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We discuss the relation between space—time diffeomorphisms and gauge transfor-
mations in theories of the Yang—Mills type coupled with Einstein’s general rela-
tivity. We show that local symmetries of the Hamiltonian and Lagrangian formal-
isms of these generally covariant gauge systems are equivalent when gauge
transformations are required to induce transformations which are projectable under
the Legendre map. Although pure Yang—Mills gauge transformations are project-
able by themselves, diffeomorphisms are not. Instead, the projectable symmetry
group arises from infinitesimal diffeomorphism-inducing transformations which
must depend on the lapse function and shift vector of the space—time metric plus
associated gauge transformations. Our results are generalizations of earlier results
by ourselves and by Salisbury and Sundermeyer.2@0 American Institute of
Physics[S0022-24880)02308-2

[. INTRODUCTION

In a recent papémwe discussed the relation between diffeomorphisms and gauge transforma-
tions in general relativity. Specifically, gauge transformations are required to be projectable under
the Legendre map, and therefore they must depend on the lapse function and shift vector of the
metric in a given coordinate neighborhood. Therefore, it is not the diffeomorphism group, which
acts on the underlying manifold, which is the gauge group. The gauge group acts on the dynamical
variables in the space of field configuratiofscluding the metrig; its structure is fixed by the
dynamical model; but each element may also be interpreted as a family of space—time diffeomor-
phisms. More precisely, each pair consisting of an element of the gauge group and a metric on
which it acts determines a space—time diffeomorphiamich affects tensors in the usual way

Here we extend the discussion to include space—times having a Yang—Mills type field coupled
to general relativity. Our work is an extension of a more formal treatment by Pons and Shepley.
Some of these results were obtained earlier by Salisbury and Sunderifiéyr and Wald (and
others, but we have given them a broader foundation, namely one based on projectability under
the Legendre map while retaining all the gauge variables. Our resulting expressions for the gauge
generators are entirely new. The idea that coordinate transformation should be accompanied by
gauge transformations dates back a rather long way. The articles by JakivJackiw and
Manton! summarized by Jackidiscuss this idea but not from the point of view we espouse
here, namely as a result of relating Lagrangian and Hamiltonian formulations of the theory. In
passing, we should note that besides eliminating gauge variables through a quotienting procedure,
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the Lee and WaRiapproach is incomplete in that it does not take into account that Lagrangian
energies might not be projectable to the quotient space. We recently extended and completed their
program by introducing an algorithmic procedure, which under most circumstances is equivalent
to the Dirac—Bergmann algoriththEurthermore, our procedure is accomplished without quoti-
enting out gauge variables. The Dirac—Bergmann constraint algorithm requires that evolution
remain within the final constraint surface in phase space.

We find that pure Yang—Mills gauge transformations meet our requirement of projectability.
Gauge transformations which act like diffeomorphisms not only have to be coupled to the metric
as in the vacuum case but also require associated Yang—Mills gauge transformations.

In Sec. Il we briefly recount the general treatment of diffeomorphism-invariant theories. We
discuss Einstein—Yang—Mills field theory and descrili&initesima) gauge transformations
therein. We show explicitly how these transformations must depend on the lapse function and shift
vector of the space—time metric and what associated Yang—Mills gauge transformations they must
have if they are to be projectable under the Legendre map. In Sec. lll, we calculate the group
structure functions and the canonical group generators. Section IV concludes with a general
discussion of our results and future extensions. These will include the application of our proce-
dures to the real triad formulatibh'! and to the Ashtekar formulatihof general relativity.

II. YANG—-MILLS THEORIES AND GENERAL RELATIVITY

As in our previous papérfollowing the work of Batlleet al.,'® we begin with a Lagrangian

L(q,¢) which does does not depend explicitly brAn infinitesimal transformatiodq'(q,,t) is
a Noether Lagrangian symmetry if

sL=dF/dt,

which results in an equation for
J [
G:=—76q9'—F, (1)
namely
L] + de =0
[ ]i q dt Y

[L]; being the Euler—Lagrange functional derivativelof
[L]i=ai— Wi’
where

W L PL . JL

When the mass matrix or Legendre mawik=(W;;) is singular, there exists a kernel for the
pullback FL* of the Legendre magL from configuration-velocity spactQ (the tangent bundle
TQ of the configuration spac®) to phase spac&*Q (the cotangent bundie This kernel is
spanned by vector fields whose componeyit{A ranges over the number of these vectanre a
basis for the null vectors ddV;; . The Hamiltonian technique eases the calculation ofythe

dPa
o ?

Yp=FL*
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where the¢, are the Hamiltonian primary first class constraints. Note that these constraints are
here assumed to be effectivé not, they can be made effective; however, problems can arise
when ineffective, secondary constraints, oéctr

The equation satisfied bg implies

4G
’YAW =0, 3

showing thaiG is projectable to a functio®, in T*Q; that is, it is the pullback of a functiofmot
necessarily unigyen T*Q:

G=FL*(Gp) (4)

(first pointed out by Kamimurd). The functionGy, is determined up to the addition of linear
combinations of the primary constraints. Whéq' is projectable tol'* Q, it is possible to select
Gy satisfying(4) and such that

IGy

—) . (5

S i:ﬂ*
a Ip;

We will apply this result to diffeomorphisms and to Yang—Mills gauge transformations in the
following.

A. Yang—Mills gauge transformations

The Yang—Mills Lagrangian densitgy,, is a functional of the vector potential fields, ,
where the internal indekranges ovef1,...n}, wheren is the dimension of the gauge group, and
u is a space—time indexu(=0,...,3).(We will be using lower-case indices from the beginning of
the alphabeta,b,..., as spatial indices,b=1,2,3.) The field tensor derived from these potential
fields is

N . Ok
FIa,B_AIB,a_Ala,B_C}kA]aAB' (6)

where the comma denotes partial differentiation and wlﬁépaare the structure constants of the
gauge group. The Yang—Mills Lagrangian density is given by

Lyw=—*[F, Fl 0"g"fC;; , (7)

whereC;; is a nonsingular, symmetric group metfits inverse isC) and“g is the determinant
of the space—time metric tens@m a semi-simple groufC;; is usually taken to bé:istc}s; in an
Abelian group, one usually takés; = g;; .)

The derivatives ofy,, with respect to the velocities of the configuration space variabl'gs,
(here the dot isd/dt), give the tangent space functioﬁ>§ corresponding to the phase space
conjugate momenta:

Pi ‘=T: V|*glF,,g*#g%"Cj; . (8
17

a

The Legendre mapFL is defined by settingsi“ equal toP{" in phase space. Because of the
antisymmetry of the field tensor, the primary constraints are

~ ~ &EYM .
OZPi’=PiO:H: VI*g|FL,9%9%Cy; . ©)
0

Downloaded 20 Jul 2010 to 161.116.168.227. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp



5560 J. Math. Phys., Vol. 41, No. 8, August 2000 Pons, Salisbury, and Shepley

A generator of a projectable gauge transformation thus must be independ?&";pl of
~ An infinitesimal Yang—Mills gauge transformation is defined by an array of gauge descriptors
A" and transforms the potential by

5R[A]AL: —AEM—C}kAiA'; (10)

(we use the notatiodg[ A ] for this Yang—Mills rotation variation to distinguish it from other
variations defined later, and we wrigg if the [A] may be understood in contgxiVe denote this
transformation by

SrA,=—(D,A), 1D

whereD,, is the Yang—Mills covariant derivativén its action on space—time scalars and Yang—

Mills vectors. Under this transformation, the field transforms as

SgF' ,=—ClL AIF¥ (12
v jk

wv?

where we work to first order ith' and use the Jacobi identity

CiiChnT CiniChj+ ChiClin=0.

n

The Yang—Mills LagrangiarCy,, is invariant under this transformation provided that the group
metric obeys

CiiCii= —CiCui

(which it will if Cj;=CfCjy).
The variationdy is clearly independent o?(\b and so is projectable.

B. Diffeomorphisms

The configuration space variables for general relativity are the components of the metric
tensor

ds?=g,,,dx* dx’=— N2 dt*+ g,p(dx?+ N2 dt) (dx"+ NP dt), (13

whereN is the lapse function? the components of the shift vector, agg, is our notation for
the spatial metric. The inverse gf;, is €2®:

We will use g for the determinant of the spatial metric; the relationship between it and the
determinant of the space—time metric is

g=—N?g.

In matrix form the metric and its inverse are

(g )_(_N2+NCngcd gacNC)
r gbde Gab |
—1/N? N2/N?

(@)=| \b/n2  aab. nanbn2 |-

N°/N- e N2N°N

The general relativity Lagrangian density s
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Lor=NVICR+K,K3— (K2)2), (14)

where®R is the scalar curvature computed from the three-meti=°R,,e2°, where®R,,, is the
three-metric Ricci tensprand K, is the second fundamental forfextrinsic curvature; indices
raised bye®” or lowered byg,;,) for the constant-time three-surfaces:

1
Kab=5x; (9ab— Najp—=Npja), (15

with the vertical bar meaning covariant differentiation with respect to the three-metric connection.
Thus the total Lagrangian density is

’CZ’CYM+£GR' (16)

Notice that the laps&l and shiftN? of the four-metric all appear, but their time derivatives
(that is, their velocitiesdo not. This is required of any diffeomorphism invariant theory. To be
projectable, therefore, a variation must be independent of these velocities as well as being inde-
pendent ofA{) in coupled Einstein—Yang—Mills theory.

Consider now an infinitesimal diffeomorphism, which changes the coordinates by

Opl €]x¥=—e* a7

(we write &, if the [ €] may be understood in contextUnder this diffeomorphism, the space—time
metric transforms as

5Dgﬂvzgﬂv,oeo—+gavei+g,u,oe,o;/' (18)

This is the Lie derivative equation.

We will show from this equation thaly is not a projectable transformation of the form of Eq.
(5 unless it is made to depend on the lapse and shift variables. We will also showstisahot
allowed to depend on the Yang—Mills potentid] . Finally, we will look at the variation of the
Yang—Mills potential itself and show that if a new variation is defined to include a gauge trans-
formation along with each diffeomorphism, the new variation will be projectable. We now pro-
ceed with these demonstrations.

Equation(18) implies that the variations of the lapse and shift due to a diffeomorphism are

SoN=Ne>+N e+ Ne®— NN, (199
SoNA=N,e%+ N3 e®+ N30 — (N2e2P+ NANP) €}, + €8 — NP, . (19b)

In order to eliminate the dependencefN? from these variations, it is necessary that #fe
depend on the lapse and sHift:

0_50 Na

=\ ea=§a—ﬁ§o, (20

where &0, &2 are independent df, N2. Note that
= ShEd+nHéo (21)
wheren# is the unit normal to thé=const spacelike hypersurfaces:

Na
, ni=——.
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A diffeomorphism with only the descriptai® not zero is called a perpendicular diffeomorphism.
Furthermore, Eq(19) shows thate* cannot depend oAl : Equation(193 has a termNe°
which would involveA} otherwise; and similarly, Eq19b) has a terni® which would involveA},
unless such a dependence is outlawed.
Under a diffeomorphism, the Yang—Mills potential transforms as a covariant vector field
under Lie differentiation:

5DA‘M= AiMe‘TJr Ai,ej; . (22)

The variation ofA' is clearly independent ofl,N?, A0 and so is projectable. However, tliég
variation oon iS

SpAL=Ape’+ Apel+ AL e+ Ag €. (23

It clearly is not projectable, nor does the dependencg‘afn the lapse and shift, E¢R0), and the
nondependence of* on Ay help. What is needed is a combined diffeomorphism and gauge
transformation.

Therefore, todp, we add a gauge transformatida[ M ] defined by a gauge descriptht':

(3p+ SR MT)AL=Aye®+ A+ AL e+ Ay .6~ M — C MIA. (24)

The most direct way of making this variation projectable, that is, to cancel the first three terms on
the right-hand side, clearly is to choos# to be A' €’ (since the resulting addition of a term
involving A' is harmless To this expression may be added an arbitrary additional gauge trans-
formation, of course, provided it will not result in terms mvolvnI‘ngNa A0 in Eq. (24). The
subtraction fromA' €’ of the expressmm\ &2 represents just such a transformation; what remains
will be a term proport|onal tm*, according to Eq(21). For what comes later, therefore, we find

it convenient to defin&y + 6g[ M ] by using

Mi:=Al nogo, (25)

To this variation may be added an arbitrary pure Yang—Mills gauge transformation, and so a
general projectable variation will depend on the descriptors

eh=(£0,64,A),

there being 4-n functions in all. In summary, a general projectable variati@tts as a combined
infinitesimal diffeomorphism and gauge transformation of the form:

SN=¢04+ &N ,—N3&g%, (263
5Na:.§a_Neab§?b+ N’beab§0+ N,ab‘fb_Nbg,ab! (26b)
50 ce0 NCa 0 Ncbgo
5gab:gabﬁ+9ab,c( EC—T +gcb( £,— N | Yac £5— N ) (260
o . oONgge o
Oy =AgEO+ Ap £+ Fog—y—— A= CjAAG, (260
§0 NbgO ) )
SAL= FOaN R N +ALEL AL L= A ,— Cj ATAL. (260
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C. Hamiltonian dynamics

To discuss the group structure functions and the canonical group generators, we work in the
Hamiltonian formulation. First, consider the Lagrangian energy for the Yang—Mills part of the
action:

. o N . .. .. Nvg o
Hym=A,P{' = Ly =W§C'Jgabpﬁpf’+ N2PPFL, + Tg Cije*°ePIF L FLy— AgDPE,
(27)

whereC'l is the matrix inverse of the group meti; , and we performed an integration by parts
to obtain the last term.
Similarly, we can define the Lagrangian momentum functions for the Hilbert action:

o 9LcR
pi=g = VO(K™ - Kge™), (28)

and then compute the Lagrangian energy:

Flor=P"0an~ Lor=" = (Pauh™ = (PD)*) - NG'R~2N"Dgp 29

where the last term results from an integration by parts.
Thus the canonical Hamiltoniatwhose pullback under the Legendre transformations is the
Lagrangian energyis of the form

He= f A3XNAH,, (30
whereN” are the 3+n variablesN, N"",—AiO whose conjugate momenta give the primary con-

straintsPa={p,p.,— P;}=0, andHa={Hy,H4.H;}. The time derivatives of the primary con-
straints are secondary constraints:

PA:{PAch}:_HA-
There are no more constraints. Explicitly,

@ L

1 S
Ho=mc”gabP?P}’+Tcije“e*’dF'abF'cﬁ @<pabpab—<p§>2>—@3R, (31

Ha=PPFLp—2D%p (31b
H;=D,P?. (310

We summarize our notation in the following list:

Configuration variables g,y Aia N N2 A{)
Momentum variables paP p2 p Pa P;
Primary constraints p = Pa = P; 0
Secondary constraints Ho = Ha = H; = 0

The equations of motion which follow from the Hamiltonian equati@@@® are (these equa-
tions agree with those in Refs. 16 and 4
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. 2N 1
gab:{gavac}:_<pab_§pggab +Najp+ Npja, (329
Vg
. . N . _ _
AL={A, Hc}= —=Cllg, P~ N°FL,+ DAy, (32b

Vo

pab:{pab,Hc}: _ ﬁ ( 3Rab_ ESReab

Jg 2

+VO(Njap— €°NI%) + (N%p*°) o~ 27N

N 1 2N 1
+ ﬂ@)( P*pea— E(pﬁ)z) - Tg( PP pEn“)

N 1
b cpd apb
e 5C”<§ea 9caPiPj— P Pi)
N i ] Acaneb.df 1i ] pabaceqdf
+Zcij\/g 2F 4FLe%%®e —EchFefe e“%e'|, (320

PA={P? H}=2D,(NPPA) + Dy(N\/gC; ePedFL ) + AJ'C,, ,CLiCPE. (320

Of course, Eqs(329 and(32b) are restatements of the definition of momenta.

We now derive the most general projectable variations of configuration and Lagrangian mo-
mentum variables. In Sec. Il we construct the corresponding phase space generators of these
variations.

First, we write down the most general projectable variation of the configuration variables,
dependent on the descriptaf® 2, A' [these are the same as EB6) but in our present notation;
we have also used the notation of covariant differentiation with respect to the three-metric con-

nection:
SN=¢04 N ,— N3&°, (339
SN2=£2—Ne® £ + N ,e?P&0+ N 2~ NP&f,, (33b
2£° 1
5gab:Tg Pab™ 5 PcYab| + £ajp T Ebja (3309
i i za iaNagoi' b_ A i Ajak
SAL=ALE + Ay &3+ CllgapP—A'=Cj, AIAS, (330
g
oo : . . .
SAL=—=CllgpPP+ ALED + AL — A',— Cl ATAL. (330

Vg

Note also for future reference that the variationsﬁgfwhich result from an infinitesimal spatial
diffeomorphismx’#=x*— §“&2 plus a gauge rotation with descriptdf =A}£° are

a

SAL= — EF (.= LMY PL— £8N°F,, (343
Vg

OAL=—¢°FL . (34b)
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We turn now to variations of the conjugate momenta. Observe that under infinitesimal general
coordinate transformations for whia$x®# 0, the variation(Lie derivative will involve the time
derivative. The projectable gauge transformations of the momentum variables from configuration-
velocity space to phase space are limited to solutions of the equations of motion, since we use the
equations of motion in computing the variations. Since the time derivatives of momenta always
appear in their variations under general coordinate transformations which alter the evolution time,
we note that this is a general feature of generally covariant systems: The full projectable diffeo-
morphism group is a transformation group on solution trajectories.

To find the variations op”, we use the fact thgi?® appear in the four-dimensional connec-
tion coefficients';,, . Thusp?® can be calculated from the four-dimensional connection by

pab:%gabcdl-*(c)d' (35)
where
Gabed.— \[g(e0ebd— gabgod) (36)
The inverse of this object is
1 1
gabcd:\/_a 9acOba~ 5 JabJcd (37
in the sense that
Gapcdd®™*®'= 835, (38

The general variation of the connection coefficieitader an infinitesimal diffeomorphism de-
fined byx'#=x*—¢e") is

5ng= — ngef"o-l— ngeig%— Fggef77+ 6%7"‘ Fg%ge", (39
and thus
5F2d= — I‘gde?c-k Fgceff)+ eggefrc-l— e?bc+ Fgcyve”. (40)

We therefore need the following relationships:

0 1 ef
ch:Ngcdefp ) (418
0 Ou 1 NG gh
Poa=9"T poa=gN.at N "NGeuqd™", (41b)
1
=" NNegcdfgpfg“Lang- (410

The calculation is far from trivial, but the most difficult part is made somewhat easier by defining,
for any functionf,

8'fi=f' (X' )—f(x)=8f=6"f+f €. (42)

By concentrating on thé' variation fore”=n“&°, using the equation of motion for the derivative
term, and then adding the rather straightforward calculation&foktreating p2° as a tensor
density, we find
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2

Vg

5pab: _ 50\/5( 3Rab_ %3 Reab

1 1 1
+ Eéoﬁeab( PPea— §(p§)2> - 50( p**pc— 5(p2)2>

1 (1
bd &0 b0 0 b d b
+g(e*%e?dgl ;— e2P£° ) + 2% ¢ C”(Eea 9eaP( P —P?Pj>

1

5 FLdFLfeabeceedf

+PRPE— EpP— e P+ pES.

(43

1 o
+7£°Cy \/5( 2F 4F . €%t —

The £° part of the variation can be obtained from the equation of mat@u) by replacingN by
&% and setting\N®=0.
To compute variations of the?, in principle uses the same method, namely by using the fact
that P? comes from a four-dimensional object, from E8). The result is
SP2=Dy(£\/g CijeeeFL ) + P2&h — 64, PP+ P2 &0 (44)

This is actually the variatiody + 5R[Aﬂnf‘§°]. These results come directly from the definitions of
momenta in configuration-velocity space; we will construct the generators of these equations in
phase space in the following.

. SYMMETRY GENERATORS

We now turn to the generators of the projectable variations. Generating funGiaiisbe of
the formt

G(t)= J d*x(EGR +EGR) =G + E°GY, (45)

where we shall use a repeated index to include an integration over space as well as a sum. The
descriptorst” are arbitrary functions.

The functions in Eq(45) are found using an extension of the techniques of Ref. 1: The
simplest choice for th&{") are the primary constrain®, . The functionsG{?) obey

GR'=—{GL" Ha}+pe, (46)
where pc represents a sum of primary constraints. The simplest soluti@ﬁ%results in
Gl £]=Paé*+(Ha+ PcNBCRp) €4 (47)
where the structure functions are defined by
{Ha Ha}=:CReHc. (48)
We shall determine the structure functions by first examining the variations generated by the
secondary constraints, E@1). The emphasis throughout will be on the underlying transformation

symmetry group. For this purpose we first introduce generators associated with our secondary
constraints. Let

RiE)= [ dxen,, (493

V[E]:= f d3x &M, , (49b)
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S¢°:= f d*x&"Ho. (499)
We find thatR[ £] generates a Yang—Mills rotation, so we have, for example,
{ALRIED = SRl €A, (50)
V[E] generates the spatial diffeomorphism plus the gauge rotation we employad):in
SLEJAL={Ay VL&l = LoAL+ SR E°ApIA = — £F (51)
where £; denotes the Lie derivative. It is convenient to define a related gen@@tﬁr which

generates a pure spatial diffeomorphism:

D[£]:= f d3xé2G,, (52)
where
Gar=Ha— ALH, . (53)

S £°] generates a space—time diffeomorphism plus a gauge rotatither of which by itself
is projectableé So, for example,

0
S E°1AL= 8p[ E°1AL+ Sl §°A,Ln#]A;=§—c”gabPF : (54)

Vg

It is straightforward to calculate the complete Lie algebra from the calculable action of the
infinitesimal group elements on the generatéffie only Poisson bracket we will not calculate in
this manner is the bracket &f £°] with §[ %°]. In principle, the entire Poisson bracket algebra can
be derived from the transformation group, but this particular calculation is somewhat tedious,
invoking time derivatives of the three-curvature and the extrinsic curvature. The result of the
direct calculation of this bracket is given in the followihg.

First, a gauge rotation df; yields

{RIELRI71}=—RI[£ 7n]]. (553

The remaining brackets are

{R[SJ,DU}]FJ d3X§iE;7Hi=—f d*x(L;6)H;=—R[L;£], (55b)

{D[£],D[ 7]} = f d3xE3L ;G = — J d3x(L;6%)G,=—D[L;£]=D[[£,7]], (550

(VDL [ @xeLtto=— [ dx(L;80 o=~ ST, (550
(S[£°1,RI71}=0, (550
{V[&],R[ 7]} =0. (55f)

The last two brackets result from the fact thdy and G, are gauge scalars. Finally, a direct
calculation yields

Downloaded 20 Jul 2010 to 161.116.168.227. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp



5568 J. Math. Phys., Vol. 41, No. 8, August 2000 Pons, Salisbury, and Shepley

{S[£°1, 5 7°1}=VI <, (550

where

2= (%9 7° = 7°9,E°) . (56)
Using these brackets we next determine the brackets amorR) #heandS generators alone.
We find
{VLE].V[ 71} ={D[ €]+ R[&*A,],D[ 5]+ Rl n°Ay1}
=VI[ 71— R 7°F ap]. (573

The remaining bracket is

{1V 71} ={S[£°1, D[ 7]+ RI €A1}

0

== L;&°1-RI 764 £°1A]=— S L;¢°]-R na\% ClganP?|. (57D

We read off the following nonvanishing structure functions from the above brackets:

Coron=€2(— 83 (x=x") dp 33 (x=X") + 83(x—X") 3,33 (x—X")), (583
Coon=— 83 (X—X") I 33 (x—X") 83+ 83(x—x") 3, 8%(x—x") &7, (58b)
Cor o= 83(x—X") 3,83 (x—x"), (580)
C},k,,=—C}kﬁ(x—x’)é\g(x—x"), (580)

i — 1 ij b &3 ' Cﬁ "
COIaf/——TgC abP} 87 (X=x") 8*(x—X"), (588
Corpr= — Flpd®(x—x") 8(x—X"). (58f)

Referring to the above-derived structure functions, we obtain the following generators, where
Grl£], Gy[ 7], andG4[ £°] are, respectively, the gauge, spatial diffeomorphism plus associated
gauge, and perpendicular diffeomorphism plus associated gauge generators:

Grl &)= f d3x(— P&+ H; € —ClEALPY), (59a
> 3 : bEi 1 i b
Gv[n]Zf d°x| Pa7%—NPFp,Pin®— —=C"gpPN%*P;+N ,Py7?

Vg

+N?bpa77b_Nb77?bPa+ naHa) ) (59b)
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. 1
G4 {%]= f d3x( Pol%+N pPa %~ NP, e~ N3P + §°NaTg CllgapPPPi+ %Ho |-

(590

These generators do indeed generate the variations of all variables.

We close this section by noting that we should recover the canonical Hamiltonian as the
generator of a global time translation. Let us check to confirm that this is the case. First we seek
the descriptorg* which correspond te*= &4 ,

9=1=nC0=N"1¢£°, (609
€2=0=£3+n3¢0= 23— N IN3£0, (60b)

We deduce that
£O=N, =N (61)

We must bear in mind th£[§°]+D[§] with & given by (61) is not yet the generator of a
global time translation becau$EN] generates a gauge transformation with descriptor

(A" E0= (AGN 1= ALNTIN?)N=A[ — AN,

Thus the generath[Aio—ALNa] must be subtracted to obtain the Hamiltonian:
SIN]+D[N?]—R[Aj— ALN?]= J d3x(NHo+ N3G, — (Ah— N3AL)H;
= f d3x(NHo+ N¥H,— AYH,). (62)

This is precisely the canonical Hamiltonian, Eg0)! .

It is important to point out that in this final expression the gauge varidip/d, A are to be
thought of as arbitrarily chosen but explicit functions of space and time. This object will then
generate a global time translation only on those members of equivalence classes of solutions for
which N,N?,Aj happen to have the same explicit functional forms. On all other solutions the
corresponding variations correspond to more general diffeomorphism and gauge transformations.

In fact, every generatdB[ £] in (47) with £°>0 may be considered to be a Hamiltonian in the
following sense:G[gA]zGR[§]+GV[§]+GS[§O] generates a global time translation on those
solutions which have

N=¢° (63a
Na=¢2, (63b)
—AL+ALNA= &, (630

We have already demonstrated this fact for the nongauge variables, and it is instructive to verify
the claim for the gauge variablé§ N2, andA;. Substituting(63) into (33), we have

SN=N-+N3N ,— NN ,=N, (643

SN?=N2—Ne*N ,+Ne*N ,+NGNP— NG NP=N?, (64b)
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al

Vg

SAL= AN+ Ay N+

PL—(—Ap+ AN+ ALN?) — Cj, (— AL+ ALIN? AS= Ay .
(640

V. CONCLUSION

We have been guided by the idea that a Lagrangian formulation of symmetries in a combined
Yang—Mills theory and general relativity should be equivalent to the Hamiltonian formulation. As
in a previous papémwe find that these formulations are indeed equivalent, as shown by the fact
that a basis of the variations arising from gauge transformations is projectable under the Legendre
map from configuration-velocity spa¢the tangent bund)eo phase spacghe cotangent bundle
Finding these projectable variations is a major part of this paper.

We found that the most general projectable transformation coming from a diffeomorphism
must depend on the lapse functibinand shift vectoN? of the metric and must be accompanied
by a Yang-Mills gauge transformation which also depends on these quantities and on the time
component of the Yang—Mills fieldA,. These results had been obtained by Salisbury and
Sundermeyér* (and others but from other points of view. For example, Salisbury and Sunder-
meyer found them by a requirement on the commutator of various variations. We feel that our
approach has several advantages: It is more direct, and it expressly indicates the equivalence of the
Lagrangian and Hamiltonian approaches. Note that the gauge group acts on the dynamical vari-
ables, so that the diffeomorphism group, which one woulgelgithink would be included, is not
itself part of the gauge group. However, the diffeomorphism group provides the basis for the
gauge group, and in this case, we can further say that the group acts specifically on solutions of the
equations of motiorfthe Einstein—Yang—Mills field equations

Since the Einstein—Yang—Mills Lagrangian does not depend on the gauge variable velocities
N, N2, andA}, under the Legendre map from configuration-velocity to phase space the submani-
fold coordinatized by these variables is mapped to a single point in phase space. Thus functions on
configuration-velocity space can be the pull-back of functions on phase space only if they are
constant on this submanifold. In particular, symmetry variation functions on the tangent space are
projectable if and only if they do not depend on these velocities. In this manner we have deter-
mined the diffeomorphism and gauge variations which are projectable under the Legendre map.

Spatial diffeomorphisms are projectable, but four-dimensional diffeomorphisms which alter
the time foliation are not. As in the case of pure conventional gravity the full four-dimensional
gauge group must be reinterpreted as a transformation group on the space of metric solutions, and
the group elements contain a compulsory dependence on the lapse and shift. We have found that
in Einstein—Yang—Mills theories even this alteration is not sufficient. A Yang—Mills gauge trans-
formation which is itself dependent on the full four-dimensional Yang—Mills connection must be
added to the diffeomorphism. The resulting transformation group must therefore be interpreted as
a transformation group on the space of metric and connection solutions.

It is natural to ask how one is to interpret variations of nonsolution trajectories in phase space
which result from the generators we have constructed in this paper. The answer is that off-shell, on
nonsolution trajectories, the pullback of the phase space variations to configuration-velocity space
yields variationssg' which are not equal tod/dt) 5q'. Consequently, if these variations are used
in determining the variation of the Lagrangian, the resulting Lagrangian variation is not a total
time derivative. In other words, the original phase space variations do not correspond to Noether
symmetries when applied off-shell. On the other hand, one could simply use the pullbagk of
and use §/dt) 5q' in the Lagrangian variation, thus ignoring the pullbackspf. This 8q' and its
time derivative do yield a Noether Lagrangian symmetry. These issues will be discussed in detail
in a forthcoming papeY’

It would seem straightforward to apply our ideas in other contexts, for example, in other
formulations of general relativity. For example, the Ashtekar formuldfibas many similarities
to a Yang—Mills theory. However, it uses a complex Lagrangian and complex Hamiltonian, and so
reality conditions must be imposed. The stability of these conditions under the evolution governed
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by a complex Hamiltonian makes the study of gauge transformations more difficult and more
interesting. Other approaches to general relativity also rely on structures, such as a tetrad or a 3
+1 decomposition using triads for the spatial metric, which are added to the metric variables.
They, too, present added difficulties—and interest—for the transformation law for the triads under
diffeomorphisms must take into account the decomposition.

We anticipate that the resulting recovery, and significant enlargement, of the gauge symmetry
group in Einstein—Yang—Mills theories will provide insights to efforts to quantize these models.
Future work will deal with somewhat more complicated vacuum models in which auxiliary gravi-
tational variables exhibit additional gauge symmetry. The first is a real tetrad formulation of
Einstein’s general relativity® Then we shall explore the symmetry structure of Ashtekar’s com-
plex formulation of general relativity?'° The former is actually a special case of the latter, and
both are featured in recent attempts to construct a quantum theory of gravity. Since foliation
altering diffeomorphisms and time evolution are in a sense identical, as we have explained in this
paper, we may acquire insights into strategies for imposing the scalar constraint in quantum
gravity.
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