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Abstract We compute the one-loop divergences in a
higher-derivative theory of gravity including Ricci tensor
squared and Ricci scalar squared terms, in addition to the
Hilbert and cosmological terms, on an (generally off-shell)
Einstein background. We work with a two-parameter family
of parametrizations of the graviton field, and a two-parameter
family of gauges. We find that there are some choices of
gauge or parametrization that reduce the dependence on
the remaining parameters. The results are invariant under a
recently discovered “duality” that involves the replacement
of the densitized metric by a densitized inverse metric as the
fundamental quantum variable.

1 Introduction

In a previous paper [1], hereafter referred to as I, we
have examined the properties of quantum General Relativity
(GR—the theory containing only terms up to second deriva-
tives in the action) in a general four-parameter family of
gauges and parametrizations. In this paper, we would like
to extend the analysis to higher-derivative gravity (HDG).

By HDG, we will always mean the theory of gravity based
on the metric as fundamental variable and an action that con-
tains up to four derivatives.1 This theory is important because
in four dimensions it is power-counting renormalizable [5]
and asymptotically free [6–10]. In spite of these appealing

1 There has been recently some progress on theories that contain more
than four, and possibly infinitely many derivatives [2–4]. These also
deserve the name HDG, but we shall not consider them here.

b e-mail: ohtan@phys.kindai.ac.jp
c e-mail: percacci@sissa.it
d e-mail: duarte763@gmail.com

properties, it has never been accepted as a viable fundamen-
tal theory for gravity, because of the presence of ghosts in
perturbation theory. Over time, there have been many pro-
posals trying to circumvent this problem. Among these let us
mention here the following possibilities:

• The mass of the ghost is not a fixed parameter but is rather
subject to strong (quadratic) running above the Planck
threshold. Then the equation for the pole mass m2

phys =
m2(k = mphys) (where m(k) is the running mass) may
not have a solution [6,11,12].

• The ghost may be an artifact of expanding around the
wrong vacuum. The true vacuum of quadratic gravity (in
the presence also of a Hilbert term) is not flat space but
rather a kind of wave with wavelength of the order of the
Planck length [13].

• The quadratic term is one of an infinite series and the sum
of the series is a function that has no massive ghost pole.
The ghost pole is an artifact of Taylor expanding this
function to second order (see the aforementioned papers
on non-local gravity and also [14]).

For further proposals see also [15–19]. So far, none of these
arguments has convinced the community at large, so the issue
of the ghosts remains open for the time being. However, the
hope that a way out may exist has generated new interest in
these theories in recent times, also among particle physicists
[20–22]. It seems therefore appropriate to keep investigating
the quantum properties of these theories.

In this paper we will extend previous results in several
directions. Due to the complicated structure of the theory,
calculations of one-loop divergences in HDG have usually
been performed with a special four-derivative gauge-fixing
term such that the four-derivative part of the Hessian is pro-
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portional to the square of the Laplacian. In this paper we
will calculate the off-shell gauge dependence of the one-
loop divergences by using the more conventional second-
derivative gauge-fixing term that is commonly used in quan-
tum GR, depending on two parameters a and b, or a four-
derivative variant of the same gauge fixing, containing an
extra power of a Laplacian.

As another generalization, we assume that the quantum
field is not the metric but the densitized metric

γμν = gμν

(√
det gμν

)w

, (1.1)

or the densitized inverse metric

γ μν = gμν
(√

det gμν
)−w = gμν

(√
det gμν

)w

, (1.2)

with weight w. Furthermore we allow the quantum theory to
depend on another parameter ω, which interpolates contin-
uously between the linear background-field expansion (for
ω = 0)

γμν = γ̄μν + ĥμν, (1.3)

the exponential background-field expansions (for ω = 1/2)

γμν = γ̄μρ(eĥ)ρν or γ μν = (e−ĥ)μργ̄ ρν, (1.4)

and the linear expansion around the inverse densitized metric
(for ω = 1)

γ μν = γ̄ μν − ĥμν. (1.5)

The density ĥμν is then reexpressed as

ĥμν =
(√

det ḡ
)w

hμν or ĥμν =
(√

det ḡ
)w

hμν (1.6)

respectively, where ḡμν is a background metric, related to the
background density γ̄μν as in (1.1) and (1.2). See also Eq.
(2.14) below. The field hμν is used as integration variable in
the functional integral. The properties of quantum GR in this
general four-parameter family of gauges and parametriza-
tions have been investigated in an accompanying paper [1].

Here we extend the analysis of I to HDG. We now have
four independent couplings instead of two, so the expres-
sions for the divergences are in general much more compli-
cated than in I and so is the interpretation of the results. The
expressions simplify somewhat, and they are reported explic-
itly, in two limits: the “four derivative gravity (4DG) limit” in
which the Einstein–Hilbert terms can be neglected relative to
the curvature squared terms, and the “Einstein–Hilbert (EH)
limit” where the opposite holds. In the EH limit, the action is
the same as the one considered in I, but the analysis that we

perform here differs in two respects: first, we choose a more
general Einstein background, instead of the maximally sym-
metric background of I. This allows us to discriminate two
divergent terms quadratic in curvature, rather than a single
one as in I. Secondly, the cutoff in each spin sector is chosen to
depend on the corresponding Lichnerowicz Laplacian, rather
than the Bochner Laplacian −∇2 as in I. Thus, comparison
with I yields some information on the cutoff dependence of
these non-universal results. Still, we find that in this limit the
qualitative picture is the same. Similar calculations of diver-
gent terms with different parametrizations in four dimensions
have been given in [23].

In four dimensions and in the 4DG-limit, all divergences
are universal, i.e. independent of both gauge and parametriza-
tion. In particular, the logarithmic divergences are related to
the well-known universal beta functions of HDG [9,10]. As
in I, we find that all divergences are invariant under a “dual-
ity” transformation that consists in the replacement

ω → 1 − ω,

w → w + 4

d
. (1.7)

Let us discuss a little more the role of the functional mea-
sure in these considerations. In I we have used the word
“measure” synonymously with “choice of quantum field in
the functional integral” but we have left the definition of
the functional measure a bit implicit. The reason for this
is that the Wilsonian cutoff k that we have used to calcu-
late the divergences does not regulate the divergences in the
functional measure, if there are any, and so the results would
have been independent of this choice anyway. The consistent
interpretation of the results of I is that they give the correct
divergences of the functional integrals when the measure is
given by

�xdhμν(x), (1.8)

where hμν is the purely tensorial quantum field defined as in
(2.14), independently of m and ω.

Since the functional measure was always kept fixed, the
dependence of the results on the parametersm and ω resulted
entirely from the different forms of the Hessians, which in
turn was due to the different forms of the expansion of the
action (see Eqs. (2.13) and (2.15)).

If one decided to use the same expansion but a different
ultralocal measure, for example

�xdĥμν(x) = �x (det ḡ(x))w/2dhμν(x), (1.9)

then the divergences would differ by terms of the form δ(0)

times the volume. Such terms would affect the power-law
divergences coefficients.
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We conclude this introduction by listing the contents of
the following sections. Section 2 contains details of our cal-
culations of one-loop divergences. In Sect. 3 we give a formal
proof (at the level of determinants) that the on-shell effec-
tive action in d = 4 is gauge independent. (In particular,
the effective action of HDG in the 4DG-limit on an Ein-
stein space is gauge-independent.) The main results are pre-
sented in Sect. 4. In Sect. 5, we discuss how the results can
be obtained for d = 4 conformal gravity. In Sect. 6, we point
out that our results show that the duality found in our pre-
vious paper I is valid in HDG as well. Section 5 contains a
discussion and conclusions. In the appendix, we summarize
the heat kernel coefficients for Lichnerowicz Laplacians on
an Einstein manifold.

2 The one-loop effective action

2.1 The HDG actions and their equations of motion

In this paper we will consider actions of the general form

S(g)=
∫

dd x
√∓g[±ZN (R−2�)+αR2+βR2

μν], (2.1)

where ZN = 1/(16πG), � is the cosmological constant, α,
β are the higher-derivative couplings. The upper sign refers
to the Minkowski signature, the lower one to the Euclidean
signature. This is not the most general HDG action, because
we omit a term γ R2

μνρσ ; however, in d ≤ 4 this is not a very
strong restriction, because the “Gauss–Bonnet” or “Euler”
combination

G = R2
μναβ − 4R2

μν + R2, (2.2)

is either zero (in d = 2, 3) or a total derivative (in d = 4).
Using the identity for the Weyl tensor Cμνρσ :

C2 ≡ CμνρσC
μνρσ

= R2
μναβ − 4

d − 2
R2

μν + 2

(d − 1)(d − 2)
R2, (2.3)

one has

C2 =G+ 2(d − 3)

d − 2
W ; W =2R2

μν − d

2(d − 1)
R2. (2.4)

Thus, modulo terms proportional to G, we can replace αR2+
βR2

μν by

1

2λ
W + 1

ξ
R2. (2.5)

The integral of W , like the integral of C2, is Weyl-invariant
in d = 4.

The equations of motion are

± ZN (Gμν + �gμν) + αE (1)
μν + βE (2)

μν = 0, (2.6)

where Gμν is the Einstein tensor and

E (1)
μν = 2RRμν − 2∇μ∇νR + gμν

(
2�R − 1

2
R2

)
,

E (2)
μν = 2RμλR

λ
ν − 2∇λ∇(μRν)λ + �Rμν

+ 1

2
(�R − R2

λρ)gμν. (2.7)

Let us observe that in the case ZN = 0 and d = 4 the Einstein
condition

Rμν = 1

d
Rgμν (2.8)

is enough to fulfill the equations of motion. The scalar cur-
vature remains an undetermined constant, since the action is
scale-invariant. On the other hand when ZN �= 0 the equa-
tions of motion together with the Einstein condition further
require

P ≡ 4 − d

2

(
α + β

d

)
R2 ∓ d − 2

2
ZN

(
R− 2d

d − 2
�

)
= 0.

(2.9)

In particular, in four dimensions the higher-derivative terms
do not contribute and the equation of motion is the same as the
trace of the Einstein equations with cosmological constant:

E ≡ R − 2d

d − 2
� = 0. (2.10)

To summarize, the choice of the Einstein condition means
that the background is “almost on shell” in the sense that
all the equations of motion are satisfied except, in general,
for the trace equation (2.9). In the special case of pure HDG
(no Einstein–Hilbert term) in d = 4 the background is com-
pletely on-shell.

2.2 Quadratic expansion

The action has to be thought of as a functional of the quantum
field γμν or γ μν defined as in (1.1) or (1.2). For w �= −1/d
these relations can be inverted to yield

gμν = γμν(det(γμν))
m; gμν = γ μν(det(γμν))

−m, (2.11)

where

w

2
= − m

1 + dm
or

w

2
= m

1 + dm
, (2.12)
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respectively. Conversely, m = − w/2
1+dw/2 for (1.1) and m =

w/2
1−dw/2 for (1.2). We observe that the relation betweenm and
w/2 is an involution. We choose to treat m as an independent
free parameter. All dependence on m can be translated into
a dependence on w if needed, using the preceding formulas.

The quantum field is then expanded as in (1.3) or (1.4)
or (1.5), and for the calculation of the one-loop divergences
we need the terms to second order in the fluctuation. As
explained in [1], we can start from the quadratic expansion
of the action in δgμν , which has been given in detail in [24],
and then use

δgμν = δg(1)
μν + δg(2)

μν + · · · , (2.13)

where δg(n)
μν contains n powers of the tensor fluctuation

hμν = (det γ̄ )mĥμν. (2.14)

For all four types of expansion considered here, we have

δg(1)
μν = hμν + mḡμνh,

δg(2)
μν = ωhμρh

ρ
ν + mhhμν + m

(
ω − 1

2

)
ḡμνh

αβhαβ

+ 1

2
m2 ḡμνh

2. (2.15)

The choice ω = 0 corresponds to the linear expansion
of metric (1.3), ω = 1/2 corresponds to the exponential
expansion (1.4) (and it does not matter if one starts from the
metric or from the inverse metric) and ω = 1 corresponds to
the linear expansion of the inverse metric (1.5).

In the following we will use these expansions in the action
(2.1). We note that, for given gμν and ḡμν , different values
of ω and m will give different fluctuation fields hμν and con-
versely for given hμν and ḡμν , different values of ω and m
will give different total metrics gμν . In the following calcula-
tions the action (2.1), as a functional of the total metric, will
always be kept fixed and also the functional measure for the
quantum field will be kept fixed.

2.3 Lichnerowicz Laplacians

The evaluation of the one-loop divergences is based on the
knowledge of the coefficients of the small-time expansion
of the heat kernel of the kinetic operator appearing in the
gauge-fixed Hessian. We will denote ∇̄ the covariant deriva-
tive defined by the background metric ḡ, � = ∇̄2 the
d’Alembertian and −∇̄2 its Euclidean analog, known as
Bochner Laplacian. In GR, the expansion of the action gen-
erates non-minimal terms that can be eliminated by choos-
ing the de Donder gauge. The rest can be written in terms
of Laplacians. Similarly, the second variation of the HDG
action contains non-Laplacian terms such as ∇̄μ∇̄ν∇̄ρ∇̄σ ,

�∇̄μ∇̄ν ḡρσ + ḡμν∇̄ρ∇̄σ � and ḡνσ ∇̄μ�∇̄ρ + ḡμρ∇̄ν�∇̄σ ,
acting on hρσ . The heat kernel expansion for such opera-
tors is not known, so we will use the York decomposition
to rewrite the Hessian as minimal operators acting on fields
with definite spin. For this purpose, it is essential to rewrite
all occurrences of � in terms of the Lichnerowicz Laplacians
acting on spin-0, spin-1 and spin-2 fields, which are defined
(in Euclidean signature) as follows:

�L0φ = −∇̄2φ,

�L1Aμ = −∇̄2Aμ + R̄μ
ρ Aρ,

�L2hμν = −∇̄2hμν + R̄μ
ρhρν + R̄ν

ρhμρ − R̄μρνσ h
ρσ

− R̄μρνσ h
σρ. (2.16)

These operators have the following useful properties:

�L1∇̄μφ = ∇̄μ�L0φ, (2.17)

∇̄μ�L1ξ
μ = �L0∇̄μξμ, (2.18)

�L2 (∇̄μ∇̄νφ) = ∇̄μ∇̄ν�L0φ, (2.19)

�L2 (∇̄μξν + ∇̄νξμ) = ∇̄μ�L1ξν + ∇̄ν�L1ξμ, (2.20)

�L2 ḡμνφ = ḡμν�L0φ. (2.21)

The York decomposition leads to significant simplifica-
tions when the background metric is an Einstein space, i.e.
satisfies the condition (2.8). (As discussed in Sect. 2.1, this is
not enough to put the background on-shell.) In the following
we will always assume that the background is Einstein, but
not that it satisfies (2.10).

Now consider the second variations of the curvature
squared terms in the action, as given in eqs. (B.6) and (B.7) in
[24]. The terms containing the Riemann tensor can be com-
bined with certain terms containing � to give Lichnerowicz
Laplacians. Further using (2.8), one arrives at

αδgμν

[
∇̄μ∇̄ν∇̄α∇̄β − 2ḡμν�∇̄α∇̄β + ḡμν ḡαβ�2

− ḡνβ R̄∇̄μ∇̄α + d − 2

2
R̄ḡμν∇̄α∇̄β + 4 − d

2d
ḡμν ḡαβ R̄�

− 1

2
ḡμα ḡνβ R̄�L2 +

(
1

d2 − 1

d
+ 1

8

)
R̄2 ḡμν ḡαβ

+
(

2

d
− 1

4

)
R̄2 ḡμα ḡνβ

]
δgαβ

(2.22)

and

βδgμν

[
1

2
∇̄μ∇̄ν∇̄α∇̄β − 1

2
ḡμν�∇̄α∇̄β − 1

2
ḡνβ∇̄μ�∇̄α

+1

4
ḡμν ḡαβ�2 + 1

4
ḡμα ḡνβ�L2

(
�L2 − 6

d
R̄

)

− 3

2d
R̄ḡνβ∇̄μ∇̄α
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+ 1

d
R̄ḡμν∇̄α∇̄β − 1

4d
R̄ḡμν ḡαβ�

+12 − d

4d2 R̄2 ḡμα ḡνβ + d − 8

8d2 R̄2 ḡμν ḡαβ

]
δgαβ. (2.23)

All tensor structures are provided by the background met-
ric. We note that this procedure of eliminating the Riemann
tensor does not work in the case of the second variation of
the Riemann squared term, which is the reason why we do
not consider such a term.

2.4 York decomposition

The York decomposition is defined by

hμν = hTTμν + ∇̄μξν + ∇̄νξμ + ∇̄μ∇̄νσ − 1

d
ḡμν∇̄2σ

+ 1

d
ḡμνh, (2.24)

where hTTμν is transverse and tracefree, and ξ̂μ is transverse.
We will use

ξ̂μ =
√

−∇̄2 − R̄

d
ξμ; σ̂ =

√
−∇̄2

√
−∇̄2 − R̄

d − 1
σ.

(2.25)

Employing (2.24) and (2.25) and assuming that the back-
ground is an Einstein space, one finds

∫
dd x

√
ḡhμνh

μν

=
∫

dd x
√
ḡ

[
hTTμν h

TTμν +2ξ̂μξ̂μ+ d − 1

d
σ̂ 2+ 1

d
h2

]
.

(2.26)

Using the properties (2.17)–(2.21), we have

∫
dd x

√
ḡhμν�L2h

μν

=
∫

dd x
√
ḡ

[
hTTμν �L2h

TTμν + 2ξ̂μ�L1ξ̂
μ

+d − 1

d
σ̂�L0σ̂ + 1

d
h�L0h

]
, (2.27)

∫
dd x

√
ḡhμν(�L2)

2hμν

=
∫

dd x
√
ḡ

[
hTTμν (�L2)

2hTTμν + 2ξ̂μ(�L1)
2ξ̂ μ

+d − 1

d
σ̂ (�L0)

2σ̂ + 1

d
h (�L0)

2 h

]
, (2.28)

and so on.

Furthermore using

∇̄αh
α

ν =
(

∇̄2 + R̄

d

)
ξν + d − 1

d
∇̄ν

(
∇̄2 + R̄

d − 1

)
σ

+ 1

d
∇̄νh (2.29)

and

∇̄α∇̄βh
αβ = d − 1

d
∇̄2

(
∇̄2 + R̄

d − 1

)
σ + 1

d
∇̄2h, (2.30)

we find that∫
dd x

√
ḡhμν∇̄μ∇̄ν∇̄α∇̄βh

αβ

=
∫

dd x
√
ḡ

[ (
d − 1

d

)2

σ�2
(

� + R̄

d − 1

)
σ

+ 2
d − 1

d2 h�2
(

� + R̄

d − 1

)
σ + 1

d2 h�2h

]
, (2.31)

∫
dd x

√
ḡhμν∇̄μ∇̄αh

α
ν =

∫
dd x

√
ḡ

×
[

− ξμ

(
�+ R̄

d

)2

ξμ+
(
d − 1

d

)2

σ�
(

�+ R̄

d−1

)2

σ

+ 2
d − 1

d2 h�
(

�+ R̄

d−1

)
σ + 1

d2 h�h

]
, (2.32)

∫
dd x

√
ḡhμν∇̄μ�∇̄αh

α
ν

=
∫

dd x
√
ḡ

[
− ξμ�

(
� + R̄

d

)2

ξμ

+
(
d − 1

d

)2

σ�
(

� + R̄

d

)(
� + R̄

d − 1

)2

σ

+ 2
d − 1

d2 h�
(

� + R̄

d

)(
� + R̄

d − 1

)
σ

+ 1

d2 h�
(

� + R̄

d

)
h

]
. (2.33)

2.5 The decomposed Hessian

The expansion of the Euclidean action in powers of h has the
following quadratic part:

S(2) =
∫

dd x
√
ḡ[hTTμν HTT hTTμν + ξ̂μH

ξξ ξ̂μ + σ̂Hσσ σ̂

+σ̂Hσhh + hHhσ σ̂ + hHhhh], (2.34)

with

HTT = 1

4
ZN

(
�L2 − 2R̄

d
+ d − 2

d
(1 − 2ω)(1 + dm)Ē

)

+ β

4

(
(�L2)

2 − 6

d
R̄�L2

123
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+ 8 − (d − 4)(1 − 2ω)(1 + dm)

d2 R̄2
)

− α

2
R̄

(
�L2 − 4 − (d−4)(1−2ω)(1+dm)

2d
R̄

)
,

(2.35)

H ξξ = (1 − 2ω)(1 + dm)

2d

×
[
(d − 2)ZN Ē − d − 4

d
(dα + β)R̄2

]
, (2.36)

Hσσ = d − 1

d

{
− d − 2

4d
ZN (�L0 − (1 − 2ω)(1 + dm)Ē)

+ d − 1

d
α

[
(�L0)

2 + d − 4

2(d − 1)

×R̄

(
�L0 − (1 − 2ω)(1 + dm)

2
R̄

)]

+ β

4

[
(�L0)

2 + 2(d − 4)

d2

×R̄

(
�L0 − (1 − 2ω)(1 + dm)

2
R̄

)] }
, (2.37)

Hσh = Hhσ = d − 1

2d
(1 + dm)

√
�L0

×
√

�L0 − R̄

d − 1

[
− ZN

d − 2

2d

+α
2(d − 1)

d

(
�L0 + d − 4

2(d − 1)
R̄

)

+ β

2

(
�L0 + 2(d − 4)

d2 R̄

) ]
, (2.38)

Hhh = d − 1

d
(1 + dm)2

×
{

−ZN
d−2

4d

(
�L0− R̄

d−1
+ d−2+d2m+4ω

2(d−1)(1+dm)
Ē

)

+α
d − 1

d

(
(�L0)

2 + d − 6

2(d − 1)
R̄�L0

+ (d − 4)(d − 6 − 4dm + d2m + 4ω)

8(d − 1)2(1 + dm)
R̄2

)

+ β

4

(
(�L0)

2 + d2 − 10d + 8

d2(d − 1)
R̄�L0

+ (d − 4)(d − 6 − 4dm + d2m + 4ω)

2(d − 1)d2(1 + dm)
R̄2

) }
,

(2.39)

where Ē = R̄ − 2d�
d−2 .

If we define the scalar gauge-invariant degree of freedom

s =
√

�L0√
�L0 − R̄

d−1

σ̂ + (1 + dm)h, (2.40)

the scalar sector of the Hessian can be rewritten as

∫
dd x

√
ḡ[sHss

s s + sHsh
s h + hHhs

s s + hHhh
s h], (2.41)

where

Hss
s = d − 1

4d3

�L0 − R̄
d−1

�L0

{
− d(d − 2)ZN

×
[
�L0 − (1 + dm)(1 − 2ω)

(
R̄ − 2d�

d − 2

)]

+ 4d(d − 1)α

[
(�L0)

2 + d − 4

2(d − 1)
�L0 R̄

− d − 4

4(d − 1)
(1 + dm)(1 − 2ω)R̄2

]

+ d2β

[
(�L0)

2 + 2
d − 4

d2 �L0 R̄

− d − 4

d2 (1 + dm)(1 − 2ω)R̄2
] }

, (2.42)

Hsh
s = Hhs

s = −d − 1

2d2

�L0 − R̄
d−1

�L0
(1+dm)2(1 − 2ω)P̄,

(2.43)

Hhh
s = − 1

4d2

(1 + dm)

�L0
[d(2d(d − 1)m2(2ω − 1)

+ dm(8ω − 3) − 4m(2ω − 1) + 4ω − 1)�L0

+ 2(1 + dm)2(1 − 2ω)R̄]P̄. (2.44)

This form of the Hessian has the virtue that all the terms
that contain h are proportional to the equation of motion.
This shows that the field h can be completely disregarded on
shell, as one would expect of a gauge-variant variable. This,
however, depends on the choice of basis in the space of fields
and is only true when the other scalar degree of freedom is
gauge-invariant.

On the other hand, this form of the Hessian has the
unpleasant feature that the kinetic operator of the field s is
non-local. One cannot generally absorb the non-local pref-
actor in a redefinition of s, because one is not allowed to
perform non-local redefinitions of physical fields.

One notices, however, that the terms with the lowest power
of �L0 in each of the three lines in Hss

s is proportional to
(1+dm)(1−2ω). Therefore, if either ω = 1/2 (exponential
parametrization) or m = −1/d (the “unimodular” measure),
each of the square brackets in (2.42) is proportional to �L0

and the Hessian of s becomes local.
We further observe that for ω = 1/2 also the mixed

term vanishes and the term Hhh
s becomes local, whereas for
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m = −1/d all terms containing h vanish, as expected in the
unimodular theory.

Furthermore, Hss
s becomes local and independent of m

and ω for pure four-derivative gravity (ZN = 0) when d = 4.
In this case the whole Hessian becomes just

1

4
βhTTμν

(
�L2 − R̄

2

)(
�L2 −

(
1 + 2α

β

)
R̄

)
hTTμν

+ 3

16
(3α + β)s�L0

(
�L0 − R̄

3

)
s. (2.45)

Finally we observe that in the conformal case d = 4, β =
−3α (which corresponds to having only the term W in the
action) the ss term in the Hessian vanishes too, leaving only
the pure spin-2 degree of freedom, with Hessian

1

4
βhTTμν

(
�L2 − R̄

2

) (
�L2 − R̄

3

)
hTTμν. (2.46)

2.6 Two-derivative gauge-fixing terms

We now turn to the discussion of the gauge-fixing and
Faddeev–Popov (FP) ghost terms. In most of the following,
we use the same two-derivative gauge-fixing term as in I [1].
The gauge-fixing function is defined as

Fμ = ∇̄αh
α

μ − b̄ + 1

d
∇̄μh, (2.47)

with a gauge-fixing parameter −∞ < b̄ < ∞. Here hμν

is the tensorial quantum field defined above and the bars on
the covariant derivatives mean that they are calculated from
the background metric ḡμν . The simplest way to derive the
gauge-fixing and FP ghost terms is to use the BRST transfor-
mations, which are obtained by replacing the gauge param-
eters with the FP ghosts. In the present case, we have

δBgμν = −δλ[gρν∇μC
ρ + gρμ∇νC

ρ], (2.48)

whereCμ is the FP ghost, and δλ is an anticommuting param-
eter. The BRST transformation for other fields is derived by
the requirement of the nilpotency of the transformation:

δBC
μ = δλCρ∂ρC

μ, δBC̄μ = iδλBμ, δB Bμ = 0,

(2.49)

where C̄μ is the FP anti-ghost and Bμ is an auxiliary field
which enforces the gauge-fixing condition.

In order to derive the gauge-fixing and FP terms, we have
to know the transformations on the fluctuation field hμν .
From the first relation in Eq. (2.15), we have

δBhμν + mḡμνδBh + · · · = −δλ[gρν∇μC
ρ + gρμ∇νC

ρ].
(2.50)

Anticipating that we will compute the effective action for
vanishing expectation value of hμν , we can restrict this to

the linear terms to obtain

δBhμν = −δλ

[
∇̄μCν + ∇̄νCμ − 2m

1 + dm
ḡμν∇̄ρC

ρ

]
.

(2.51)

The gauge-fixing and FP terms are then given as [25,26]

LGF+FP/
√
ḡ = iδB

[
C̄μ

(
Fμ + a

2ZGF
Bμ

)] /
δλ

= − Bμ

(
Fμ + a

2ZGF
Bμ

)

+ i C̄μ

[
∇̄α

(∇̄μCα + ∇̄αCμ

− 2m

1 + dm
ḡμα∇̄ρC

ρ

)

− 1 + b̄

d
∇̄μ

(
2

1 + dm
∇̄ρC

ρ

) ]

= − a

2ZGF
B̃μ B̃

μ + ZGF

2a
FμF

μ

+ i C̄μ�(gh)μ
νC

ν, (2.52)

and we have set b̄ = (1 + dm)b and defined

B̃μ = Bμ + ZGF

a
Fμ,

�(gh)
μν ≡ ḡμν� +

(
1 − 2

b + 1

d

)
∇̄μ∇̄ν + R̄μν. (2.53)

Herea is another dimensionless gauge parameter, and ZGF

is a parameter with dimension d − 2. Since the Bμ field
involves no derivatives, we can simply integrate it out and
then we are left with the gauge-fixing and FP ghost terms.

Using the York decomposition,

Fμ = −
(

�L1 − 2R̄

d

)
ξμ

−∇̄μ

(
d − 1

d

(
�L0 − R̄

d − 1

)
σ + b̄

d
h

)
. (2.54)

Inserting this into the gauge-fixing term in (2.52), inte-
grating by parts, rewriting in terms of Lichnerowicz Lapla-
cians and using the York decomposition, we obtain the gauge-
fixing term

SGF = − ZGF

2a

∫
dd x

√
ḡ

[
ξ̂μ

(
�L1 − 2R̄

d

)
ξ̂ μ

+ (d − 1)2

d2 σ̂

(
�L0 − R̄

d − 1

)
σ̂

+ (d − 1)b̄

d2 σ̂
√

�L0

√
�L0− R̄

d−1
h+ b̄2

d2 h�L0h

]
.

(2.55)

We see that a specific combination of scalar degrees of
freedom appears in the gauge-fixing term. It is sometimes
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convenient to write the scalar sector in terms of the gauge-
invariant variable s defined in Eq. (2.40) and this new degree
of freedom which, in terms of the original fields, is given by

χ = σ + b

(d − 1 − b)�L0 − R̄
s = (d − 1)�L0 − R̄

(d − 1 − b)�L0 − R̄
σ

+ b(1 + dm)

(d − 1 − b)�L0 − R̄
h. (2.56)

A short calculation shows that the Jacobian of the transfor-
mation (σ, h) → (s, χ) is 1.

In terms of the new variable, the gauge-fixing action is

SGF = − ZGF

2a

∫
dd x

√
ḡ

[
ξμ

(
�L1 − 2R̄

d

)2

ξμ

+ (d − 1 − b)2

d2 χ �L0

(
�L0 − R̄

d−1−b

)2

χ

]
.

(2.57)

From (2.56) we see that χ transforms in the same way
as σ . Thus ξ and χ can be viewed as the gauge degrees of
freedom and hTT and s as the physical degrees of freedom.
We will use this parametrization later.

The ghost action (2.52) for this gauge fixing contains a
non-minimal operator [1]. We also decompose the ghost into
transverse and longitudinal parts

Cν = CT
ν + ∇̄νC

L = CT
ν + ∇̄ν

1√
−∇̄2

C ′L , (2.58)

and the same for C̄μ. (This change of variables has unit Jaco-
bian.) The ghost action then splits in two terms

Sgh = i
∫

dd x
√
ḡ

[
C̄Tμ

(
�L1 − 2R̄

d

)
CT

μ

+2
d − 1 − b

d
C̄ ′L

(
�L0 − R̄

d − 1 − b

)
C ′L

]
.

(2.59)

Note for future reference that the gauge-fixing condition and
the ghost action are pathological for b = d − 1.

Let us observe that ZGF appears in the combination
ZGF/a, where a is a dimensionless gauge parameter, while
ZGF is a constant of dimension d − 2. There are then two
natural options regarding the constant ZGF. The first choice
is to treat it as a fixed parameter (later we shall identify it
with a power of the cutoff). This leads to simpler formulas
for many expressions, and we shall use it extensively later. It
is, however, not appropriate for the discussion of perturbative
Einstein gravity. The reason is that in the limit G → 0 the
coefficient ZN of the Hessian diverges. If we keep ZGF and
a constant in the limit, then the gauge-fixing term becomes
negligible relative to the rest of the quadratic action. The

gauge fluctuations remain unsuppressed and one can antici-
pate divergences. This is exactly what happens, as we shall
mention later on. One can compensate the behavior of ZN by
keeping ZGF fixed and letting simultaneously a → 0. Alter-
natively, one can set ZGF = ZN . In this case, in the Gaussian
limit G → 0, the kinetic terms of the gauge-invariant and
gauge degrees of freedom scale in the same way and one
obtains sensible results for all values of a and b.

In the following we shall discuss also different choices for
the gauge fixing. One is the so-called “unimodular physical
gauge”, where one sets ξ̂μ = 0 and h = 0. As shown in [27],
this is equivalent to the above standard gauge in the limit
b → ±∞ and a → 0.

2.7 Four-derivative gauge-fixing terms

In HDG it is customary to use gauge-fixing terms that contain
four derivatives. In order to further check the gauge indepen-
dence of the results, in Sect. 3.2 we consider the gauge fix-
ing in our previous paper [24] but now with arbitrary gauge
parameters.

We can simply repeat the same procedure to derive
the gauge-fixing and FP terms but with additional higher-
derivative operator

Yμν ≡ ḡμν� + c∇̄μ∇̄ν − f ∇̄ν∇̄μ, (2.60)

where c and f are additional gauge parameters:

LGF+FP/
√
ḡ = iδB

[
C̄μY

μν

(
Fν − a

2ZGF
Bν

)] /
δλ

= − a

2ZGF
B̃μY

μν B̃ν + ZGF

2a
FμY

μνFν

+ i C̄μY
μν�(gh)

νρ Cρ, (2.61)

where the gauge-fixing function Fμ is defined in (2.47), and

B̃μ and �
(gh)
μν in (2.53). Here we should notice that the dimen-

sion of the constant ZGF is changed to d − 4.
Note also that the field Bμ was an auxiliary field in

the two-derivative gauge-fixing case (2.52), but here it is
dynamical. With higher-derivative gauge fixing, quite often
only the contribution �

(gh)
μν is incorporated but that from

Yμν in the FP ghost kinetic term is ignored, and then it
is claimed that somehow the contribution from the “third
ghost” − 1

2 log(det(Yμν)) must be added. We see here that
this is automatic in the BRST invariant formulation, because
we have contributions − log(det(Yμν)) from the FP ghost
kinetic term and 1

2 log(det(Yμν)) from the field Bμ, giving
the same result.

Using the York decomposition (2.24), we can calculate
the contributions without fixing gauge parameters and so can
check the gauge dependence directly here. We find that the
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terms (2.61) are cast into

− a

2ZGF

[
BT

μ

(
�L1 − 1 − f

d
R̄

)
BμT

+ BL�L0

{
(1 + c − f )�L0 − 1 − f

d
R̄

}
BL

]

+ ZGF

2a

[
ξμ

(
�L1 − 2

d
R̄

)2(
�L1 − 1 − f

d
R̄

)
ξμ

+
(
d − 1 − b

d

)2

χ�L0

(
�L0 − R̄

d − 1 − b

)2

×
{
(1 + c − f )�L0 − 1 − f

d
R̄

}
χ

]

+ i C̄T
μ

(
�L1 − 1 − f

d
R̄

)(
�L1 − 2

d
R̄

)
CμT

+ 2i
d − 1 − b

d
C̄ L�L0

(
�L0 − R̄

d − 1 − b

)

×
{
(1 + c − f )�L0 − 1 − f

d
R̄

}
CL , (2.62)

where we have defined transverse and longitudinal parts of
the B̃μ and FP ghosts C̄μ and Cμ, as usual.

In Sect. 3.1 we will discuss the gauge independence of the
theory in the general quadratic gauge. In Sect. 4.5 we will
restrict ourselves to the class of gauges where c = f = 1 but
with generic a, b. This is equivalent to inserting a Lichnerow-
icz Laplacian �L1 in the quadratic gauge-fixing term (2.52),
or in other words to set Yμν = ḡμν�L1. After performing
the York decomposition, this yields additional factors �L1

and �L0 in the quadratic actions of ξμ and χ , Eq. (2.57).
The resulting additional determinants are offset by the deter-
minant of the operator coming from the Bμ sector, as will
become clear in the following.

3 Universality on-shell in d = 4

In this section we consider the theory in d = 4 on an Einstein
background. As noted in Sect. 2.1, if we put ZN = 0, the
equation of motion of HDG is automatically satisfied for
d = 4, so one would expect the effective action to be gauge-
and parametrization-independent. We will check that this is
indeed the case at the formal level of determinants. In the
following section we will have a more explicit check of this
property in the expressions for the divergences.

3.1 General two-derivative gauge fixing

The Hessian of pure higher-derivative gravity in d = 4
has the simple form (2.45), independent of the choice of
parametrization. It is expressed entirely in terms of the gauge-
invariant variables hTT and s. These fields do not appear in

the gauge-fixing action, so their contribution to the one-loop
effective action is given by

Det

(
�L2 − R̄

2

)−1/2

Det

(
�L2 −

(
1 + 2α

β

)
R̄

)−1/2

Det�−1/2
L0 Det

(
�L0 − R̄

3

)−1/2

. (3.1)

We choose the gauge as in Sect. 2.6. It is convenient to express
the gauge-fixing term as in (2.57). The fields ξ and χ con-
tribute to the one-loop action the terms (as ordered):

Det

(
�L1 − R̄

2

)−1

Det�−1/2
L0 Det

(
�L0 − R̄

3 − b

)−1

. (3.2)

The ghost action (2.59) gives the determinants

Det

(
�L1 − R̄

2

)
Det

(
�L0 − R̄

3 − b

)
, (3.3)

and finally the Jacobians of the change of variables from hμν

to hTTμν , ξμ, σ and h is

Det

(
�L1 − R̄

2

)1/2

Det�1/2
L0 Det

(
�L0 − R̄

3

)1/2

.

(3.4)

Note that the gauge parameter a only appears in the Hessian
in the prefactors and not in the operators. The only depen-
dence on the gauge parameter b is in two determinants that
cancel. This proves the gauge independence of the one-loop
action. The final result is

√
Det

(
�L1 − R̄

2

)

√
Det

(
�L2 − R̄

2

)√
Det

(
�L2 −

(
1 + 2α

β

)
R̄

)√
Det�L0

.

(3.5)

3.2 General four-derivative gauge fixing

If we use the general four-derivative gauge fixing of Sect. 2.7,
we have again the determinants (3.1) coming from the physi-
cal degrees of freedom and (3.4) coming from the Jacobians.
The determinants coming from the fields ξμ and χ are

Det

(
�L1 − R̄

2

)−1

Det

(
�L1 − 1 − f

4
R̄

)−1/2

(3.6)

×Det

(
�L0 − R̄

3 − b

)−1

×Det

(
�L0 − 1 − f

4(1 + c − f )
R̄

)−1/2

, (3.7)
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the ghosts give

Det

(
�L1 − R̄

2

)
Det

(
�L1 − 1 − f

4
R̄

)

×Det�L0 Det

(
�L0 − R̄

3 − b

)

×Det

(
�L0 − 1 − f

4(1 + c − f )
R̄

)
, (3.8)

and finally we have the contributions of the Bμ field

Det

(
�L1 − 1 − f

4
R̄

)−1/2

Det�−1/2
L0

×Det

(
�L0 − 1 − f

4(1 + c − f )
R̄

)−1/2

. (3.9)

Putting everything together, we see that all the terms depend-
ing on the gauge parameters cancel out and the remaining
ones give again (3.5). Thus we have explicitly shown, at this
formal level, that the results are completely gauge indepen-
dent.

3.3 Physical gauge

In the calculation of Sect. 3.1, and even more in Sect. 3.2,
there is a large number of cancellations between various
determinants. Consider instead the “physical” gauge ξ̂μ = 0,
h = 0, discussed in [27,28]. It leaves only the fields hTT and
σ̂ , and no Jacobians. The Hessians of hTT and σ̂ are given by
(2.35) and (2.37), respectively. There are a real scalar ghost
and a real transverse vector ghost, with ghost operators �L0

and �L1 − R/2. Putting together these terms, one imme-
diately obtains the effective action (3.5). In fact this is the
most direct way of getting it, because there is no cancella-
tion of determinants between unphysical degrees of freedom
and ghosts.

3.4 The conformal case

Now we consider the conformal case where β/α = −3. The
effective action in this case cannot be simply obtained as a
particular case of Eq. (3.5), because the action is invariant
also under Weyl transformations and this requires a separate
gauge fixing.

The Hessian is only nonzero in the spin-2 sector and is
given by (2.46). For the Weyl invariance we can gauge fix
h = 0, without any ghost because h transforms under Weyl
transformations by a shift. For diffeomorphisms we choose
a standard gauge fixing of the form (2.55). Since h = 0,
the value of b is immaterial. Equation (2.56) is replaced by
χ = σ , so the decomposition of the gauge-fixing and ghost
actions, and the corresponding determinants, are the same as
in Sect. 2.6, with b = 0.

We use the fields ξ̂ and σ̂ (see (2.25)) in such a way that
no Jacobian is needed. The one-loop effective action is

√
Det

(
�L1 − R̄

2

)√
Det

(
�L0 − R̄

3

)

√
Det

(
�L2 − R̄

2

)√
Det

(
�L2 − R̄

3

) . (3.10)

The two terms in the denominator come from the TT part.
The terms in the numerator come from the ghosts (power
1) and from the gauge-fixing term (power −1/2). Note that
there is no dependence on the gauge parameter a. It only
appears in the prefactors of the quadratic action, which drop
out.

Alternatively we can choose a different gauge. For Weyl
transformations we still choose h = 0, which leaves no ghost
term. For diffeomorphisms we choose the second type of
physical gauge explained in the end of section III.B of [27],
namely σ̂ = 0 and ξ̂ = 0. This is equivalent to taking the
Landau gauge limit a → 0. The ghosts are a real scalar and a
real transverse vector and the ghost operators are �L0 − R̄/3
and �L1 − R̄/2. The effective action is given again by (3.10).

3.5 The Einstein–Hilbert case

Finally we consider the Einstein–Hilbert theory, where we
put α = β = 0. In this case it is natural to use the two-
derivative gauge fixing. In order to maintain the expressions
to a manageable size we write them here for the case ω =
m = 0. Then from the decompositions in Sects. 2.5 and 2.6
we find that the gauge-invariant variable hTT gives

Det

(
�L2 − R̄

2
+ 1

2
Ē

)−1/2

; (3.11)

the spin-1 field ξμ gives

Det

(
�L1 + a − 1

2
R̄ − 2a�

)−1/2

; (3.12)

the scalars σ and h give

Det

(
�2

L0 + (4�(−2a + b2 − 3) + R(2a − b2 + 2b − 3))

(b − 3)2 �L0

+4�(4a� − aR + R)

(b − 3)2

)
, (3.13)

and finally the ghosts give

Det

(
�L1 − R̄

2

)
Det

(
�L0 − R̄

3 − b

)
. (3.14)

Putting all together, and making the replacements a → 1/γ

and b → β, we find that it agrees with Eq. (4.4) of [29]. If
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we go on shell by putting R̄ = 4� the scalar contribution
cancels the scalar ghost determinant, leaving just
√

Det
(
�L1 − R̄

2

)

√
Det

(
�L2 − R̄

2

) , (3.15)

which is gauge independent and agrees with the classic result
of [30]. A slightly more complicated calculation shows that
also the dependence on the parameters ω andm automatically
goes away on shell.

4 The divergences

4.1 Derivation

The one-loop effective action contains a divergent part

�k =
∫

dd x
√
ḡ

[
A1

16πd
kd + B1

16π(d − 2)
kd−2 R̄

+βα

kd−4

d − 4
R̄2 + ββ

kd−4

d − 4
R̄μν R̄

μν

+βγ

kd−4

d − 4
R̄μνρσ R̄

μνρσ

]
, (4.1)

where k stands for a cutoff. In d = 4, the power divergences
kd−4/(d − 4) of the last three terms are replaced by terms
log(k/μ), where we introduced a reference mass scale μ.
In general one would have separate Riemann squared, Ricci
squared and R2 terms, but on an Einstein space (2.8) the
latter two merge into a single term proportional to R̄2. Then
we will denote

C1 = βα + 1

d
ββ, (4.2)

the coefficient of the R̄2 divergence and D1 = βγ the
coefficient of the R̄μνρσ R̄μνρσ divergence. We note that
in I we used a maximally symmetric background, where
R̄μνρσ R̄μνρσ = 2

d(d−1)
R̄2 Thus, the coefficient C1 of I cor-

responds to the combination C1 + 2
d(d−1)

D1.
We describe here the algorithm that we use to derive

the coefficients. Instead of �k we shall evaluate the deriva-
tive [31,32]:

�̇k =
∫

dd x
√
ḡ

[
A1

16π
kd + B1

16π
kd−2 R̄

+ (βα R̄
2+ββ R̄μν R̄

μν+βγ R̄μνρσ R̄
μνρσ )kd−4+ . . .

]
,

(4.3)

where the overdot stands for k d
dk . The advantage of this pro-

cedure is that this quantity is convergent. Independently of
the renormalizability properties of the theory, it defines a

flow on the space of all couplings that are permitted by the
symmetries of the system. The divergences of (4.1) in the
limit k → ∞ are then found by integrating the differential
equation (4.3) from some initial scale k0 up to k. The coef-
ficients A1, B1, βα , ββ and βγ enter in the beta functions of
the couplings �, G, α, β, γ , but we postpone a discussion of
this point to Sect. 7.

The technique employed to evaluate the right hand side
of (4.3) is similar to the one described in I, but this time the
cutoff is taken to be a function of the Lichnerowicz Lapla-
cians instead of the Bochner Laplacian −∇̄2, as in I. In each
spin sector, the Lichnerowicz operator �L is replaced by the
regularized one Pk(�L) = �L + Rk(�L), where we use the
optimized cutoff Rk(�L) = (k2 −�L)θ(k2 −�L). Then �̇k

is given by

�̇k = 1

2
Tr

(
�̇

(2)
k

�
(2)
k

)
+ 1

2
Tr

(
�̇

(1)
k

�
(1)
k

)
+ 1

2
Tr

(
�̇

(0)
k

�
(0)
k

)

− Tr

(
�̇

(1)
gh,k

�
(1)
gh,k

)
− Tr

(
�̇

(0)
gh,k

�
(0)
gh,k

)
, (4.4)

where �k are the kinetic operators that appear in each spin
sector and the numerator is �̇k = Ṙk(�L) = 2k2θ(k2−�L).
The step function cuts off the trace to eigenvalues of �L that
are smaller than k2. For example in the spin-2 sector

1

2
Tr

(
�̇

(2)
k

�
(2)
k

)
= 1

2

1

(4π)d/2

×[W (�
(2)
L , 0)(Qd/2b0(�

(2)
L ) + Qd/2−1b2(�

(2)
L )

+ Qd/2−2b4(�
(2)
L )) + W ′(�(2)

L , 0)R̄(Qd/2b0(�
(2)
L )

+Qd/2−1b2(�
(2)
L )) + 1

2
W ′′

×(�
(2)
L , 0)R̄2(Qd/2b0(�

(2)
L )) + . . .], (4.5)

where W (�
(2)
L , R̄) = �̇

(2)
Lk

�
(2)
Lk

and primes denote derivatives

with respect to R̄. The coefficients Qn and the heat kernel
coefficients bn are listed in Appendix A.

Similar formulas hold for the spin-1 and spin-0 sectors
and for the ghosts. In the scalar term, �

(0)
k is a two-by-two

matrix, and the fraction has to be understood as the product
of �̇

(0)
k with the inverse of �

(0)
k . The functional trace thus

involves also a trace over this two-by-two matrix. With these
data one can write the expansion of (4.4) in powers of R̄, and
comparing with (4.3) one can read off the coefficients A1, B1

and C1.

4.2 Results

From now on we will deal with dimensionless variables

α̃ = k4−dα, β̃ = k4−dβ, �̃ = k−2�,
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G̃ = kd−2G, (Z̃N = k2−d ZN ), (4.6)

and

˜ZGF =
{
k2−d ZGF for two-derivative gauge fixing (2.52),
k4−d ZGF for four-derivative gauge fixing (2.61).

(4.7)

In I, the couplings α̃ and β̃ were absent, and G̃ only appeared
in the Hessian through the overall prefactor ZN . Since this
prefactor canceled between numerator and denominator in
(4.4), the divergences were independent of G̃. This does no
longer happen in the present theory, so the coefficients A1, B1

andC1 depend in general on the dimension d, on the measure
parametersm and ω, on the gauge parameters a and b, and on
the couplings �̃, G̃, α̃ and β̃. The general expressions for the
coefficients of the divergences are extremely complicated and
not instructive. We will therefore only write them in certain
limits where they simplify enough.

Compared to I, we have to take into account the addi-
tional dependence on the couplings G̃, α̃ and β̃. We will
consider two limiting situations. One is the limit α̃ → 0 and
β̃ → 0. In this case the beta functions should reduce to those
of Einstein–Hilbert gravity and match with those of I (modulo
scheme dependences, due to the different form of the cutoff in
this paper). Still, the present results are more general because
we consider a generic Einstein background, which allows us
to distinguish at least two of the higher-derivative couplings,
whereas in I a maximally symmetric background was used,
allowing us to calculate the coefficient of a single combina-
tion of the higher-derivative couplings. We will refer to this
as the “Einstein–Hilbert limit” (EH limit).2

The other limit consists in taking Z̃N → 0, which is equiv-
alent to G̃ → ∞. In this case one is left with functions of
the higher-derivative couplings only. We will refer to this as
the “four-derivative gravity limit” (4DG-limit).

There is still the freedom of choosing between the two-
derivative and four-derivative gauges. In Sects. 4.3 and 4.4
we will consider the 4DG- and the EH-limits of the the-
ory, using the two-parameter family of two-derivative gauges
introduced in Sect. 2.6. In Sect. 4.5 we will discuss the
changes that occur when using the two-parameter family of
four-derivative gauges introduced in Sect. 2.7. It will turn
out that in order to take the EH- and 4DG-limits, different
choices have to be made regarding the overall gauge-fixing
coefficient ZGF. These are spelled out in detail in the follow-
ing sections.

2 The same results can be obtained, at least in some cases, by taking
the limit Z̃N → ∞, which is the same as considering the perturbative
regime G̃ → 0.

4.3 The 4DG-limit (Z̃N → 0)

For this calculation we set ˜ZGF = 1. The coefficients A1, B1

and D1 turn out to be universal (i.e. independent of the gauge
and parametrization) in any dimension:

A1 = 8(d − 2)

(4π)d/2−1�(d/2)
,

B1 = 2

(4π)d/2−13d2β̃(4(d − 1)α̃ + dβ̃)�(d/2)

×
[
48d(d3 − 2d2 − d + 2)α̃2

+ 4(d5 − 12d4 + 41d3 − 102d2 + 36d + 48)α̃β̃

+ (d5 − 14d4 + 30d3 − 60d2 − 72d + 96)β̃2
]
,

D1 = −1050 + 589d − 34d2 + d3

(4π)d/2360�(d/2)
. (4.8)

The coefficient C1 has a complicated dependence on m, ω,
a, b, α̃ and β̃, which we do not report here. A special case
will be given below in (4.20). However, in d = 4 all four
coefficients, including C1, are universal:

A1 = 4

π
,

B1 = 15α̃ − 14β̃

3πβ̃
,

C1 = 1200α̃2 + 200α̃β̃ − 183β̃2

1920π2β̃2
,

D1 = 413

2880π2 . (4.9)

This is an explicit consequence of the statement, made
in Sect. 3.1, that the one-loop effective action of higher-
derivative gravity is independent of the parametrization and
gauge choice in d = 4.

The expressions for C1 and D1 given above are in agree-
ment with the standard results for the beta functions in HDG
[9,10,33] (also derived by means of (4.4) in [24,34–36]):

βα̃ = 1

(4π)2

90α̃2 − 23β̃2 − 338γ̃ 2 + 15α̃β̃ − 120α̃γ̃ − 199β̃γ̃

9(β̃ + 4γ̃ )2
,

ββ̃ = 1

(4π)2

371

90
,

βγ̃ = 1

(4π)2

413

180
. (4.10)

Let us consider what happens if we choose ˜ZGF = Z̃N ,
as is usually done in Einstein–Hilbert theory. In the 4DG-
limit, the coefficients A1 and D1 are still given by the formu-
las given above, but B1 and C1 are different, and gauge-
dependent. However, for the exponential parametrization
(ω = 1

2 ) in d = 4, one gets the m-independent result
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B1 = 15α̃(b − 3)2 + β̃(3a − 14(b − 3)2)

3π(b − 3)2β̃
,

C1 = β̃2(240a2 + 40a(b2 − 18b + 45) − 183(b − 3)4) + 1200α̃2(b − 3)4 + 200α̃β̃(b − 3)4

1920π2(b − 3)4β̃2
. (4.11)

We note that in the limit a → 0 these reproduce the univer-
sal formulas given above. This observation agrees with the
discussion in the end of Sect. 2.6. In the 4DG-limit, at fixed
k, one sets Z̃N = 0. For fixed a and k, and with the choice

˜ZGF = Z̃N , this implies that the gauge-fixing term vanishes
too. The situation can be fixed by letting a → 0, with the
ratio ˜ZGF/a fixed and finite. In conclusion, the gauge depen-
dence that occurs in (4.11) for a �= 0 is an artifact of a bad
gauge-fixing procedure. The correct result is given by (4.9).

This problem does not arise in the standard calculation of
the beta functions of HDG in d = 4, because there the gauge
fixing is of the type considered in Sect. 3.2. When the gauge-
fixing term contains four derivatives, its overall coefficient is
dimensionless in d = 4 and there is never the temptation to
introduce a factor Z̃N .

4.4 The EH limit

Let us now consider the EH limit α̃, β̃ → 0. In this case it is
not appropriate to set ˜ZGF = 1, as we did in the preceding
subsection, because of the issue in the gauge fixing discussed
in the end of Sect. 2.6. Indeed if we insisted on this choice
we would find that for �̃ = 0 only A1 and D1 are universal:

A1 = 4(d − 3)

(4π)d/2−1�(d/2)
,

D1 = d3 − 35d2 + 606d − 1080

(4π)d/2720�(d/2)
, (4.12)

whereas B1 and C1 would contain G̃ and diverge for G̃ → 0.
For this reason we switch now to the choice ˜ZGF = Z̃N ,
which is more appropriate to discuss this limit.

We find that A1 and D1 are still given by (4.12). In d = 4
we have

A1 = 1

π
,

B1 = 1

12π(b − 3)2(4m + 1)

×
[

3a
( − 18b(4m + 1)2(2ω − 1)

+3(2ω − 1)(4bm + b)2

+ 8m(66(2m + 1)ω − 66m − 31) + 70ω − 31
)

+ b2(4m + 1)(72mω − 36m + 18ω − 47)

− 6b(4m + 1)(30(4m + 1)ω − 60m − 53)

+ 9(48m(10mω − 5m + 5ω − 6) + 26ω − 55)

]
,

D1 = 53

720π2 . (4.13)

We note that G̃ does not appear in these expressions, so that
they have a smooth limit G̃ → 0. The expression for C1 is
still too long to be written but is likewise independent of G̃.
We give it only for two cases: in the linear parametrization
m = ω = 0 we have

C1 = 1

1920π2(b − 3)4

×
[
15a2(3b4 − 36b3 + 162b2 − 324b + 259) (4.14)

− 20a(3b4 − 36b3 + 176b2 − 360b + 297)

+ 24(7b4 − 59b3 + 223b2 − 381b + 252)
]
.

and in the exponential parametrization ω = 1/2, in which
case the result is automatically independent of m, we have

C1 = 240a2 + 40a(b2 − 18b + 9) − 3(29b4 − 348b3 + 1526b2 − 3372b + 2709)

1920π2(b − 3)4 .

(4.15)

One can plot these functions for fixed parametrization or
for fixed gauge. One obtains plots that are very similar to
those shown in I. They will not be repeated here.

We report for completeness the expressions B1 and C1

for d = 4 in the “unimodular physical” gauge b → ±∞,
a → 0, for α̃, β̃, G̃ all tending to zero:

B1 = 36m(2ω − 1) + 18ω − 47

12π
,

C1 = 180m2(1 − 2ω)2 + 10m(36ω2 − 44ω + 13) + 45ω2 − 65ω + 14

160π2 .

(4.16)

4.5 Results with the four-derivative gauge fixing

In the preceding sections we used the two-derivative gauge-
fixing terms introduced in Sect. 2.6. We now discuss briefly
the results when the four-derivative gauge-fixing terms of
Sect. 2.7 are used instead.

The formal discussion of Sect. 3 indicates that in the 4DG-
limit in four dimensions, the divergences should be universal.
Explicit calculation confirms that in this case the coefficients
A1, B1,C1, D1 are indeed given again by (4.9). Furthermore,
the coefficients A1, B1 and D1 are universal in any dimension
and agree with those given in (4.8).

In the EH limit the coefficients A1, and D1 in d = 4 are
again as in (4.13), but the others are slightly different. For B1
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one has in general

B1 = 1

12π(b − 3)2(4m + 1)

×
[

6a
( − 18b(4m + 1)2(2ω − 1)

+3(2ω − 1)(4bm + b)2

+ 8m(66(2m + 1)ω − 66m − 31) + 70ω − 31
)

+ b2(4m + 1)(72mω − 36m + 18ω − 47)

− 6b(4m + 1)(30(4m + 1)ω − 60m − 53)

+ 9(48m(10mω − 5m + 5ω − 6) + 26ω − 55)

]
.

(4.17)

Similarly the coefficientC1 in the linear parametrizationm =
ω = 0 is

C1 = 1

1920π2(b − 3)4

×
[

30a2t (3b4 − 36b3 + 162b2 − 324b + 259) (4.18)

− 5a(15b4 − 180b3 + 898b2 − 1860b + 1575)

+ 24(7b4 − 59b3 + 223b2 − 381b + 252)

]
,

and in the exponential parametrization ω = 1/2:

C1 = 480a2 + 80a(b2 − 15b + 9) − 3(29b4 − 348b3 + 1526b2 − 3372b + 2709)

1920π2(b − 3)4 .

(4.19)

The result in the unimodular physical gauge b → ±∞, a →
0 agrees with (4.16).

4.6 Exponential parametrization and unimodular gauge

It was found in I that, choosing the exponential parametriza-
tion ω = 1/2 and the unimodular gauge b → ±∞, all
dependence on the other two parameters m and a, as well as
the dependence on the cosmological constant �̃, drops out.

This result holds true also in the present context, in any
dimension and independently of whether the gauge fixing
contains two or four derivatives and independently of the
treatment of the constant ˜ZGF. The resulting coefficients are
still too cumbersome to write, so we give them again only in
two limits.

In the 4DG-limit the coefficients A1, B1 and D1 are given
by (4.8) and

C1 = 1

720(4π)d/2d3β̃2(4(d − 1)α̃ + dβ̃)2�(d/2)

×
[

46080α̃4(d − 1)2d2
(
d2 − d − 2

)

+ 1920α̃3β̃d(d6 − 3d5 + 85d4 − 285d3

+ 106d2 + 288d − 192)

+ 16α̃2β̃2(5d8 − 92d7 + 917d6 − 1886d5 + 7964d4

−49268d3 + 42360d2 + 25920d − 23040)

+ 8α̃β̃3d(5d7 − 132d6 + 1235d5 − 4716d4

+ 10988d3 − 28800d2 − 14880d + 46080)

+ β̃4(5d8 − 142d7 + 1288d6 − 4628d5 + 7560d4

− 19200d3 − 17280d2 − 46080d + 92160)

]
. (4.20)

In the EH limit we have

A1 = 4(d − 3)

(4π)d/2−1�(d/2)
,

B1 = (d3 − 15d2 + 24d − 72)

3d(4π)d/2−1�(d/2)
,

C1 = 5d5 − 147d4 + 1240d3 − 3612d2 + 2880d − 17280

1440d2(4π)d/2�(d/2)

D1 = d3 − 35d2 + 606d − 1080

720(4π)d/2�(d/2)
. (4.21)

We note that the formulas for B1 and C1 + 2
d(d−1)

D1 do not
agree with Eq. (5.7) in I. This is due to the different choice
of cutoff (a function of the Bochner Laplacian in I and of
the Lichnerowicz Laplacians here). Specializing to d = 4,
the formula for C1 + 2

d(d−1)
D1 agrees with (5.6) in I but B1

does not. This is a signal of the lack of universality of this
coefficient.

5 Conformal gravity in d = 4

Independently of the choice of gauge and parametrization,
the effective action for conformal gravity is given formally
by (3.10). This leads to the following flow for the effective
action

�̇k = 1

2
Tr

(
�̇

(2)
k

�
(2)
k

)
− 1

2
Tr

(
�̇

(1)
gh,k

�
(1)
gh,k

)
− 1

2
Tr

(
�̇

(0)
gh,k

�
(0)
gh,k

)
,

(5.1)

where

�
(2)
k =

(
Pk(�L2) − 1

2
R̄

) (
Pk(�L2) − 1

3
R̄

)
,

�
(1)
k = Pk(�L1) − 1

2
R̄,

�
(0)
k = Pk(�L0) − 1

3
R̄. (5.2)

Proceeding as before we find

A1 = 3

(4π)2 , (5.3)

B1 = 41

6(4π)2 , (5.4)
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C1 = − 199

180(4π)2 , (5.5)

D1 = 137

60(4π)2 . (5.6)

We observe that the logarithmic divergences are given by

1

(4π)2

[
b4

(
�L2 − 1

2
R̄

)
+ b4

(
�L2 − 1

3
R̄

)

− b4

(
�L1 − 1

2
R̄

)
− b4

(
�L2 − 1

2
R̄

)]
. (5.7)

The coefficients C1 and D1 agree with previous calculations
reported in [37,38].

6 Duality

One of the main results of I was the existence of a discrete
idempotent transformation leaving the functional measure,
and the divergences, invariant. That invariance extends also
to HDG, at least on an Einstein background. In any dimension
and in any gauge we find that the divergences A1, B1, C1 and
D1 have the duality symmetry:

A1(ω,m) = A1

(
1 − ω,−m − 2

d

)
,

B1(ω,m) = B1

(
1 − ω,−m − 2

d

)
,

C1(ω,m) = B1

(
1 − ω,−m − 2

d

)
,

D1(ω,m) = C1

(
1 − ω,−m − 2

d

)
. (6.1)

This duality is only manifest if the coefficient b enters
in the gauge fixing (2.47) through the combination b̄ =
b(1 + dm). With other definitions of this coefficient a form
of duality will still be present but it will have a much more
complicated form. The calculations reported here indicate
that this duality is not limited to Einstein gravity. It will be
interesting to understand more generally under what circum-
stances this property holds.

A transformation can be an invariance of a quantum theory
if it leaves invariant the action (and its expansion) and the
functional measure. As discussed in the introduction, in our
one-loop calculations we keep the functional measure fixed
at (1.8) and the origin of the ω- and m-dependence of the
results must lie in the form of the Hessians. One can indeed
check explicitly that the Hessians given in Sects. 2.5 and 2.6
are duality-invariant.

Furthermore, it was observed in I that the functional mea-
sures

�xdγμν(x) = �xdĥμν(x)

where γμν and ĥμν have weight w, and

�xdγ μν(x) = �xdĥ
μν(x)

where γ μν and ĥμν have weight w′, are equivalent. These
weights are related by

w′

2
= w

2
+ 2

d
, which is the same as m′ = −m − 2

d
.

(6.2)

Thus, if we keep the same action, the functional integrals are
equivalent. Again, these measures would give rise to differ-
ent power-law divergence coefficients, but duality would still
hold for each choice of measure.

Conversely, we could understand the invariance of the
Hessian as follows. We have the functional integral
∫

[�xdγμν(x)]e−S[gμν ], (6.3)

where γμν is related to the metric by [1]

γμν = gμν(det g)w/2. (6.4)

Solving (6.4) for gμν and substituting it into (6.3), we have
∫

[�xdγμν(x)]e−S[γμν(det γ )m ], (6.5)

with m = − w/2
1+dw/2 . Simply rewriting γμν as gμν , we are

lead to∫
[�xdgμν(x)]e−S[gμν(det g)m ]. (6.6)

This is a functional integral with fixed quantum field, but
the metric in the action is transformed. Viewed this way, the
invariance should appear as an invariance of the action with
the quantum field kept fixed. This is precisely the calculation
we have given. The above discussion by the invariance of the
measure suggests that duality is exact, but our calculation is
done only at one loop. It would be interesting to check if the
latter approach also gives the exact result.

The existence of the duality is, however, more general. If
we used a functional measure that contains the determinant
of a “De Witt” metric in functional space, the measure itself
would be invariant under arbitrary field redefinitions [39]. In
particular, it would be independent of m and of the choices
ω = 0, 1/2, 1. Such a measure would give rise to power-
law divergence coefficients from the ones reported here, but
duality would again appear because it is an invariance of the
Hessian.

7 Concluding remarks

In this paper we have extended the analysis of I [1] from
Einstein–Hilbert gravity to higher-derivative gravity con-
taining the squares of the Ricci scalar and Ricci tensor. In

123



611 Page 16 of 18 Eur. Phys. J. C (2017) 77 :611

four dimensions the analysis is essentially complete, because
the remaining independent invariant is a total derivative. In
higher dimensions this is not so. The analysis was also lim-
ited to Einstein backgrounds, which nearly solve the equa-
tions of motion, but also in this way is more general than
the analysis in I, which was limited to maximally symmetric
backgrounds.

We have obtained formulas for the one-loop divergences
up to quadratic terms in the curvature. These are all the diver-
gences that arise at one loop in d = 4. The method we have
used is a one-loop approximation of the single-field approx-
imation of the exact RG equation for gravity, as first derived
in [31] for the EH-case and then extended to HDG in [24,34–
36], to 3d topologically massive gravity in [40], and beyond
the one-loop approximation in [41–44].

The coefficients are related to the beta functions for the
couplings. Comparing the action (2.1) with our results (4.3),
we find the beta functions for the dimensionless cou-
plings (4.6) as

βG̃ = (d − 2)G̃ + B1G̃
2,

β�̃ = −2�̃ + B1�̃G̃ + A1

2
G̃,

βα̃+ 1
d β̃ = −(d − 4)

(
α̃ + 1

d
β̃

)
+ C1. (7.1)

As already remarked, working on an Einstein space pre-
vents us from disentangling the beta functions of α̃ and β̃.
On the other hand, even though we did not write a term
γ Rμνρσ Rμνρσ in the action, the divergence D1 gives rise
to a beta function

βγ̃ = −(d − 4)γ̃ + D1. (7.2)

The signs of the coefficients imply that α, β, γ are asymptoti-
cally free in d = 4 (for a suitable range of parameters) [6–10]
whereas G̃ goes in the UV to a fixed point G̃ = −(d−2)/B1.
In order for this nontrivial fixed point to make sense, B1 must
be negative. In spite of the non-universality of the beta func-
tions, many calculations indicate that B1 is indeed negative
for the linear split. For example, B1 in (4.13) is negative for
m = ω = 0 and a wide range of a and b. With the expo-
nential parametrization discussed in Sect. 4.6, B1 in the EH
limit given in (4.21) is negative for 3 ≤ d ≤ 13. We refer the
reader to the literature for a more detailed discussion.

The explicit coefficients of the divergences, in arbitrary
dimension, gauge and parametrization, are too complicated
to write, and we have exhibited only some special cases. The
universal values agree with the literature. The divergences
also agree, in d = 4 and in the EH limit, with earlier calcula-
tions in general gauges [29,45–48]. For further discussions
on the use of the exponential parametrization see [27,49–54].

Most of the general features noted in I persist in the theo-
ries considered here, as we have observed. In particular, one

striking feature that we have checked in full generality is
the existence of a “duality” symmetry under the change of
parametrization (1.7), or

ω → 1 − ω; m → −m − 2

d
. (7.3)

As observed in I, this transformation preserves the dimen-
sion of the quantum field and is also an invariance of the
functional measure.3 However, the parametrization depen-
dence of the divergences is not due to the actual choice of the
functional measure. Instead, it comes entirely from the differ-
ent form of the Hessians in different parametrizations. Since
these Hessians only differ by terms that are proportional to
the equations of motion, the parametrization dependence, as
well as the gauge dependence, goes away on shell.

Different choices of the ultralocal functional measure
would alter the results for the power-law divergences coeffi-
cients. We refer to [57] and the references therein for a dis-
cussion of this point and to [58,59] for more general results
using Pauli–Villars regularization.

Whether the duality extends also to other classes of
actions, to other backgrounds and to higher loops are all
questions that we leave for further investigation. Also left
for future work is the calculation of divergences in the uni-
modular case m = −1/d, which contains in particular the
unique self-dual theory ω = 1/2, m = −1/d.
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Appendix A: Qn and heat kernel coefficients for Lich-
nerowicz Laplacians

Here we list the coefficients used in Sect. 4.1. The coefficients
Qn are defined by

Qn = k2n

�(n)

∫ 1

0
yn−1dy = k2n

�(n + 1)
. (A.1)

The heat kernel coefficients for the Lichnerowicz Lapla-
cians acting on spin-0, spin-1 and spin-2 fields on an Einstein
manifold are

b0(�
(0)
L ) = 1,

3 We recall that the pairs of measures proposed in [55,56] are dual in
this sense.
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b2(�
(0)
L ) = 1

6
R,

b4(�
(0)
L ) = 1

180
Rμνρσ R

μνρσ + 5d − 2

360d
R2, (A.2)

b0(�
(1)
L ) = d − 1,

b2(�
(1)
L ) = d − 7

6
R,

b4(�
(1)
L ) = d − 16

180
Rμνρσ R

μνρσ + 5d2 − 67d + 182

360d
R2,

(A.3)

b0(�
(2)
L ) = (d + 1)(d − 2)

2
,

b2(�
(2)
L ) = d2 − 13d − 14

12
R,

b4(�
(2)
L ) = d2 − 31d + 508

360
Rμνρσ R

μνρσ

+5d3 − 127d2 + 592d + 1804

720d
R2. (A.4)

These formulas can be obtained by the methods described
for example in Appendix B of [60]. Here we do not take into
account isolated modes that do not contribute to the fluctu-
ation hμν . Thus these formulas hold in the case when the
manifold has no Killing or conformal Killing vectors, or else
if the manifold is noncompact and has a continuous spectrum,
so that the spurious isolated modes are of measure zero.

In order to get the heat kernel coefficients of shifted Lich-
nerowicz Laplacians � + aR, one can use

b0(� + aR) = b0(�),

b2(� + aR) = b2(�) − aRb0(�),

b4(� + aR) = b4(�) − aRb2(�) + 1

2
a2R2b0(�). (A.5)
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