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We discuss the relation between space–time diffeomorphisms and gauge transfor-
mations in theories of the Yang–Mills type coupled with Einstein’s general rela-
tivity. We show that local symmetries of the Hamiltonian and Lagrangian formal-
isms of these generally covariant gauge systems are equivalent when gauge
transformations are required to induce transformations which are projectable under
the Legendre map. Although pure Yang–Mills gauge transformations are project-
able by themselves, diffeomorphisms are not. Instead, the projectable symmetry
group arises from infinitesimal diffeomorphism-inducing transformations which
must depend on the lapse function and shift vector of the space–time metric plus
associated gauge transformations. Our results are generalizations of earlier results
by ourselves and by Salisbury and Sundermeyer. ©2000 American Institute of
Physics.@S0022-2488~00!02308-2#

I. INTRODUCTION

In a recent paper1 we discussed the relation between diffeomorphisms and gauge transfo
tions in general relativity. Specifically, gauge transformations are required to be projectable
the Legendre map, and therefore they must depend on the lapse function and shift vector
metric in a given coordinate neighborhood. Therefore, it is not the diffeomorphism group, w
acts on the underlying manifold, which is the gauge group. The gauge group acts on the dyn
variables in the space of field configurations~including the metric!; its structure is fixed by the
dynamical model; but each element may also be interpreted as a family of space–time diffe
phisms. More precisely, each pair consisting of an element of the gauge group and a me
which it acts determines a space–time diffeomorphism~which affects tensors in the usual way!.

Here we extend the discussion to include space–times having a Yang–Mills type field co
to general relativity. Our work is an extension of a more formal treatment by Pons and She2

Some of these results were obtained earlier by Salisbury and Sundermeyer,3,4 Lee and Wald5 ~and
others!, but we have given them a broader foundation, namely one based on projectability
the Legendre map while retaining all the gauge variables. Our resulting expressions for the
generators are entirely new. The idea that coordinate transformation should be accompa
gauge transformations dates back a rather long way. The articles by Jackiw6 and Jackiw and
Manton,7 summarized by Jackiw,8 discuss this idea but not from the point of view we espou
here, namely as a result of relating Lagrangian and Hamiltonian formulations of the theo
passing, we should note that besides eliminating gauge variables through a quotienting pro
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the Lee and Wald5 approach is incomplete in that it does not take into account that Lagran
energies might not be projectable to the quotient space. We recently extended and complet
program by introducing an algorithmic procedure, which under most circumstances is equi
to the Dirac–Bergmann algorithm.9 Furthermore, our procedure is accomplished without qu
enting out gauge variables. The Dirac–Bergmann constraint algorithm requires that evo
remain within the final constraint surface in phase space.

We find that pure Yang–Mills gauge transformations meet our requirement of projecta
Gauge transformations which act like diffeomorphisms not only have to be coupled to the m
as in the vacuum case but also require associated Yang–Mills gauge transformations.

In Sec. II we briefly recount the general treatment of diffeomorphism-invariant theories
discuss Einstein–Yang–Mills field theory and describe~infinitesimal! gauge transformations
therein. We show explicitly how these transformations must depend on the lapse function an
vector of the space–time metric and what associated Yang–Mills gauge transformations the
have if they are to be projectable under the Legendre map. In Sec. III, we calculate the
structure functions and the canonical group generators. Section IV concludes with a g
discussion of our results and future extensions. These will include the application of our p
dures to the real triad formulation10,11 and to the Ashtekar formulation12 of general relativity.

II. YANG–MILLS THEORIES AND GENERAL RELATIVITY

As in our previous paper,1 following the work of Batlleet al.,13 we begin with a Lagrangian
L(q,q̇) which does does not depend explicitly ont. An infinitesimal transformationdqi(q,q̇,t) is
a Noether Lagrangian symmetry if

dL5dF/dt,

which results in an equation for

Gª

]L

]q̇i dqi2F, ~1!

namely

@L# idqi1
dG

dt
50,

@L# i being the Euler–Lagrange functional derivative ofL:

@L# i5a i2Wisq̈
s,

where

Wi jª
]2L

]q̇i]q̇ j , a iª2
]2L

]q̇i]qs q̇s1
]L

]qi .

When the mass matrix or Legendre matrixW5(Wi j ) is singular, there exists a kernel for th
pullbackFL* of the Legendre mapFL from configuration-velocity spaceTQ ~the tangent bundle
TQ of the configuration spaceQ! to phase spaceT* Q ~the cotangent bundle!. This kernel is
spanned by vector fields whose componentsgA

i ~A ranges over the number of these vectors! are a
basis for the null vectors ofWi j . The Hamiltonian technique eases the calculation of thegA

i :

gA
i 5FL* S ]fA

]pi
D , ~2!
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where thefA are the Hamiltonian primary first class constraints. Note that these constrain
here assumed to be effective~if not, they can be made effective; however, problems can a
when ineffective, secondary constraints, occur9,14!.

The equation satisfied byG implies

gA
i ]G

]q̇i 50, ~3!

showing thatG is projectable to a functionGH in T* Q; that is, it is the pullback of a function~not
necessarily unique! in T* Q:

G5FL* ~GH! ~4!

~first pointed out by Kamimura15!. The functionGH is determined up to the addition of linea
combinations of the primary constraints. Whendqi is projectable toT* Q, it is possible to select
GH satisfying~4! and such that

dqi5FL* S ]GH

]pi
D . ~5!

We will apply this result to diffeomorphisms and to Yang–Mills gauge transformations in
following.

A. Yang–Mills gauge transformations

The Yang–Mills Lagrangian densityLYM is a functional of the vector potential fieldsAm
i ,

where the internal indexi ranges over$1,...,n%, wheren is the dimension of the gauge group, an
m is a space–time index (m50,...,3).~We will be using lower-case indices from the beginning
the alphabet,a,b,..., as spatial indices,a,b51,2,3.) The field tensor derived from these potent
fields is

Fab
i 5Ab,a

i 2Aa,b
i 2Cjk

i Aa
j Ab

k , ~6!

where the comma denotes partial differentiation and whereCjk
i are the structure constants of th

gauge group. The Yang–Mills Lagrangian density is given by

LYM52 1
4Au4guFmn

i Fab
j gmagnbCi j , ~7!

whereCi j is a nonsingular, symmetric group metric~its inverse isCi j ) and4g is the determinant
of the space–time metric tensor.~In a semi-simple group,Ci j is usually taken to beCit

s Cjs
t ; in an

Abelian group, one usually takesCi j 5d i j .)
The derivatives ofLYM with respect to the velocities of the configuration space variablesȦa

i

~here the dot is]/]t), give the tangent space functionsP̂i
a corresponding to the phase spa

conjugate momenta:

P̂i
a
ª

]LYM

]Ȧa
i

5Au4guFmn
j gamg0nCi j . ~8!

The Legendre mapFL is defined by settingP̂i
a equal toPi

a in phase space. Because of th
antisymmetry of the field tensor, the primary constraints are

05 P̂iª P̂i
05

]LYM

]Ȧ0
i

5Au4guFmn
j g0mg0nCi j . ~9!
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A generator of a projectable gauge transformation thus must be independent ofȦ0
i .

An infinitesimal Yang–Mills gauge transformation is defined by an array of gauge descri
L i and transforms the potential by

dR@L#Am
i 52L ,m

i 2Cjk
i L jAm

k ~10!

~we use the notationdR@L# for this Yang–Mills rotation variation to distinguish it from othe
variations defined later, and we writedR if the @L# may be understood in context!. We denote this
transformation by

dRAm
i
ª2~DmL! j , ~11!

whereDm is the Yang–Mills covariant derivative~in its action on space–time scalars and Yan
Mills vectors!. Under this transformation, the field transforms as

dRFmn
i 52Cjk

i L jFmn
k , ~12!

where we work to first order inL i and use the Jacobi identity

Cjk
i Cmn

k 1Cmk
i Cn j

k 1Cnk
i Cjm

k 50.

The Yang–Mills LagrangianLYM is invariant under this transformation provided that the gro
metric obeys

Cmi
k Ck j52Cm j

k Cki

~which it will if Ci j 5Cit
s Cjs

t ).
The variationdR is clearly independent ofȦ0

i and so is projectable.

B. Diffeomorphisms

The configuration space variables for general relativity are the components of the m
tensor

ds25gmndxm dxn52N2 dt21gab~dxa1Na dt!~dxb1Nb dt!, ~13!

whereN is the lapse function,Na the components of the shift vector, andgab is our notation for
the spatial metric. The inverse ofgab is eab:

eacgbc5db
a .

We will use g for the determinant of the spatial metric; the relationship between it and
determinant of the space–time metric is

4g52N2g.

In matrix form the metric and its inverse are

~gmn!5S 2N21NcNdgcd gacN
c

gbdN
d gab

D ,

~gmn!5S 21/N2 Na/N2

Nb/N2 eab2NaNbN2D .

The general relativity Lagrangian density is16
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LGR5NAg~3R1KabK
ab2~Ka

a!2!, ~14!

where3R is the scalar curvature computed from the three-metric (3R53Rabe
ab, where3Rab is the

three-metric Ricci tensor! and Kab is the second fundamental form~extrinsic curvature; indices
raised byeab or lowered bygab) for the constant-time three-surfaces:

Kab5
1

2N
~ ġab2Naub2Nbua!, ~15!

with the vertical bar meaning covariant differentiation with respect to the three-metric conne
Thus the total Lagrangian density is

L5LYM1LGR. ~16!

Notice that the lapseN and shiftNa of the four-metric all appear, but their time derivativ
~that is, their velocities! do not. This is required of any diffeomorphism invariant theory. To
projectable, therefore, a variation must be independent of these velocities as well as bein
pendent ofȦ0

i in coupled Einstein–Yang–Mills theory.
Consider now an infinitesimal diffeomorphism, which changes the coordinates by

dD@e#xm52em ~17!

~we writedD if the @e# may be understood in context!. Under this diffeomorphism, the space–tim
metric transforms as

dDgmn5gmn,ses1gsne ,m
s 1gmse ,n

s . ~18!

This is the Lie derivative equation.
We will show from this equation thatdD is not a projectable transformation of the form of E

~5! unless it is made to depend on the lapse and shift variables. We will also show thatdD is not
allowed to depend on the Yang–Mills potentialA0

i . Finally, we will look at the variation of the
Yang–Mills potential itself and show that if a new variation is defined to include a gauge t
formation along with each diffeomorphism, the new variation will be projectable. We now
ceed with these demonstrations.

Equation~18! implies that the variations of the lapse and shift due to a diffeomorphism

dDN5Ṅe01N,aea1Nė02NNae ,a
0 , ~19a!

dDNa5Ṅae01N,b
a eb1Naė02~N2eab1NaNb!e ,b

0 1 ėa2Nbe ,b
a . ~19b!

In order to eliminate the dependence ofṄ,Ṅa from these variations, it is necessary that theem

depend on the lapse and shift:1

e05
j0

N
, ea5ja2

Na

N
j0, ~20!

wherej0,ja are independent ofN, Na. Note that

em5da
mja1nmj0, ~21!

wherenm is the unit normal to thet5const spacelike hypersurfaces:

n05
1

N
, na52

Na

N
.
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A diffeomorphism with only the descriptorj0 not zero is called a perpendicular diffeomorphis
Furthermore, Eq.~19! shows thatem cannot depend onA0

i : Equation~19a! has a termNė0

which would involveȦ0
i otherwise; and similarly, Eq.~19b! has a termėa which would involveȦ0

i

unless such a dependence is outlawed.
Under a diffeomorphism, the Yang–Mills potential transforms as a covariant vector

under Lie differentiation:

dDAm
i 5Am,s

i es1As
i e ,m

s . ~22!

The variation ofAa
i is clearly independent ofṄ,Ṅa,Ȧ0

i and so is projectable. However, thedD

variation ofA0
i is

dDA0
i 5Ȧ0

i e01A0
i ė01Aa

i ėa1A0,a
i ea. ~23!

It clearly is not projectable, nor does the dependence ofem on the lapse and shift, Eq.~20!, and the
nondependence ofem on A0

i help. What is needed is a combined diffeomorphism and ga
transformation.

Therefore, todD we add a gauge transformationdR@M # defined by a gauge descriptorMi :

~dD1dR@M # !A0
i 5Ȧ0

i e01A0
i ėa1Aa

i ėa1A0,a
i ea2Ṁ i2Cjk

i M jA0
k . ~24!

The most direct way of making this variation projectable, that is, to cancel the first three term
the right-hand side, clearly is to chooseMi to be As

i es ~since the resulting addition of a term
involving Aa

i is harmless!. To this expression may be added an arbitrary additional gauge t
formation, of course, provided it will not result in terms involvingṄ,Ṅa,A0

i in Eq. ~24!. The
subtraction fromAs

i es of the expressionAa
i ja represents just such a transformation; what rema

will be a term proportional tonm, according to Eq.~21!. For what comes later, therefore, we fin
it convenient to definedD1dR@M # by using

Mi
ªAs

i nsj0. ~25!

To this variation may be added an arbitrary pure Yang–Mills gauge transformation, and
general projectable variation will depend on the descriptors

jA
ª~j0,ja,L i !,

there being 41n functions in all. In summary, a general projectable variationd acts as a combined
infinitesimal diffeomorphism and gauge transformation of the form:

dN5 j̇01jaN,a2Naj ,a
0 , ~26a!

dNa5 j̇a2Neabj ,b
0 1N,beabj01N,b

a jb2Nbj ,b
a , ~26b!

dgab5ġab

j0

N
1gab,cS jc2

Ncj0

N D1gcbS j ,a
c 2

N,a
c j0

N D 1gacS j ,b
c 2

N,b
c j0

N D , ~26c!

dA0
i 5Aa

i j̇01A0,a
i ja1F0a

i Naj0

N
2L̇ i2Cjk

i L jA0
k , ~26d!

dAa
i 5F0a

i j0

N
1Fab

i Nbj0

N
1Ab

i j ,a
b 1Aa,b

i jb2L ,a2Cjk
i L jAa

k . ~26e!
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C. Hamiltonian dynamics

To discuss the group structure functions and the canonical group generators, we work
Hamiltonian formulation. First, consider the Lagrangian energy for the Yang–Mills part o
action:

ĤYMªȦa
i P̂i

a2LYM5
N

2Ag
Ci j gabP̂i

aP̂j
b1NaP̂i

bFab
i 1

NAg

4
Ci j e

acebdFab
i Fcd

i 2A0
i DaP̂i

a ,

~27!

whereCi j is the matrix inverse of the group metricCi j , and we performed an integration by par
to obtain the last term.

Similarly, we can define the Lagrangian momentum functions for the Hilbert action:

p̂ab
ª

]LGR

ġab
5Ag~Kab2Kc

ceab!, ~28!

and then compute the Lagrangian energy:

ĤGRª p̂abġab2LGR5
H

Ag
~ p̂abp̂

ab2~ p̂a
a!2!2NAg3R22Nap̂aub

b , ~29!

where the last term results from an integration by parts.
Thus the canonical Hamiltonian~whose pullback under the Legendre transformations is

Lagrangian energy! is of the form

Hc5E d3xNAHA , ~30!

whereNA are the 31n variablesN, Na,2A0
i whose conjugate momenta give the primary co

straintsPA5$p,pa ,2Pi%50, andHA5$H0 ,Ha ,Hi%. The time derivatives of the primary con
straints are secondary constraints:

ṖA5$PA ,Hc%52HA .

There are no more constraints. Explicitly,

H05
1

2Ag
Ci j gabPi

aPj
b1

Ag

4
Ci j e

acebdFab
i Fcd

j 1
1

Ag
~pabp

ab2~pc
c!2!2Ag3R, ~31a!

Ha5Pi
bFab

i 22paub
b , ~31b!

Hi5DaPi
a . ~31c!

We summarize our notation in the following list:

Configuration variables gab Aa
i N Na A0

i

Momentum variables pab Pi
a p pa Pi

Primary constraints p 5 pa 5 Pi 5 0
Secondary constraints H0 5 Ha 5 Hi 5 0

The equations of motion which follow from the Hamiltonian equations~30! are ~these equa-
tions agree with those in Refs. 16 and 4!:
0 Jul 2010 to 161.116.168.227. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp
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ġab5$gab ,Hc%5
2N

Ag
S pab2

1

2
pc

cgabD1Naub1Nbua , ~32a!

Ȧa
i 5$Aa

i ,Hc%5
N

Ag
Ci j gabPj

b2NbFab
i 1DaA0

i , ~32b!

ṗab5$pab,Hc%52
N

Ag
S 3Rab2

1

2
3ReabD1

N

2Ag
eabS pcdpcd2

1

2
~pc

c!2D2
2N

Ag
S pacpc

b2
1

2
pc

cpabD
1Ag~Nuab2eabN c

uc !1~Ncpab! uc22pc~aNb)
uc

1
N

2Ag
Ci j S 1

2
eabgcdPi

cPj
d2Pi

aPj
bD

1
N

4
Ci jAgS 2Fcd

i Fe f
j ecaeebed f2

1

2
Fcd

i Fe f
j eabeceed f D , ~32c!

Ṗi
a5$Pi

a ,Hc%52Db~N@bPi
a] !1Db~NAgCi j e

c@bea]dFcd
j !1A0

mCm jCl i
j Cl kPk

a . ~32d!

Of course, Eqs.~32a! and ~32b! are restatements of the definition of momenta.
We now derive the most general projectable variations of configuration and Lagrangia

mentum variables. In Sec. III we construct the corresponding phase space generators o
variations.

First, we write down the most general projectable variation of the configuration varia
dependent on the descriptorsj0,ja,L i @these are the same as Eq.~26! but in our present notation
we have also used the notation of covariant differentiation with respect to the three-metric
nection#:

dN5 j̇01jaN,a2Naj ,a
0 , ~33a!

dNa5 j̇a2Neabj ,b
0 1N,beabj01Nub

a jb2Nbj ub
a , ~33b!

dgab5
2j0

Ag
S pab2

1

2
pc

cgabD1jaub1jbua , ~33c!

dA0
i 5Aa

i j̇a1A0,a
i ja1

Naj0

Ag
Ci j gabPj

b2L̇ i2Cjk
i L jA0

k , ~33d!

dAa
i 5

j0

Ag
Ci j gabPj

b1Ab
i j ua

b 1Aaub
i jb2L ,a

i 2Cjk
i L iAa

k . ~33e!

Note also for future reference that the variations ofAm
i which result from an infinitesimal spatia

diffeomorphismx8m5xm2da
mja plus a gauge rotation with descriptorL i5Ab

i jb are

dA0
i 52jaF0a

i 52
ja

Ag
NPa

i 2jaNbFba
i , ~34a!

dAa
i 52jbFab

i . ~34b!
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We turn now to variations of the conjugate momenta. Observe that under infinitesimal g
coordinate transformations for whichdx0Þ0, the variation~Lie derivative! will involve the time
derivative. The projectable gauge transformations of the momentum variables from configu
velocity space to phase space are limited to solutions of the equations of motion, since we
equations of motion in computing the variations. Since the time derivatives of momenta a
appear in their variations under general coordinate transformations which alter the evolution
we note that this is a general feature of generally covariant systems: The full projectable d
morphism group is a transformation group on solution trajectories.

To find the variations ofpab, we use the fact thatpab appear in the four-dimensional conne
tion coefficientsGbg

a . Thuspab can be calculated from the four-dimensional connection by

pab5
1

N
GabcdGcd

0 , ~35!

where

Gabcd
ªAg~eacebd2eabecd!. ~36!

The inverse of this object is

Gabcd5
1

Ag
S gacgbd2

1

2
gabgcdD ~37!

in the sense that

GabcdGcde f5da
edb

f . ~38!

The general variation of the connection coefficients~under an infinitesimal diffeomorphism de
fined byx8m5xm2em) is

dGbg
a 52Gbg

s e ,s
a 1Gsg

a e ,b
s 1Gbs

a e ,g
s 1e ,bg

a 1Gbg,s
a es, ~39!

and thus

dGcd
0 52Gcd

s e ,c
0 1Gsc

0 e ,b
s 1ebs

0 e ,c
s 1e ,bc

0 1Gbc,s
0 es. ~40!

We therefore need the following relationships:

Gcd
0 5

1

N
Gcde fp

e f, ~41a!

G0d
0 5g0mGm0d5

1

N
N,d1N21NeGedghp

gh, ~41b!

Gcd
e 52

1

N
NeGcd f gp

f g13Gcd
e . ~41c!

The calculation is far from trivial, but the most difficult part is made somewhat easier by defi
for any functionf,

d8 fª f 8~x8!2 f ~x!⇒d f 5d8 f 1 f ,ses. ~42!

By concentrating on thed8 variation fores5nsj0, using the equation of motion for the derivativ
term, and then adding the rather straightforward calculation forja ~treating pab as a tensor
density!, we find
0 Jul 2010 to 161.116.168.227. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp
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dpab52j0AgS 3Rab2
1

2
3 ReabD1

1

2
j0AgeabS pcdpcd2

1

2
~pc

c!2D2
2

Ag
j0S pacpc

b2
1

2
~pc

c!2D
1Ag~eacebdj ucd

0 2eabj c
0uc !1

1

2Ag
j0Ci j S 1

2
eabgcdPi

cPj
d2Pi

aPj
bD

1
1

4
j0Ci jAgS 2Fcd

i Fe f
j ecaeebed f2

1

2
Fcd

i Fe f
j eabeceed f D1pabj ,c

c 2j ,c
a pcb2j ,c

b pac1p,c
abjc.

~43!

Thej0 part of the variation can be obtained from the equation of motion~32c! by replacingN by
j0 and settingNa50.

To compute variations of thePi
a , in principle uses the same method, namely by using the

that Pi
a comes from a four-dimensional object, from Eq.~9!. The result is

dPi
a5Db~j0AgCi j e

beeadFcd
j !1Pi

aj ,b
b 2j ,b

a Pi
b1Pi ,b

a jb. ~44!

This is actually the variationdD1dR@Amnmj0#. These results come directly from the definitions
momenta in configuration-velocity space; we will construct the generators of these equati
phase space in the following.

III. SYMMETRY GENERATORS

We now turn to the generators of the projectable variations. Generating functionsG will be of
the form1

G~ t !5E d3x~jAGA
~0!1 j̇AGA

~1!!5:jAGA
~0!1 j̇AGA

~1! , ~45!

where we shall use a repeated index to include an integration over space as well as a su
descriptorsjA are arbitrary functions.

The functions in Eq.~45! are found using an extension of the techniques of Ref. 1:
simplest choice for theGA

(1) are the primary constraintsPA . The functionsGA
(0) obey

GA
~0!52$GA

~1! ,HA%1pc, ~46!

where pc represents a sum of primary constraints. The simplest solution forGA
(0) results in

G@j#5PAj̇A1~HA1PCNBCAB
C !jA, ~47!

where the structure functions are defined by

$HA ,HB%5:CAB
C HC . ~48!

We shall determine the structure functions by first examining the variations generated
secondary constraints, Eq.~31!. The emphasis throughout will be on the underlying transforma
symmetry group. For this purpose we first introduce generators associated with our sec
constraints. Let

R@j#ªE d3xj iHi , ~49a!

V@jW #ªE d3xjaHa , ~49b!
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S@j0#ªE d3xj0H0 . ~49c!

We find thatR@j# generates a Yang–Mills rotation, so we have, for example,

$Aa,
i R@j#%5dR@j#Aa

i . ~50!

V@jW # generates the spatial diffeomorphism plus the gauge rotation we employed in~34!:

dV@jW #Aa
i 5$Aa

i ,V@jW #%5LjWAa
i 1dR@jbAb#Aa

i 52jbFab
i , ~51!

whereLjW denotes the Lie derivative. It is convenient to define a related generatorD@jW # which
generates a pure spatial diffeomorphism:

D@jW #ªE d3xjaGa , ~52!

where

GaªHa2Aa
i Hi . ~53!

S@j0# generates a space–time diffeomorphism plus a gauge rotation~neither of which by itself
is projectable!. So, for example,

dS@j0#Aa
i 5dD@j0#Aa

i 1dR@j0Amnm#Aa
i 5

j0

Ag
Ci j gabPj

b . ~54!

It is straightforward to calculate the complete Lie algebra from the calculable action o
infinitesimal group elements on the generators.~The only Poisson bracket we will not calculate
this manner is the bracket ofS@j0# with S@h0#. In principle, the entire Poisson bracket algebra c
be derived from the transformation group, but this particular calculation is somewhat ted
invoking time derivatives of the three-curvature and the extrinsic curvature. The result o
direct calculation of this bracket is given in the following.!

First, a gauge rotation ofHi yields

$R@j#,R@h#%52R@@j,h##. ~55a!

The remaining brackets are

$R@j#,D@hW #%5E d3xj iLhW Hi52E d3x~LhW j i !Hi52R@LhW j#, ~55b!

$D@jW #,D@hW #%5E d3xjaLhW Ga52E d3x~LhW ja!Ga52D@LhW jW #5D@@jW ,hW ##, ~55c!

$S@j0#,D@hW #%5E d3xj0LhW H052E d3x~LhW j0!H052S@LhW j0#, ~55d!

$S@j0#,R@h#%50, ~55e!

$V@jW #,R@h#%50. ~55f!

The last two brackets result from the fact thatH0 and Ga are gauge scalars. Finally, a dire
calculation yields
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$S@j0#,S@h0#%5V@zW #, ~55g!

where

za
ª~j0]bh02h0]bj0!eab. ~56!

Using these brackets we next determine the brackets among theR, V, andSgenerators alone
We find

$V@jW #,V@hW #%5$D@jW #1R@jaAa#,D@hW #1R@hbAb#%

5V@@jW ,hW ##2R@jahbFab#. ~57a!

The remaining bracket is

$S@j0#,V@hW #%5$S@j0#,D@hW #1R@jaAa#%

52S@LhW j0#2R@hadS@j0#Aa#52S@LhW j0#2RFha
j0

Ag
Ci j gabPj

bG . ~57b!

We read off the following nonvanishing structure functions from the above brackets:

C0809
a

5eab~2d3~x2x8!]b9d
3~x2x9!1d3~x2x9!]b8d

3~x2x8!!, ~58a!

Cb8c9
a

52d3~x2x8!]b9d
3~x2x9!dc

a1d3~x2x9!]c8d
3~x2x8!db

a , ~58b!

C08a9
0

5d3~x2x9!]a8d
3~x2x8!, ~58c!

Cj 8k9
i

52Cjk
i d3~x2x8!d3~x2x9!, ~58d!

C08a9
i

52
1

Ag
Ci j gabPj

bd3~x2x8!d3~x2x9!, ~58e!

Ca8b9
i

52Fab
i d3~x2x8!d3~x2x9!. ~58f!

Referring to the above-derived structure functions, we obtain the following generators, w
GR@j#, GV@hW #, andGS@z0# are, respectively, the gauge, spatial diffeomorphism plus assoc
gauge, and perpendicular diffeomorphism plus associated gauge generators:

GR@j#5E d3x~2Pi j̇
i1Hij

i2Ci j
k j iA0

j Pk!, ~59a!

GV@hW #5E d3xS Paḣa2NbFba
i Pih

a2
1

Ag
Ci j gabPj

bNhaPi1N,aP0ha

1N,b
a Pahb2Nbh ,b

a Pa1haHaD , ~59b!
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GS@z0#5E d3xS P0ż01N,bPaz0eab2NPaz ,b
0 eab2NaP0z ,a

0 1z0Na
1

Ag
Ci j gabPj

bPi1z0H0D .

~59c!

These generators do indeed generate the variations of all variables.
We close this section by noting that we should recover the canonical Hamiltonian a

generator of a global time translation. Let us check to confirm that this is the case. First we
the descriptorsjm which correspond toem5d0

m ,

e0515n0j05N21j0, ~60a!

ea505ja1naj05ja2N21Naj0. ~60b!

We deduce that

j05N, ja5Na. ~61!

We must bear in mind thatS@j0#1D@jW # with jm given by ~61! is not yet the generator of a
global time translation becauseS@N# generates a gauge transformation with descriptor

~Am
i nm!j05~A0

i N212Aa
i N21Na!N5A0

i 2Aa
i Na.

Thus the generatorR@A0
i 2Aa

i Na# must be subtracted to obtain the Hamiltonian:

S@N#1D@Na#2R@A0
i 2Aa

i Na#5E d3x(NH01NaGa2~A0
i 2NaAa

i !Hi

5E d3x~NH01NaHa2A0
i Hi !. ~62!

This is precisely the canonical Hamiltonian, Eq.~30!!
It is important to point out that in this final expression the gauge variablesN,Na,A0

i are to be
thought of as arbitrarily chosen but explicit functions of space and time. This object will
generate a global time translation only on those members of equivalence classes of soluti
which N,Na,A0

i happen to have the same explicit functional forms. On all other solutions
corresponding variations correspond to more general diffeomorphism and gauge transform

In fact, every generatorG@j# in ~47! with j0.0 may be considered to be a Hamiltonian in t
following sense:G@jA#5GR@j#1GV@jW #1GS@j0# generates a global time translation on tho
solutions which have

N5j0, ~63a!

Na5ja, ~63b!

2A0
i 1Aa

i Na5j i . ~63c!

We have already demonstrated this fact for the nongauge variables, and it is instructive to
the claim for the gauge variablesN, Na, andA0

i . Substituting~63! into ~33!, we have

dN5Ṅ1NaN,a2NaN,a5Ṅ, ~64a!

dNa5Ṅa2NeabN,b1NeabN,b1N,b
a Nb2N,b

a Nb5Ṅa, ~64b!
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dA0
i 5Aa

i Ṅa1A0,a
i Na1

NaN

Ag
Pa

i 2~2Ȧ0
i 1Ȧa

i Na1Aa
i Ṅa!2Cjk

i ~2A0
j 1Aa

j Na!A0
k5Ȧ0

i .

~64c!

IV. CONCLUSION

We have been guided by the idea that a Lagrangian formulation of symmetries in a com
Yang–Mills theory and general relativity should be equivalent to the Hamiltonian formulation
in a previous paper1 we find that these formulations are indeed equivalent, as shown by the
that a basis of the variations arising from gauge transformations is projectable under the Le
map from configuration-velocity space~the tangent bundle! to phase space~the cotangent bundle!.
Finding these projectable variations is a major part of this paper.

We found that the most general projectable transformation coming from a diffeomorp
must depend on the lapse functionN and shift vectorNa of the metric and must be accompanie
by a Yang–Mills gauge transformation which also depends on these quantities and on th
component of the Yang–Mills field,A0

i . These results had been obtained by Salisbury
Sundermeyer3,4 ~and others! but from other points of view. For example, Salisbury and Sund
meyer found them by a requirement on the commutator of various variations. We feel th
approach has several advantages: It is more direct, and it expressly indicates the equivalenc
Lagrangian and Hamiltonian approaches. Note that the gauge group acts on the dynamic
ables, so that the diffeomorphism group, which one would naı¨vely think would be included, is no
itself part of the gauge group. However, the diffeomorphism group provides the basis fo
gauge group, and in this case, we can further say that the group acts specifically on solution
equations of motion~the Einstein–Yang–Mills field equations!.

Since the Einstein–Yang–Mills Lagrangian does not depend on the gauge variable vel
Ṅ, Ṅa, andȦ0

i , under the Legendre map from configuration-velocity to phase space the sub
fold coordinatized by these variables is mapped to a single point in phase space. Thus funct
configuration-velocity space can be the pull-back of functions on phase space only if the
constant on this submanifold. In particular, symmetry variation functions on the tangent spa
projectable if and only if they do not depend on these velocities. In this manner we have
mined the diffeomorphism and gauge variations which are projectable under the Legendre

Spatial diffeomorphisms are projectable, but four-dimensional diffeomorphisms which
the time foliation are not. As in the case of pure conventional gravity the full four-dimens
gauge group must be reinterpreted as a transformation group on the space of metric solutio
the group elements contain a compulsory dependence on the lapse and shift. We have fou
in Einstein–Yang–Mills theories even this alteration is not sufficient. A Yang–Mills gauge tr
formation which is itself dependent on the full four-dimensional Yang–Mills connection mus
added to the diffeomorphism. The resulting transformation group must therefore be interpre
a transformation group on the space of metric and connection solutions.

It is natural to ask how one is to interpret variations of nonsolution trajectories in phase
which result from the generators we have constructed in this paper. The answer is that off-sh
nonsolution trajectories, the pullback of the phase space variations to configuration-velocity
yields variationsdq̇i which are not equal to (d/dt)dqi . Consequently, if these variations are us
in determining the variation of the Lagrangian, the resulting Lagrangian variation is not a
time derivative. In other words, the original phase space variations do not correspond to N
symmetries when applied off-shell. On the other hand, one could simply use the pullback odqi ,
and use (d/dt)dqi in the Lagrangian variation, thus ignoring the pullback ofdpi . Thisdqi and its
time derivative do yield a Noether Lagrangian symmetry. These issues will be discussed in
in a forthcoming paper.17

It would seem straightforward to apply our ideas in other contexts, for example, in
formulations of general relativity. For example, the Ashtekar formulation12 has many similarities
to a Yang–Mills theory. However, it uses a complex Lagrangian and complex Hamiltonian, a
reality conditions must be imposed. The stability of these conditions under the evolution gov
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by a complex Hamiltonian makes the study of gauge transformations more difficult and
interesting. Other approaches to general relativity also rely on structures, such as a tetrad
11 decomposition using triads for the spatial metric, which are added to the metric vari
They, too, present added difficulties—and interest—for the transformation law for the triads
diffeomorphisms must take into account the decomposition.

We anticipate that the resulting recovery, and significant enlargement, of the gauge sym
group in Einstein–Yang–Mills theories will provide insights to efforts to quantize these mo
Future work will deal with somewhat more complicated vacuum models in which auxiliary g
tational variables exhibit additional gauge symmetry. The first is a real tetrad formulatio
Einstein’s general relativity.18 Then we shall explore the symmetry structure of Ashtekar’s co
plex formulation of general relativity.12,19 The former is actually a special case of the latter, a
both are featured in recent attempts to construct a quantum theory of gravity. Since fo
altering diffeomorphisms and time evolution are in a sense identical, as we have explained
paper, we may acquire insights into strategies for imposing the scalar constraint in qu
gravity.
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