequence
HY(E(-t—1)) = H'(E(-t)) — H'(E(-t)|5)

and the above proposition show that H'(E(—t)) = 0 V¢t > 1, and in particular
H'(E(—1)) = 0. Using this and stability, the Riemann-Roch formula for such an
E takes the simple form

R°(E) — h'(E) = 4;

thus F has at least four sections. By stability again these do not vanish on a
divisor, and we have a sequence

0->0—>¢&— F:(1) =0,

for some degree four curve C. But then h°(.#z(1)) > 3, and C lies in a web of
hyperplanes in X C G C CP®. Thus it lies on a linear CP? plane in CP°. Since C
lies in the quadric G, the plane must do too, otherwise the quadric would intersect
the plane in a conic curve containing the degree four curve C', which is impossible.
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So the plane is one of the A- and B- planes, P say, in GG, and C' is the intersection
of P with the quartic. P uniquely defines either the A or the B bundle on G via
the Serre construction (2.1.1),

0—-0—A/B— Zp(1) =0,

by the extension data Ext!(#p(1

), O H°(Op) > 1. This extension restricts,
on the quartic X, to 1 € H(O¢) 2 E

( c(1), Ox), defining our bundle E
0028 — F:(1)—0

by uniqueness, since H°(O¢) =2 C (C is a curve in CP?, so is connected). Therefore
E is one of A or B restricted to X. a

2.4 Bundles on K3x7T? and the Vafa-Witten
equations

Our final example, suggested by Donaldson, touches on possible relations with
physics and the fashionable topic of modular forms. To obtain firm conclusions
would take us into analysis of the Vafa-Witten equations in four dimensions, so we
will only sketch the ideas.

Recall our discussion of tori and Mirror Symmetry in 2.2, referring to the pre-
dictions of [V]. Physicists rarely count numbers, they deal in generating functions
for sequences of numbers, and what is actually predicted in [V] is that the power
series with coefficients the number of degree n tori in the quintic 3-fold should
be a certain modular form (I think, although this is unclear from [V]). Donaldson
pointed out that such modular forms arise in a completely different way via the
work of Vafa and Witten [VW] on S-duality.

S-duality is a conjectural non-abelian generalisation of electromagnetic duality
which therefore has consequences for instantons on 4-manifolds. The main point
of [VW] is that the Vafa-Witten equations come from a Lagrangian similar to
that in Witten’s version of Donaldson theory, and one to which S-duality should
also apply. But the Vafa-Witten theory is chosen to (formally) compute the Euler
characteristic of moduli spaces of instantons, at least when a certain vanishing
result holds, by a method quite similar to the discussion of Section 1.4. Suppose
a space of instantons M is smooth of the correct dimension d. Then it is cut
out by an infinite number of equations in “co 4+ d” unknowns, in the sense of the
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Fredholm theory of the ASD equations giving a section of an infinite dimensional
vector bundle over the infinite dimensional space of connections modulo gauge. If
we add in d more equations which in fact constitute a section of 7'M we should get
X(M) solutions (counted with signs). What Vafa and Witten in fact do is add in
infinitely more unknowns with “oo + d” more equations, with kernel isomorphic to
the cokernel of the original equations. This ensures that the original moduli space
M sits in the space of solutions (by setting the other variables to zero), and that
also, if these are all of the solutions, on perturbation the moduli space breaks up
into x(M) solutions when counted with sign.

So, when the vanishing result (that all solutions lie in M) holds, and ignoring
compactness problems, we expect the partition function of “topologically twisted
N = 4 supersymmetric Yang-Mills theory” to compute x(M), and then a conse-
quence of the S-duality conjecture is that the generating function

Zx(1) = 25 S = (2.4.1)

should be a modular form of 7 with respect to the standard action of (a large
subgroup of) SL(2;Z) — the group of the S-duality. Here s is some constant, #Z(G)
is the number of elements in the centre of the structure group G, and M,, is the
moduli space of G-instantons of instanton number n (this is ¢; for G = SU(2)). The
Euler characteristics have to be properly interpreted keeping in mind singularities
and compactifications of the M,,.

In particular for X = K3, where a vanishing theorem does hold, using results
of Mukai, Nakashima and Qin, [VW] show that (2.4.1) is indeed a modular form.

We will now relate this to our discussion using an observation of Donaldson.
The moduli space of stable holomorphic bundles on the Calabi-Yau K 3x7? contains
M (by pulling up). The generic number of bundles on K3x7T? that any theory of
counting bundles would produce ought to be the Euler characteristic x(M g3xr2)
of the moduli space of ((semi-)stable) bundles on K3 xT?, as discussed in Section
1.4. So, accounting for the bundles on K3xT? that are not pull-ups, the generating
function of the Euler characteristics x, of the moduli spaces of bundles of the type

A’E =0, c(E)=7"n],

should be a modular form. (Here [n] denotes n times the generator 1 € H*(K3),
and 7 the projection to K3.)

So let M g3 be the moduli space of stable holomorphic bundles F' with trivial
determinant and fixed second Chern class n. Letting M g3.72 be the correspond-
ing space of bundles with ¢ = 7*n, we have four copies of Mgz in M g2,
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corresponding to the four line bundles L on T? with square zero: if p denotes the
projection to T? then £ € Mgz = m*E @ p*L € M g3y since it has determinant
7*A2E ® p*L?, which is trivial for L? = O. That is,

4 Mgz — Mgsere.

At least infinitesimally we can see that this is all of M gsy72, i.e. that it is an
open subset. Deformations of such a bundle are given, to first order, by

H'(Endy (7*E ® p*L)) = H'(7*Endy(E)),

which, by the Kiinneth formula, equals H'(End, (E)) since H°(End, (E)) = 0 by
stability.

There may, however, be other components in M g3.72, as we outline very briefly.
We are free to choose the polarisation (Kahler form) to make the T fibres very big
and so the K3 fibres of the projection p very small, along the lines of Friedman’s
“n-suitable” ample divisors in [Fr| (where 7*[n] = co(F)).

Suppose firstly that the torsion free (and so locally free) sheaf

p«(F) #0.

Taking a line bundle subsheaf L=! — p,(F) and using the map p*p.(F) — F, we

obtain a rank one subsheaf
0—p'L !t — 2.

Thus there is an effective divisor D with a section p*L™' ® O(D) — .Z vanishing
only in codimension two. By stability D must be contained in the fibres of p
(otherwise, by the choice of polarisation, [D] ® p*L ™! .w would be positive) and so
is pulled up from T2 also. Thus we may write, without loss of generality,

0=p' L' > .ZF 5 p LI —0.

By calculating ¢y of such an F' we see that the homology class of the curve C
is pulled up from K3, so 7(C) is a zero dimensional subscheme Z of K3, and
C = n*(Z). Locally free sheaves of this sort do exist, as the conditions of Serre’s
construction (2.1.1) are easily satisfied (H?(L) vanishes by the Kiinneth formula),
and they are stable for L not too positive. In fact F' can only be destabilised by
line bundles of the form p*L ® O(—n*D) where D is a divisor on K3 containing
7. Stability forces this line bundle to have negative degree with respect to our
polarisation and so bounds the degree of L in terms of that of D and n.
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Tensoring the above sequence with p*(L ® L), for L; any other line bundle
on T2 shows that L is the unique line bundle such that F' ® p*(L) has sections
not vanishing on 7 fibres. So the subscheme Z C K3 is also unique. Therefore
Mgsy 2 contains some copies of products of Hilbert schemes of points in K3
and Jacobian tori. These have zero Euler characteristic and so do not affect our
argument.

So now we consider p,(F) = 0. In this case the restriction of F to the generic
K3 fibre is stable, and so we get a rational (and therefore regular) map

T2 Ly Mg,

Suppose for simplicity there is a universal bundle E over K3 x Mg (this is true
for odd ¢;), or atleast over f(T?), and consider the sheaf of homomorphisms

L=p, (%" ® fE).

On the generic K3 fibre, where F is stable, the maps from F'|k3 to f*E|g3 are
all multiples of a fixed isomorphism. So L is rank one, and thus a line bundle (as
could be guessed from the notation) since it is torsion-free.

This gives us the sequence

0= ZQpL— f'E—=Q—0,

for some torsion sheaf () supported on the finite number of fibres, K3; say, where the
second arrow is not an isomorphism. Since it has a two-step locally free resolution,
Q| k3, must be locally free. Fixing 4, if it is rank two then the above map vanishes
identically on K3; and so we may remove this fibre by adding the divisor [K3;] to
L.

So we may assume that Q|xs, is a line bundle. Taking second Chern classes
of the above sequence shows that cy(f*E).m*wgs equals co(F & p*L) . m*wis+
c(Q) . T'wrs = co(F) . T'wrs — Y c1(Qlks,) - wis, = — Y, c1(Qks;) - wis,. But
[*E|ks;, — Ql|ks; — 0 implies, by stability, that ¢;(Q|ks;)-wks, > 0 and the
above quantity is nonpositive. But co(f*E).7n*wgk3 must be nonnegative by the
Bogomolov inequality ([HL] p 71), so it must vanish, which can only happen if
there are no such K3; fibres. This gives us

05 Z@p'L > f'E—0, ie FPFERp L

Since cy(F) is pulled up from K3, the degree of the map f must be zero so that f
is constant, and the induced map on determinants implies that L has square zero.
Thus F is a pull-up from K3 twisted by a degree 2 line bundle on T2, as required.



Chapter 3

Compactness and Virtual Moduli
Cycles

3.1 The compactness and smoothness problem

By now it is clear we need some sort of compactness result for holomorphic bundles
on, say, a 3-fold, or at least a Calabi-Yau 3-fold, and some control or understanding
of smoothness or perturbations.

We could take a purely algebraic approach. Bundles generated by their sections
are quotients of trivial bundles, and as such are classified by holomorphic maps
X — Gr to some Grassmannian Gr. Thus, roughly speaking, compactness fails
when we cannot find a fixed twist E(n) of E such that all the E(n) of one particular
topological type are generated by their sections. So firstly this approach only
really works for projective algebraic varieties, where we have a positive line bundle,
and secondly we need this “boundedness” theorem (for instance we proved such
a boundedness theorem for the particular example of bundles we considered in
Section 2.2).

There is a general compactness theorem for “bounded families” of bundles (in
fact we have to consider all semi-stable torsion-free sheaves to compactify the mod-
uli space) on a projective variety in [M1,2]. What this boundedness comes down
to, in effect, is that on restriction to curves the bundles have a bounded number
of sections. Thus on repeatedly passing down to hyperplane sections of a variety
Maruyama shows inductively that in this case the bundle is generated by its sec-
tions after a fixed twist (as we did in Section 2.2). Of course it is crucial here that
the variety be projective, so we have such hyperplane divisors. In [M3] it is then
proved that all families of semi-stable rank 2 bundles on projective varieties are in

26
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fact bounded.

So for a projective algebraic variety we have a compactness result. But we have
lost the benefits of most perturbations, and we could only expect to get a moduli
space of the correct dimension if we could prove a “generic smoothness” result
along the lines of Donaldson’s result for projective surfaces, namely that

H?(Endy E) =0

for a Zariski-open dense subset of the moduli space, for sufficiently large c,. Even
then, in the 3-fold case say, to get H*(Endy F) & H°(Endy E ® Kx)* to vanish we
have to restrict to Fanos and Calabi-Yau manifolds. We will see several instances
below, in both the algebraic and analytic approaches, where the Fano case works
best while the Calabi-Yau case is borderline; the analytic approach may not work
(perturbations move the border) but the algebraic machinery does (though only
just).

Consider, for simplicity, SL(2,C) bundles on complete intersection 3-folds (so
that H'(O(l)) = 0 = H?(O(l)) VI) whose only line bundles are powers of the
hyperplane bundle. For bundles in the stratum of the moduli space consisting of
bundles with a section only after twisting by O(t), we have the exact sequence of
sheaves

0—0(=t) = & — Fc(t) — 0, (3.1.1)

for some curve (more precisely codimension-two l.c.i. subscheme) C' lying in no
divisor in |O(t — 1)|.

Then tensoring (3.1.1) by & ® Kx shows that H*(End, &) fits into the exact
sequence

HY (&(-t) ® Kx) = H*(Endy &) — H' (& ® F:(t) ® Kx)).

The first term is easily dealt with — by (3.1.1) it is isomorphic to H!(#c ® Kx),
which by the sequence 0 = £ — Ox — O¢ — 0 is the cokernel of the restriction
map H°(Kx) — H°(Kx|c). Thus for a Calabi-Yau or Fano this vanishes.

The second term fits into the sequence

HO(£(t) ® Kx)|c) — HH (& ® Jo(t) @ Kx) — HY&(t) ® Kx)

1 L
Hl(l/c)* Hl(fc(zt) ®Kx)

where v¢ is the normal bundle to C' (which exists since C' is a local complete
intersection; in fact v = E|¢). Thus for smoothness it would be sufficient to show
that

H'(C;vg) = 05
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i.e. deformations of the curve C' are unobstructed and of the correct dimension,
and

H'(4:(2t) ® Kx) = 0;

that is the map
H°(Kx(2t)) — H°(Kx(2t)|c) =2 H(C)

is onto.

The first condition is an added complication not present in the complex surface
theory where deformations of codimension-two subschemes, i.e. points, are clearly
unobstructed. It can often be satisfied if X is Fano, however — this is where,
for instance, Gromov-Witten curve-counting invariants are most easily defined,
and it is conjectured to be true in the pseudo-holomorphic curve literature for all
Fano varieties and sufficiently high degree C. It is also trivially true on so-called
convez varieties — by definition these satisfy H'(Tx|c) = 0 for every curve C' C X,
and H'(vc) is a quotient of H'(Tx|¢). Also many examples of moduli of curves
on Calabi-Yau 3-folds are known with isolated and unobstructed curves, so that
H 1 (Vc) =0.

The second condition, however, is more tricky. Problems arise because of the
possible non-connectedness of the curve C', as is seen most clearly on Calabi-Yau
manifolds. For a complete intersection 3-fold the sequence (2.1.4) in the last chapter
shows that the isomorphism classes of bundles corresponding to a fixed curve C
(with extendible determinant of its normal bundle) are parameterised by

P (Ext'(Sc(2t),0)) = P(H(C)),

which is zero dimensional if and only if C is connected. So on a Calabi-Yau, for
instance, an isolated curve will still give a component of the moduli space of bundles
M of too high a dimension if it is not connected. Also, of course, the “boundary”
of the Maruyama compactification, involving ideal sheaves corresponding to non-
connected curves and sheaves with singularities in codimension three, will have
components of too high a dimension.

However, it is often still clear what contribution a particular component of M
should contribute to the number of bundles (e.g. the Euler number of its cotangent
bundle in the case it is smooth, two if it is a scheme-theoretic double point, etc.)
even when we cannot show smoothness. Excess intersection theory deals with just
this problem, and is the method we will adopt in Section 3.3. First, however, we
discuss possible analytical approaches to the compactness problem.
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The Analytical compactness problem

We describe the analytical approach to the compactness of moduli spaces, based on
the result of Uhlenbeck and Yau that stable bundles correspond to Hermitian-Yang-
Mills connections [UY]. While the classical compactness theorems for Yang-Mills
connections apply only in dimensions four and below (see [U1]), Uhlenbeck and
Nakajima have partially extended the results to higher dimensions. We work for
now on a Kéahler manifold of arbitrary dimension. The case relevant to us is the
following.

Theorem 3.1.2 [U2, Nak] Let A be a Hermitian- Yang-Mills connection on a com-
pact Kdhler manifold X of dimension n. There exist constants €,6,C > 0 de-
pending only on X such that for all balls B, C X of radius r < § such that
27| Fallrxs,) < €, we have ||[Fal|pns,) < C 1% ™| FallL2(8,)-

As mentioned in [UY], this gives the following compactness theorem, also valid
for suitably perturbed Hermitian-Yang-Mills connections (small sup |iAF}"
do).

will

Theorem 3.1.3 Given a sequence of Hermitian-Yang-Mills connections there ex-
wsts a set S C X of Hausdorff dimension 2n—4 such that there exists a subsequence
(A;) convergent on X \ S in the following sense: there exists a smooth Hermitian-
Yang-Mills connection A on X \ S, and gauge transformations g;, such that for all
compact subsets K C X'\ S, gi(A;)|x converges to A|x in C™.

Proof. The characteristic class formula
1 1 0,2
P(B) = 15 [ FANFa = 1 (IFSIE + AR = IFAIP)

(where we decompose A2 ® C = A% @ A%0 @ C(w) ® A'), shows that for a
Hermitian-Yang-Mills connection,

IFall* = IAF A + | Fx||* = 2 | AF4|I* — 4n°pi(E) = 47*(2(deg E)* — p1(E))
is bounded. Thus |F,,| is (after passing to a subsequence) convergent as a measure

14 say.
Now let S be the set of “bad” points

{:rEX 1 Vr < 6, 7“2_”(/&(@

and fix 7 < §. We may choose a finite number of points (z;)Y, C S such that
z; & Byja(x;) Vi # j, but Vo € S, Fi such that B, jo(x) N B,ja(x;) # 0. Thus,

d,u) > ¢/2 }
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1. the B, /s(x;) are disjoint, but,
2. the B,(z;) cover S.

Take K such that Vol(B,(y)) < Kr*" for all r and y, and k such that A = Ay, has
27| Fallr2(B, (z:)) = €/4 for all 4. Then by 1,

Ne? B
|1Fall? > ZIIFAlliz(B,,Z(m) > E(T/Q)”‘ 4
i

4=2n ysing the above bound on ||F4||?>. So, by 2, S can be covered

so N < const.r
by const.r*~2" balls of radius r for all r < §. But this is precisely the statement
that S has Hausdorff dimension < 2n — 4.

The proof is now routine, and just as in the four dimensional case. Theo-
rem (3.1.2) allows us to pass from estimates on 727"||F4l|12(5,) to estimates on
|Fallzn(B,) in small balls about the good points X \ S. Then the earlier results
of [U1] give us a Coulomb gauge in which we can pass to ||A||z» bounds and so a
convergent subsequence in L". The patching constructions for such gauges, and the
diagonal argument to get the convergent subsequence on X \ S, are quite long and
tedious but the same as in four dimensions ([DK] pp 158-160). Elliptic regularity
then gives C'™° convergence to a C*° Hermitian-Yang-Mills connection A. O

Remark. There is also a version of this for a perturbed Hermitian-Yang-Mills
equation, so we can indeed perturb the almost complex structure and metric. An
appropriate elliptic system

F$? = 9*u, iAF}" = M, (3.1.4)

can be set up which makes sense on any almost-Kéahler manifold, and reduces to
the same equations when the structure is integrable, by the Bianchi identity. A
Weitzenbock formula shows that for the L?-norm of the Nijenhius tensor suitably
small compared to the minimum of the scalar curvature s we still get || Fla||z2 bounds
on solutions. So in the Fano case, where s is positive, we still have the beginnings
of a compactness result.

The obvious hope, then, is that the “bad” set S should be, in the 3-fold case, an
embedded holomorphic curve C' C X. The forms cy(A4;) — ca(As) (Where Ay is the
limiting connection of [BS], discussed below, say) converge as currents to a (2,2)-
current 7" on X, which we would like to show is the current dual to a complex curve
C'. Then the results of [Siu] are very suggestive of the problem here. He shows that
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positive (p, p)-currents have singular sets (where they have positive Lelong number
— see [GH| pp 366-392) which are holomorphic. However, although

—e(A) Aw=C||Fg|Pw® — -TAw

is positive, we have no such result for 7". So Siu’s results would need extending to
include currents that are somehow positive “on average” to be of use here.

Alternatively, we could try to follow similar lines to those of [T2], who shows
that the zero set S of a section of a line bundle satisfying a perturbed Seiberg-
Witten equation is a pseudo-holomorphic curve. He does this by giving a “positive
cohomology assignment” to all 4-discs transverse to .S, which turns out to be the
intersection number. Continuity of this assignment translates, eventually, into S
being pseudo-holomorphic. We could give hyperplane sections (in the algebraic
case) a similar positive cohomology assignment in our threefold X, by looking at
the holomorphic structures defined by the A;’s restricted to the hyperplanes, and
tending 7 — oo: four dimensional theory will now give a number of singular points,
at least if the holomorphic structures are stable (and thus admit HYM connections);
this is our assignment.

We would like then to be able to remove the singularity to obtain a Hermitian-
Yang-Mills connection (on a bundle with smaller ¢y.w) on all of X. Bando and
Siu [BS] prove that the singularity can indeed be removed to produce at least a
reflexive sheaf with HYM metric on its locally free part. It should be clear from
the proof that c3 of this sheaf vanishes so that it is locally free. This is of limited
use, however, as we have now lost the advantages of perturbations, the method of
proof being so reliant on the holomorphic structure; we would like a version which
would apply to the equations (3.1.4) and perhaps pseudo-holomorphic curves.

So we still require a purely analytic approach. The local result we need is that an
L? Hermitian-Yang-Mills connection on A"\ A"~2 (where A" is a neighbourhood
of 0 € C") extends smoothly to one on A"™. This cannot, however, be true in full
generality, since the pull-up of a stable bundle with ¢, # 0 from CP? to C3\ {0}
admits a (pulled-up) HYM connection which turns out to be L?, but clearly does
not extend over the origin.

Based on the results of Uhlenbeck and Nakajima, however, we could make the
following conjecture, the conditions of which are not satisfied by the above example,
but are satisfied by the model case of the pull-up of any L? Hermitian-Yang-Mills
connection from A?\ {0} to A"\ A"™? =2 A""2x (A?\ {0}) (using the removal of
singularities result in four dimensions and some elementary integration).

Conjecture 3.1.5 If A is a Hermitian- Yang-Mills connection over A™\ A™ 2 such
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that 7> 7"||Fa|| 2y < € for all v sufficiently small (where € is a constant smaller
than that in (3.1.2)), then it extends smoothly to a Hermitian- Yang-Mills connec-
tion on A"™.

I will not record my failed attempts at proving this, as probably it should really
be tackled as if it were the pull-up of a four dimensional problem, using Sobolev
norms with only derivatives in the R* directions.

It is clear, though, that if results such as these could be pushed through, there
would be a natural analogue of the Donaldson-Uhlenbeck compactification of ASD
moduli spaces in four dimensions. The boundary would consist of “ideal connec-
tions” with Dirac-delta co-singularities, each represented by a connection on a bun-
dle with lower ¢y.w (this is the limiting connection with its singularity removed),
and a complex curve along which the singularity lies. Perhaps this could even
work in the almost-Kéahler case with pseudo-holomorphic curves, allowing more
perturbations to ensure a smooth moduli space.

Again, this might really only be of use on Fano 3-folds; here not only do we still
have L? bounds on curvature if we perturb the equations, and hope that the space
of curves will be smooth, but also only on Fanos are the expected dimensions of
the boundary components of the above compactification smaller than that of the
original moduli space. This can be seen from the formulae which can be computed
for the virtual dimension

—x(Endy E) = ¢1(X)(2c5(E) — %CQ(X))

of the moduli spaces, and the index x(v¢) of the deformation problem of a curve
C,
x(ve) = {a(X),[C]),

since PD [C] is the change in ¢y(E) when a connection bubbles off along [C]. So,
either by algebraic or analytic means, it may be possible to introduce invariants
of Fanos via Donaldson’s p-map, as a first step towards the harder problem of
counting bundles on Calabi-Yau 3-folds.

The approach we take, however, is algebraic, and does not try to control the
non-smoothness of the moduli space, but takes account of it.

3.2 Moduli of sheaves

We work on a smooth projective variety X of dimension n. For instance a Calabi-
Yau 3-fold with h%! = 0 (a condition which is often included in the definition of
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a Calabi-Yau) is projective algebraic by the Kodaira embedding theorem: h%? =
0 = h?? so all 2-cohomology classes are (1,1) and we may find a rational Hodge
class approximating the Kahler form. We start by fixing our notation and recalling
some fundamentals of sheaf moduli theory; an excellent reference is [HL].

A coherent sheaf is of pure dimension d if the supports of all non-zero subsheaves
are of dimension d. In particular it is pure of dimension n =dim X if and only if
it is torsion-free. The Hilbert polynomial of a sheaf & is

P(t) = x(&(t)) = h°(&(t)) fort >0,

and the normalised Hilbert polynomial is P(t)/rk(E). A sheaf is stable (in the
sense of Gieseker; this is the notion we shall use from now on) if and only if all
coherent subsheaves have strictly smaller normalised Hilbert polynomial for ¢ > 0,
and semi-stable if the inequality is not strict. Importantly stable sheaves are simple
~ their only global endomorphisms are scalars: H°(Endy &) = 0.

The family of pure dimensional semi-stable sheaves of a fixed Hilbert Polynomial
P form a bounded family (see [HL]| for the definition and the proof, which we will
not need), and Simpson [S] has constructed their moduli space M as a projective
scheme — in particular it is compact. The locally free sheaves (vector bundles) form
a Zariski open subset, which may of course be empty for some choices of P, and
stability is also an open condition. We will review Simpson’s construction (which
is slightly different from Maruyama’s) when we need it below.

The deformation theory of sheaves shows that the Zariski tangent space of M
at a stable point & is Ext!(&, &) (there is an identification of semi-stable points
in the moduli space, so their tangent spaces are more complicated to describe).
At locally free points this reduces to the more familiar H!(End (£)), and more
generally there is a spectral sequence relating the two with H°(&xt'(&,£)), which
parameterises local deformations of the singularities (non-locally free points) of &

There is a generalised Serre duality theorem that for arbitrary coherent sheaves .#
and 4 on X,
Ext!(Z,9) 2 Ext" (¥, # @ Kx)*,

easily proved from normal Serre duality by induction on the length of a locally free
resolution of ¢. Thus the cotangent space to M is Ext" (&, & ® Kx).

There is a trace map on any Ext(E, E) group or sheaf, generalising that on the
Hom(E, E). Taking the trace-free part Exty of everything in this section corre-
sponds to fixing the determinant of &.

In algebraic geometry tangent spaces do not glue well to form a sheaf, and the
more natural object is the cotangent sheaf (2 of a scheme. Lehn [L] has shown that
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about stable points,
QM = éaact;;lM/M(éa, ER® KX)O;

where & is a universal sheaf on X x M (one exists locally and the results patch
together independently of choices), and &t} MM A€ the relative Ext sheaves of
the projection X x M — M. (Technically these are the right derived functors of
Homxxmm(F,9) which associates to sheaves # and ¢ on M a sheaf whose
sections over an open set U C M are global homomorphisms from % to ¢ over
X xU.) So Qu has fibre the Zariski cotangent space Ext! (£, & ® Kx) (base-
change holds [BPS] as Ext? vanishes by stability — it is dual to H°(End, &)).

The obstruction space to the deformations of & is Ext3(&,&). For a torsion-
free sheaf (whose determinant is therefore a line bundle) we take the trace-free part
even if we do not fix determinants, since no obstruction lives in the H?(Ox) part of
Ext(&,&’); the extensions of line bundles (i.e. the determinant) are unobstructed,
or, in the language of gauge theory, abelian gauge theory is linear.

3.3 Excess intersection theory

The moduli space of sheaves of Hilbert Polynomial P and fixed determinant has a
natural virtual dimension given by the topological invariant

vd(M) = zn:(—1)i+1dim Ext) (&, &). (3.3.1)

1=0

However, as discussed earlier, we cannot expect the actual dimension of all of its
components to coincide with this. When the higher groups Ext}(&,&), i > 3,
vanish, its dimension will be greater than or equal to vd, and what we would
like to do is find a smaller cycle inside M, of dimension vd, which carries the
“correct” information of the moduli problem (it should have the right properties
under deformations of X, for instance).

In simple cases in differential geometry this is well understood. Suppose a
manifold M is cut out by a set of 7 equations inside an (n+r)-dimensional ambient
space Z, i.e. M is the zero set of a section s of a rank r vector bundle F over Z.

Suppose also that (r — d) of the equations are linearly independent and form
a transverse section of a rank (r — d) subbundle E’ of E, while the remaining d
equations are dependent on the first (r — d), that is they lie in E’ also. Then M

4

will be smooth but of too high a dimension, namely n + d instead of the “virtual

dimension” n.
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Perturbing the section, however, we can get a smooth zero set of dimension n.
In fact we can get this to lie in M by choosing a smooth splitting

E~E o (E/E

of E, and choosing the perturbation to be the addition of a small transverse section
of E/E', whose zeroes will form the n-cycle in M that is the global zero set.

In practice our moduli space M will not be globally cut out, in any natural way,
by a section of a vector bundle over an ambient space of the correct dimension,
because it arises as a G.I.'T. quotient of a space by a group action. But notice that
in the above simple situation we can recover the zero set of the “correct” dimension
from purely local data on M itself, without knowing the ambient space Z — it is
the Euler class

e(E/E") N [M] € Ho(M)

of the cokernel bundle E/E’, which maps to the Euler class of E itself in Z:
e(E)N[Z] € Hn(Z)

4 (3.3.2)
e(E/E') N [M] € Hy(M).

So we might hope the deformation theory of the moduli problem would give us the
local data on M necessary to define a virtual cycle, knowing the tangent spaces
(or more generally the cotangent sheaf) and obstruction spaces (the generalisation
of the cokernel bundle). For instance if the moduli space were smooth and the
obstruction spaces all of the same dimension they would glue together to form a
locally free sheaf (a relative Ext sheaf) whose top Chern class would be our virtual
cycle.

The general algebraic case is more difficult — M may not be smooth (the local
sections are not transverse) and if it were there may be no algebraic splitting of F
as above, so the zeroes of a perturbed section would move off M into some non-
existent global ambient space. But Li and Tian [LT] (see also [BF]) show we can
recover a virtual moduli cycle from the deformation theory, based on Fulton and
MacPherson’s intersection theory [Fu] — a refined version of intersection theory
which does not require a “moving lemma” and so produces intersection cycles
within the original intersection, which is precisely what we require.

So we start by summarising Fulton’s theory in the case of a holomorphic section
s of a vector bundle F over a smooth variety Z, with scheme-theoretic zero set M
(this is the theory applied to the intersection of the zero set of E' with the image
s(Z) in the total space of E).
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The section s induces a “cone” in the total space of E which, in the case that
s is a transverse section of a subbundle E’, is just E'. More generally it is the
linearisation of s but reflecting the possibly nilpotent scheme structure of M, and
can be thought of as the image of s “made vertical” in E|y;, i.e. the limit of As as
A — 0.

Precisely, the definition is as follows. In an affine patch of Z over which FE is
trivial, let [ be the graph

I'={(z,s(z)) e E:x € Z}

of s in the total space of F, and let .# be the ideal of the zero set M in I'. Then
the cone to M in I' is defined as

CuT = Spec @ﬂt/ft“,

£>0

which has a canonical projection to M, because .#'/.#'"! has an obvious Oy =
Or/# structure. It also has an embedding in E/|,y,

E|y = Spec Sym (f[o]/f[g]) = Spec Sym O(E*)

(where Fq) = Oy (E*) is the ideal of the zero set of E in E), because of the quotient
map S — 7.

Thus we have a cone C,I" C E|s in a vector bundle over M. The Chow groups
A, (FE) of a vector bundle E are isomorphic to the Chow groups of the base (shifted
in degree by rk(F)) by pulling up the cycles from the base to the total space — an
algebro-geometric Thom isomorphism theorem. Thus the cycle defined by Cy,I is
rationally equivalent to the pull back of a cycle ¢,(E) € A, (M) in the Chow group
of M, whose image in the Chow group of the ambient space Z is, as Fulton shows,
the top Chern class of F,

e (E) e An(Z)

1
[CMF] € An+r(E|M) %’An(M),

the generalisation of (3.3.2). Equivalently, we intersect the cone with the zero
section M of E — M.

What Li and Tian do is show that the cone C,I" can be recovered from purely
infinitesimal data on M, namely the derivative of the section s, as a sheaf map

Ou(TZ) 225 O (E).



3.3. EXCESS INTERSECTION THEORY 67

In particular, by the second exact sequence of Kéhler differentials ([Hal] p 173),
the dual map gives a two step locally free resolution of the cotangent sheaf 2, of
M:

Ou(EY) L5 04(T*Z) = Qu — 0,

and they show that from just this a unique cone can be constructed in £ — M.
That is, given a two step locally free resolution of the cotangent sheaf of a scheme
M (of finite type over C),

we can locally represent M as the zero set of a section of Ey over an affine space
of dimension rk(E;) (at least after stabilising by adding a trivial factor to both
E;’s, with the identity map between them) inducing the above sequence. Then
Fulton’s construction gives a cone in Fy over M; these local cones patch together
independently of choices to give a global cone

CCEQ—)M

which we intersect with the zero section to give a cycle in Ayy(z,)—rk(E:) (M) — our
virtual cycle of the “correct dimension”.

Theorem 3.3.4 [LT| Let M be a scheme of finite type over a field of characteristic
zero, with a complex (3.3.3) with the E; locally free, of virtual dimension n. Then
there is a functorially defined cycle in A, (M) that is independent of the choice of
resolution (8.3.3), which is [M] if M is smooth of dimension n. Similarly if M is
smooth and the kernel of (3.3.3) is a vector bundle (whose dual we denote Ey/Ej,
the “obstruction bundle”) then the cycle is the top Chern class of Ey/E;.

That this is the right virtual cycle is assured by its behaviour under deformation
invariance, which we will discuss in the next section.

As M is certainly a scheme of finite type over C, all we need is such a complex,
of virtual dimension (3.3.1). This will certainly require the dimension of M to be
at least vd, which for a 3-fold is equivalent to the vanishing of

Ext}(&,&) = H(Endy & ® Kx)*

which holds for simple (e.g. stable) sheaves & on Calabi-Yau or Fano 3-folds. We
would then like the deformation theory to give us a sequence (3.3.3).

Li and Tian give such a resolution of {2, for X a surface. Here M is the
moduli space of stable sheaves, which are what we shall deal with from now on
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as deformation theory about semi-stable sheaves is more complicated — when we
want M to be compact (i.e. projective, not just quasi-projective) we will look at
sheaves with rank and degree coprime since then semi-stability implies stability.
However the method of [LT] will not generalise to three dimensions and we take
a different approach which first deals with the Quot scheme involved in Simpson’s
construction of M, and which works in all dimensions.

A guiding principle is that, about locally free points of M, gauge theory exhibits
M as the zero set of a holomorphic Fredholm section F? = 9% of an infinite
dimensional holomorphic bundle over the infinite dimensional Kahler manifold of
isomorphism classes of J-operators. Locally, then, we should be able to take the
zero set of all but a finite number of these equations to leave M as being cut
out by a finite number of equations on a finite dimensional variety (with virtual
dimension the Fredholm index of the section, which is precisely vd(M)) giving us
the resolution we require.

3.4 Resolving ()

At this point we require Simpson’s construction of M, described in [HL, S]. We
sketch the details; for now dim X is arbitrary and det & is not fixed.

Fixing a Hilbert polynomial P, by boundedness there is a fixed integer n; such
that, for all & with Hilbert polynomial P, &(n;) is generated by its sections and
all higher cohomology groups H*(&(n)), i > 0, vanish. Thus h°(&(ny)) = P(n1),
and we have an exact sequence

0> - H®O(—ny) - & — 0, (3.4.1)

for some kernel ¢, and H = H%(&(n;)). Thus the sheaves & are all quotients,
with Hilbert polynomial P, of a fixed (locally free) sheaf CP(™) ® O(—n;) =
O(—n1)®PM) | parameterised by Quot (OF(™) P). M is thus the quotient (in the
sense of geometric invariant theory) of the subset of Quot of semi-stable sheaves by
the action of SL(H) that permutes the different identifications of H = H°(&(ny))
with CP(™)_ (The definition of Gieseker stability of sheaves is, by construction,
the G.I.T. notion of stability for this group action [HL p 98].)

In turn the Quot scheme embeds in a Grassmannian. Tensoring the sequence
(3.4.1) with O(ns) and taking cohomology yields

0— H%(H (ny)) = HRV — H(&(ny)) — 0, (3.4.2)



3.4. RESOLVING Q. 69

for ny sufficiently large that J£ (ny) and &(ny) are generated by sections and have
no higher cohomology. V denotes H°(O(ny — ny)).

Conversely, since the subspace H°(# (ny)) of H ® V determines the sheaf
H (n2) — H ® O(ny — ny) by taking sections, it also determines the quotient
&(ny) and so &.

Thus we get an injection of Quot into the Grassmannian Gr (H ® V, P(ng)) of
P(ngy)-dimensional quotients of H ® V' which, for ny > 0, can be shown to be an
embedding.

What we would like is for Quot to be cut out in Gr by a section of a vector
bundle of rank dim(Gr)—vd(M)-+dim SL(H). For instance, a point of Quot

0> > H®0O(nyg —ny) > % — 0,
maps to the point
0—>A—H®V = B—0, A=H'(«), B= H°(%),

of Gr, where A generates, on taking sections inside H ® O(ny — ny), the sheaf
o/ whose global sections are precisely A, i.e. they have no component in B. So,
conversely, we might hope that Quot CGr is exactly the zeroes of the map

H(o/) - H®V — B,

where 7 is the sheaf generated by taking sections in A. While I cannot prove this,
the following will be an infinitesimal version on the Quot scheme, which is all we
shall eventually need to resolve Qqyot-

Recall that the Zariski tangent space to the Quot scheme of quotients (3.4.1)
is Hom (¢, &) [HLJ.

Theorem 3.4.3 The Zariski tangent space Hom (£, &) to the Quot scheme of
quotients (3.4.1), on an arbitrary smooth n-dimensional variety X, fits into the
exact sequence

0 — T Quot — T Gr — Ey — Ext*(&,8) — 0,

where Eo will be defined in the proof, and has constant dimension for all & if
dim Ext®(&, &) is constant for all i > 3.

Remark. This result is essentially equivalent to the resolution of the cotangent
sheaf 2y, that we require. But since the general case is technical and messy,
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involving relative Ext sheaves and the like, we do this as a warm-up. The proof
contains all the main ingredients for the stronger result for which we will simply
dualise, set everything relative to a base and use nastier notation.

Then the duals of all of the above groups will glue together to form sheaves over
M and the constancy of dim E, will translate into the local freeness of the sheaf
O(FE3), i.e. By will form a vector bundle on M, as will T Gr.

Proof. On Quot define the sheaf J#” to be the kernel of the map generating £ (ny)
by its sections,

0— " — H(H (ny)) — JH (ny) — 0,
and take Hom ( - ,&(ng)):
0 — Hom (¢, &) — H(H (ny))* @ H*(&(ny)) (3.4.4)
— Hom (A", &(ny)) — Ext' (A, &) — 0,

where the final zero comes from the local freeness of H°(.# (n,)), and the choice
of ny > 0. Now the first two terms are T Quot and T Gr, with the map between
them induced by the embedding Quot C Gr. We simply define

Ey :=Hom (¥, &(ny)),

leaving only the last term and dim E5 to be dealt with. The higher terms in the
above long exact sequence give

0 — Ext’ (2", & (ny)) — Ext™(#, &) — 0.
But the long exact sequence of Hom ( - , &) applied to
0= — H(—n1) > & — 0,
gives 0 =Ext/ (¥, &) -Ext/T1(&, &) — 0, by the choice of n; > 0. Thus
Ext' (¢, & (ny)) = Ext™t (', &) = Ext™?(&, &)

for all 4 > 1. This gives us the last term of (3.4.4) as in the statement of the
theorem, and the constancy of dim E, if dim Ext?(&, &) is constant for j > 3, since

dim Hom (¢, &(ny)) + i(—l)i dim Ext’ (", & (n,))

is a fixed topological quantity [HL, BPS]. O
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Corollary 3.4.5 We have an exact sequence
0= TeM — E; — Ey — Ext*(&£,8) — 0

where the E;’s have constant dimension for all & € M if the same is true of
Ext!(&,&) for j > 3. Here Ey = Ty (Gr /SL(H)), where SL(H) has the obvious
action on Gr (H ® V, P(ng)) inducing an action of PSL(H) which is free at points
representing simple (e.g. stable) bundles.

Remark. The above sequence is independent of the point of Quot C Gr we choose
to represent our sheaf &, i.e. it descends under the SL(H) action.

Proof. The statement about the action of SL(H) follows from the corresponding
statement about its action on Quot C Gr, which linearises to give the following
commutative diagram:

0 — T Quot — T Gr — Ey — Ext?*(&, &) — 0.

T
sl(H)

Taking the quotient of the first two terms by the injection (due to stability) of
sl(H) gives the desired sequence, if we can show that

Tg QUOt/EDdO (H) = Tg’M
But this follows from applying Hom ( - , &) to the sequence (3.4.1):
0 — Hom (&, &) — H* ® Hom (O(—n,), &) — Hom (¥, &) — Ext' (&, &) — 0.

The first term is C.id mapping to the identity in the second term End H. Thus we
have the required sequence

0 — Endy (H) — Tg Quot — Te M — 0.

(This again shows that Endy(H) injects into T,z Quot and T Gr.) O

We now tackle the general case, dualising and setting everything relative to a
base (i.e. M), working on
p: X xM—> M.

Thus H'(.#) is replaced by the M-sheaf R'p,(.%) or the obvious candidate for its

dual &xty ', ym(Z, Kx) (we will discuss presently the sense in which relative du-

ality holds). Here Kx is the canonical bundle of X, or more generally the dualising
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sheaf of p, and we will abbreviate éaxtgfx M/m b0 é”xtg . Recall the discussion of
relative Ext sheaves and the cotangent sheaf of M in Section (3.2), but otherwise
notice the proof is much the same as for the last theorem.

We will change notation a little and denote points of M by .%, reserving & for
a universal sheaf on X X M. Such an & exists locally at least, which is all we shall
require; all results will be independent of choices. Alternatively we could work
on Quot instead of M, and all groups and sheaves will descend under the SL(H)
group action. The problem is the scalar endomorphisms of stable sheaves .#, but
these act trivially on Ext'(.Z,.%#). Eventually the case that will interest us will be
rank and degree coprime sheaves, where M admits a global universal sheaf.

We will need to use a little Ext sheaf theory from [BPS], familiar at least for
relative cohomology ([Hal], III Section 12). Namely for sheaves flat over the base,
if the dimensions of Ext’ groups are constant, the relevant relative &xt* sheaf will
be locally free with fibre Ext’. Conversely if &t* is locally free its fibre at any point
is just the Ext’ group. In the cases we use these will follow from the corresponding
statements in cohomology since, due to ampleness of certain line bundles, the Ext
groups and sheaves will just be cohomology groups and sheaves.

Theorem 3.4.6 Fix a smooth n-dimensional algebraic variety X, and let M de-
note the moduli space of stable sheaves on X of a fixed Hilbert polynomial P. Let
& denote a universal sheaf on X x M (see the discussion above), and suppose that
dim Ext'(#, %), i > 3 is constant for all F € M. Then there is a resolution

0 — &ut) (&, 6 ® Kx) = O(E3) = Qar = Qquet — 0,

where Ey is a vector bundle on M. Moreover this gives us a two step resolution of
QM J
0— &uty *(&,6 ® Kx) = O(E;) — O(E}) = Qum — 0,

where E is the vector bundle T (Gr/SL(H)) over M. (Again this descends to M
independently of choices of points of Quot representing points of M.)

Proof. We denote by O(1) a very ample line bundle on X x M. Choose n; > 0
such that &(n;) is generated by its fibrewise sections, i.e. we have a sequence

0= —=p (p&(n1)) (—ny) = & — 0, (3.4.7)

and R'p,(&(n1)) = 0 Vi > 1. Denote p,(&(n1)) by S, which is locally free as it
has fibres of fixed dimension P(ny).
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Now twist with ny sufficiently large such that J# (ng) and &(ny) are generated

by fibrewise sections with no R'p,, and take cohomology:
0= pu(H (ng)) = H# @YV — pu(&(n2)) — 0. (3.4.8)

V denotes p,(O(ny — ny)), and to pull the sheaf .7 through p,p* we have used its
local freeness.
Defining %" by

0= H" — p'p. i (ng) = H (ng) — 0,
and taking J#om,(&(ns), - ® Kx) yields
0— &xth (&, 4 @ Kx) — &utr(E(ns), #' @ Kx) (3.4.9)

— &ty (8 (n2), " P (n2) @ Kx) — Sty (8, 4 @ Kx) — 0,

where the first zero comes from the choice of ny > 0.
Now the third term is dual to

Homy,(p*p(H (n2)), & (n2)) = pu(H (n2))* @ pu(&(n2))

by relative duality and local freeness of p, (£ (ny)). Relative duality does not quite
give the duality between relative Ext sheaves that one might naively guess from
Serre duality, but an equality of right derived functors [Ha3]. What this amounts
to in terms of sheaves is a spectral sequence, but for us this collapses since all the
lower relative Ext sheaves gxt:f,, 1 < m, vanish by choice of ny. Thus we get the
duality claimed.

The lower terms of the long exact sequence (3.4.9) give

0— &uth (&, @ Kx) — &ty (E(ng), X' @ Kx) =0, i <n—1,
while the long exact J#om,(&, - ) sequence of (3.4.7) yields
0— éoxt;_Q(éa,éa@KX) — gxt;_l(g,%®KX) — 0, i<n,
so that
Extl (& (ny), X' ® Kx) = &utl, (&, 4 @ Kx) = &t *(£,6 @ Kx)

for all 4 < n—1. The last term is locally free, by the constancy of dim Ext!(#,.Z ®
Kx), i > 3, for all # € M. Thus so is the first term, giving the constancy of the
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dimensions of the fibres Ext!(Z (ny), #' ® Kx), i <n —1. So Ext"(Z (ny), #' ®
Kx) has constant dimension also (as the alternating sum of these dimensions is
fixed by the Hilbert polynomial of the sheaf [HL, BPS]), and &xt; (& (n2), #'® Kx)
is locally free. (Notice we have used here the flatness of the sheaves concerned over
M. This follows by the constancy of their Hilbert polynomials ([Hal] III 9.9).)
Denote the dual of its associated vector bundle by FEj.

So finally (3.4.9) has become

0— éaxtz_Q(zg’,é"@KX) — O(E3) = pu(&(n2))" @ pu(H (n2)) = Qquot — 0,

using Lehn’s description [L] of the cotangent sheaf of Quot as &ut} (&, # @ Kx),
which is completely analogous to the description of {2,,.

We now pass from Quot to M to deduce the second part of the theorem.
Applying F#om, (&, - ) to (3.4.7) yields

0— &ty (&,6 @ Kx) = Ewth (6,4 @ Kx) —

p+(&(m)) ® &ty (8, Kx(—n1)) — uty(&,6 @ Kx) — 0,

by the usual arguments. The last two terms are p.(&(n1)) ® p«(&(n1))* and Oy,
with the trace map between them (the adjoint of the identity map). Thus we have

0 — Qa1 = Qquot = Endo(p.&(n1)) — 0,

induced of course by the action of SL(H°(&(n1))) on Quot.
Fit this into the sequence resolving Qqyot: 0

!
Qpm
!
0 — &ty (&, E@Kx) = O(E3) = Qar — Qquot — 0,
N
é”ndo

!
0

where &ndy is éndy (p.&'(n1)). Taking the kernels of the two surjections to éndy
gives the result; the kernel of Qg — &ndy is locally free as it is the kernel subbundle
of a vector bundle surjection. O
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3.5 Counting sheaves

So finally we can make a definition of the “number of sheaves” on a Calabi-Yau
3-fold X with h%1(X) = 0.

Definition 3.5.1 Fiz a Calabi-Yau 3-fold X with h®'(X) = 0. The “number of
sheaves” on X, of a fixed Hilbert polynomial P and with rank and degree coprime,
is defined as follows. X is algebraic and the moduli space Mp of such stable
sheaves is a projective scheme. The Hilbert polynomial fizes ¢; and so deté’, since
oY (X) = 0 = h%*(X). Thus also Ext'(&,&), i = 1,2, do not differ from their
trace-free counterparts. Ext*(&,&) = C V& by stability, so we may apply Theorems
3.4.6 and 3.3.4 to obtain a virtual moduli cycle Z € Ay(Mp). Then our number
A(Mp) is the length of the zero-dimensional projective scheme Z.

Remark. The cycle Z has the correct dimension (i.e. the virtual dimension, zero)
by adding up the ranks of the groups in the sequence of (3.4.5).

To define a holomorphic Casson invariant we would like to count less non-locally-
free sheaves, and this will be tackled presently, but first we discuss deformation
invariance (without proving anything).

Simpson’s construction extends to the case of a flat family X — S of smooth
varieties X over a base S, giving a relative moduli space Mg — S with a morphism
to the base and fibres M, the individual moduli spaces associated to the varieties
X,. Thus as we vary the complex structure on X, the moduli spaces also vary in
an algebraic family.

We can study the deformation theory of Mg, giving, at the level of tangent
spaces (there is also a version for cotangent sheaves), a sequence

0— TeM; — TeMg — T,S — Exty (£, ), (3.5.2)

where & is a stable sheaf on X, defining a point in My C Mg. The cokernel of
the last map is the obstruction space of Mg.

Again due to stability the group action is easily dealt with (as in the last
section the PSL action is free) and so we may as well work with the relative Quot
scheme over S, embedded in a relative Grassmannian Grx S — S. We would
expect a two step resolution of the cotangent sheaf of Quot of virtual dimension
vd(Mg) =dim S + vd(M;) to give a virtual moduli cycle which is an algebraic
family of the virtual moduli cycles on the fibres. That is, in the case of sheaves on
a Calabi-Yau 3-fold, we expect a cycle of dimension dim S with a proper morphism
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7 to the base S. This would then have finite fibres all of the same length as schemes
giving the same “number of sheaves” on each fibre.

Li and Tian [LT] show this is precisely what happens if we can find such a
resolution (3.3.3) (for the relative Quot scheme in our case), with a surjective map
from F; to T'S, or more correctly an injection

0 — 7" Qs — O(EY). (3.5.3)

This condition, put crudely, ensures the moduli space sits over the base and not
in a fibre, and that the fibrewise virtual moduli cycles are the correct algebraic
intersection of the global virtual cycle with the fibres. If such a resolution exists
then it gives a resolution on each fibre by replacing E; by ker(E; — T'S), and it is
proved in [LT] that the resulting virtual moduli cycles are compatible.

In our case it is natural to again try to cut out the Quot scheme in Grx S,
thus taking £y = T Gr@ TS and the same F,. This clearly gives us the required
surjection £y — T'S; all we need is to be able to extend the map 7'Gr— E5 of
Theorem 3.4.3 by a map T'S — E, that gives the right resolution.

We already have the map T'S — Ext% (&, &) in the sequence (3.5.2) above,
giving the obstruction to extending a sheaf & on X, to one on an infinitesimally
close fibre. This is obtained by taking the cup product

HY(TX,) x Extk (£,6 ® Qx,) = Ext% (£, 6)

of the Kodaira-Spencer element in H'(TX,), representing the deformation of X,
along a particular tangent vector in 755, with the Atiyah class [HL] of the sheaf &
in Ext (6,6 ® Qx,) (for a locally free sheaf this is just the class of the curvature
[Fy'] € H'(End E® T*X,) of any compatible connection on the vector bundle E).

By Theorem (3.4.3), E; surjects onto Ext% (&, &), so what we require is the
correct lift of T,S — Ext% (&, &) to T,S — Es. So far I have been unable to find
this, however.

An alternative procedure would be to consider the following moduli space. We
can consider a sheaf & on a fibre X to be a torsion sheaf on Xg by pushing it
forward by the inclusion ¢ = i to 7,&6. The moduli space Mg of stable sheaves
on Xg of the same Hilbert polynomial contains each moduli space M, in this way,
and deformation theory shows that this is actually all of (a component of) Mg.
If we could control Ext?(i.&,,&) and Ext*(i,&,1,&) of such torsion sheaves we
could apply all of the same machinery as before to get a resolution of 25, and
a virtual moduli cycle. The map from (the component of) Mg to S (sending a
sheaf to the fibre it is supported on) induces an injection (3.5.3) which would prove
deformation of the cycles.
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Removing the boundary contribution

In this section we will assume we have the right definition of counting sheaves, i.e.
that we can prove deformation invariance. What we would now like to do, to give a
definition of a holomorphic Casson invariant of a Calabi-Yau 3-fold X, is subtract
a correction term that gives the number of sheaves which are not locally free.

We make a start by showing what the contribution is from rank two sheaves
with only certain codimension three singularities (coming back to singularities along
curves later). If a rank two torsion-free sheaf contains an ideal sheaf .#, of points
(or zero dimensional subschemes) p we say it has a singularity of type A at p, which
is removed on passing to the double dual (or reflexive hull) & of & , so that locally
& is the kernel of an evaluation of a locally free sheaf & at p:

(A) 0—><§”—>(§”\—>Op—>0.

A singularity of type B is, locally, the cokernel of a section, vanishing only at p, of
a rank 3 bundle F',

(B) 0-0—->%—>&—0,

and at such a point the sheaf is still reflexive. Each A-singularity contributes —2
to ¢3(&), while B contributes +1. In particular a reflerive sheaf with only these
singularities has positive third Chern class and is locally free if and only if ¢3 = 0.

Denote by M(a,b) the moduli of sheaves with a singularities of type A, b of
type B and Hilbert polynomial modified by changing ¢3 from zero (which it is for
locally free sheaves of rank two) to b — 2a. Then we would like to subtract from
our total A\(M) of all sheaves the sum of some contributions A(M(a, b)) from those
M(a,b) C M with ¢c3 = b—2a = 0.

Our procedure for studying M(a,b) and defining the number A(M (a,b)) is to
pass to double duals, giving a morphism

M(a, b) —s M(0,b). (3.5.4)

(For rank and degree coprime sheaves Gieseker stability is equivalent to slope sta-
bility. Modifying a sheaf in codimension greater than one does not affect slope
stability since we can also modify any subsheaves in codimension greater than one
without changing their slope.) Now M(0,b) is a component of another moduli
space (of sheaves with ¢ = b) which has other components with a # 0. So as-
suming we know how to pass from a number for M(0, b) back to one for M(a,b),
we would like to be able to define A\(M (0, b)) by using the “number of sheaves” in
this higher moduli space and again subtracting a correction term. So we have to
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repeat the process, which fortunately terminates since the third Chern class c3 of
a stable sheaf is bounded by its ¢; and ¢y, essentially by the boundedness of spaces
of stable sheaves.

So we have an inductive process. Consider first M(0, B), where B is the max-
imum value of c3 for our fixed ¢; and ¢,. This is the whole of the moduli space of
stable sheaves of this Hilbert polynomial, because if there were any sheaves with
type A singularities their double duals would have higher c3, a contradiction. Thus
Definition 3.5.1 assigns a number A(M(0, B)). Similarly for M(0, B — 1) (recall
that removing an A-singularity by passing to the double dual adds 2 to c¢3). Next
the moduli space Mp_, for ¢ = B —2 consists of M(0, B—2) and M(1, B). Pass-
ing to the double dual gives us a map M(1, B) — M(0, B) so if we can understand
the fibres of this map, and so how to get a number A(M(1, B)) from A(M(0, B)),
this will also allow us to define

)‘(M(Oa B — 2)) = )‘(MB72) - )‘(M(la B))

In this way we can work down to ¢3 = 0 and M(0,0), which is what we are
interested in (although we have simplified things by ignoring codimension-two sin-
gularities for now). The contribution, discussed below, of the fibres of the maps
(3.5.4) is deformation invariant (in fact it will be topological), so assuming defor-
mation invariance of Definition (3.5.1) we obtain a deformation invariant quantity
counting sheaves in M (0, 0).

Therefore we now turn to the fibres of (3.5.4). For simplicity we take a =1 =10
— there will be an obvious generalisation of what follows to higher numbers of
singularities, replacing copies of X by Hilb®(X), etc. So we would like to compare
M(1,1) with M(0,1) via the double-dual map between them.
When the A-singularity (at p say) is away from the B-singularity, we have a
sequence
0—>é*’—><§—>(9p—>0, (3.5.5)

where & is free around p. Applying Hom (-, &) yields
0 — Hom (&, &) — H(&xt'(O,,&)) — Ext! (&, &)
— Ext!(&, &) — H'(&xt*(0,, &)) — Ext®(&, &),
while applying #om(0,, - ) gives

op = éaxtl(op’ éa)a
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by the freeness of & at p, and
T,X = &xt'(0,,0,) = Ext*(0,, ).

(Here we have computed &xt'(0,, O,) explicitly by its Koszul resolution; the result
is thatAthe deformat/i\onf of O, simply come from moving p.) By similar arguments
Ext?(&, &) 2 Ext?(&£, &) and we obtain

0 — Ext!(£, &) — Ext!(&,&) — T,X — Ext*(&, &).

It is quite easy to see that the obstruction map 7,X — Ext*(&,&) is zero, and
that there is a map T,X — Ext'(&, &) splitting the sequence, as moving p gives
deformations of E.

Applying Hom (6?, -) to (3.5.5) gives

0 — Hom (&, & ) — Hom (&, 0,) — Ext}(&, &) — Ext'(&,&) — 0

Using the stability of & and analysing the first map we see that its cokernel is the
tangent space T'IP (éa*) to the space of quotients & — O, of the fibre of & at p- So
we are left with

Ext!(&, &) 2 Ext!(&,&) @ T,X & TP (&)).

Thus deformations of E come from those of &, , those of p, and those of the quotient
of a fized fibre &,. Also they are all unobstructed, deforming to the other kernels
of quotients

08 —+F —=0,—=0

of a fixed bundle & = & , parameterised by the projective bundle P (%#*) over X
away from the singularities of 7.

We now want to deal with the singular points of %#. So, changing notation,
we would like to know what the O,-quotients of a reflexive sheaf & look like as we
approach a singular point ¢ of &, where it has the presentation

00 F =& —0,

with s a section of a rank 3 vector bundle F' with zero locus q. We have the
sequence

0= = F, — 0,
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with the last map the transpose s’ of the section at p. Away from ¢ this gives us
the picture as before with a CP' of quotients, but at ¢ we get a CP? of quotients
because s’ vanishes. The local model for the resulting space of &’s is

{(@,f)eC*x (CPY)" : f() =0},

with its projection to C3. This is the total space of the tautological 2-plane bundle
over the Grassmannian Gr (2,3) = (CP?)* of 2-planes in C*. Topologically this is
what a neighbourhood of the fibre over ¢ € X of the space of such sheaves looks
like. (This is analogous to a neighbourhood of the exceptional divisor in a blow-up
looking like the tautological bundle over the divisor.)

Thus we get a P(T;X) fibre over ¢ (where ds canonically identifies F with
T,X) glued into the CP'-bundle P (E*) over X \ {¢} by this construction. The
resulting 4-fold is the fibre of the map ¢ =~ : M(1,1) — M(0,1) and it is smooth
with topological type independent of the point of M. The deformation theory of
the &’s in M(1, 1) is that of their double duals & e M(0,1) but with the tangents
TF to the fibres added to E; and T*F to Es,, in the language of the last section.
Thus the cone C in Es — M(0,1) that Li and Tian construct is replaced by
g*C C E; ® T*F — M(1,1), with T*F the relative cotangent bundle of g.

To intersect g*C with the zero section M(1,1) of Ey @T*F we may first intersect
inside FEjy, then intersect with the zero section of T*F. The first operation simply
gives ¢g*Z, where Z is the virtual moduli cycle of M(0,1), i.e. a finite number
A(M(0,1)) of points. So we are left with intersecting A\(M (0, 1)) fibres F with the
zero section in T*F'| giving finally

AM(1,1)) = AM(0, 1)) . x(F),

where F' is a topological model of any 4-fold fibre.

It is clear there is some more work to be done here, not least to take account
of sheaves & with codimension-two singularities. For such sheaves we can carry
over the above method, modifying in codimension three as before (but leaving the
curve singularity in place) and studying the fibres of the induced maps & — & on
moduli spaces. These will now have a modification (in fact a blow-up) along the
curve (where there are more O,-quotients), but again we have a fixed topological
model for fixed & and fixed singularity C'. We then have to sum over all curves C,
but relating the deformation theories of & and C' we see we get a Gromov-Witten
theory count of curves arising, and this too is deformation invariant.

What is unlikely, however, is that we could remove the contribution from sheaves
with codimension-two singularities. Studying these as above would correspond to
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looking at sequences such as
05&—E— L — 0,

where .Z is some torsion free (and so locally free) sheaf supported on a curve.
While numbers of curves (in the sense of Gromov-Witten theory) are deformation
invariant, the space of line bundles . on a curve, and the space of quotients
E— & , seem unlikely to be deformation invariant.

This is perhaps unsurprising — we know from Donaldson theory that in two
complex dimensions codimension-two singularities of sheaves (namely ideal sheaves
of points) correspond to limits of stable bundles (in the sense of bubbling in the
ASD moduli space). Thus they should not be removed from the moduli space, and
under deformation of the underlying complex structure we can expect bundles to
wander off to infinity and acquire such codimension-two singularities.



Appendix A

Some Path Integral Invariants

A.1 The path integral

In this appendix some physics is outlined that motivates some mathematical defi-
nitions and further work. Due to the appearance of [FKT] I have not pursued the
mathematics to completion, so little of what is here is rigorous.

Another traditional piece of low dimensional topology is knot theory. While
it might seem out of reach of our naive “wedge with 6”7 programme, Witten’s
derivation of the Jones polynomial (W1, At4]) gives a more analytical approach.
We already have the analogue (1.3.1) of the Chern-Simons functional, so by analogy
with [W1] we can try to define invariants of a bare Calabi-Yau 3-fold by evaluating
the path integral

7y, = / DA H*CSA), (A.1.1)
B

over the space Z of 0-operators on a bundle E — X. This computes the “partition
function” Zj of the gauge field theory associated to the Lagrangian £C'S, in fact
already suggested in [W2].

In [W1], Wilson loops (the product of traces, in some representation, of the
holonomy around non-intersecting loops ;) are included in the path integral as
“observables” to give a “partition function” that, if mathematical sense could be
made of it, should be a topological invariant. Isotoping the loops without crossings
gives a system (M,Uy;) diffeomorphic to the original one, so with Wilson loops
the path integral ought to give knot and link invariants. Below, in Section 3.5, we
shall add in to the path integral (A.1.1) the Calabi-Yau analogues of knots using
complex tori with trivialising (1,0)-forms or, more generally, any complex curve
with a holomorphic one-form.

82
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To make rigorous mathematical sense of this, however, requires another for-
mulation, either in terms of cut and paste operations (as Witten gave), quantum
groups, or the perturbative, Feynman diagram evaluation about & — oo. This is
the approach we shall take, formally manipulating the integral as if it were over
a domain in RY (as N — oo) instead of over the infinite dimensional space of
connections 4, and using the result to define our invariants. We shall ignore the
problems of the ambiguities in C'S (which are avoided in the 3-manifold case by
taking k € Z, since the Chern-Simons functional is well defined mod Z, but can-
not be overcome by any choice of k if the periods of # are dense), since our final
invariants will be free of this ambiguity. Similarly we shall ignore the fact that we
have a complex valued Lagrangian, something unusual in physics, since the formal
regularisation that makes sense of integrals such as

/ e’ dy = €' \/T,
R
also makes sense of the wildly divergent

/emzdx = —i\/T,
R

all be it as a complex number! We shall also give the same value to integrals over

)\22 T
dz =4/~
/<c ©w A’

without worrying about its physical meaning as we are just interested in extracting

a complex parameter z, that is

complex invariants of the Calabi-Yau. Here dz is meant in the physicists’ sense,
i.e. as dxdy, and performing the above integral over x for any fixed y gives this
answer (since there are no residues); the infinite constant arising from integrating
over y can then be renormalised to 1. I do not know what Witten intended when
he mentioned such a theory in [W2], perhaps not this.

Thus we should, in the first instance, get invariants of the complex structure
of a Calabi-Yau 3-fold X (and of the bundle E) from (A.1.1). There are however
complications in the 3-manifold case that reappear here. To integrate over %
the usual procedure is to gauge fix and integrate over /. The choice of gauge
involves picking a metric, and the evaluation can then pick up an anomalous metric
dependence, which is removed in [W1] by a local counter-term.

The chapter will be brief as this work has not yet reached any satisfactory
conclusion; the only part that has so far given a concrete result — the holomorphic
linking number of Section A.5 — has now been written up more professionally
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elsewhere [FKT]. So what follows can be thought of as an overview of possibilities
for future research.

A.2 Perturbation theory

To begin with we shall consider the bare path integral without any analogues of
Wilson loops (links), which will be introduced later. We will formally evaluate
the path integral perturbatively by the stationary phase approximation (see AGV
for the result in finite dimensions) about the critical points {Ag : Fgf = 0} of
CS, which we will have to assume are isolated (we will comment on this later).
Good references for perturbation theory are [Ram, Ax, BN, FG]. Taylor expanding
about a critical point and integrating gives a non-convergent asymptotic expansion
in powers of k=1, which stationary phase tells us is in fact not asymptotic to the
integral; we must add the approximations to the integral from all critical points
to get the correct asymptotic expansion. The resulting coefficients will be our
invariants.

To integrate (A.1.1) over &/ /¥ the standard physics procedure is to integrate
over a section of the & — &/ /% bundle, multiplying by a Jacobian factor to take
account of the “angle” at which the section meets each & orbit. Although there
is no global section of &/ (“the Gribov ambiguity”) we work locally about some
holomorphic connection Ay since any two sections should give the same result. That
the result does sometimes depend on the gauge fixing method (e.g. the metric) is
known as an anomaly, although in our case the metric dependence may not be so
critical as an invariant of the Kéahler metric and complex structure could still be
valuable.

The idea, then, is to convert the integral over £ to one over the affine space ./
which is much easier to deal with. It should be noted that all of what follows would
be rigorously correct for an integral on the smooth quotient of a finite dimensional
manifold by a group action; we simply “regularise” the obvious generalisation to
infinite dimensions and take this as a definition. Anyone unfamiliar with functional
integrals might want to skip straight to the answer.

So we choose a metric on E which with the Kahler metric on X allows us to
work in Coulomb gauge 9%,a = 03, (4 — Ag) = 0, at least for small a so that a
version of Uhlenbeck’s theorem applies. (Remember that by the stationary phase
approximation we only need the Taylor expansion of C'S about Ay; we sum over
all critical points Ay later.) Then
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/ 9A eikC’S(A) —
B=od |9
/ SEOS(A) [/Eg (5593, (9(4) — o)) Det(@aAoaA)} ,
[Ales |9 g

by integrating the Dirac delta, and making some sort of regularised sense of the
determinant of 97 0,, via [RS1]. Here A is the representative A = Ay + a of [4]

with 8% a = 0. Giving 5(#520 (9(A) — AO)) its Fourier expansion

k -~
/ D¢ exp (2@ /X tr¢ 93,(9(A) — Ag) A 9) ,

$en0:3 (gE)

gives the value

/ 2z / DA O Det(£5;goa4) / Db ¢i5r I 6 T3 fal4)= Aoy
2 Y

A€ Ag+ker 5;;0 $€Q3(g )

_ AEM@ A RO igky [ 16y and Det( % 7, 5,4)7
to [, DA e*CS) We can lift the determinant to the exponent via noncommuta-
tive, or Fermionic, integration, of which there is a very brief and elegant account
in [MQ)] pp 86-88. (This is just a slick way of Taylor expanding the determinant in
powers of a too, and for the first order term used in Proposition A.3.2 we do not
need it and can approximate Det(d% 8,) by Det(039,4).) This yields

k ~ = e
Det(ﬁazoaA> = /@C@E 628:‘;2 th aAOaA /\9'
A short calculation shows that, for A = Ay + a and A; holomorphic,

1 1 -1
CS(4) = CS(4o) + 15 /Xtr (ia Adsa+zanan a) NG,

leaving us with
/ DA eFO5A) = kOS50 / DaDcPDcD¢ e,
&

where

k 1 a 1 % — O 9
L:@ th" <§G'A6Aoa/+ ga/\a/\ax'i_qsaAOa/—i_caAoaAC)/\e)
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for c € Q%(gg), a € Q' (gg), ¢ ¢ € Q% (gg).
We now Taylor expand in powers of a about Ay, sum over the (isolated) critical
points Ay, and rescale all variables by %, giving the asymptotic expansion

7, = Z eikCS(Ao)/@(a’ é,¢,c) |:eifXtr(a/\aAOa+¢820a+08j408A0c)A0
Ao F2=0

n

i% (/Xtr (%a/\a/\a—i—c/\[a,c]) /\0)%] (A.2.1)

n=0

in powers of £~!. We have ignored odd powers of the cubic term which should, by
symmetry, integrate to zero, and we have omitted the normalised constant (ﬁ)oo

which arises from the rescaling.

A.3 Holomorphic torsion and the semiclassical
approximation

We are now left with an integral over an affine space, so we can proceed by analogy
with finite dimensional integrals. Just as [ e™**" do = /5, and

N/2

/e‘z’\ﬂ? dzy...dzy = S —

Hj )‘j)l/2 ’

we can analytically continue to define
/e”tmc dVz = (detiA) 2, (A.3.1)

where d"z is the normalised measure 7~ V/2dz; .. .dzy. Thus for a similar integral
over an infinite dimensional space, with A say an elliptic operator on sections of
vector bundles (the space of which we integrate over) we simply define the integral
to have absolute value Det (A*A)~'/%, where the determinant Det is regularised by
the zeta function methods of [RS1]. (The phase can be trickier, and is discussed
below.)

Proposition A.3.2 The semiclassical contribution of an acyclic holomorphic con-

nection Ay to the partition function Zy has absolute value e*¢5(40), /7(Ay), where
7(Ap) is the Ray-Singer holomorphic torsion [RS2] of the holomorphic bundle

(gE’ AO)
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Remarks.

1. The semiclassical approximation is the term of order £° in the expansion
(A.2.1), so called because it is concentrated about the classical solutions of
the field theory, i.e. the critical points of the Lagrangian, the holomorphic
connections in this case.

2. This is our first path integral invariant of a Calabi-Yau. It is, of course,
entirely analogous to the R-torsion [RS1] that arises as the semiclassical ap-
proximation to Chern-Simons theory on a 3-manifold ([W1]).

3. “Acyclic” refers to the Dolbeault complex of the induced holomorphic struc-
ture on the adjoint bundle g,. It is clear why we want to consider this case
only, to avoid having to make sense of integrating an integrand which is con-
stant (to second order at least) in h%!(g,) directions, leading formally to zero
determinants which cannot be inverted. It is a natural condition, however,
being equivalent to [Ay] representing a smooth point of the moduli space of
bundles with discrete isotropy group (we earlier tacitly assumed there was a
unique Coulomb gauge; if H°(g;) # 0 we would have to further divide by a
large isotropy group, as it is we have only a finite ambiguity). Some progress
has been made in the non-acyclic case on 3-manifolds in [Ax, FG].

4. If e*C5 is single-valued for some k, or if we can regularise the sum over
H3(X;Z) of all the different values of e*“ we get a manifold invariant by
summing the contributions from all holomorphic connections (assuming they
are isolated and finite). This gives us the leading order term in (A.2.1), and
such a procedure applies to the higher order invariants too. Otherwise we can
ignore the e*¢$(40) term to obtain an invariant of X and the holomorphic

structure Ay on E.

Proof. We wish to regularise the Gaussian integral

/@(a,d), ¢,C) exp (z/ tr (a/\gAOa—i-gbgzoéAoc)/\H).
X

By the definition of the Fermionic integral, the integration over (c,¢) produces
Det (i 03,04, |00(g,)), With absolute value Det Af{;g (where A% = Aylaii(g,)). In
fact we need not have bothered, at this stage, with Fermionic integration — all we
have done is expanded the Det iéj,oé ', term in powers of a = A — Aj and taken the
first term.
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The other two terms may be written as

/ P(a,4) exp i{(a,8).Aa, 6)), (A33)

where A = x0,, 4+ 0,,x on Q% (gp) ® Q% (gy) (and x = x (- AF)). Thus A*A =
A% @AY, and the absolute value of (A.3.3) is

(Det A%’i . Det A%’g’)l/‘l.
This gives the semiclassical approximation as

Det A%
(Det A%, . Det A%2)1/4’

which by Serre duality equals

(Det A%!) (Det A%%)3) "
(Det A%)2 ’

the square root of the holomorphic torsion of [RS2]. O

Phase of the semiclassical approximation

The phase of the integral (A.3.1) is a little more delicate, but for A self-adjoint
(which it is, notice, in our case) we can set it to be e?™/* Xisien(X)  where \; are
the eigenvalues of A. This can be regularised in an infinite dimensional setting
to 1) where n(A) is the n-invariant of [APS]. In the 3-manifold theory this
gives an anomalous metric dependence, since the 7 invariant of a connection varies
with the n-invariant of the tangent bundle, whose mod Z reduction is essentially
the Chern-Simons functional of the Levi-Civita connection. Thus (modulo a small
problem of framing circumvented in [At3]) this dependency can be removed by
adding a local counter-term C'S(V¢) to the Lagrangian.
In fact,

Myv—on = O(N, M) -

1271'2/ tI‘FLc/\ FLC’, (A34)
N

where Fpc is the curvature of the Levi-Civita connection (i.e. the Riemannian
curvature), and o(N, M) is the (integer-valued) signature of the intersection form
on H?(N, M). (Also the metric is required to be a product in a neighbourhood of
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the boundary M.) Thus, on the one hand 37 reduces mod Z to C'S(Vy¢), while
on the other hand for a closed 4-manifold NV,

1 1

Zpi(N) = ——
niN) =10

/ tr FLC N FLC (A35)
3 N

is the signature o(N) of the intersection form on H?(N). This is also the index of
the signature operator

L=d+d =d—xdx: Q" = Q,

with kernel and cokernel maximal positive and negative definite subspaces of the
intersection form.

In many ways a complex analogue of all of this holds, it is just that it is trivial
since everything vanishes.
The kernel and cokernel of the “complex signature operator”

L=0+0"=0—x0x: Q¥ — Q%"

are maximal positive and negative definite subspaces T of the “holomorphic
intersection form”

a,ﬂH/a/\ﬂ/\O
Y

on H%? of a Calabi-Yau 4-fold (Y, 6).
It even has signature given by the analogue of (A.3.5)

1 1

“ou(Y) .6y =
(V)0 =55

/ tr FO2 A FO2 A Oy,
Y

but only by virtue of both being trivially zero.

The complex analogue of a 4-manifold with boundary (N, M), a 4-fold Y with
anticanonical section s defining X C Y, has a bilinear form analogous to that on
Hy(N, M):

a,ﬂH/a/\ﬁ/\s‘l,
Y

for a, 8 € ker(H%*(Oy) — H?*(Ox)), i.e. (0,2)-forms which restrict to zero on X (so
we can divide by s) — just as we only consider forms vanishing on M in H?(N, M).

There is also the lifting (1.3.7) of the holomorphic Chern-Simons functional of
a connection A on a bundle on X,

1
CS(A) = /Y tr Fg? A Fy? A s
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but for the Levi-Civita connection on X and Y this formula, the analogue of (A.3.4),
becomes trivial since X and Y have integrable complex structures with F Bé =0.
So in fact the relevant 7 invariant is zero, and we have just described a very
complicated way of seeing this. More simply, the spectrum of our operator A =
*0 4o T 0 4,% 18 symmetric about zero since ¢ switches eigenspaces of opposite eigen-
value, swapping J#* and .#~. Thus n(A) = 0, and the phase of the semiclassical
approximation to the path integral should be zero. As such it has no metric de-
pendence, and therefore, by analogy with the 3-manifold theory [W1, AS2] (which
is metric-independent once the anomalous metric-dependence of the phase of the
semiclassical approximation is removed) this might suggest that the theory, were it
finite to all orders, may need no corrections, and may have no metric dependence.

A.4 Manifold invariants

We now consider the higher order terms in the asymptotic expansion (A.2.1). The
integral defining the coefficient of £~" is an infinite dimensional version of

. 7 . . .
/ AT (N ) dN o (using the summation convention)

= Zc;)\l <coeff. of J! in /eith”“tdex) ,
I
as can be seen by expanding e”/’“ as a power series. Here I is a set {(iqjoke)} of
2n triples (ijk) of numbers between 1 and N, A =[], Nivjoke> J* = [1, Jiaje Tkas
and ¢y is a constant which we will come to presently.
Now completing the square in the exponent and integrating gives

ZCI)\I (coeff. of J'in (det iA)_l/Ze—thA‘1J> ‘
I

The (detiA)~'/? term is just the semiclassical approximation, so disregarding this
we should get a new invariant by considering the infinite dimensional regularisation
of
ZCI/\I (coeff. of J" in (J'AT'T)?"),
I

where we have expanded the exponential and taken out the relevant term.
Coefficients of J' in (J'A™'.J)*" are sums of products of A;;'’s over partitions

of the union of the elements of I into pairs. This leads quickly to the theory of

Feynman diagrams [Ram, BN, Ax| with a graph for each index I with 2n trivalent



A.4. MANIFOLD INVARIANTS 91

vertices, one for each of the triples in I, and 3n edges connecting them correspond-
ing to the partition into pairs. We then form the product of the \A;j;;’s labelling the
vertices (the “cubic interaction”) with the A;jl’s labelling the edges. The constants
then work out so that we take the sum over all such trivalent graphs weighted by
the reciprocal of the number of automorphisms of the graph.

In infinite dimensions the vectors z and J are replaced by vectors in the infinite
dimensional space Q%*(g,), and the coordinates z; become the values of these
forms at points of X. So the sums over indices I become integrals over (X)*" of 3n
powers of the Green’s function of the relevant operator A = %8, + 0,4 * contracted
at the 2n points by the cubic interaction.

Following [AS1] we can simplify to the case of the cubic interaction being a
triA A AAAAG term, with quadratic term A = 9, o (- A 6), by substituting
& = x0,,¢, C = %0,,¢, incorporating all the variables into one supervariable A
and reducing the path integral to one over ker 0} . We do not have space to go into
supermanifolds and BRST transformations so do not repeat the full details (which
are explained in [AS1] in the entirely analogous 3-manifold theory), but taking the
above finite dimensional analysis as motivation we can simply define invariants as
below. First, though, we need some notation.

Let m; : X?" = [[>*, X} — X; be the ith projection map, and m;; : X" —
X;xX; be defined similarly. Let 6; = 770 € Q>%(X?"), and give X?" the Calabi-Yau
form © = A", 6.

9,Xg, denotes 7 g, @759, over X2. An integrable d-operator Ay on E, acyclic
on g, induces 0, on gz Xgp, also acyclic by the Kiinneth formula. w € Q%2(X;x
X, 95 W gg) is the kernel for the propagator A~ = (9, (- A 9))™" = 6(d3,ALL)
on Q% (gp), restricted to kerd,, — ker 0}, in the sense that

9—'(5:10A2;)¢ (z2) = / w(zy, 2) A ¢(21)
Xlx{mg}
using the trace to contract gp ® gy ® gy — gp- Thus w is the (unique, due to
acyclicity) solution of

Ihw=0, Ouw=0A]QI,

with [A] the current Poincaré dual to the diagonal A C XxX, and I € g;Xgg|a =
9p ® g =End (gg) the identity. Since 6, is parallel, 6;1[A] is holomorphic, so a
solution exists.

Definition A.4.1 Let Ay be an integrable 0-operator on a bundle E — X, acyclic
on g, with kernel w € Q%2(X2% g, M g,) as above. Let Q = 32" _ wxw be the

5,j=1"1)
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total form in Q%2 (X" @?ﬁ:ﬂ;‘j(gE X gg)). Then, for any integer n, we define an
“mvariant”

I,(A) =/ TRQ*™ A O,
X2n

where TR takes the @7, A;B;C; factors (A, By, C; € mig%?) to [, tr (4;B,C; —
A;C;B;), and all other factors of the tensor algebra of the 7;(9Xg,) = 7} §x@7; 95
bundles to zero.

Remarks.

1. 9" is singular on all of the “diagonals” where an z; equals an z;, so for
this to be a sensible definition we need to show the integral is finite. This is
discussed below.

2. It is easy to see that I, can be alternatively described in the following way
(which is closer to the Feynman diagram interpretation):

Let G be a (not necessarily connected) graph with 2n trivalent vertices and
3n edges. Use this to identify (g5™)®*" with (g3>")**", and let TR on g§’
be given by TR(A® B® C) = tr (ABC — ACB). Letting TR be the tensor

product of all 2n of the TR’s, we have

L(4) =Y /X TRg \miwA© (A4.2)
G " G

summed over all such graphs G, where A\, denotes the exterior product over
all vertices 1, j connected by an edge in G.

Alternatively it can be shown that log Z; can be expanded in powers of k!
with coefficients as in (A.4.2), but summed only over connected graphs G.
(This is easy to see by exponentiating such a series.) So (A.4.2) gives another
invariant summed over only connected graphs.

3. The first invariant is a litle simpler to write down; it is
/ TR(wAwAw)ABO; Aby, (A.4.3)
X2

and corresponds to the “theta” Feynman diagram (a circle with a diameter
across it). (The other 2-vertex diagram, the dumbbell, does not contribute
due to the antisymmetry in the cubic interaction which excludes diagrams
with self-interacting vertices.)
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4. If there are only finitely many holomorphic structures Ay on E, all isolated, we
may sum over them to get an invariant I,,(X) = > I,,(Ap) of X, irrespective
of whether or not k£ C'S is single-valued.

5. As in [AS1] we can get an invariant for X directly, if A%'(X) = 0, by con-
sidering the trivial holomorphic bundle. While g, is not acyclic we can still
define a Green’s function G for A such that GA = AG is the projection along
the harmonic space of Q%3.

6. Naively we expect the I, to be metric independent. The metric dependence
is the integral of a divergence, which due to singularities has a contribution
from the “boundary” diagonals. Analysing this as in [AS2] we could find the
metric dependence and remove it. As discussed in the last section, it may
well be zero in our case.

7. We could then speculate on independence of the complex structure. Since we
are summing over holomorphic bundles these could “go off to infinity” (e.g.
become sheaves) as we vary the Calabi-Yau, if we do not work on a compacti-
fication of the space of bundles. We can see this is related to the holomorphic
Casson invariant of Chapter 3, and in fact the first Axelrod-Singer invariant
of a 3-manifold is the Casson invariant. This is more complicated than each
flat connection contributing one to the total, however, and comes from the
surgery rules of the two invariants.

In [AS1] finiteness of the analogous 3-manifold invariants is proved. w is mod-
elled, via the Hadamard parametrix method ([Ho|] p 30), on the kernel

3

X
> (1) ||x||3dx{1,2,3}\{i}'

=1

The idea is that although this is singular as we approach the diagonal, its square
is zero, so does not contribute. Rewriting in terms of Z; = x;/||x;||, where the z;
are local geodesic coordinates perpendicular to the diagonal A C X x X, the exact
kernel is

3
w=1® Y (-1) (#:di; A diy, + d:di; Ay) + A, (A.4.4)
=1

where {ijk} = {123}, v, and A are bounded forms, and [ is the identity in g ® g.
Now the singular forms dz; only “point” along the unit sphere bundle of the normal
bundle to the diagonal A C X?, so annihilate vectors pointing along A or towards
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A. Axelrod and Singer make this precise by writing down four linearly independent
vector fields that contract with w to give zero. Roughly speaking, they then notice
the only parts of the integrand which are non-integrable when n vertices come
together are (by looking at the powers of 1/||z|| in (A.4.4)) ones involving at least
3n — 3 of the dz;’s. Over the 3n-dimensional space of these 3 vertices, the resulting
3n — 3 form must be zero, since it is annihilated by interior product by 4 vector
fields.

In our case the relevant kernel is the Bochner-Martinelli kernel ([GH] p 383)
divided by the Calabi-Yau form 0 = dz; dz, dZzs;

2
Z(_l)Z ||Z||6dz{1,2,3}\{i}'

Applying the Hadamard parametrix method to find the actual kernel about a point
on a diagonal we end up with a formula analogous to (A.4.4), but with worse
singularities. At first sight the method of [AS2] will not work, even for the first
invariant, but apparently there are reasons in string theory for believing that Z;
can be normalised [W2]. These should come down to massive cancellations in
the integral due to the Ricci-flatness of the Calabi-Yau. Basically a messy local
calculation needs to be performed, on which I intend collaborating with Axelrod.
As a small start we have worked out the right holomorphic analogue of geodesic
coordinates for calculating the Hadamard parametrix.

Holomorphic geodesic coordinates

Given a complex manifold X with Hermitian metric ¢ we want to construct holo-
morphic coordinates which are as canonical as possible, and with respect to which
the g;;’s take the simplest form about z = 0.

We denote by V the unique connection compatible with the complex and Her-
mitian structures; this will be the Levi-Civita connection (i.e. torsion free) if and
only if X is Kéhler. Pick local holomorphic coordinates (z*) about a point z = 0,
and set 0; = 0/92", V; = Va,, Ffj = dz*(V;0;) and gi; = ¢(9;, 0;).

First of all we may assume that g;;(0) = d;; by a constant (first order) change
of coordinates ' = al2/, i.e. 9; = al0;, taking the matrix A = (a’) to satisfy
AA* = g, with a solution unique up to a unitary transformation of the 2'’s.

We now perform a second order coordinate change,

k

4 A
21 1 P |
=202 2

5 (with aj-,c = afcj constants),
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ie.,
éz' = (5‘3 + a{kzk)aj = hfaj
The new Christoffel symbols are then

[ = hERSRETS, + g (Dahh). (A4.5)

Qa

So, to top order, we have
IE =TF + opk =TE + db,.

Thus the T’
in 7 and j, that is if and only if V is torsion-free, i.e. X is Kahler. In this case the

coordinate transformation is uniquely determined by afj = —Ffj.

s can be chosen to vanish at z = 0 if and only if they are symmetric

We now continue in the same way with coordinate changes of higher orders to
obtain

Proposition A.4.6 Given a Kahler manifold X and n > 0, there exist holomor-

k
L', are zero for all

m < n—1. The coordinates are unique, modulo a constant unitary transformation,

phic coordinates about any point in which Ffj and 0;, ...0;,
up to order (n + 1) coordinate changes of the form 2' = z' + f(z) where f and its
partial derivatives of order < n all vanish at z = 0.

Remark. Of course we cannot hope for the 0-derivatives of I' to vanish as these
determine the curvature of X. What the proposition shows is that we have (es-
sentially unique) coordinates in which the Taylor series of the metric has coeffi-
cients of 2 ...z all zero. In fact we also have g;; = d;; + O(|z|?) about 0, since

81‘9]'1}(0) = Fi’jglk(o) =0 and aigjk(o) = F_éjglﬁ(o) =0.
Thus, for instance, the standard coordinate z on an affine chart C Cc CP! is

dzdz
(1422)2

holomorphic geodesic for the Fubini-Study metric
3(22)? — ... only contains terms in zZ.

since g1 = 1 — 22z +

Proof. We suppose inductively that we have obtained coordinates as in the propo-
sition up to the n-th stage, and attempt to further remove the (n — 1)-th order

holomorphic parts d;, . .. d;,_,T(0) of T.
So we let 1
s (TL + 1)' a}l"'jn+1 2

where the coefficients a’. are constants symmetric in the lower indices. Thus,

0; = h'o,
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where

1 .
T _ &% J
hy, = 6, + . aj,.. ]kz 20

The formula (A.4.5) for the transformation of the Christoffel symbols shows that
to top order in the z%’s we have

. ) 1 ) ) )
T T 7 J1 In—1
= —ak 2.z
Kl Kt (n — 1)1 “rdn-ahl ;
so that, at z = 0,
i i
8j1' : '8jn—1 k= @y 1kl
o . ;
Thus we can remove the symmetric (in jy ... j,4+1) part of 0;,...0;, _ 1F]n]n+1’ and

doing so uniquely determines the coordinate change. So it remains to show that
0,05, ,T% ;.. (0) is symmetric in jy ... jpq1.
The integrability of the complex structure, and unitarity, imply the vanishing

of the (2,0)-part of the curvature, which is
d2'(ViV ;0 — V;Vi0) = ;T — ;T + Tl — TR

Taking the 271 ...z coefficient of this (equivalently applying 9;, ...9;, ,|.—o to
this formula) shows that ;,...9;,_,I% ;  is symmetric in j,_; and j,. But it
is symmetric in j, and j,.1 (V is torsion free) and in the j;, 1 <i < n —1 by

symmetry of partial derivatives. Therefore it has the required symmetry. 0

The Kontsevich approach

Kontsevich’s alternative definition [K] of Axelrod and Singer’s invariants used a
real-differential geometric analogue of a complex geometric construction for resolv-
ing the singularities of configuration spaces. Thus it seems natural to hope there
should be a simple analogue of his definition for a Calabi-Yau 3-fold.

We concentrate on the definition of the first invariant (A.4.3), as this illustrates
the difficulties involved. Firstly, by analogy with [K], we would like w to be a
harmonic (0,2)-form on the blow up Z = X xX of X? along the diagonal A, which
restricts to some generator on each CP? fibre over the diagonal (tensored with the
identity in g ® g%). But of course CP? has no (0,2)-cohomology, and so we have
to consider twisting everything by a line bundle.

So let E denote the exceptional divisor 77'(A). Then on restriction to each
fibre the line bundle [3E] is O(—3) — CP?, which has one dimensional H%2. For
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g acyclic we can find a closed form in Q%(Z;[3E] ® gy X gj) restricting to a
generator of H%?(CP?; 9(—3)) in each fibre, using the exact sequence

0— [2E] — [3E] = [3E]|pppr — 0

on Z, and Kz = [2E]. Then we can form TRw? A 7*© as before, an element of
QO6([9E]) = O8S([TE]) (as Kz = [2E]). Using the above exact sequence and Serre
duality we can see this is zero in cohomology, but an analytic finiteness result as
discussed earlier would presumably show it vanishes to at least seventh order on
E, so that we can consider it as an element of Q%°(0,) and integrate it over Z.

This is clearly unsatisfactory, and it is disappointing that I cannot yet find a
natural analogue of Kontsevich’s construction.

A.5 Knot-type invariants and linked tori

Finally we briefly sketch the analogue of Wilson loops (knots and links) in 3-
manifolds. We fix complex curves C; C X and holomorphic 1-forms o; on the Cj;.
So we will want C; to have genus at least one, and tori seem the most natural curves
to consider — they are the Calabi-Yau manifolds of their dimension, the 1-form is
more or less unique.

We can then supplement the path integral Z, with a term analogous to the
holonomy considered in [W1]. In the abelian (line bundle) case, a d-operator A on
X gives the line bundle a holomorphic structure on restriction to C;, and defines
an element of the Jacobian H%!/H,(X;Z), which can be paired against o; and
exponentiated to give a number which we (sloppily) denote

exp (zk /C AN 0) (A5.1)

once we have chosen a basepoint in the Jacobian; again there are problems with
the periods being dense which do not affect the final answer. We then consider the
path integral
7y, = / DA *CS(A) H ez’lc fci Ana; '
% i
For the abelian theory G = U(1) the evaluation is quite simple by completing the
square in A (there are no cubic terms anymore). That is, using

/eztA:H—Jt:c dVr = (Det A)71/2ethA_1J’
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with ik0 essentially playing the role of A, and J being the linear operator A —
ik [ c; A A o;, the following holomorphic analogue of the linking number between
two of the tori arises:

/veJ [5—1(PD [Ci]Ao)| Ao

07! operates on ker 9%, so is A~19*, which exists if A% = 0 (so that h*? vanishes
also). Compare this formula to that for the Gauss linking number of two circles
(which must be in a homology three sphere, the analogue of insisting on h%! = 0,
for the linking number to make sense) where the kernel is simply that for d instead
of . This is the Gauss kernel on flat R® which would be replaced here by the
Bochner-Martinelli kernel if we were in C3. To evaluate the whole path integral
would require regularising the self-linking number of a complex curve; this is more
difficult and has only recently been solved for knots in S3.

A complex geometric interpretation of the linking number can be made as fol-
lows. Suppose C; is a torus whose canonical bundle extends to the trivial bundle
K¢, on all of X with a trivialisation fixed by o;. Then 0~!(PD [C}]) represents the
cohomology class in H'(X \ Cj; Kx®K¢,) (or more precisely Ext! (K¢, ®7¢;, Kx))
corresponding to the bundle defined by the curve C; via the Serre construction
(2.1.1). Restricting the Ext group to the other (disjoint) curve C; gives a class in
H'(Cy; Kx ® K¢,) which is isomorphic to H'(Cj; K;) using the Calabi-Yau forms
¢, o; and o;. This may be evaluated on C; to give a measure of how non-trivial
the extension

0= Kx = FE— Kg; ® Io; =0

is over C;. This is precisely the holomorphic linking number proposed by Atiyah
in [At1] for CP* fibres in a twistor space, and he showed the Serre class in Ext! is
the Green’s current solving the d-problem for the current defined by the curve C;.
Thus his linking number agrees with ours.

While studying this I received the much more thorough preprint [FKT], and
so have not pursued it further. It fits nicely into the overall theme of this thesis,
however.

Higher order invariants

Considering the non-abelian theory gives higher order invariants of knots and links
(in fact the whole Jones polynomial) in 3-manifolds. To mimic this we need an
analogue of holonomy for a complex curve. On a circle (or knot) the functional



A.5. KNOT-TYPE INVARIANTS AND LINKED TORI 99

determinant of a connection d,4 defines the holonomy of A, so it is natural in our
holomorphic set-up to consider the regularised determinant Det 8 4|¢ for a complex
curve, with one-form o, in a Calabi-Yau 3-fold, where o is used to map Q%! to
9. This can then be formally expanded in powers of A and used perturbatively
in the path integral to give the linking number at first order, then higher order
invariants. Their finiteness, metric dependence, and complex interpretation may
be more difficult to study.
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