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1. Introduction

In recent times, investigation of string theory models whose low energy dynamics is de-

scribed by a compactification of ten or eleven dimensional supergravity in presence of brane

fluxes, has revived the interest in the study of gauged supergravities with different number

of supersymmetries, and their possible Higgs and super Higgs phases [1] - [7]. Other exam-

ples of models with broken phases are the Scherk-Schwarz [8, 9] supergravities and the so

called “no-scale” supergravity models [10, 11]. Models of this type naturally appear when

brane fluxes are turned on in orientifold compactifications of type IIB superstring theory,

and their no-scale structure gives rise to the interesting possibility of having a dynamically

generated hierarchy of scales below the Planck scale [5] - [7]. In the present work we show

that all these spontaneously broken models can be viewed as non semisimple gauging of

“flat groups” in extended supergravity, originally considered in the generalized dimensional

reduction of Scherk-Schwarz [8].

We will mainly consider the example of N = 8 gauged supergravity in four dimensions.

The existence of a so(1, 1) grading in the Lie algebra of the duality group E7,7 will turn

out to be essential. This grading comes from the decomposition

e7,7 = e6,6 + so(1, 1) + p , p = 27−2 + 27′+2 , (1.1)

where p carries the mentioned representations of e6,6 + so(1, 1).

Gauged supergravities based on the above decomposition originate models that differ

from previously constructed gaugings [12]–[14] and were overlooked in previous classifica-

tions [15]. They allow a construction of the Scherk-Schwarz models from a purely four

dimensional perspective.

Although in N = 8 supergravity the structure of E7,7 is essential we will show that

in a large class of models the manifold of the scalars has isometries which include so(1, 1)

and translations. The so(1, 1) provides a grading of the isometry algebra as well as of

the symplectic space of electric and magnetic field strengths. For example, all N = 2

supergravities based on special geometry with a cubic prepotential have this property [16,

17]. It is then not surprise that all these models have a five dimensional origin [18].
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The flat group whose gauging corresponds to the Scherk-Schwarz mechanism has the

following structure,

[XΛ, X0] = fΣΛ0XΣ , (1.2)

[XΛ, XΣ] = 0 Λ = 1, . . . 27 , (1.3)

where XΛ is in the 27′+2 in (1.1) and X0 is a generic Cartan generator of usp(8) ⊂ e7,7.

The gauge group is then a semidirect product of two abelian factors. Note that this group

is not a subgroup of any previously considered electric subgroup of E7,7. Flat groups of

this kind exist in all four dimensional extended supergravity models which have a five

dimensional origin, and in particular, in many no-scale supergravity models obtained by

turning on brane fluxes. Partial supersymmetry breaking of these models correspond to

different Higgs branches of the flat groups.

The paper is organized as follows. In section 2 we discuss non isomorphic electric

subgroups of E7,7 and show that a choice which is not a subgroup of SL(8,R) gives rise to
the gauging of the Scherk-Schwarz spontaneously broken supergravity. In section 3 we give

the relation between the four dimensional N = 8 lagrangian in standard form with the one

obtained by Sezgin and van Nieuwenhuizen [19] by generalized dimensional reduction. In

particular, we give the relevant terms in the bosonic sector which are due to the gauging of

a flat group. Interestingly enough, these terms include unconventional Chern-Simons terms

for vector fields, due to the gauging of translational isometries (Peccei-Quinn symmetries)

and to the fact that the scalar axions are charged under the gauge group. In section 4

we discuss theories with lower supersymmetries in the perspective of the gauging of flat

groups.

2. Electric subgroups of N = 8 supergravity

In N = 8, d = 4 supergravity there are 28 vector gauge potentials ZΛµ . Their field strengths

FΛ, together with their magnetic duals GΛ = 1
2

∂L
∂ ∗FΛ

1 transform in the (56 dimensional)

fundamental representation of E7,7. E7,7 is embedded in Sp(56,R) via the fundamental

representation, which is then said to be a symplectic representation. This implies that the

matrices of the Lie algebra e(7, 7) are of the form

(

a b

c −aT

)

, b = bT , c = cT , (2.1)

with a, b, c, d being 28 × 28 matrices. A generator of the symplectic algebra sp(56) has

a, b, c arbitrary (b, c symmetric) but the generators belonging to the subalgebra e7,7 have

some restrictions on these entries.

1We have used the following normalization for the kinetic lagrangian of the vectors:

L = Im(NΛΣ)FΛµνFΣµν +Re(NΛΣ)FΛµν∗FΣµν , with ∗F
µν ≡ 1

2
εµνρσFρσ .
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An electric subgroup of E7,7 is any subgroup with b = 0. Such a subgroup acts linearly

on the 28 dimensional space of the electric field strengths (or vector potentials). If the

28 gauge potentials are in the adjoint representation of an electric subgroup, then it is in

principle possible to gauge it.

The standard example is SO(8) gauged supergravity [20]. SO(8) is the maximal com-

pact subgroup of SL(8,R), which is a maximal electric subgroup of E7,7. In the represen-

tation (2.1) it has not only b = 0 but also c = 0. The reason is that 56→ 28+ 28′2 under

SL(8,R), so the field strengths are not mixed with their duals by an SL(8,R) transforma-
tion.

We would like to give a parametrization of the group E7,7 which depicts the embedding

of different electric subgroups. If we think about N = 8 supergravity in d = 4 as obtained

by dimensional reduction of N = 8 supergravity in d = 5, it is pretty obvious that it must

be possible to choose an electric subgroup of E7,7 which contains E6,6. Indeed, E6,6 has a

linear action on the 27 vector potentials in dimension five, so it will have it also on the

dimensionally reduced vectors. The 28th four dimensional vector comes from the metric,

and it is an E6,6 singlet. This suggests that we should look for new electric subgroups of

E7,7 by considering the decomposition of the representations of E7,7 under the subgroup

E6,6×SO(1, 1) (this subgroup is maximal as a reductive subgroup of E7,7, but it is not a

maximal subgroup, as we will see later). The fundamental representation decomposes as

follows (the subindex indicates the charge under SO(1,1))

56 −−−−−−−−−→
E6,6× SO(1,1)

27+1 + 27′−1 + 1+3 + 1−3 ,

with 1+3 being the new vector that comes from the metric when performing the dimensional

reduction. The adjoint representation decomposes as

133 −−−−−−−−−→
E6,6× SO(1,1)

780 + 10 + 27−2 + 27′+2 ; (2.2)

780 is the adjoint of E6,6, 10 is the generator of the rescaling of the radius of S1, the 27′+2

are the shift symmetries acting on the axions coming from the fifth component of the 27

five dimensional vectors, 27−2 are the additional transformations, not implementable on

the vector potentials, which complete the algebra of E7,7.

From (2.2) it follows that e7,7 has a grading under so(1, 1),

e7,7 = l0 + l+2 + l−2 .

The representation 56 is a graded representation. The underlying vector space is decom-

posed as V = V + ⊕ V −, being this decomposition compatible with the grading of the Lie

algebra. V + is the space of the electric field strengths (and potentials) and V − the space

of their magnetic duals. In particular we have that

X ∈ l0 , X : V + −→ V + ,

X ∈ l+2 , X : V + −→ V +

2We will denote by r′ the contragradient representation of r.
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so the non semisimple subalgebra l0+l+2 has a linear action on V
+. Therefore, the matrices

of l0 + l+2 in the fundamental representation have b = 0 (2.1). l0 has also c = 0, while l+2

has a 6= 0, c 6= 0. We write the action of l±2 on V
+ ⊕ V −:

δ











FΛ

F

GΛ
G











=











0ΛΣ −t′Λ dΛΣΓtΓ 0Λ

−tΣ 0 0Σ 0

dΛΣΓt
′Γ 0Λ 0 ΣΛ tΛ

0Σ 0 t′Σ 0





















FΣ

F

GΣ
G











. (2.3)

tΛ and t
′Λ are the parameters of the transformation and dΛΣΓ is the symmetric invariant

tensor of the representation 27 of E6,6 (d
ΛΣΓ of the 27′). The matrices of l−2 have c = 0,

a 6= 0, b 6= 0. We denote the vector potentials as (ZΛµ , Z
0
µ = Bµ, Λ = 1, . . . 27). They

transform as V +, so we have

δ27′+2
ZΛµ = t′

Λ
Bµ δ10

ZΛµ = λZΛµ

δ27′+2
Bµ = 0 δ10

Bµ = 3λBµ .

The above transformation properties under translations and SO(1, 1) are common to a

large class of supergravity models with different number of supersymmetries.

Finally, let us discuss the scalar sector. The coset of the scalars in four and five

dimensions are respectively E7,7 /SU(8) and E6,6 /USp(8). The corresponding Cartan de-

compositions are

e7,7 = su(8) + p , p = 70 of SU(8)

e6,6 = usp(8) + p′ p = 42 of USp(8) ,

and we have that the 70 of SU(8) is decomposed

70 −−−−→
USp(8)

42+ 27+ 1 .

The physical meaning of the above decomposition is that the scalars in the 27 come from the

fifth component of the 27 five dimensional vectors and the singlet from the g55 component

of the metric (radius of S1).

3. Standard form of N = 8 Scherk-Schwarz supergravity and gauging of

flat groups

We want to compare the maximally extended (N = 8) supergravity in four dimensions

with the theory found by Sezgin and Van Nieuwenhuizen [19] through the Scherk-Schwarz

dimensional reduction from five dimensions.

Let us first consider the case where all the mass parameters are set to zero (standard

dimensional reduction). In dimension five the U-duality group is E6,6, and it acts linearly

on the 27 vector potentials ÂΛµ̂ , with µ̂ = 1, . . . , 5 and Λ = 1, . . . , 27. We will denote

the quantities in five dimensions with a hat, “ ˆ ”, to distinguish them from the four

dimensional ones. The local symmetries acting on these vector potentials are general
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coordinate transformations in five dimensions with parameters ξ̂µ̂(xν̂) and 27 abelian U(1)

gauge transformations ΞΛ(xν̂). When performing the reduction to four dimensions, the

local symmetries that remain are: four dimensional general coordinate transformations with

parameters ξµ(xν) with µ, ν = 1, . . . , 4, a gauge transformation with parameter ξ5(xν), and

the U(1) gauge transformations with parameters ΞΛ(xν). Explicitly these transformations

read

δξ5A
Λ
µ = ∂µξ

5AΛ5

δAΛµ = ∂µΞ
Λ

δξ5A
Λ
5 = 0

δΞA
Λ
5 = 0 ,

We will denote AΛ5 = aΛ. There is also a global (x-independent) invariance aΛ → aΛ+ t′Λ.

We denote by Bµ and φ the vector and scalar coming from the reduction of the vielbein,

V̂ â
µ̂ = (V a

µ , V
5
µ = V 55 Bµ, V

5
5 = e2φ)

with transformation

δξ5Bµ = ∂µξ
5 .

The combinations

ZΛµ = AΛµ − a
ΛBµ

are inert under ξ5 and so ZΛµ and Bµ are genuine four dimensional gauge fields. Note,

however, that under the global translation t′Λ, ZΛ transforms

δZΛµ = −t′
Λ
Bµ .

The meaning of this transformation is that the 28 vectors (ZΛµ , Bµ) form a 28 dimensional

indecomposable representation of the 27 dimensional translation group (t ′Λ). The action

given in ref. [19] is also invariant under the following SO(1, 1) transformation (with param-

eter λ)

φ′ = φ− λ

Z ′
Λ
µ = eλZΛµ

B′µ = e3λBµ

a′
Λ
= e−2λaΛ .

We observe that the group generated by SO(1, 1) and the 27 global translations is precisely

the same as the one discussed in section 2, which appears in the decomposition of E7,7
under E6,6.
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In terms of the fields φ, aΛ, Bµ, Z
Λ
µ , the lagrangian (4.33) of [19] at zero masses reduces

to the following standard expression:3

Lbosd=4 = −
1

4
V R+

3

2
V ∂µφ∂

µφ+
1

4
V e−4φN̂ΛΣ∂µa

Λ∂µaΣ +
1

24
V P abcd

µ P µ
abcd +

+ V Im(N00)BµνB
µν + 2V Im(N0Λ)Z

Λ
µνB

µν + V Im(NΛΣ)Z
Λ
µνZ

Σµν +

+
1

2
εµνρσ

[

Re(N00)BµνBρσ + 2Re(NΛ0)BµνZ
Λ
ρσ +Re(NΛΣ)Z

Λ
µνZ

Σ
ρσ

]

(3.1)

in terms of the 28×28 complex symmetric matrix

N00 =
1

3
dΛΣΓa

ΛaΣaΓ −
i

2

(

e2φaΛaΣN̂ΛΣ +
1

2
e6φ
)

NΛ0 =
1

2
dΛΣΓa

ΣaΓ −
i

2
e2φN̂ΛΣa

Σ

NΛΣ = dΛΣΓa
Γ −

i

2
e2φN̂ΛΣ .

P abcd
µ is the E6,6 /USp(8) vielbein, V = detV a

µ and N̂ΛΣ is the five dimensional (SO(1, 1)

invariant) vector kinetic matrix.

The representation of E7,7 on the 56 dimensional vector space of the field strengths

and their duals is symplectic. For the moment being, let F denote the vector (F Λ, F ) and

G (GΛ, G). In terms of the self dual combinations F+ = 1
2 (F + i ∗F), G+ = 1

2 (G + i ∗G), a

generic element of the symplectic group would act as
(

F ′+

G′+

)

=

(

A B

C D

)(

F+

G+

)

, ATC and BTD symmetric , ATD − CTB =
�
.

Then the matrix N transforms as

N ′ = (C +DN )(A+BN )−1 .

The fractional formula allows us to compute the non linear transformations of the fields

under the upper block triangular transformation corresponding to the 27−2 elements of

e7,7 in (2.3),

δNΛΣ = −NΛΠN∆Σd
Π∆ΓtΓ + tΛNΣ0 + tΣNΛ0

δNΛ0 = −NΛΣN∆0d
Σ∆ΓtΓ + tΛN00

δN00 = −NΛ0NΓ0d
ΛΓ∆t∆

The infinitesimal transformation of N under the translational symmetries 27 ′+2 (lower

block triangular) in (2.3) is

δNΛΣ = dΛΣ∆t
′∆

δNΛ0 = NΛΣt
′Σ

δN00 = 2NΛ0t
′Λ

3Note that our definitions slightly differ from the ones in [19]. In particular, we have defined the field

strengths of the vectors as: ZΛµν =
1
2
(∂µZ

Λ
ν −∂νZΛµ ), Bµν =

1
2
(∂µBν−∂νBµ). Moreover, with respect to [19]

we have redefined φ/
√
3→ φ and 2dΛΣ∆ → dΛΣ∆.
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In particular, we note that only Re(NΛΣ) (theta term) transforms non linearly under

the translations t′.

We consider now the semidirect product of the 27 translations with parameters t ′Λ

with a generic element of the Cartan subalgebra of USp(8), maximal compact subgroup of

E6,6. Its Lie algebra is of the form (1.3) with fΣΛ0 the matrix of the Cartan element in the

representation 27 of USp(8). We will denote it by MΣ
Λ . Since USp(8) has rank four, MΣ

Λ

depends on four parameters, mi, i = 1, . . . 4 and its 27 eigenvalues are functions of these

four paramenters. They are given by [8]

±i(mi ±mj) , i < j

and 3 eigenvalues are 0.4 This means that there are 3 linear combinations of XΛ which

actually commute with X0.

We choose this group to perform the gauging of N = 8 supergravity. ZΛµ are the gauge

connections for XΛ generators and Bµ is the U(1) gauge connection. It is straightforward

to see that the gauge transformations of the connection fields are as follows

δZΛµ = ∂µΞ
Λ + Ξ0MΛ

ΣZ
Σ
µ − ΞΣMΛ

ΣBµ

δBµ = ∂µΞ
0 .

The field strengths are

FΛµν =
1

2

(

∂µZ
Λ
ν − ∂νZ

Λ
µ −M

Λ
Σ (Z

Σ
ν Bµ − Z

Σ
µBν)

)

Bµν =
1

2
(∂µBν − ∂νBµ) .

The gauge transformation of the axion fields aΛ is

δaΛ =MΛ
ΣΞ

Σ + Ξ0MΛ
Σa

Σ ,

and their covariant derivatives

∇µa
Λ = ∂µa

Λ −MΛ
Σa

ΣBµ −M
Λ
ΣZ

Σ
µ .

In order to write the gauge completion of the lagrangian (3.1), we first observe that

N̂ΛΣ is invariant under the gauge transformations ΞΛ, but transforms under Ξ0 as follows

δN̂ΛΣ = Ξ0M∆
Λ N̂Σ∆ + (Λ↔ Σ) .

It then follows that under Ξ0

δNΛΣ = Ξ0M∆
Λ NΣ∆ + (Λ↔ Σ)

δNΛ0 = Ξ0M∆
Λ NΣ0

δN00 = 0 ,

4The physical masses of the vector bosons actually are proportional to the above eigenvalues with a

moduli dependent prefactor e−3φ, as it can be seen from inspection of the lagrangian (3.1). The same

observation holds also for the masses of the other particles, as given in [8, 9].
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and under ΞΛ

δNΛΣ = dΛΣ∆M
∆
Π Ξ

Π

δNΛ0 = NΛΣM
Σ
ΠΞ

Π

δN00 = 2NΛ0M
Λ
ΠΞ

Π .

The gauge completion of the lagrangian (3.1) is then obtained by replacing

FΛµν 7→ FΛµν non abelian

∂µa
Λ 7→ ∇µa

Λ

P abcd
µ 7→ P abcd

µ − P abcd
5 Bµ ,

where P abcd
5 is defined in ref. [19, (4.3) and (4.33)] and has the property that

δΞ0P
abcd
µ = P abcd

5 ∂µΞ
0,

and adding the extra term

Lextra =
1

3
dΛΣΠM

Π
∆ε

µνρσZΛµZ
∆
ν

(

∂ρZ
Σ
σ −

3

4
MΣ
Γ Z

Γ
ρBσ

)

. (3.2)

Note that the second term in (3.2) is in fact identically zero here, due to the symmetry

property of dΛΣΠ.

In the Scherk-Schwarz theory, the term (3.2) comes from the generalized dimensional

reduction of the Chern-Simons term [19], but in a four dimensional setting it is required

because of the non linear transformation

δRe(NΛΣ) = dΛΣΠM
Π
Γ Ξ

Γ ,

as shown in ref. [16, (3.16)].

Here dΛΣΠM
Π
Γ = CΓ,ΛΣ of [16] and it satisfies the property

CΓ,ΛΣ + CΛ,ΣΓ +CΣ,ΓΛ = 0

as a consequence of the fact that dΛΣΠ is an invariant tensor of E6(6).

Supersymmetry also requires a scalar potential

U =
1

24
e−6φP5abcdP

abcd
5

as shown in ref. [19]. We do not discuss here the fermionic sector of the theory whose gauge

completion can also be obtained in a standard manner.

4. Gauging of flat groups in N = 2 four dimensional supergravities

We want to extend the gauging of flat groups to a class of N = 2 four dimensional super-

gravities which have a five dimensional interpretation. The graviton multiplet has fields

(

V a
µ , ψµA, Z

0
µ

)

.
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It is well known that the interactions of N = 2 vector multiplets with fields

(

ZΛµ , λ
Λ
A, z

Λ
)

, Λ = 1, . . . nv ,

are described by the special geometry of the scalar sigma model. The special geometry [16]

of the Kaehler manifold of the scalar fields is completely specified by an holomorphic

prepotential of nv + 1 variables, homogeneous of degree two

F
(

xΛ, x0
)

= x0
2
f

(

xΛ

x0

)

,

where in special coordinates,

zΛ =
xΛ

x0
.

The holomorphic functions

(

xΛ, x0, FΛ =
∂F

∂xΛ
, F0 =

∂F

∂x0

)

are a local section of a flat symplectic bundle (with structure group Sp(2nv + 2,R)) over
the special Kaehler manifold [21, 22]. The duality group G is a subgroup of Sp(2nv +

2,R). The representation of G acting on the field strengths (F +
Λ
µν , F

+0
µν) and their duals

(G+Λµν , G
+
0µν) is a symplectic representation.

If we choose a cubic prepotential of the form

F =
1

3!

cΛΣ∆x
ΛxΣx∆

x0
,

then the Kaehler manifold has always nv+1 isometries which form a group SO(1, 1)s Rnv

(semidirect product) acting on the coordinates x as follows

δxΛ = λxΛ, δx0 = 3λx0

δxΛ = t′
Λ
x0 δx0 = 0 .

This transformation induces a symplectic action on the symplectic sections and the elec-

tromagnetic field strengths as follows











λ t′Λ 0 0

0 3λ 0 0

cΛΣ∆t
′∆ 0 −λ 0

0 0 −t′Λ −3λ











.

The lower block triangular transformations have the same form of the l0 + l+ of e7,7.

This should not come as a surprise since all these theories can be obtained by dimensional

reduction of N = 2 supergravity in five dimensions with nv − 1 vector multiplets whose

real special geometry is defined by the cubic surface [18]

cΛΣ∆y
ΛyΣy∆ = 1 .
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G′/H ′ G/H r(nv) r(2nv + 2) dim(CSA)H′

SL(3,R)/SO(3) Sp(6,R)/U(3) 6 14 1

SL(3,C)/SU(3) U(3, 3)/U(3) ×U(3) 9 20 2

SU∗(6)/USp(6) SO∗(12)/U(6) 15 32 3

E6,−26 /F4 E7,−25 /E6×SO(2) 27 56 4

Table 1: Exceptional N = 2 supergravities.

If the real special geometry in five dimensions has no isometries (cΛΣ∆ are generic), and in

the absence of hypermultiplets, the only global symmetry in five dimensions is the SU(2)

R-symmetry and the Scherk-Schwarz generalized dimensional reduction would correspond

to the gauging of the U(1) Cartan element of SU(2), giving mass only to the gravitinos and

the gauginos, which are the only fields charged under this U(1). Supersymmetry would be

broken while the U(1)s Rnv group would remain unbroken.

In the case where there is a group of isometries G′ acting on the real special manifold

(for dimension 5), then we could use for the Scherk-Schwarz mechanism a U(1) which has

also a component on the Cartan element of the maximal compact subgroup of G′. A non

trivial flat group would emerge in four dimensions whose gauging would be similar to the

gauging of N = 8 supergravity discussed in section 2 .

As an illustration, let us consider models where the real special geometry is a coset

space G′/H ′ and the nv five dimensional vectors belong to a linear representation R(nv) of

G′. Kaluza-Klein dimensional reduction implies that the U-duality group in four dimensions

G has an SO(1, 1) grading when decomposing with respect to G′ ⊂ G

g = g′0 + 10 + r(nv)−2 + r′(nv)+2 .

(r denotes the representation space of Rnv). Moreover, the 2nv + 2 dimensional symplec-

tic representation R(2nv + 2) of the four dimensional duality group G has the following

decomposition under G′ × SO(1, 1)

r(2nv + 2) = r(nv)+1 + 1+3 + r′(nv)−1 + 1−3 .

Note that these decompositions and the SO(1, 1) grading are universal and do not depend

on the choice of G′. Indeed, this grading has a Kaluza-Klein origin.

We give in table 1 the examples corresponding to the exceptional five dimensional

cosets. The flat group of dimension nv + 1 has structure constants which depend on

dim(CSA)H′ + 1 parameters.

Most of the spontaneously broken models studied in ref. [23] have a dynamical origin

analogous to the one discussed in the present investigation. However, since there are models

which break an odd number of supersymmetries, one can consider gaugings that do not

have a five dimensional interpretation. This should be the case for some models obtained

by turning on brane fluxes [5, 6, 7].
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