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It is believed in particle physics that the velocity-dependent part of potential is, in general, 
ambiguous as far as it is derived from S-matrix. We consider the most general form of the 
graviton ·propagator under an arbitrary q-number gauge transformation for the graviton field. 
The. propagator depends on twelve arbitrary functions of k2,. k being the space part of the 
momentum . ~f the graviton. The arbitrariness of the gauge functions can be used to remove 
the ambiguity of orie-gni.viton exchange potential ~p to the order of (G/r) (v/c)4, G being 
the gravitational constant. The potential thus obtained depends only on one gauge parameter, 
say x. The perihelion motion of two-body system i:s gauge independent, although the potentials 
in the order of (G/r) (v/c)2 and G2/r2 depend on the gauge parameter x. The potentials are 
derived from those in a fixed gauge parameter x by a coordinate transformation. 

§ 1. Introduction 

Suppose that we are of inter.est to obtain one-particle exchange potential 
between two elementary particles with masses m1 and m2. Then particle phys
icists usually consider the diagram showing' that the p·articles with initial four 
momenta P1 and P2 and final momenta q1 and q2(P12 =q12 = -m12,P2

2 =q2
2 = -m2

2
) 

exchange a boson with momentum k= (PI- q1) = - CP2- q2), and calculate the 
potential contributed from the S-matrix element corresp.onding to this diagram. 
However it is well known in particle physics that the v·elocity-dependent part of 
this potential is ambiguous. Since energy is conserved in any S-matrix element, 
t~e en.ergy transferred between two particles, ko is equal to (p10 - q 10) and also to 
(q20 - p;o): The: ambiguity comes from the ko-dependence of the S-matrix element. 

To show this explicitly, let us consider one-graviton exchange potential be
tween· two' spinless particles. The graviton propagator is proportional to 

\ 
1 

(1·1) 

Since the potential ·should be symmetric ·with respect to two particles, the factor 
(1·1) can be expressed generally 'as 

1 
(1·2) 

where x is an arbitrary ·real constant. Using the propagator (1· 2), we obtain 
one-graviton exchange potential between two elementary particles. Summing up 
this· potential over all elementary particles involved in two celestial bodies with 
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1744 K. Hiida and H. Okamura 

masses M1 and M2, we get the potentiaP) 

GM1M2 {1 + _!_ (7 -x)(P1
2 

+P2
2

) _ _!_ (S -x) (P1P2) 
r 4 M12 M22 2 M1M2 

_ x (Ptn) (P2n) _ _!_ (1-x)[(Ptn)2 + (P2n)2 
]} 

2 M1M2 4 M 1
2 1Vl22 

' 

(1·3) 

where n = r / r and P1 and P2 are momenta of two celestial bodies with masses 

M 1 and M2, respectively. The higher order terms than (G/r) (v/c)2 are neglected 

in (1· 3). Not only the denominator but also the numerator of the graviton pro

pagator may depend on ko. Even in this case it is easy to show that one-gra

viton exchange potential can be expressed again by (1· 3), if the arbitrary cons

tant x is properly redefined. Thus we have no reason to fix the value of x to 

a special value,2
) say, x= 1 . In this special case the potential (1· 3) reduces 

to that given by Einstein, Infeld and Hoffman.3> This is an example to show 

that the velocity-dependent part of any potential is in general ambiguous, as far 

as the potential is obtained from S-matrix. 
In the next section we consider the most general form of the graviton pro

pagator 

-i Sd"keikxXap,rs(k) 
2 (27L')4 k2

- ie 

under the gauge transformation of the graviton field hap: 

hap-?hap + 8aPp + fJpPa, 

where Pa is an arbitrary q-number vector. The numerator XafJ,riJ depends gener

ally on tweleve arbitrary functions of k 2
• They are called gauge functions. The 

arbitrariness of these gauge functions can be used to remove the ambiguity of 

one-graviton exchange potentilitl mentioned above. For example, in order that 

one-graviton exchange potential! is determined unambiguously up to the order (G/ 

r)(v/c)2
, three of twelve gauge functions must be fixed. Thenit is shown that 

the x-dependence of (1· 3) does not mean the existence of the ambiguity men

tioned above but only shows the gauge depencence of the potential in the order 

(G/r) (v/cY. When we require that one-graviton exchange potential is determined 

unambiguously up to the order (G/r) (v/c)", eleven of twelve gauge functions 

are :fixed. The potential thus obtained depends only on the gauge parameter 

x. The one-graviton exchange potentials in the order of (G/r) (v/c)2
n (n>3) 

cannot be determined unambiguously as far as the potentials are obtained from 

S-matrix and the arbitrariness of the gauge functions are used. 
As was mentioned, the potential in the order (G/r) (v/c)2 depends on gauge 

parameter x. Then virial theorem in classical mechanics suggests that the static 

part of two-graviton exchange potential, which is in the order of G 2/r2
, also 

depends on x. Section 3 is devoted to the calculation of the x-dependence. of 
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Gauge Transformation and Gravitational Potentials 1745 

the latter potential. It is shown that the potential actually depends on x. For 
example, the static part of two-graviton exchange potential v2(

4
) vanishes in the 

special gauge, x= 3: 

It is shown in the last section that the perihelion motion of two-body system 

is gauge independent, although the potentials in the order of (G/r) (v/c)2 and 

G 2/r2depend on x. It is also shown in the center-of mass system that the gauge 

dependent potentials in an arbitrary gauge parameter x are obtained from the 

standard ones given by Einstein, Infeld and Hoffman3
> and defined in the special 

gauge of x = 1, by a coordinate transformation in the form 

where a= - t (1- x) . 

§ 2. Gauge transformations 

As is well known, potential itself is not a physical observable and it depends 

on the gauge in the case of electromagnetic interactions. This is also true for 

gravitational interactions. The purpose of this section is to show how the velo

city-dependent part of one-graviton exchange potential changes under gauge trans

formations. Before entering into gravitational interactions, let us consider elec
tromagnetic interactions, briefly. 

Since the gauge transformation of the photon field Aa is given by 

Aa~Aa+ fJaA, 

the most general form of the photon propagator is4
> 

_ _ i_ fd4keikx Dafl (k) 
(2n)4 k2

- ie ' 
(2·1) 

where Aa is an arbitrary vector and it is a function of ka and unit time-like vector 

na (na 2 = -1). We can define the vector Ji a= - ka- 2na (kn) and the scalar k2 

+ (kn)\ which reduce in the special frame na = (0, 0, 0, i) to the space-reflected vector 
ka = (- k, ik0) and k 2

, respectively. In the following discussions we shall choose 

this frame. 
The vector Aa can be expressed as 

Aa=aka+bka. (2·2) 

Substituting this into (2 ·1), we obtain 

D afl = iJ afl + 2akakfl + b (Ji akfl + kak p). (2·3) 
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1746 K. Hiida and H. Okamura 

Now we require that one-photon exchange potential is free from the ambiguity 
discussed in the previous section at least to the order of ( v / c )2. Then we must 
require that 1) 

and 2) Doa does not depend on k0• From these requirements we obtain 

respectively. Therefore 

(a+ b) =-
1- and a=O, 

2k2 

(2·4) 

The expression (2 ·1) with (2 · 4) is just the photon propagator m the Coulomb 
gauge. Thus we can say that the Coulomb gauge should be used in order to 
calculate the velocity-dependent part of one-photon exchange potential from . S
matrix. Further we can show that the relastivistic correction term in the form 
of (e4/r2

) (v/c) 2 to the two-photon exchange potential can be calculated uniquely 
m this gauge. 

The gauge transformation of the graviton field ha13 is given by 

(2·5) 

where Pa is an arbitrary q-number vector. The graviton propagator can be ex
pressed as 

where the numerator Xa 13 ,78 has the form 

XafJ,ra(k) = (DarOfJa+DaaOfJr-Dailra) 

+ kakr1JfJa + k13ka1Jar + kaka1JfJr + k/3kr1Jal3 

+ krAa/3,13 + kaAafJ,r + kaAra,f] + kfJAra,a · 

(2·6) 

(2·7) 

The tensors 1JafJ a~d AafJ,r should be symmetric with respect to a and {3, and 
they are functions of ka and ka. The most general form of these tensors is 
given by 

(2·8) 
1 - - -

Aa13,r = k
2 
{1JaiJ134 (c1kr + c2kr) + 1Ja13 (cakr + c4kr) 

+ 1J a40r4 (dlkfJ + d2k 13) + 1J ar (dak/3 + d/k fJ) 
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Gauge Transformatian and Gravitational Potentials 

+ Dtl4or4 (d1ka + d2ka) + afJr (daka + d4ka)} 

1 - - -+- {elkak{Jkr + e2 (kakfJkr + kak{Jkr) + eakak{Jkr k4 

+ e4k ak fJkr + e5 (k ak fJk r + kak fJk r) + e6k ak fJkr}, 

1747 

which depends on nineteen functions ah ... 1 e6 and aa{J=oa{J-oa4o{J4· We shall 
call these arbitrary functions a1, · · ·, e6 gauge functions. Substituting these expres

sions for the tesors 'lJafJ and AafJ,r into (2 · 7), we find that XafJ,r 3 depends on 
twelve independent gauge functions, because some of the nineteen functions appear 
only in some combination in it. For example, ba and e5 appear only in the 
combination (b3 + 2e5). 

Now let us impose on Xaf1n 3 the requirement that the velocity-dependent 
part of one~graviton exchange potential is free from the ambiguity mentioned in 
the previous section up to the order of ( G I r) (vIc Y, then we get the conditions 

a1 + c1 + 2dl = 0 , 

(2·9) 

Thus Xaf1,r 3 depends on nine gauge functions. 
The S-matrix element for one-graviton exchange between two spinless parti

cles with masses m 1 and m 2 is given by 

(2·10) 

where k = CP1- qi) = - CP2- q2) and the terms which contribute to the potentials 
proportional to hn(n>I) and which are proportional to (vlc) 2n(n>2) are neg
lected. It is interesting to observe that the expression (2 ·10) depends only on 
the function (c1 + 2d2) in spite of the fact that the expression for Xa{J,ra depends 
on nine functions. From the beginning we assume that gauge functions are non
singular functions of k 2

• Let ( c1 + 2d2) be the leading term of (c1 + 2d2) when 
it is expanded in the powers of k 2

• Then it is easy to get from (2 ·10) one
graviton exchange potential between two spinless particles. Summing up over 
all particles involved in two celestial bodies with masses M 1 and M 2 and mo
menta P1 and P2, respectively, we obtain the one-graviton exchange potential 
between the celestial bodies : 
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1748 K. Hiida and H. Okamura 

-2 (cl + 2d2) (Pln) (P2n) 
- - 1Vf1M,. 

which is identical with (1· 3) when 

x=4c1 +8da. (2·12) - -
Thus we have shown that the x-dependence of the potential (1· 3) does 

not mean the existence of the ambiguity mentioned in the previous section but 
it only shows the gauge dependence of the potential. The ·potential given by Eins
tein, Infeld and Hoffman is obtained from (1· 3) by putting x = 1. As was 
shown explicitly in Ref. 1), if the static part of two-graviton exchange potential 
is independent of x, the perihelion motion, say, of the Mercury depends on the 
gauge parameter x. Thus the static potential should also depend on x. This 
x-dependence will be disscussed in § 3. 

Now we want to calculate the one-graviton exchange potential which is free 
from the ambiguity mentioned in the previous section up to the order of (G/r) 
X ( v / cY·. Then we must impose further eight conditions on XatJ.r8· They are 

a2 + 2da = 0 , b1 + e1 = 0 , 

(2·13) 
1 

C<~,= --' 
2 

x 1 
e4=-. ' 16' . ea= -16' 

where x denotes the gauge function ( 4c1 + 8d2). 

Under the conditions (2·.9) and· (2·13), Xap, 1a can be expressed as 

~J - -
Xa(3,ra (k) = k" {Jailp4Dr/Ja4- Oa4Dtu!Jra- iJriJaiJafJ 

+ 0 aiJ r4-g pa + 0 fJ40 a4-g ar + 0 a40 all fJr + iJ 1'140 r4tJ all 

- ki~J [X (iJ aiiJr;iJ tuiJ o4 + iJ fJi(J aJO o:40r4 
k 4 

+ OaiOajtJ fJ4(Jr4 + (J fJi(JrJ(J aiJa4) 

+ (l ; :X) (lJ aiD J3j0140 84 + lJ 1i0 ojO a40 /34)]} 
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Gauge Transformation and Gravitational Potentials 17 49 

(2·14) 

where the suffices i, j, k and l take the values 1, 2 and 3. It is interesting to see 
that Xap,ra satisfies automatically the transverse condition 

(2·15) 

though it is not required in the course to get (2 ·14). 
Now we shall rederive (2·14) from a different viewpoint. Let T~ij be the 

energy-momentum tensor for i-th particle. It is conserved: 

~ r<i>-o Ua a$- • 

For simplicity, we shall tentatively choose the coordinate as 

ka = (0, 0, ka, iko) . 

Then 

T (i) _ ko,., (i) 
3a --.LOa 

ks 

(2·16) 

(2·17) 

(2·18) 

1s obtained from (2·16). Feynman5
> and De Witt6> use (2·18) and obtain 

T~~ (Oarflpa + OaaOpr- OapOra) Tr~> 

_ (ks
2

- ko
2
) {T<t>r<z> + r<t>r<z> + r<t>r<z> ·4r<t>r<2> - ks2 00 00 00 lclc lclc . 00 - Ole Ole 

+ 3T <t>r<z> rct)rcz> rct>rcz>} o3 o3- oo 33- 33 oo 

+ .... [2·Tc1)T<2>- T<1>Tc2>J. 
st st ss tt , (2·19) 

where suffix k takes the values 1, 2, 3 but suffices s, t take the values 1 and 2. 
However there is an ambiguity when (2 ·19) is written down. Using (2 ·18), 

we can rewrite (2 · 19) as 

(ks
2

- ko
2
) {T(l)T(2) + TC1)T(2) + TCt)ycz> 4TCl)TC2) ks2 00 00 00 TeTe lclc - 00 - Ole Ole 

+ xT~~)T~i> + !-{1- x) [T~~>T~P + T~~>T~~>J} 

+ [2TWT~~>- T~~>T~~>] 

-Tc1>X (k) T<2> = afJ af],ra riJ • 

The expressiOn (2 ·19) is a special case of (2 · 20), that Is, 

x=3. 

(2· 20) 

(2· 21) 

In the coordinate (k, ik0) the expression for Xap,ra obtained from (2 · 20) coincides 
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1750 K. · Hiida· and H. Okamura 

with (2 ·14). Thus the gauge function x is introduced as an ambiguity in this 
derivation. 

The S-matrix element for one-graviton exchange obtained from (2 ·14) is 
given by 

(2·22) 

One-graviton exchange potential between two celestial bodies . .up to the order 
(G/r) (vjc)4 is given by 

V.<2>=(2·11)- GM1M2 J(13-2x) p12p22 +2(P1P2)2 2 
8r l M12M22 M12M22 

_ (6-x)[P1
4 

+P2
4 

+P1
2
(P2n)

2
+P2

2
(P1n)

2
] 

M14 M24 M12M22 

(2· 23) 

§ 3. Gauge dependence of . two·gravi~on e~change potential 

In this section we. shall calculate s~atic two-graviton excha!lge potential V:~<4~ 
to know the gauge dependence of it. As was shown by (2 ·11)",. one~graviton 
exchange potential V2<2> up to the order (G/r) (v/c)2 depends on the gauge para-

+(cyclic) + +(cyclic) 

Fig. 1. Tree diagrams for the scattering of three particles. The solid and wavy lines represent a 
spinless particle and the graviton, respectively. 
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Gauge Transformation and· Graviiatio.nal Potentials 1751 

meter x. This and the. v.irial theorem in classical mechanics suggest that V/4
) 

depends also on the gauge parameter x. 
In order to calculate static two-graviton exchange potential V2<

4
) between two 

celestial bodies, we shall consider three-body potential Ys<4
l among three spinless 

particles. The substitution law to get v2(
4

) from Vs(
4

) was discussed by the pre
sent authors.7l The tree diagrams which contribute to v3<

4
) ·are shown in Fig. 1. 

The contributions from these tree diagrams to v 3<
4
l are calculated separately in 

the following. The gauge function x is simply written as x in the following 
S-matrix elements. 

3. 1. Contribntion from Fig. 1 (a) 

Let Pi, qi and mi (i = 1, 2, 3) be the initial and the final momenta and the 
mass of· i-th part~cle, res'pectively. The S-matrix element for the first diagram 
in Fig. 1 (a) is given in the static limit by 

S .·. iG'l m~m2ms {4·X . (k ) X (k ) 
a= 2n3 k12k32 .44,4a 1 44,4a .'3. 

- X44,44 Ck1) X44,aa (k3) - X44,aa (kl).X44,44 (k3)} 

x o<4) CP1 + P2 + P3 ~ ql - q2- q3) . 

From (2 ·14) we get 111 the static limit 

x44,aa(k) = -t(5-x). 

Thus the S-matrix element for Fig. 1 (a) . is given by 

"G2 { 1 · ·'1 · . ·1·· ) . l . . . . . . l 
S =- 9-x m m m --.-+--+--

a , 2 / . ) . 1 2 3 k 2k 2 ·. k 2kn2 k ~k 2 I 7J . . 1. 2 1 0 2 3 J. 

(3 ·1) 

(3· 2) 

where ki = (pi- qi). The three~body static potential obtained from (3 · 2) is 

(3· 3) 

riJ being the distance between i-th and j-th particles. 

3. 2. Contribution from Fig. 1 (b) 

As was shown by (3 · 7) in Ref. 1), the three-graviton vertex involved m 
Fig. 1 (b) is expressed by thirteen terms. We shall call again these terms 111 

turn as 1, 2, 3, · · ·, 13 following the order written in the expression (3 · 7). 
We shall define six functions Ki by 

D
ow

nloaded from
 https://academ

ic.oup.com
/ptp/article/47/5/1743/1876569 by guest on 16 August 2022



1752 K. Hiida and H. Okamura 

+ ka6 Ck12 + ks2
) + ks6 (kt2 + k22

)]}, 

Ka- · /
2 2{6(k/'k2'+k/•k/'+k2'ks') -4[k16 (k2

2 +k3
2
) 

8k1 k2 ks 

+k26 (kt2 +ka2) +ka6 (kt2 +k22)] + (kt8 +k28 +ka8
)}, 

K, = / 
2 2 {4k12k22ka2 K1- 2 (k1'k2' + kt'ka' + k2'ka') 

4k1 k2 ka 

+ (kt8 +k28 +ka8
)}, 

(3·4) 

K5 k 
2

1 
2k 2 {2kt2k22ks2 K1 + 2 (k1'k2' + k1'ka4 + k2'ks') -2 [kt6 (k22 + ks2) 

4 1 k2 3 

+ k26 (kt2 + ks2) + ks6 (kt2 + k22
)] + (k18 + k28 + ks8

)}, 

Ka=-
2

1
2

. 
2
{2(kt'k2'+k1'ks'+k2'ka')- (k1

8 +k28 +k3
8
)}. 

8k1 k2 ks 

The S-matrix element for Fig. 1 (b) has the form 

iG2 1 1s 
Sb =-

2
· 

3
m1m2mak 

2
k 2k 

2 
~ N/J<•> (Pt + P2+ Pa-qt-q2-qa). (3·5) n 1 2 s t-1 

Each numerator Ni in (3 · 5) denotes the contribution from i-th term for the 
three-graviton vertex. Thirteen numerators are given by 

Nt=.i-(5-x)Kt-!(5-x) (1-x)K2-t(1-x)2Ka+fs(1-x)3Ks, 

N2= -t(5-x)2Kt + t (5---x)2 (1-x) Kh 

Na=- (2-x)Kt+ (1-x)K2--t(1-x)2Kc'-i(l-x)3Ka, 

N,=i-(5-x) (3-x)Kt+i-(3-x) (1-x)2Klh 

Nli=i(7 -3x) K1 +t(1-x)2K,+ i(1-x)3Ks, 

Ns= -!(5-x)2Kt-i(5-x) (1-x)2Kli, 

N7=i(5-x) (3-x)Kt-!(5-x) (1-x)K2+i(5-x) (1-x)2Ko, (3·6) 

Na=:i-(5-x) (3-x)K1 -i(5-x) (3-x) (1-x)K2, 

N9= -(4-2x)Kt+(3-x)(l-x)K2+ (I-x)2Ks-t(I-x)2K5-t(l-x)3K6 , 

N10= -i (5-x)2Kt + fs(5-x) (1-xYKa, 

N 11 ='f2(5-x)3Kt, 

Nl2=i(5-x) (2-x)K1-i(5-x) (1-x)2Ks, 

Nta= -fs(5-x)2(3-x)Kt. 
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Gauge Transformation and Gravitational Potentials 1753 

Substituting (3 · 6) into (3 · 5) and using (3 · 4), we can rewrite (3 · 5) in the 

static limit as 

+ (~2 + ~2 ) ~:~:: ]}o<'>(pt+P2+Ps-qt-q2-qa). (3·7) 

This matrix element leads to the three-body potential 

(3·8) 

where ri1 = (x1-xt), and Xt and x 1 denote the positions lll space of i-th and j
th particles, respectively. 

3. 3. Contribution from Fig. 1 (c) 

The :first diagram in Fig. 1 (c) g1ves the S-matrix element 

Set= i~
2 

(PuPaoPsoqtoq'Joqso)- 112 
( 

1 
)2 

2 
E (ph ql; P2, (Pt + P2- qt); kt) 

rc Pt + p2-qt + m2 

X E (Pa, qa; (Pt + P2- qt), q'J; ka) o<"> (Pt + P2 + Pa- qt- q2 -- qa). (3 · 9) 

Here the function E is defined by 

_ _!_(AB+mi2)_!_
2
CrDsXaa,ra(k) _ _!_(CD+ m/)_!_AaB"'Xa"' rrCk) 

2 k 2 k2 
fJ "' 

+! (AB+mi2
) (CD+m/) ~2 Xaa,rr(k), (3·10) 

mi and m 1 being the masses of A and B, and C and D, respectively. The second 
Born term corresponding to (3 · 9) IS 
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1754 ·K. Hiida and·H. Okamura 

where {)) is defined by 

{)) = [ Cp1 + P2 - q1) , ..j Cp1 + p2- q1Y + m2 
2
] • (3·12) 

Let us define the functions F(A, B; C, {)); k) and F(A,. B; {)), C; k) by 

E(A, B; C, {)); k) -E(A, B; C, CP1 + p2-ql); k) 

= (Pw+P2o-'qw-{))o)F(A, B; C, {)); k), 

E(A, B; {)), C; k) -E(A, B;(pl +P2..::.q1), C; k) 
(3·13) 

It is easy to show that these functions F's do not vanish in the limit (p10 + P2o 

- q10 - {))0) ~ 0 . Using the formula 

(3 · 9), (3 ·11) and (3 ·13), we obtain 

·c2 
. Scl- SBl = ~7!3 (PIOP2oPaoq10q2oqao)- 1120(4

) (pl + P2 + Pa- ql--'- q2- qa) 

(3·14) 

+O(kh k2.; +). (3·15) 
P2o 

From (2 ·14), (3 ·10), (3 ·13) and (3 ·15) we get in the static :limit 

Summing up all the contributions from Fig. 1 (c), we finally get 

X 0(4
) (pi + P2 + Pa- ql- q2- qa) · 

This matrix element leads to the three-body potential . 

(3 ·17) 

(3·18) 
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Gauge Transformation and Gravitational Potentials 1755 

3., 4. Two-graviton exchange potential 

The three-body potentials v~2, vW and v~~) obtained from Fig. 1 (a), (b) and 
(c) are given by (3·3), (3·8) and (3·18), respectively. Using the substitution 
law,7

) we get the two-graviton exchange potentials V£t:, VW and V£~) between 
two celestial bodies with masses M 1 and M 2 from the three-body potentials v~;J, v~V 
and v~~), respectively. They are 

u(4)_ 1 (5 - ) G
2
M1M2 (M + M) v 2 b - 4 x r 2 1 2 , (3 ·19) 

which lead to the two-graviton exchange potential 

n4)= _!_ (3-x) G2M1M2 (Jtfl + M2). 
4 r 2 

(3· 20) 

Thus V2<4
) is gauge dependent. · It is interesting to observe that V2<

4):::::::::0 in the 
gauge x=3. 

§ 4. Discussion 

4. 1. Perihelion motion 

As was shown by (2 ·11) and (3 · 20), both the velocity-dependent part of 
one-graviton exchange potential and the static part of two-graviton exchange 
potential are gauge-dependent. We shall show, however, that the perihelion mo
tion of two-body system is, as ·it should be, gauge-independent. 

The Hamiltonian for two-body system has the following form in the center
of-mass system : 

(4·1) 

The rotation angle of the perihelion of this system for one turn is given by · 

a¢ 

(4·2) 

where M denotes the angular momentum of this system and a, b and c are 
gauge-dependent. 

At a glance of this expression, one may feel that o¢ cannot be gauge-invari-
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ant, because a and b have the mass-dependent coefficient M1M2/ CM1 + M2)2 but c 
has not it. However this feeling is not right. In fact we get from (2 ·11) and 

(2 ·12)' 

a=_!_+_!_ (7 -x) (Ml + M2)2 ' 
2 4 M1M2 

b= _!_ _ _!_ (1-x) (M1 + M2)
2 

. 
2 4 M1M2 

(4·3) 

We see that the x-dependent parts of a and b have the mass-dependent factor 
(M1 + M2)

2
/ M1M2• Substituting ( 4 · 3) into ( 4 · 2), we get 

o¢ = G
2
M12

M2
2 

·{ 3M1M 2 + (__!_ + __!_) ( M1M2 ) 
8 
+ 13 _ _!_ (x + 4c)} 

M 2 (M1MS" M18 M28 M1 + M2 2 2 . 

We get, on the other hand, from (3 · 20) 

c=t(3-x). 

Thus it was shown that o¢ is gauge-independent. 

4. 2. Coordinate transformation8
) 

(4·4) 

(4·5) 

In this subsection we shall show that our Hamiltonian ( 4 ·1) with ( 4 · 3) and 

(4 · 5) is obtained from the standard one 

_ GM1M2 {1 +_!_[3 (_!_+_!_) +-7-] p2+ (Pn)
2

} + G2
M1M2CM1+M2) 

r 2 M12 M22
' M1Ma 2M1M2 2r2 

(4·6) 

given by Einstein, Infeld and Hoffman,8
> by a coordinate transformation in the 

form 

I- [1 + G (Ml + M2)] r -r a , 
r , 

(4·7) 

where a is a dimensionless constant. 
From (4·7) 

r = r' [ 1 - a G (M;; M2) J, 

P= P'+ aG (Mt + M~) [P' _ r' (P'r')] 
r' r'2 

(4·8) 

are obtained. Substituting (4 · 8) into (4 · 6), we get 
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_ ~ {[..!..+(~_a) (M1 + M2)
2

] (P')2 +[..!..+a (Mt + Ma)
2

] (P'n')} 
r 2 2 M1M2 2 M1M2 

+ (..!..- a)G
2
M1M2(M1 +M2) . 

2 (r')2 
(4·9) 

When 

a= -t(l-x), (4·10) 

the expression ( 4 · 9) coincides with ( 4 ·1) with ( 4 · 3) and ( 4 · 5). 
Thus it was shown explicitly that there is no . physical meaning to fix the 

gauge parameter x to a special value, x = 1 or x = 3, etc. This is, as is well 
known, due to the general covariance of the theory. 
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