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We study spacetime diffeomorphisms in the Hamiltonian and Lagrangian formalisms of generally covariant
systems. We show that the gauge group for such a system is characterized by having generators which are
projectable under the Legendre map. The gauge group is found to be much larger than the original group of
spacetime diffeomorphisms, since its generators must depend on the lapse function and shift vector of the
spacetime metric in a given coordinate patch. Our results are generalizations of earlier results by Salisbury and
Sundermeyer. They arise in a natural way from using the requirement of equivalence between Lagrangian and
Hamiltonian formulations of the system, and they are new in that the symmetries are realized on the full set of
phase space variables. The generators are displayed explicitly and are applied to the relativistic string and to
general relativity[ S0556-282(97)06202-4

PACS numbsgps): 04.20.Fy, 04.20.Cv

I. INTRODUCTION The formalism we shall develop encompasses all gener-
ally covariant Lagrangian dynamical models containing con-
The goal of this paper is to understand diffeomorphismfiguration variables which are either metric components or
symmetries in the canonical formalism at the classical levelwhich may be used to construct a metric. We begin in Sec. Il
The putative generators of infinitesimal general coordinatavith a rederivation of the relation between gauge symmetries
transformations feature in all canonical quantization ap4in Lagrangian and Hamiltonian formalisms. After introduc-
proaches, but debate persists in the literature as to what ag the notions of lapse and shift in Sec. Ill, we show that
pects of the diffeomorphism group are realized at the classidiffeomorphism-induced gauge transformations are project-
cal level as canonical transformatiofis—4]. This issue is able under the Legendre transformation if and only if infini-
intimately related to the meaning of time in quantum gravity.tesimal variations depend on the lapse and shift but not on
In this paper we extend recent work by Pons and Shepletheir time derivatives. These projectable infinitesimal trans-
[5] concerning constrained systems. We analyze diffeomorformations thus contain a compulsory dependence on the
phism symmetries using in a natural way the equivalence oformal to the chosen time foliation. We illustrate these ideas
the Hamiltonian and the Lagrangian approaches to generallyith the relativistic particle, canonical gravity, and the rela-
covariant systems. We show that infinitesimal transformadivistic string.
tions which are projectable under the Legendre map are a In Sec. IV we turn our attention to the construction of
basis for the generators of the gauge group. This group isanonical generators of the metric-dependent gauge group.
much larger than the original group of spacetime diffeomor-These objects generate symmetry transformations on the full
phisms because it acts on the space of spacetime metricget of canonical variables. We show that every generator
whereas the diffeomorphism group acts on the underlyingvith nonvanishing time component acts as an evolution gen-
manifold. Since we retain the full set of canonical variables,erator on at least one member of every equivalence class of
the associated infinitesimal generators are new; they are reolutions. Section V contains a discussion of gauge fixing
alized on the full set of phase space variables and must @nd the elimination of redundancy in initial conditions. In
least depend in a specific way on the lapse function and shiffec. VI, our conclusion, we discuss the nature of the
vector of the spacetime metric in a given coordinate patchdiffeomorphism-induced gauge group. The Appendix illus-
The results are contrasted and compared with earlier work birates the projectability conditions in a model, the Nambu-
Salisbury and Sundermeyie¥] on the realizability of general Goto string, in which the lapse and shift depend on time
coordinate transformations as canonical transformations. derivatives of the dynamical variables.

Il. NOETHER HAMILTONIAN SYMMETRIES
*Electronic address: pons@ecm.ub.es

"Electronic address: dsalis@austinc.edu We begin by rederiving some results of Batéeal. [6]
*Electronic address: larry@helmholtz.ph.utexas.edu for first order Lagrangiank(q,q). We exclude Lagrangians
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which explicitly depend on time since we are interested in We contract with a null vecto1yiM to find that
reparametrization covariant systems. We start with a No-
ether Lagrangian symmetry r,G=0.

sL=dF/dt, It follows thatG is projectable to a functio®,, in T* Q; that

o _ _ _ is, it is the pullback of a functioinot necessarily uniqien
and we will investigate the conversion of this symmetry toT* Q.

the Hamiltonian formalism. Defining

S G=FL*(Gy).
G=(dLloq")6q'—F, (2.2
) This important property, valid for any conserved quantity
we can write associated with a Noether symmetry, was first pointed out by
d Kamimura[7]. Observe tha6G,, is determined up to the ad-
[L],6q + _G =0 (2.2) dition of linear combinations of the primary constraints. Sub-
' dt stitution of this result in Eq(2.6) gives
where[L]; is the Euler-Lagrange functional derivative of Gy
- Wil 9q°— FL* ) =0,
] (?pS
[L1i= o= Wi, and so the brackets enclose a null vectokgf
where
5q‘—ﬂ*(—&G” =23 iy 27
L AL . dL i) Fo
Wijzf and A= — — qs‘l'—l'.
dq'aq’ dq'aq® 99

for somer“(t,q,q).

Here we consider the general case where the mass matrix e shall investigate the projectability of variations gen-
or HessianW=(W,;) may be a singular matrix. In this case €rated by diffeomorphisms in the following section. Assume
there exists a kernel for the pullbadh_* of the Legendre for now that an infinitesimal transformatio$q' is project-
map FL from configuration-velocity spacgQ (the tangent able:
bundle TQ of the configuration spac®) to phase space
T*Q (the cotangent bundleThis kernel is spanned by the
vector fields

r,5q'=0.

Notice that if 5q' is projectable, so must be*, so that

P r#=JFL*(rf;). Then, using Eqs(2.5 and(2.7), we see that
r ='yi —, 2.3
g a(GH+E#rﬁ¢#))

S ‘=fL*(
a ap;

where yiﬂ are a basis for the null vectors ¥¥; . The La-
grangian time-evolution differential operator can therefor

i he pi “ f
be expressed as ®We now redefinés, to absorb the piecg ,r{j¢,, and from

now on we will have

X= i-ﬁ-qsi‘Fas(q Q)iﬂ\“l“ =X+ AT (2.9 i x| 2CH
at aq° ! aq° I 0 M 8q'=FL 5_p| .
wherea® are functions which are determined by the formal- Define
ism, and\# are arbitrary functions. It is not necessary to use
the Hamiltonian technique to find tHe, , but it does facili- L
tate the calculation: pi:a_qi;
. J .
y'ﬂ=fL* (%) (2.5 after eliminating Eq(2.6) timesq' from Eq.(2.2), we obtain
|
I . , aL . _ap; IGy\ .. 9 Gy
where the¢, are the Hamiltonian primary first class con- [ = _ S_I)j:]_*(_) +q —FL*(G +fL*(_
straints. . TR o) 9 a7 (O Jt
Notice that the highest derivative in E@.2), q', appears -0 2.9
linearly. BecauseSL is a symmetry, Eq(2.2) is identically ' '
satisfied, and therefore the coefficientgfvanishes: which simplifies to

G aL G . G G
W..8q5— — =0. 26 x| =H i x| Z2H x| Z2H)
is0Q o (2.6 ﬂq,fL (api)+qﬂ (&ql)—kﬂ ( ) 0. (2.9
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Now let us invoke two identitieg8] that are at the core of the Hamiltonian with primary constraints yields secondary con-
connection between the Lagrangian and the Hamiltoniastraints, we learn from Edq2.13 that
equations of motion. They are

G]_:pC,
L [oH Ny
q'=FL*| ——|+v*(q,q) FL*| —— Go=—{G;,H}+pc, (2.15
Ip; Ip;
and and
W_ W v*(9,q) <9_q'— ' while from Eq.(2.14 we deduce that
where H is any canonical Hamiltonian, so that {Gy,pc}=pc (2.17

FL*(H)=q'(dL/dq")—L=E, the Lagrangian energy, and and
the functionsv* are determined so as to render the first re-
lation an identity. Notice the important relation {G,,pct=pc. (2.18

Fow'=6,, (210 it can be shown from Eq2.15) thatG, must contain a piece

: . _ ) , which is a secondary constraint, while EQ.17 and Eq.
which stems from applyindy’,, to the first identity and taking (2.18 show that bothG, and the primary constrair®, are
into account that first class.

I FL*=0.
Ill. DIFFEOMORPHISM-INDUCED GAUGE SYMMETRIES
Substitution of these two identities into EqR.9) yields

(where{,} is the Poisson bracket We specialize now to generally covariant dynamical mod-

els in which a metric can be constructed with the configura-

<9GH> tion variables(but not with velocity variables We assume
R :0

B in addition that no further gauge symmetry exists. We shall

illustrate our results with the relativistic particle with an aux-
iliary variable and with general relativity. Our first objective
is to determine the general form of projectable variations
IGy resulting from diffeomorphisms on a coordinate patch.
fL*{GH,H}Jr}'L*(T) =0 (2.11 If a metric exists in a coordinate systefr“} the line
element may always be written in the form

:FL*{GH,H}‘FU’MJ:L*{GH ’¢M}+'7:L*(

This result can be split through the actionlof into

and ds?=—N2(dx%)2+g,p(N2dx°+ dx®) (NPdx°+ d x?)
LGy, b,}=0; 2.12 (3.9)
. with contravariant metric components given by
or, equivalently,
_ N*Z Nsza

(g,U«V): Nsza eab_NszaNb ’ (32)

G, H1+| 2on
{Gu HI+ | —

)=pc (2.13

with e?Pgy.=62. The lapse functioN and shift vectoN?

will play important roles in our discussion. Our index con-
Gu. —pe, 21 venpons are that' greek indices range from OMo where
{Gn.dui=p 2.19 M is the dimension of the spacelike hypersurfaces of the

wherepc stands for any linear combination of primary con- time foliation. Latin indices range from 1 td. _
straints. We have arrived at a neat characterization for a gen-OEXP“C'“% the configuration space variables &€ (with
erator Gy, of Noether transformations in the canonical for- N"=N) andga,. The unit normaln* to the spacelike hy-
malism. persurfaces is given by

Up to now we have considered general Noether symme- h suN—1_ SN —1na pve
tries, encompassing rigitgloba) as well as gaugélocal) n#=3goN""—8N""N? so thatn“n"g,,=—1. 23
transformations. Let us finally specialize to gauge transfor- 3.3
mations. For reparametrization covariant theories, except fogjncee?® is the inverse of the three-metrig,, the contra-

a small number of exceptional cases not important for this/ariant components of the spacetime metric are
paper{9], a gauge generator will be of the form

and

gh’=e?P sk ¢ —nkn”. (3.4

G(t) = e(1)Go(d,p) + e(1)G1(q,p), _ , , _
Diffeomorphism covariance prevents the lap$éeand shift
wheree(t) is an arbitrary function. Because of the arbitrari- N2 from being fixed by the equations of motion in any gen-
ness ofe(t), and recognizing that the Poisson brackets of theerally covariant dynamical model. Specifically, since the
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N* are arbitraryN# are undetermined. The evolution opera- approach gives results coincident with ours. We feel that the
tor (2.4) acting onN* must therefore serve only to relate the "€auirement of projectabilityindependence of théN* on

arbitrary functions\# to the NG ConsequentIyFMN” must
form a nonsingular matrix. FurtheF,, acting on any other

velocity must give zero, since we are assuming no other
gauge symmetry. It follows that the null vectors of the Hes-

sianW [see Eq.2.3)] are spanned by

d

r,=—. 3.
HoaN# 39

Since there aré +1 of theN#, these null vectors span the
arbitrary component of the Lagrangian evolution operato

(2.4).

N# in this casgis a more natural approach.
The general solution of the* equationg3.10—(3.13 is

gO N2
N’ = ga_ Wgo,

(3.19

et=5rE+ g0, so thatef=

where ¢ and &° are arbitrary functions of the spacetime
variablesx* andg,,, but are independent ™#. The depen-
dence on theM -surface metric plays no role in our present

garguments but is required, as we show in Sec. VI, in order

that the diffeomorphism-induced transformations form a

Now consider infinitesimal coordinate transformations9™0UP. The resul(3.14 is true in a more general context

xt—x#—et(x), with e* arbitrary functions of the coordi-
nate variablex”. The corresponding variations of the com-

ponents of the metric tens@he Lie derivative of the metric
along €*) are (,=dlIx*)

6g’”=g“”,pep—g“”efp—gpyef;, (3.6
or
09y =9puv,p€” T 9"+ 9, €, . (3.7
The variations of théN* are readily calculated:
SN=N ,e*+Nep— NN, (3.9

SNA=N? e+ N3G~ (N2e?+NNP) e + 5~ NPej, .
3.9

Thus the variations of th&* do depend omN*= N’p (but the

variations ofg,, do noy, assuming as we have above, that
e* depends only on the coordinates. Consequently the varia}(-n
tions of N# are clearly not projectable; projectability is at-

tained only if we permite* to depend orN“. The require-

ment that derivatives oBN* with respect toN* vanish
implies that

°+Na€0—0 3.1
€ 07_N_ y ( . 0)
< 4 31
W_ ) ( . :D
Naae°+ (ka—o 3.1
N oN (312
Jed
605§+m5=0. (3.13

These equations were first obtained[#] using a rather

than we have been treating. The Appendix will illustrate this
point with an example, the Nambu-Goto string, in which the
metric is built with velocity variables as well as configura-
tion space variables.

A. Free relativistic particle with auxiliary variable

We illustrate first with the unit-mass relativistic free par-
ticle model with auxiliary variable described by the Lagrang-
ian

1
=€, (3.1

1. .
L= x“xvnw—2

T 2e

where x* is the vector variable in Minkowski spacetime,
with metric (»,,)=diag(—1,1,1,1), ande is an auxiliary
variable whose equation of motion gives=(—x*x,)Y2
Substituting this value o into the Lagrangian leads to the
free particle Lagrangiar-(—x#x,,)"2
The following Noether gauge transformation is well
own to describe the reparametrization invariance for this
Lagrangian sL=(d/dt)(eL)]:

Sxt=ex,, de=ee+ee. (3.1
Here € is an infinitesimal arbitrary function of the evolution
parametert. Comparing Eq.(3.16 with Eq. (3.8), we ob-
serve thake may be interpreted as a lapse, with correspond-
ing metricggo= —€2.

The kernel of the pullback magL* is defined in Eq.
(2.3); here it is spanned by the vector fielt=d/de. The
condition that a functiori in configuration-velocity space be
projectable to phase space is

_of

I'f=—
de

=0.

The Noether transformatiai3.16) is not projectable to phase

different approach. Ifi4], the following requirement was in- space, sincd se+0. Projectable transformations are of the
troduced for diffeomorphism-induced gauge transformationsform (3.14:

Consider §;x*=—€ef(X,g(x)) and &x*=—e5(X,g9(X));
then ask for conditions to be satisfied lay,e, such that
[ 81,8,]x* has no explicit time derivatives af; or €,. We

e(t,e)=&(t)/e. (3.17)

will discuss in the next section the reason why this latterThe Noether variations then become
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B. Diffeomorphisms in canonical general relativity

G :
Oxf=&-—, oe=¢. (3.18 Up to a boundary piece, the Einstein-Hilbert Lagrangian
can be written a$10]
The arbitrary function describing the Noether gauge trans- _ 3\ 17273 ab_ 2
formation is&(t). What we have achieved is a change of the L= TNCRH KapKT =KD, (3.19

generator of the gauge transformations. This leads 10 ghere3q is the determinant of the three-metric tensor in Eq.
change of the gauge algebra which in our case becomes Ab?s.l), 3g=det(ga,), °R is the scalar curvature computed

lian. But from the point of view of the gauge symmetry of from the three-metric, an&,, is the second fundamental

our model we still have the same mappings of solutions ont@qryy (extrinsic curvature for the constant-time three-
gauge equivalent solutions. That is, on a given dynamica,ifaces:

trajectory x5 (t), ep(t) we can match the transformation

given by an arbitrary ep(t) with &y(t) defined as .

Eo(t)=ep(t) ep(t). It is in comparing a transformation on Kab:m(gab_ Najp = Npja), (3.20
one dynamical trajectory with that acting on another where

the change has occurred. In Sec. VI we shall elaborate fuwith | meaning covariant differentiation with respect to the

ther on the issue of the gauge group. three-metric connection. Notice that the lapgdeand shift
The canonical Hamiltonian is N2 of the four-metric all appear, but their time-derivatives do
not.
_ u We may directly apply our general formalism, with no
H=5e(p"p,+1), notational changes, to conclude that projectable infinitesimal

coordinate transformations must be of the form

and there is a primary constraifnt=0, wheres is the vari-
able conjugate toe. The evolution operator vector field

{— H}+AO{=, 7} yields the secondary constraint \tice also that for any specific spacetime megig(x) we

2(p*p,+1)=0. Both the primary and the secondary Con-can  implement any infinitesimal  diffeomorphism
straints are first class. The arbitrary functioris a reflection k_x#— e*(x) by taking the set?,¢ (assumingN+0) as
of the gauge invariance of the model. The solutions of the '

equations of motion are EO=Ne®, 2=+ N3¢,

XH—s Xt — S g3 — kgl (3.21)

t T therefore we are not restricting ti@finitesima)) diffeomor-
XH(t)=x*(0)+ P“(O)( e(0)t+ deTJ’O dT')\(T')> : phisms that can act on any specific metric. What we achieved
is a set of generators of the gauge group which can be pro-
jected to the phase space.

t
e(t)=e(0)+f dr A(7),
0 IV. HAMILTONIAN GAUGE GENERATORS

pX(t)=p*(0) Our obijective in this section is to derive the full set of
' diffeomorphism-induced gauge generators for the class of
(1) = 7(0), dynamical models treated in Sec. Il. Since gfteare now the

arbitrary functions of time appearing in the variatiofeg of

Sec. I, we modify the argument leading to the general form
ﬂf the symmetry generators to conclude that these generators
must be of the form

with the initial conditions satisfying the constraints.

Gauge transformations relate trajectories obtained throug
different choices of\(t). Consider an infinitesimal change
A— A+ 6\. Then the change in the trajectorigeeping the

initial conditions intack is G(t)= f dMX(4(x,1) G+ E4(x,H)G).
t T _ 0:
SxH(t)=p*(0) Jde dr’ on(7)|, V\_/he_n_we_uses“—ﬁggaJrnffg in Eq. (3.6), the algebra of
0 0 the infinitesimal transformations ceases to be the standard
diffeomorphism algebra. The standard algebra is that of Lie
t derivatives: €5 = €€}, — €1€5 ,= (L, €1)*. In our case the
oe(t)= deT oM7), commutator of two infinitesimal transformations yields an
€4 of the form of Eq.(3.14), with
opH(t)=0, om(t)=0,
p(t) m(t) =88, 88, e, 158, (4]
which is nothing but a particular case of the projectable gozgago —§a§° 4.2
gauge transformations displayed above with 3 52%1a S1%52a: :

. These are the new commutation relations of the gauge
g(t)zj deTdT, SN(T). algebra in configuration-velocity space. The commutation
0 0 rules of the gauge generators in phase space coincide with
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the commutation relations in configuration-velocity space agon is thaté* and & appear in Eq(3.6), and so all con-
long as at least all but one of thé+1 gauge generators are straints are required to build the spacetime gauge generators
linear in the momentdsee[11]). This amount of linearity  that our theory possesses.

holds in our models: EQq.(3.14 implies that time- The Dirac HamiltoniarH is constructed by the addition

indepenqlenﬂw -space diffeomorphisms are alwa}ys project-to H of a linear combinatiortwith arbitrary functions\#) of
able. This means that each associated canonical generate primary constraints:

must be linear in the momenta; otherwise the transformation

of configuration variables will depend on velocities. We can Hp=H+A“P,. (4.13
conclude that we know the Poisson bracket rules ) ) ) ) o
G[£5]={G[£,],G[ &]} for our gauge generators. Thus in G,.’ must be a primary constraint, so the simplest choice is
comparing Eq(4.1) and Eq.(4.2) with G[ £5] we deduce the G\’ =P,. It is now necessary to apply Eq2.15:
algebra for these generators. In what follows, we use th&'”=—{G{" ,H}+pc, implying

convention that repeated indices imply both summation and ©

M-dimensional integration; we use primed indices where G, =H,+A,P,.

necessary to make sure that separate integrations are cIeaE

delineated, though we drop the primes on the indices wher fom Eq.(4.3 we deduce that

no loss of clarity is involved: {H, H,}=CoH,,

(0) ~(0)y_ ~a" ~(0)
{G ,GV,}—C#V,GQ,,-F

ECQ’;,)GS,,), (4.3 since{N*,H,}={P, ,H,}=0.
dt ~# The A} are determined by applying conditid@.16 to
, G-
{GY.G))}=cs, G, (4.4 *
and pc={H,+A,P, H}=N"{H, H,}+A{P, H}
(G G(l)}:O @5 =N"C H,—AH,,
e ! )

which implies
where the structure coefficients are given by
AL=NC},

” (9
a’ _ jab/yn M " \Y/ I " M '
Coor =(X") (87 (x—X") + 6 (X' —X ))a_x‘35 (x=x"), up to an irrelevant arbitrary linear combination of primary
(4.6) constraints that would add an ineffective piece to the gauge
generator.(By ineffective we mean that the added piece is

CO”,:O (4.7) quadratic in the constrainjsWe ignore this piece and take
00 the simplest solutions available f@af,,
) 9 . It is trivial to check the fulfillment of condition$2.17),
Cgo,= 5M(x—x”)ﬁ M(x—x")= —Cg,a, (4.8 (2.18. By use of the Jacobi identity we find
b OE{Hu '{HB 'Hy}}+{Hﬁ !{Hy 'Ha}}+{Hy !{Ha 'HB}}
C,o =0, 4.9 _p o p o p o ,
- (CBYCaP+ CvaCBp+ CaBCWJ)HU_I_ {Ha ’CﬁY}HP
" J J
Cop = 5™ (X' —x) 7t O oM (X" —x) 5| M (x—x"), Mg, ChalHy+1H, Clpi M, (4.14
(4.10  together with
and d y o~y
. EC“B: NA{CYg. M, (4.19
C,n=0. (4.11

and it is straightforward to show that the genera®{¥ and
We now construct these generators explicitly. The canoniGELl) do satisfy the algebrét.3—(4.5).
cal Hamiltonian(such that its pullback under the Legendre "\We have therefore obtained the full set of
transformation gives the Lagrangian enerfpr the class of diffeomorphism-induced gauge generators:
models under discussion is

G(t) =P, &"+(H,+NC!, P,)&" (4.16)

H=N*H,, (4.12

_ ~ (where the repeated index, to repeat, involves an integpation
where theH,, are independent di* andP,,, and the pri-  Note thatG(t) generates variations in the full phase space. It
mary constraints ar@, , the canonical variables conjugate s straightforward to verify that it does generate the correct
to N#. The secondary constraints ar®,={P,,H} variations ofN* (3.8) and(3.9) under the diffeomorphism-
=—"H,, and no more constraints appear. It was shown irinduced gauge transformatiofi.14).
[5] that the canonical Hamiltonian always takes the form The preceding discussion applies with no modification of
(4.12. All constraints are required to be first class; the reanotation to canonical general relativity.



664 J. M. PONS, D. C. SALISBURY, AND L. C. SHEPLEY 55

We continue with some general remarks on diffeomor-nied by related internal gauge transformati¢hg]. The is-
phism generators. Our first observation is that every generaue of projectability for these models will be addressed in
tor G(t) with £°+0 is interpretable as a global time transla- another paper.
tion generator for at least one member of every gauge Gauge theories like electromagnetism or Yang-Mills in
equivalence class of solutions. To demonstrate this propertylinkowski spacetime share with general relativity the prop-
we note that for a given set of functiogé in the expansion erty that gauge transformatiofdiffeomorphisms in general

relativity) need to be constructed with arbitrary functions and
4.17 their spacetime first derivatives. The gauge generators are
made up of two pieces, associated with a primary and a
secondary constraint; it is therefore mandatory that all these
we can solve for th&* which rendere®= 8 : theories have secondary constraints. This is the way by

which the canonical formalism is able to provide us with the

b= ot=8rga+ (N LSE—NTINASM) 0. (4.18 rigr'1:t gauge transformations. _

or the sake of completeness, let us now apply these ideas

o ) ) to our relativistic particle(3.15. The gauge generator is,
The solution isN*=¢*, which rendersG(t) in Eq. (4.16  from Eq.(4.16),

identical to the Dirac Hamiltoniad.13, once we take into

account that the equations of motion provide*=\*.
Therefore the gauge generator contains, for any solution of
the equations of motion, the dynamical evolution as a par-
ticular case. with £ an arbitrary function of time. One can easily check
At this point we are ready to understand the coincidencdhat G(t) generates théprojectablg transformations3.18
of the two approaches mentioned in the previous sectionntroduced above. Notice also that §fis a constant, the
The same condition$3.10—(3.13 are obtained if(1) one  secondary constraint generates a rigitne-independent
asks for the projectability of E¢(3.7), or (2) one asks for Noether symmetry, whereas the primary one does not. Pri-
[ 81,8,]x* not to have any explicit time derivative @f or ~ mary constraints generate gauge symmetries only in the case
€,. It seems odd that conditions imposedametransforma- when they do not lead to secondary constraints through the
tion (projectability and conditions imposed on the commu- Stabilization algorithm.
tation of two transformations should give the same results. Finally, notice that we do not modify “by hand” the
The reason lies in the structure of the gauge generators iHamiltonian by adding to it the secondary constraint with a
phase space: They are constructed with linear combinatiofd®ew Lagrange multiplier. This modification, the so called
of constraints with arbitrary functions and their first time Dirac conjecture, turns out not only to be unnecessary but to
derivatives. Let us consider two of these generatordreak the equivalence with the Lagrangian theory as well
G[£,],G[&,]. Their Poisson bracket, an equal time commu-[13]-
tator, is on general ground3[ £5] for someés. It is impos-
sible to get for §; the standard diffeomorphism rule V. GAUGE FIXING AND REDUCED FORMALISM

§§=§5§1,_V—§I§’2‘,,,2 In such a cas§3, Whi_Ch appears in A. Gauge fixing procedure

G[ &3], will depend on the second time derivativeségfand o

&, and this dependenagannotbe generated by the equal One of the methods to ellmlnate the sup_erfluous _degrees
time Poisson bracketsG[ £,],G[&,]}. Nesting of Poisson of freedom ofagau_ge theo_ry is through the |_n'_[roduct|on ofa
brackets would introduce yet higher time derivatives. This ig'€W Set of constraints. This is the gauge fixing procedure,

why general reparametrization covariance cannot be imple¥nich, according td5], can be performed in two different

mented in this form in the Hamiltonian formalism. The ar- St€PS: the first is to fix the dynamics, the second to fix the

gument applies to any reparametrization covariant theory. redundan_cy of _the initial conditiorishough t_his ’?e.ed not be
This was the argument used [4] to realize diffeomor- the order in which the whole set of constraints is introduced

phisms in the canonical formalism. In fact the arend4h First, to fix the dynamics—to determine specific values
was the reduced space defined by the variatﬂg@,((ab). In for the functlc_Jns A in Eq. (413—We must introduce
this case there are no time derivatives of the arbitrary funcM *1 constraints,e,=0, such that defe,,P,}|#0. A
tions £* in the variations generated by Ett.16, but the yPical set could be

argument still applies in the same way, as shown above. 0, =NH—fH (5.1)
Once the obstruction to projectability is identified through # ’ '

the form of [6;,5,]x*, the assumption of a metric depen- wijth f# (f°#0) a given set of functions not depending on
dence ine” and the requirement thg®,,5,]x* must not  p or N” (the simplest choice could b&=0, f°=1). We
have any explicit time derivative of; or €, leads to equa- could also think off* as a not yet determined set of func-

tions (3.10—(3.13, the projectability condition. tions. These gauge fixing constraints Xi% in Hp to be zero
We should caution that the algebita3—(4.5) is satisfied  gnd then

only under the condition that there is no other gauge sym-

metry in addition to diffeomorphism-induced symmetry. Un- H’De": NAH, =frH,, (5.2
der more general circumstances, pure diffeomorph{gwen

the field dependent variety given by E8.14)] are not real- where we have used Dirac’s notation of strong equatity,
izable as canonical transformations; they must be accomp&e mean an equality up tguadraticpieces in the constraints,

€= Sk +nred,

. 1
G)=&M)m+E(1) 5 (pp“+1),
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including the gauge fixing ones. In practice this strong equalin Eqg. (5.2) as the Hamiltonian for the reduced phase space

ity tells us that we can substitufé for N within the Hamil-  described by all variables other thé, andN". In this re-

tonian due to the fact thdt, are constraints, too. duced space we have a dynamical theory defined by a van-
Once this set of evolution-fixing constraings,=0 has ishing canonical Hamiltonian and a set of constraints, which

been introduced, with a given set of functiofts the gauge now become primary}{,=0. Then the new Dirac Hamil-

transformations—strictly speaking—have disappeared. Inonian isH’Ded and the new gauge generator is

fact, if we require the gauge generators to be consistent with

the new constraintg,e, ,G(t)} =0, we get the relations Gred= E"H,.
g+ E'NICh =0, (5.3)  Thus we see that the constraififs, do generate gauge trans-
formationsin the reduced phase space
which means that the functior&g* cease to be arbitrarfat We identify here a frequent source of confusion in the

least with respect to the time dependen@nd hence there literature when it is claimed that all first class constraints,
are no more gauge transformations. The transformationsither primary or secondafpr tertiary, etc), generate gauge
G(t) satisfying Eq.(5.3) can be called, as is usual in other transformations. For generally covariant theories with a met-
contexts, residual gauge transformations, but it must be entic, in the original phase space, only specific combinations,
phasized that they are not true gauge transformations ias in Eq.(4.16, of primary and secondary constraints gen-
phase space, because the arbitrariness that was present in ¢iate gauge transformations. But in the reduced formalism,
Dirac Hamiltonian has been eliminated. We encounter a parsince the old secondary constraints take the role of primary
allel case in electromagnetism, for instance, when after inconstraints and there are no more constraints, these new pri-
troducing the Lorentz gauge,A“=0, we are left with a mary constraints generate gauge transformations in the re-
residual gauge symmetrnp“—A*+4, A, providedA satis-  duced space.
fiesOA=0. As to the gauge fixing procedure in the reduced phase
Another way to view the residual gauge transformationsspace, since there are only primary constraints, there is only
which is more interesting to us, is to consider the situatiorone step to be undertaken: to fix the evolution. Notice that
at a given initial time, t=0. Let a*(x)=¢&*(0x), the same argument we used previously to show that one of
BM(X):'&L(O’X); they are related by Eq. (5.3: the gauge-fixing constraints must be the definition of time

B*+a’N°CA =0. We are left with the “residual” gauge 2PPlies here as well.
transformation at=0
C. From the reduced to the original formalism

Gr(0)=P,B*+(H,+N'C, P,)a"=H,a", In the case of generally covariant theories, we have seen
. _ _ _ that the reduced formalism consists in the elimination of the
with «* an arbitrary function oM-space variables. primary constraintsP,,, and their canonical conjugate vari-

The role ofGg(0) is that it generates transformations onaples, N#, through a partial gauge fixing
the initial value surface that describe a redundancy that isgy«=f~ (f00), with f# arbitrary functions of spacetime
still left in the formalism, and we must eliminate it in order as well as of the reduced variables. Then we obtain a reduced
to arrive at the true degrees of freedom. Thus we must introrheory which ha§—{lu:0 as primary Constraint@]o second-
duce a new set of gauge-fixing constraintg~0, with the  ary constraints appe)arH’Edzf“Hﬂ as the Dirac Hamil-
I’equirements tha@l) the dynamical eVOIUtion, which is al- tonian, andGredz fMH# as the genera‘[or of gauge symme-
ready fixed, must preserve these new constraints (@nd tries. The new bracket for the set of the reduced variables is
{X. ,Gr(0)}=0 must implya*=0. djust the Dirac bracket, which in our case is trivially obtained

Obviously, to satisfy the second condition, we needas the old Poisson bracket when acting with the reduced
det{x,.H,}|#0, and to satisfy the first we need variables.

One may wonder whether there is a way to restore the full
theory from the reduced one. In these cases where the con-
straints eliminated in the process of reduction are canonical
momenta we will see that there exists such a method. This is

Notice that the first and the second conditions are only comthe enlargement procedure: _ o
patible if at least one of the gauge fixing constraipts for Consider a theory_ defined by a canonical Ham|_lton|an
instanceyo, has explicit time dependencey,/dt#0. This Hc and a set of primary constrain,=0. The Dirac

result implies that time needs to be defined classicallyjiamiltonianisHp=Hc+\*¢, (\* are arbitrary functions
through a function of the canonical variables. Let us suppose we have applied the stabilization algorithm to

obtain secondary, tertiary, etc., constraints and that we have

finally obtained a set of Noether gauge generators, described

by a singleG[ £], where¢ stands for a sef® of infinitesimal

Notice that if we perform the partial gauge fixing defined arbitrary functions of spacetimé&[£] is assumed to be a

in Eq. (5.1), N*—f#=0 in the spirit of keeping* undeter- local functional of¢* (that is, it depends linearly off* and a

mined, then we can interpret finite number of its time derivatives, according to the length
ed of the stabilization algorithin We also assume the commu-

Hp =f*H, tation algebra foiG[ £] to be

19XM_ Y IXp

B. Reduced formalism
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{G[ £,1,G[£,]}=G[ &3], cal mechanics and classical field theory. It is most conve-
nient to define gauge symmetries in a more restrictive way as
with ggzc;;ygfgg (this is a general property, and local transformations which leave the action invariant up to

are not necessarily the same as previously defined; remembleoundary terms. Our analysis is based on the Noether iden-
that repeated indices imply both summation and integration tities which result from this invariance under infinitesimal
According to Sec. Il, there exist functionadg[£] and  local symmetries.

B#[ £] such that Let us make some formal remarks on the nature of the
diffeomorphism-induced gauge group of the type discussed
IG[ €] in this paper. LetRiem(M) be the space ofpseudd Rie-
{G[€]Hch+ Jt =B¥[£l¢,, {GLEl bt =AlE]P, - mannian metrics of the spacetime manifaldl, and let

Diff (M) be the group of diffeomorphisms iM. An ele-

The enlargement procedure consists in promoting the ament of the gauge groug[Rien{M)] is a regular map
bitrary functions\* to the status of canonical variables; let Riem{M)—Riem(M) such that each gRienm{M) under-
us call themN* for obvious reasons. Let us introduce ca- goes a diffeomorphic transformation, that is, a transforma-
nonical moment& , associated with the new variablége  tion dictated by a specific element bfff (M) (thus keeping
thus trivially enlarge the Poisson brackend require these the action invariant (Other fields are also affected by this
new momenta to be the primary constraints of the enlargediffeomorphic transformation, but for this discussion we de-
theory. vote our attention to the metrjc.But this element of

The enlarged canonical Hamiltonian will then be Diff (M) may be different if we consider the action of the
Hc+N“¢,, and the new Dirac Hamiltonian will be same element of the gauge group on a differgit
Hg=Hc+N*¢,+ »*P,, with »* new arbitrary functions. eRiemM).
It is straightforward to verify that the dynamics of the origi- To determine an element of the gauge group we must
nal theory and that of the enlarged theory coincide as far aassign to eacly e Rien{.M) the specific spacetime diffeo-
the evolution of the original variables is concerned. How-morphism which is going to act og. More precisely, an
ever, note that theo* have become secondary constraints. elementd, of the gauge group is a map

Now we will show how to enlarge the corresponding

gauge generator&[ £]. Since the new primary constraints d:Rien{. M) — Diff (M)
P, must appear within the enlarged gauge generators
Gd¢], we will assume the general formGg é] g—d[g] (6.9
=G[&]+S4[€]P,,, with S* to be determined through the . .
requirements  of Sec. . It tuns out thatS" such that we can build out of it a regular map
=B“+N"AJP,. The enlarged gauge generator therefore G:Rien{M)— Rien(M)
has the following form:
y g—(d[g](9). (6.2
Gel £]1=G[£]+BH[£]P,+N"AJLEIP,. (5.9
) i Now let us consider the generators of the gauge géup
The commutation algebra fde[ ] is We use, for the sake of generality, a condensed notation

_ 2 where®' stands for the fields that are present in the theory;
{Gel 1], Gel &2} = Gel £5]+ O(P), the action is denoted by, andi includes continuous space-
where is pure quadratic in thénew) primary constraints: tlme_indices(_so that repeated _indices imply both summation
and integration Let €* be arbitrary functions of spacetime
O(P?)={B*[£]+N"AL[£1], B[ &1+ NPATTE,]MP,P,, . variables, and ' = R,e* be a complete set of infinitesimal
gauge transformations. These satisfy the Noether identities
In our particular case of general covariant theories(sS/6d')R)=0. Obviously we do not alter the Noether
BH £]=¢&m andAf[ £]=¢°Ch, . Notice that in this particular identities by taking a different linear combination of varia-
case the tern®(P?) vanishes. tions R,—R,=AS(P)Ry;, even when the\” depend on
The procedure of enlargement here devised is completel$p’. No gauge equivalent trajectories are eliminated through
general, and it is valid for any gauge theory no matter howthis transformation, presuming that is invertible. In our
complicated its structure of constraints may be. case[see Eq(3.14)] the requirement of projectability fixed

VI. GAUGE GROUP A*(9)=n*&0+ 5452, (6.3

The gauge group is a subgroup of the symmetry group ofvhich is clearly invertible. The algebra corresponding to this
the system. A symmetry is a transformation that maps solurew choice of generators contains field-dependent structure
tions of the equations of motion into solutions. From a physi-coefficients.
cal standpoint, gauge symmetry reflects a redundancy in the One might conclude that this “soft” algebra structure sig-
description. Mathematically, a gauge transformation is charnifies that the symmetry transformations no longer form a
acterized by its functional dependence on arbitrary functionsgroup. We do have a group, which acts not on the spacetime
The functional dependence is expected to be local in thenanifold M but on Rien{M). Note that elements of the
sense of depending on the values of the functions and on diffeomorphism-induced gauge group must depend on the
finite number of derivatives. This is the definition for classi- full metric. Dependence on the lapse and shift is fixed by Eq.
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(3.14. Perhaps more surprising is the fact that the full groupThe Lagrangian density is minus the string volume element :
depends nonlocally on the hypersurface induced metric. This
is a direct consequence of the structure coefficients in Eq. i U2 1 (212 127102
(4.6): Repeated nesting of the commutator produces spatial L=~ (~deg)™=—[=(y)y")+yy)T™ (A3
derivatives ofg,, to infinite order[1].

To summarize, we have discussed some aspects of tHg©®m
canonical approach to generally covariant theories. In par-

ticular we have emphasized the special way in which the (y'? —(yy")
canonical formalism describes the diffeomorphism covari- grr=-L"% s (A4)
ance of these theories. The gauge group for these theories is —(yy) (%)
larger than the diffeomorphism group. The canonical gauge
generators are just one of the possible bases for the gaugee read off the lapse and shift:
algebra, although projectability of transformations generated
by the larger group from configuration-velocity space to L
phase space fixes the dependence on the lapse and shift N=(y,—2)1/7 (AS)
uniquely. We have displayed the canonical generators for the
gauge symmetries of these theories on the entire phase space.
Transformations may be pulled back to the entire@"
configuration-velocity space.
In this paper we assumed that the only gauge symmetries 1 (yy")
are generated by diffeomorphisms. When other gauge sym- N :VT)' (AB)
metries occur, related internal gauge transformations must be
taken into account. This topic and the question of project- . .
ability of the gauge transformation group onto the full con- '€ canonical momentum is
straint hypersurface will be dealt with in future papers. It is
also our intention to explore further the relationship between - Carrem2id el
our results and matters pertaining to quantization, particu- T :a_-:_l— LYy =(yy)y" 1. (A7)

larly the question of time in quantum gravity. Y

Recall that when we are working in configuration-velocity

space, the coordinates a{g‘,y'}. There are two primary
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APPENDIX: NAMBU-GOTO RELATIVISTIC STRING ,
. o . . h1=(y'm). (A9)
We have so far discussed the situation in which the metric

may be constructed using only configuration space Variabl?ﬁ‘herefore one may ask whether the velocities may be ex-

Our conclusions, however, do hold in case that velocity vari- ressed uniquely in terms of the canonical momenta and the

a_bles, too, are neEded to construct thg metric. In th's appe'l%pse and shift, taking into account that these constraints
dix we illustrate the issue of projectability of variations en-

gendered by diffeomorphisms in the Nambu-Goto reIativisticSh.OW that there are a correct number of coordinates

: e . . Iy', 7' ,N,N*} for velocity space. In our example we can in-
string. This is an example of a first ordger dynam!cal model INjeed invert}the expression fé¢ to obtain
which a metric may be constructed using velocity as well as
configuration variables(The Polyakov string satisfies the
conditions postulated in Sec. IlI.

We let{y', 1=0,... M} represent Minkowski spacetime

coordinates. The string surface is givenyyx*), u=0,1,
0_ l_ . . .
wherex"=r7 andx"=o. The induced metric on the string The primary constraints are relations among yheand the

. N
ylley'l_ﬁ(y/z)lzﬂ'l- (A10)

surface is 7' and involve neither lapse nor shift. Therefore invertibility
L is equivalent to the demand that
9 =Y, Y3 (A1)
- - - ’ om 9w dy’ ay’
For spacetime contractions we use the notatior= d/d, o= 2m _om N\ Y (A11)
=d/do) INK - gyd IN# NV aN#

YO=Y'yi, (y'D=y"y/, (yy)=Y'y/. (A2)  where
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W (92L r ~ (9 ( r2)l/2 J dr rl d d
= = ’7T an = —_ = 7.
1 &y,ayJ 0 &y y N 1=y 2y INE
(A14)
[Lz(y'z) 83T (Y)Y DY Y+ (Y D1y, Therefore variations of thg' will be projectable if and only

_ _ _ if they are independent dff andN?. These variations are
=Yy )Y Y3+ YY) N
8y'=y et =y ety e = Ny — ! |y e

1 A A
NPl Dyt ma] L (AL2) (A15)
But this is the statement that It is straightforward to show that these variations will be
independent oN,N?! if and only if
ﬁ_yl — 1 -~ and a_yl gl 1 Nl
ON - (y/2)1727T (9N1_y EO:N§O’ El=—W§O+§l, (A16)

are null eigenvectors a5 ; that they are is readily verified.
Recall that in our model the primary constraints are
do=3[(y")?+(7?)] and ¢, =(y' 7). We have

ddo

am

where&# are independent dfl,N*. In terms of the timelike
unit vector

n#=(1/N,—NYN),
yo=FL*

) 7' and 9l= ]—“L*( ¢1) y'.

o this result is in the correct form, namely the same as Eq.

(A13)  (3.13:
Thus et= e +nH g0, (A17)
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