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1 Introduction

Over the recent years it has become clear that non-relativistic symmetry groups play an
important role in many examples of non-AdS holography. This has been made most ap-
parent in the case of Lifshitz holography where it is has been shown that the boundary
geometry is described by Newton-Cartan geometry in the presence of torsion [1-3]. Further
also in the case of Schrodinger holography there are many hints that the boundary field
theory couples to a certain non-Riemannian geometry [4-8]. In AdS/CFT the fact that the
boundary geometry is described by Riemannian geometry, just like the bulk geometry, is a
special feature of the precise fall-off of the AdS metric (and its asymptotically locally AdS
generalizations [9, 10]) near the boundary. It is however not expected that the Riemannian
nature of the boundary geometry seen in AdS/CFT is a generic feature in other non-AdS
holographic dualities. Hence in order to better understand known candidates for non-AdS
holography we must learn how to describe various non-Riemannian geometries.

Recently it has been argued that the Carroll algebra, which can be obtained as an
ultra-relativistic limit (¢ — 0) of the Poincaré algebra [11, 12], plays an important role
in flat space holography [13]. The ¢ — 0 contraction of the Poincaré algebra results in
a peculiar light cone structure where the light cone has collapsed to a line. The Carroll
algebra is given by

[Jabs Pl = acPo — SbcPa s

[Jab, Ce] = 8acCh — 0pcCl,

[Jabs Jed] = dacdbd — SadJoc — Obedad + ObdJac ;
[Pa, Cb] = dap



wherea = 1,...,d. In here H is the Hamiltonian, P, spatial momenta, J,; spatial rotations
and C, Carrollian boosts. In Cartesian coordinates with time ¢ and space coordinates
z' a Carrollian boost means ¢ — ¢ + ¢/ - #. In [13] it is shown that future and past null
infinity form Carrollian space-times and that the BMS algebra forms a conformal extension
of the Carroll algebra. It is therefore of interest to understand in full generality what
Carrollian space-times are and how field theories couple to them (see e.g. the work of [14]
on coupling warped conformal field theories to geometries obtained by gauging the Carroll
algebra). When gauging this algebra we associate vielbeins 7, and e}, to the time and space
translation generators H and P,, respectively.

For the case of relativistic field theories we know that they couple to Riemannian ge-
ometry. The latter and its torsionful extension, known as Riemann-Cartan geometry, can
be obtained by a procedure known as gauging the Poincaré algebra (see e.g. appendix A
of [15]). Similar gauging techniques also allow one to describe torsional Newton-Cartan
(TNC) geometry which was found in a holographic context in [1, 3, 16, 17]. We refer
to [3, 18-23] for the use of TNC geometry in a field theoretical context (see [24] for a
nice geometrical account of TNC geometry). In order to obtain torsional Newton-Cartan
geometry one gauges the centrally extended Galilei algebra known as the Bargmann alge-
bra [2, 15, 25].

Given the relevance of the Carroll algebra to flat space holography it is a natural
question to ask if we can gauge the Carroll algebra and what the resulting geometrical
structure is. The gauging of the Carroll algebra will be discussed in section 2. First this
is done in full generality involving the Carrollian vielbeins 7, e}, and a Carrollian metric
compatible affine connection I'y,. Then we introduce a contravariant vector M* and show
that the Carrollian metric compatible affine connection I'f,, can fully be written in terms
of 7, €, and M¥. The role of M* is to ensure that 'Y, when written in terms of the
Carrollian vielbeins remains invariant under local (tangent space) Carrollian boosts. In
the next section, section 3, it will be shown that the resulting geometrical structure can
be realized as the geometry induced on a null hypersurface embedded in a Lorentzian
space-time of one dimension higher. Further in section 3 we show that the duality between
Newton-Cartan and Carrollian space-times observed in [26] can be extended when we
include the vector M*. The Newton-Cartan dual of M* is a co-vector M, that can be
written as m,, — 0, x where m,, is the connection corresponding to the Bargmann extension
of the Galilei algebra and x is a Stiickelberg scalar that must be added to the formalism
whenever there is torsion [1, 2, 15].

In [15] it has been shown that when torsional Newton-Cartan geometry is made dy-
namical the resulting theory of gravity corresponds to Horava-Lifshitz gravity [27, 28]
including the extension of [29]. More specifically, depending on the type of torsion, one is
either dealing with projectable (no torsion) or non-projectable (so-called twistless torsion)
HL gravity. In both these cases there is a preferred foliation of spacelike hypersurfaces. The
case of general torsion is an extension of HL gravity in which the timelike vielbein is not
required to be hypersurface orthogonal. Since the tangent space group in HL gravity is the
Galilean group it is natural to refer to this type of gravitational theories as non-relativistic
theories of gravity. In the same spirit, the Carrollian geometry can be made dynamical.



We do this using an effective action approach. By this we mean that we assign dilatation

weights to the Carrollian fields 7, ef, and M* and allow for all possible terms that are

relevant or marginal and invariant unléler local tangent space (Carrollian) transformations.
Since the tangent space light cone structure is ultra-relativistic we refer to this as ultra-
relativistic gravity. They naturally come with a dynamical exponent z < 1. We show that
for z = 0 one can construct actions that are invariant under anisotropic Weyl rescalings of
the Carrollian fields 7, e}, and M*. All of this will be the subject of section 4.

A special case of such Carrollian theories of gravity are obtained from the ultralocal
(in the sense of no space derivatives) limit of general relativity (GR) that was studied
in [30, 31] by sending the speed of light to zero. This Carrollian limit of GR is also referred
to as the strong coupling limit in which Newton’s constant tends to infinity as this has the
same effect as sending ¢ to zero [32, 33]. Further the Carrollian limit also features in the
near horizon limit of embedded branes [34], tachyon condensation [35] and cosmological
billiards [36].

Note added. While this manuscript was being finalized, the preprint [37] appeared on
the arXiv, which overlaps with the results of sections 2 and 3.

2 Gauging the Carroll algebra

2.1 From local Carroll to diffeomorphisms and Carrollian light cones

The Carroll algebra is obtained as a contraction of the Poincaré algebra by sending the
speed of light to zero [11, 12]. The nonzero commutators of the Carroll algebra are

[Jabs Pe] = dacPs — dpcPa s (2.1)
[ ab» ] = 5 5bcCaa (22)
[Jabs Jed] = dacdbd — dadJoc — Obedad + ObdJac ; (2.3)
[Pa; Cb] = dab (2.4)
where a = 1,...,d. We thus see that the algebra is isomorphic to the semi-direct product

of SO(d) with the Heisenberg algebra whose central element is the Hamiltonian.

In order to gauge the algebra we follow the procedure of [15, 25] where the gauging
of the Galilei algebra and its central extension, the Bargmann algebra, were discussed
(without torsion [25] and including torsion [15]). For an earlier discussion of gauging the
Carroll algebra see [38].

We define a connection A, as

1
Ay = Hry + Pael + Cof0," + §JabQ““b , (2.5)

where p takes d + 1 values related to the fact that there is one time and d space trans-
lation generators. We thus work with a (d + 1)-dimensional space-time. This connection
transforms in the adjoint as

SA, = 0,A+[A,, A (2.6)



Without loss of generality we can write A as
A=A, +3, (2.7)

where ¥ is given by
1
¥ = C \" + ijabxzb : (2.8)
We would like to think of £ as the generator of diffeomorphisms and ¥ as the internal

(tangent) space transformations. To this end we introduce a new local transformation
denoted by 6 that is defined as

6A, =6A, — & Fu = LeA, + 0,5 + [AL, 3], (2.9)
where F,, is the field strength

Fuv = Op Ay — 0y A, + [Au, A
1
= HR,y(H) + PuRyu"(P) + CouRyu(C) + 5JabR,Wf“’(J) . (2.10)

In components the § transformations act as

0T = LeTy+ €iAa (2.11)
def, = Leell + )\abez, (2.12)
00, = LeQ," + A + X%, — N0, (2.13)
00,% = L£0,% + 9,27 + 270, — 0., (2.14)

The Lie derivatives along &* correspond to the generators of general coordinate transforma-

tions whereas the remaining local transformations with parameters A% and A*® correspond

1

to local tangent space transformations.” The tangent space has a Carrollian light cone

structure by which we mean that the light cones have collapsed to a line. This can be seen
from the fact that there are no boost transformations acting on the spacelike vielbeins ef).
The component expressions for the field strengths read

Ry (H) = 0y — 0y + €0 — €, Q0 (2.15)
R"(P) = el — Ovel — Qe + 0%y, (2.16)
R (C) = 8,0% — 9,0, — Q,°Qu + Q, %, (2.17)
R.™(J) = 0,0,% — 9,9, — Q,Q,% + Q,Q,°, . (2.18)

2.2 The affine connection

The next step is to impose vielbein postulates allowing us to describe the properties of
the curvatures in F,, in terms of the curvature and torsion of an affine connection I‘ﬁy

We emphasize that in order to obtain the § transformations, i.e. the diffeomorphisms and local tangent
space transformations we did not need to impose any so-called curvature constraints. For a discussion of
the curvature constraints we refer the reader to section 2.3.



that by definition is invariant under the tangent space ¥ transformations. We define the &
covariant derivative D, as

DMTV = 8MTV - FﬁyTp - Q,u,aez ) (219)
Dyel = Ouel — 0 e — Q% el . (2.20)

The form of the covariant derivatives is uniquely fixed by demanding covariance. The
vielbein postulates are then

Dym, =0, (2.21)
Dye’ = 0. (2.22)

We choose the right hand side to be zero because i). it obviously transforms covariantly and
ii). even if we could write something else that transforms covariantly we can absorb this into
the definition of I'f},. We can now solve for ,, and €, in terms of I'},, by contracting
the vielbein postulates with the inverse vielbeins v# and el that are defined via

v, = -1, vtel, =0, ehr, =0, ef;ez =0, (2.23)

They transform under the § transformations as
Svtt = Levt, (2.24)
dett = Leel +vM A + N\lel (2.25)

and they satisfy the inverse vielbein postulates
D" = gy’ + T 07 =0, (2.26)
Dye, = Oue, + 17,60 — 07 Quq — Qualel = 0. (2.27)

From (2.19)—(2.22) it follows that the torsion I';, relates to the curvatures R, (H)
and R, *(P) via

207, = —v" Ry (H) + e Ry (P). (2.28)

We can define a Riemann tensor in the usual way as follows

Vi, Vil Xo = Ruo” X, — 2If

Vo Xo, (2.29)

where V, only contains the affine connection and where R,,,” is given by
A A
Ruwe” = =010, + 0,10, — FZ/\FW + I‘ﬁ)\FW . (2.30)

Using the vielbein postulates, i.e. the relation between the affine connection and the tangent
space connections, we find

Ruve” = —1Pe5q Ry (C) — epah Ry ™ (J) . (2.31)



We have traded the connections €2,* and {2 M“b for F,’iy. The latter connection has more
components and so they cannot all be free. In fact the vielbein postulates (2.21)-(2.27)
constrain I';, in the following way

V' =0,  Vuh,=0, (2.32)

where we defined h,, = 5abe/‘jel;. We will also adopt the notation A" = §%ek ey. In order

to find out what the independent components of I'},,, are we will obtain the most general so-
lution to these metric compatibility equations. We note that both v* and h,, are invariant
under the tangent space transformations. They form the notion of Carrollian metrics.

We start with the condition V,h,, = 0. By permuting the indices and summing the
resulting equations appropriately we obtain

207, hve = Ouhup + Ophyw — Oyhpp — 207, hep — 207 i By (2.33)

Contracting this equation with v¥ we find

Kyup = —0"hoplf, — v houT¥, (2.34)

where the extrinsic curvature K, is defined as

1

Kp = _gﬁvhup' (2.35)

From (2.34) we conclude that

oA o
Pfy'u,} = T[VKM])\h‘ + X[u,u} 5 (236)
where X [”V 4] is such that

’Ullho—pX[(:;u} + 'UVhO—MX[?/p] =0. (237)
Substituting (2.36) into (2.33) and adding 2I'Y ) h,s to both sides (using (2.36)) we obtain

QFthVU = Oyhy, + 8ph;w — 8Vhpu + 2T[VK“]p + 2T[VKp],u + 2T[”Kp]l,
—G—QXETVM]hgp + 2Xfyup]h0/i + 2X[Zp}h’/‘7 . (2.38)

Contracting this with A** and using h,,h"* = 6 + 7,0 we find the following most general
solution to V,h,, =0
1
F;\w = _U/\TUFZP + §hw\ (Oubwp + Ophyuy — Ouhipy) — W7, K

VA o o o
A (X hap + XG o + XG oo ) - (2.39)

By contracting this result with v it can be shown that
(5 + ') Wy =0, (2.40)

so that in order to find the most general I'),,, obeying both V,v” = 0 and V,h,, = 0 it
remains to impose
T,V 0 =0. (2.41)



This latter condition is equivalent to v*V,7, = 0 so that

LT = OuTp + Xyp (2.42)
with
Xup = —Vutp = —Quacy (2.43)
satisfying
v’ X, =0. (2.44)

We thus conclude that the most general Fﬁ , 1s of the form

1
Iy, = —v 97, + ih” (Buhuwp + Ophyws — Oyhpp) — R AT, K

1
—0 X, + §h"AY,,M,, (2.45)
where Y, is given by
YVM{) - 2X[(;/,LL} hcrp + 2X[(:/p} ho'ﬂ + 2X[(Lp] hl/O' , (246)

which has the property that v"Y,,, = v?Y,,, = 0 as follows from (2.37). The connec-
tion (2.45) has torsion that is given by

v 1,
F[A ] — —“A%Tpl —h AT[pKu}u - UAXW} + §h Y, (2.47)

1P (o] -

An alternative way of writing (2.45) that makes manifest the property V,v” = 0 is as
follows

1
I, = 700" = hpoOph™* + 5hp(,h*”~ffh'f* (Buhps — Ol — Ouhyur)
1
—0 X, + 5h'MYW. (2.48)

The requirement is that ', transforms as an affine connection under general coordi-
nate transformations and remains inert under C' and J (tangent space) transformations.
The first line of (2.45) transforms affinely, i.e. it has a term 9,,0,&* plus terms that trans-
form tensorially. In fact the last term of the first line containing the extrinsic curvature
transforms as a tensor and is thus not responsible for producing the 9,0,6* term. This
means that all terms on the second line of (2.45) must transform as tensors, i.e. X, and
Y, ,.p transform as tensors under general coordinate transformations.

As a check that we have in fact managed to write all the components of €2,% and Qu"b
in terms of a Carrollian metric compatible I}, we count the number of components in
hopX (. (since this determines Y,,, via equation (2.2)) and X,,. The tensor hopX(,
has $(d+1)%d — 3d(d +1) = 1d?(d + 1) components and it satisfies 2d(d + 1) constraints
v hepXp, 140 oy X(, ) = 0 giving $(d+1)d®>—3d(d+1) = 3(d—1)d(d+1) free components.
The tensor X, has (d+1)? components satisfying (d+ 1) constraints v* X, giving d(d+1)
free components. Together this gives d(d+1)((d—1)+2)/2 = d(d+1)?/2 components which
is also the number of components in ©,% (d(d+ 1) components) and ,% ((d+1)d(d—1)/2



components). Equation (2.43) expresses the relation between X, and €, Using that
the vielbein postulates (2.21) and (2.22) imply

v

[, = —vP0um, + vPQuaey, + epope) — Quabegeb (2.49)
we obtain the following relation between €,%, and h*?Y;
1 1
S Yo = =507 Ouhoy + Ohyo — Oohyw) + W77, K + f0uey, — O ueler, . (2.50)

Finally in order that our I'f, satisfies all the required properties we must ensure that
it is invariant under local C' and J transformations. It is manifestly J invariant so we are
left to ensure local C' invariance. Using that

STy = Ay, (2.51)
Sch™ = (RM70” + hYvH) A, (2.52)

where A\, = eZ)\a, one can shown that FZ,, is C invariant if and only if X, and Y,,,
transform as

6cXup = — (Ourp =TT, 00) (2.53)
dcYoup = 20K — 20, K, . (2.54)
These transformation rules are compatible with the properties v*X,,, = 0 and v"Y,,, =
vPY,, = 0. For the transformation of X,,, this is by virtue of A\, V,v” = 0 (i.e. metric
compatibility). The transformation of X,,, involves the connection I';,,. However it does
not involve the tensor X,,, on the right hand side of (2.53) because I'},,, is contracted with

Ap which has the property that v”A, = 0. In fact we can rewrite the right hand side
of (2.53) as follows. Using (2.45) we find

I Ay = % (00 + Op\) — %cuhup + %uvf,,cvhu,, + %UVY,,M), (2.55)
where we defined the vector u# = h#?\, and where we used (2.35). Using that
u’ Lohy, =07 (0N, — OuA\y) — 0" Ly, (2.56)
we obtain for ¢ X, the result
1 1
dcXup = 3 (5Z + Tpv”) (OuAv — O Ay + Luhw) + iu“Y,wp, (2.57)

making it manifest that dc (v°X,,) = v”6cX,, = 0. One may wonder why there is a
term transforming into u"Yj,,. The reason is that the transformation of h” ’\Y,,W in (2.45)
produces such terms through (2.52) and these need to be cancelled.

Using (2.55) and (2.35) we can also write the variation of X, in the following manner

1 1 1
6OXNP = —5 (a“)\p — 8PAM) — §EUh'up + iu” (Yl/“p — 27—pK;LV + QTVK;Lp> . (258)



This way of writing dcX,,, is useful when one tries to write the right hand side as the
dc of something which we will do in the next subsection. The term u"7,K,, has been
added to make manifest that u” contracts a term that is C-boost invariant. Of course
because u”7, = 0 the added term vanishes. If we write in (2.58) and likewise in (2.54) the
parameter \, = h,,u” then u/ always contracts or multiplies a term that is manifestly
Carrollian boost invariant. This is not the case for the parameter )\, because it sometimes
is contracted with A*" which is not invariant under local C transformations.

2.3 Introducing the vector M*

So far we have considered the most general case where the ¢ transformations are realized
on the set of fields 7, e, €, and Q#“b or what is the same 7, €}, and '/, where the
latter is metric compatible in the sense that V, v” =V h,, = 0. In the remainder we will
realize the algebra on a smaller set of fields.

Sometimes when gauging algebras, as happens e.g. when gauging the Poincaré algebra,
it is possible to realize the ¢ transformations on a smaller set of fields by imposing curvature
constraints whose effect is to make some of the connections in A, dependent on other
connections in A,,. For example in the case of the gauging of the Poincaré algebra setting
the torsion to zero, i.e. imposing the curvature constraint R,,*(P) = 0 (where P denotes
the space-time translations), enables one to express the spin connection coefficients w,ﬁb
in terms of ej;.

In the case of the gauging of the Bargmann algebra imposing curvature constraints
(without introducing new fields) to write the Galilean boost and spatial rotation connec-
tions in terms of the vielbeins and the central charge gauge connection is only possible when
there is no torsion [25]. When there is torsion the curvature constraints become dependent
on an additional Stiickelberg scalar field x that is not present in A,. This field needs to
be added to ensure the correct transformation properties of the Galilean boost and spatial
rotation connections when writing them as dependent gauge connections [1, 2, 15]. In
the context of formulating Horava-Lifshitz (HL) gravity as a theory of dynamical torsional
Newton-Cartan geometry [15] the Stiickelberg scalar field x plays an important role in mak-
ing the identification between TNC and HL variables. In the context to Hotava-Lifshitz
gravity this field was introduced in [29] and dubbed the Newtonian prepotential.

In the case of field theory on Newton-Cartan space-times including torsion is crucial
because it allows one to compute the energy current [1, 16, 17, 19, 23]. The fact that one
needs to introduce an extra Stiickelberg scalar field to the formalism when there is torsion
does not mean that any field theory on such a background has a non-trivial response to
varying the Stiickelberg scalar. It can happen that there are additional local symmetries
in the model that allow one to remove this field from the action [3, 23]. The main message
is that once we start imposing curvature constraints the resulting reduced set of fields on
which the algebra is realized do not need to correspond to a constrained algebra gauging
and may involve new fields.

In both the gauging of the Poincaré algebra and of the Bargmann algebra the effect
of the curvature constraints is to make the connection I'},, a fully dependent connection.



Imposing the curvature constraint R,,*(P) = 0 in the Poincaré case leads to the Levi-

Civita connection.?

In the case of the gauging of the Bargmann algebra in the presence of torsion the

a
i

that from the point of view of gauging the Galilei algebra one needs to add the vector

algebra of § transformations is realized on Ty, € and M, = m, — d,x. One can also say
M, to construct a '}, that obeys all the properties of an affine connection [15]. In other
words from the point of view of adding curvature constraints to the gauging of the Galilei
algebra we add a vector M, with appropriately chosen transformation properties to realize
the algebra on the smaller number of fields 7, e}, and M, as opposed to 7, €}, €,,* (local
Galilean boosts) and 0, (local spatial rotations).

In the case discussed here we will realize the algebra of & transformations on Tu, €,

© B
and a contravariant vector field M* where M* transforms under the § transformations as

SMHM = LeMF + ebN* = LcMP + WA, = LeMF 4 ut (2.59)

We are not aware of an extension of the Carroll algebra such that M* can be constructed
from the additional connections appearing in A, corresponding to the extended Carroll
algebra. The guiding principle will be to write I'},, in terms of 7, e;, and M*" in such a
way that it obeys all the required properties. In other words we need to write the tensors
Xup and Yoy, in terms of 7, e, and M* ensuring that they transform correctly under the
¢ transformations. A raison d’étre for the vector M* will be given in the next section.

One of the benefits of working with X, and Y, is that their transformation properties
under local tangent space C' and J transformations is much simpler than for the equivalent
set of objects €1,% and Q,ﬂb . Both X, and Y5, are invariant under J transformations and
their the C transformations are given in (2.53) (or equivalently (2.58)) and (2.54). We will
now use the additional M* vector to write down a realization of X,,, and Y, in terms of
Ty, €, and MH.

Using (2.58) and (2.59) we can write

1 1 1
0=dc (Xup + §8u (hpe M) — 58,) (huo M) + §EMhM)
1
_iMV (Yopup — 27, K, + 27'1,KW)) . (2.60)

Hence a realization of X, (but not the most general one) is to write

Xup = _%au (hpoM7) + %ap (hue M) — %ﬁMhup
+%M” (Yopup — 27, K +271,K,,) (2.61)
obeying v*X,,, = 0. Likewise for Y, we can take
Youp = 2hpe MK,y — 2Ry MK, , (2.62)

2There also exists the possibility to set the Riemann curvature 2-form R,,°°(M), where M is the
generator of Lorentz transformations, equal to zero. This leads to the so-called Weitzenbdck connection
(see for example [39]). We refer to [14] for similar ideas in the context of gauging the Carroll algebra.

~10 -



which transforms as in (2.54) and obeys v"Y,,, = ©v”Y,,, = 0. Substituting (2.61)
and (2.62) into (2.45) we obtain

1- _ _
I, = —v 0,7, + 5}1” (Buhow + Ophywy — Ophyp) — B, Ky + R K, (2.63)
where we defined

Ty = Ty — hu MY, (2.64)
R = WM — MFyY — MYt (2.65)

which are manifestly C' invariant. Another C' invariant (scalar) quantity that we can define
is ® which is given by

= 1

® =M1, + §hMMVMU . (2.66)

The affine connection (2.63) has the property that if we replace all h*” by HH = hHV +
a®vty” the resulting expression for F;)lp remains unchanged, i.e. does not depend on c.
Hence we can take o = 2 and write for I‘f;p in (2.63)

1 N
Iy, = —0 9,7, + 5h“ (Buhpw + Ophys — Ouhyp) — B Ky (2.67)

where h** is defined by
WA = A 4+ 28070 (2.68)

for which ﬁjﬂ“’ = 0. The connection (2.67) is independent of ® because it can be shown
that MH# appears in 7, and hiv only via h,,M". This is made more manifest below
following the discussion around equations (2.70) and (2.73).

The connection (2.63) satisfies by design the metric compatibility conditions V0" =
Vhy, = 0. However it also satisfies the conditions

V=V, =0, (2.69)

where V7, follows immediately by inspection of (2.63) using that h#¥#, = 0. The second
property VJL”'“ = 0 follows from all the other metric compatibility conditions and the fact
that h¥* is fully determined once 7, and h,, are known. The property V,7, = 0 implies
that V7, =V, (hpe M?) = —X,,, where we used (2.64) and (2.43) and is compatible with
the transformation under local C' transformations given in (2.53). We stress though that
the properties (2.69) are special for the particular realization of Fﬁp given in (2.63) and
will not be true for other realizations of Fﬁp that for example also depend on the scalar
invariant ®.

We can define a new set of vielbeins 7, e}, whose inverse is v/, él, with the latter
defined by

el = el — MPepvt . (2.70)
These new vielbeins satisfy
v, = —1, vtel, =0, et =0, éfl‘ez =0, (2.71)
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Out of these objects we can build a Lorentzian symmetric rank two tensor g, via

b =~ o =~y + sl 272)
whose inverse is
g;w = —pMY + Y = —pY + 5abégéb . (273)

Since the connection (2.63) satisfies V, 7, = V,h,, = 0 it in particular obeys V,g,, =

0. Since it furthermore has torsion the connection (2.63) must be a special case of a

Riemann-Cartan connection. By this we mean a torsionful connection obeying V,g,, = 0.
Any such connection must be of the form [39]

A

Lp =

1 VA VA K K K
59 (a,ugpy + 3,)9;“/ - aug,up) +g ( [,/p]gnu + F[W]gnp + F[,up}glfl/) . (274)

By using (2.72) and (2.73) we can show that (2.63) is of this form with torsion given by

F[);LP} = _U)\a[lﬂcp] - hV/\%[pK,u}lu (2.75)

compatible with (2.47).

The connection (2.63) is not the most general affine connection compatible with our
requirements. We still have the freedom to add to X, and Y,,, terms that are invariant
under local Carrollian boosts. When we add a term to Y,,, we should also add the
corresponding term to (2.61) because %M YY,.p appears in X,,. Further any term added
to Y,,, must obey the property that when contracted with v or v” it vanishes since Y,
obeys this property. Equation (2.67) is independent of ® and the only terms that we can
still add to '}, without affecting its properties come from ® dependent terms that we add
to X, and Y,,,. An example of such a term is to add to X, a term proportional to
PK up Which is C' invariant and orthogonal to v”. The effect is to redefine I‘f; , by a term
proportional to ®v*K up- Yet another term that we can add to X, compatible with Ff;p
remaining invariant under C', J transformations, transforming affinely, and being metric
compatible in the Carrollian sense, is a term proportional to hupv”&,@. Any of these affine
connections is an allowed connection and so one can choose them to suit one’s convenience.
The same phenomenon happens for the case of torsional Newton-Cartan (TNC) geometry.
Sometimes it is useful to work with a TNC connection that does not depend on the scalar
® (the TNC counterpart of ® defined in (3.5)) as is for example the case when making
contact with Hofava-Lifshitz gravity [15] and sometimes it is useful to work with a TNC
connection depending linearly on M, as is for example the case when coupling field theories
with particle number symmetry to TNC backgrounds [3, 22, 23].

3 The geometry on null hypersurfaces

A natural example of a space-time with a Carrollian metric structure is a null hypersurface
embedded into a Lorentzian space-time of one dimension higher [13, 26]. Before introducing
a Carrollian space-time as the geometry on a null hypersurface it is useful to consider first
the case of a Newton-Cartan space-time as the geometry orthogonal to a null Killing vector.
This will also enable us to compare the two cases later.
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3.1 Newton-Cartan space-time

It is well known that Newton-Cartan geometry on a manifold with coordinates x* can be
obtained by null reduction [16, 17, 40-42], i.e. by starting from a Lorentzian space-time
with one extra dimension « whose metric is of the form
ds* = 27,dz" (du — m,da”) + hy,datdz”
= 27, da"du + hy,dztdz” (3.1)
where we take 0, to be a Killing vector so that 7, and fLW are independent of u and where

hyw = by — mp, — M7, . (3.2)

Note that for this metric we have g, = 0. The inverse metric components are

g = ht", gttt = —oH | g =29 (3.3)

where
ot = ot — hHm,, (3.4)
d = —vim, + %h‘“’mumy. (3.5)

The metric (3.1) is the most general Lorentzian metric with a null Killing vector 9,. The
coordinate transformations that preserve the form of the null Killing vector are

u =u—o(x), (3.6)

't = a'M(x).
Under the shift in u the vector m,, transforms as a U(1) connection
my, = my — 0,0 . (3.8)

A TNC metric compatible connection can be found by taking the Levi-Civita connection of
the higher dimensional space-time with all its legs in the x* directions and to add torsion
to this by hand so as to make it metric compatible in the TNC sense, i.e. V7, = VA"’ =
0 [16, 17]. Instead of speaking about null reduction, one can say that TNC geometry is the
geometry on the space-time orthogonal to the null Killing vector 0.

If we insist that the connection on the TNC space-time is naturally induced from the
Levi-Civita connection on the higher dimensional space-time we need to impose that 9, is
hypersurface orthogonal. To see this write for the higher dimensional metric

ds® = gapdatda® = (UaVg + UgVy + ) datda® (3.9)

where 24 = (u,z#). The vectors U4 and V4 are nullbeins defined by

UAU, =0, VAV4 =0, UAVy = -1, UAllap = VAIIap =0.  (3.10)
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We choose U4 = (9,)4, so that
U,=0, Uy=-14, Vu=-1, Vy=my,, ua=0, I, =hu, (3.11)
and
vVt =—vtm,, VEF=—o"  II"“=h"m,m,, IO=h~r"m,, 1" =hr"(3.12)

In order that we have a TNC connection on the space-time orthogonal to U4 we demand
that V 4Up projected along all directions orthogonal to U4 gives zero, i.e.

UAUBY ,U = 0,

UATIP oV AUB = 0,

MAcUPVAUB =0,

4P pVaUp = 0,

where V 4 contains the Levi-Civita connection. These conditions lead to the TNC metric

compatibility condition V7, = 0. Likewise to obtain VA" = 0 we impose that V AIIBC
with all indices projected onto directions orthogonal to U4 gives zero. Since we have

VAIIPC = —UBv,VC — VOV UP —UCVVE — VBV, UC, (3.17)

which follows from the fact that V 4¢5¢ = 0 we obtain

P g v, 8¢ = o, (3.18)
UpUcV ATIBY =0, (3.19)
P pUcV AITPC = —TTPOV 4 U . (3.20)

Hence to enforce V,h"? = 0 we only need that PV 4Uq contracted with U4 and 1145
gives zero. These conditions are already imposed in (3.14) and (3.16). Since U4 is a null
Killing vector equations (3.13) to (3.15) together with the symmetric part of (3.16) are
satisfied. What remains is to impose that the spatial projection of the antisymmetric part
of V 4Up vanishes which is equivalent to demanding that U4 is hypersurface orthogonal.
Put another way it must be that

VaUp =UaXp —UpXa, (3.21)

for some vector X4 obeying U4AX 4 = 0 (as follows from the fact that U4 is a null Killing
vector and thus geodesic) but otherwise arbitrary in order that the Levi-Civita connection
induces a Newton-Cartan connection on the space-time orthogonal to d,. Since the left
hand side of (3.21) is just 3 (0aUp — 9Ua) and X,, = 0 the only non-trivial component
of (3.21) is when A = p and B = v expressing the fact that 7, is hypersurface orthogonal,
but not necessarily closed. This is the case referred to as twistless torsional Newton-Cartan
geometry (TTNC) [16, 17]. In this case metric compatibility V7, = 0 requires a torsionful
connection. We can thus obtain a torsionful connection from a Riemannian geometry by
projecting along directions orthogonal to a hypersurface orthogonal null Killing vector.
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One may wonder how this is possible since the connection of the Riemannian space-
time is symmetric. From the properties of U4 we infer that

Outy + 0y7, = 2F€9)MVTP, (3.22)
Outy — Oy = 27, X, — 21, X, (3.23)

where ng)lﬂ’ is the Levi-Civita connection with all indices in the z* directions. From the
first of these two equations we read off that the symmetric part of TNC connection satisfies
re r, =17

(pv) P (g)uv

contributes to a torsion tensor I‘ﬁw]

introduced due to the fact that we are dealing with a geometry orthogonal to a null vector

7,. In order to repackage these equations into V,7, = 0 we see that X,
Tp = TuXy — 7, X,. In other words the torsion can be

U4 so that there is a certain arbitrariness encoded in X4 when solving for (3.16). The
torsion is thus described by a vector X,. In [15] the torsion vector is denoted by a,, which
relates to X, via a, = —2X,. It determines whether we are dealing with projectable or
non-projectable Hotava-Lifshitz gravity.

The conditions (3.21) together with Uy being a null Killing vector guarantee that
a TTNC metric compatible I'f,, exists but the projection equations onto the space-time
orthogonal to U4 do not tell one the precise form of this connection. This is to be expected

since there is a certain arbitrariness in the expression for '/, .

a
i

and m,, that does not refer to an embedding in a higher dimensional space-time we need

We recall that in order to write an expression for I'),,, in terms of the TNC fields 7, e

to add a Stiickelberg scalar y when there is torsion [1, 2, 15]. This amounts to replacing
everywhere m,, by M, = m, — 0, .

3.2 Carrollian space-time

To obtain an embedding of a Carrollian space-time into a Lorentzian space-time of one
dimension higher all that is required is to do the same as for the Newton-Cartan case but
with the difference that it is now the inverse metric for which we take g** = 0. In other
words we write down the most general metric for which g“* = 0. Such a metric is given by

ds* = du (2®du — 27,dx") + hy,datdz” (3.24)
where @ is given in (2.66) and 7, is given in (2.64). The components of the inverse metric are
gU=0, gM=ot, g =R, (3.25)

where h* is given by (2.65). The Carrollian space-time can be thought of as the geometry
on the null hypersurface u = cst whose normal is d4u, i.e. it is the geometry orthogonal to
dau. When & = & = 0 the Newton-Cartan and Carrollian geometry are the same. This is
because the metrics (3.1) and (3.24) become identical. One simply has the correspondence

R X ICRE LU WY D (P T (3.26)

In section 3.3 we will discuss in more detail the relation between TNC and Carrollian
geometry.
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The coordinate transformations that preserve the null foliation are given by
u =, (3.27)
o =t (7). (3.28)
Under this transformation the vector M* transforms as
ox'*  ox'*
oxV + ou

If we demand that 0, is a Killing vector the coordinate transformations cannot depend on

M/u — MI/

(3.29)

u so that M* simply transforms as a vector. Alternatively if we work at a fixed value of u,
i.e. a specific null hypersurface, the coordinate transformation of z* cannot depend on u
either and again M* transforms as a vector on the u = cst hypersurface. We thus see from
the embedding point of view that there is no extra symmetry associated with the vector
M*" while there is one in the NC case where we had a U(1) acting on m,, corresponding to
the Bargmann extension of the Galilei algebra.

We now discuss under what conditions the Carrollian metric compatible connection
can be obtained from the Levi-Civita connection in the higher dimensional space-time. To
this end consider again (3.9) and (3.10). This time we choose Uy = d4u implying that

Ut=0, Ut=—ov"*, Vi=—-1, VF=MF* " =0, I =hHp", (3.30)
as well as

Iy = hpM?, My =hp MPMY 1, =hy, Vy=-1,M", V,=-1,.

(3.31)

Imposing that V,v” = 0 amounts to demanding that
UAUBVAUP =0, (3.32)
MAcUVAUP =0, (3.33)
UATI® gV 4UP = 0, (3.34)
HACHDBVAUB =0. ( )
The first and the second conditions are satisfied because U4 is null while the third is
satisfied because we furthermore know that V 4Upg = VU, due to our choice of Uy as

Oau. The most general expression for V,Up compatible with all of the above conditions
and the properties of U4 is given by

VaUp =UpaXp+UpXy4, (3.36)

where X 4 satisfies UAX 4 = 0 but is otherwise an arbitrary vector. Using that Vagpc = 0,
i.e. that

Vallge = UV Ve — UcVaVp — VeValc — VeVaUg, (3.37)
we find that
2 pIIC gV 4Tlge = 0, (3.38)
UPUCY 4llpe =0, (3.39)
M2 pUCV allpe = —Uallp® X, (3.40)
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where in the last relation we used (3.36). Hence V4Ilpc vanishes when projected along
directions orthogonal to Uy. Therefore, whereas in the NC case we had to demand equa-
tion (3.21) in the Carrollian case we need that (3.36) holds in order that the induced
connection comes from the Levi-Civita connection of the higher dimensional space-time.

3.3 Comparing Newton-Cartan and Carrollian space-times

As one can notice by comparing the discussions of sections 3.1 and 3.2 there are strong
similarities between the geometry of TNC and Carrollian space-times. In fact in [26] a
certain duality between the two geometries has been proposed. Here we will extend this
duality to include the TNC vector M, and the Carrollian vector M*. The TNC metric-like
objects are given by 7, and h,, whereas the Carrollian metric-like objects are given by v
and hy, suggesting the duality [26]

Ty & vt Py < WY, (3.41)

where TNC variables are written on the left and Carrollian fields on the right. When
including the vector M,, = m, — d,x for TNC geometry and M* for the Carrollian case
we propose to extend this duality to

M, < M", (3.42)
so that the remaining invariants are related by
e 7, Ry < B PP, (3.43)

where again on the left we have the TNC invariants EW, " and ® given in equa-
tions (3.2), (3.4) and (3.5) (with m, replaced by M,), respectively and on the right we
have the Carrollian invariants h**, 7, and ® given in equations (2.64), (2.65) and (2.66),
respectively. The duality (3.41) and (3.42) interchanges the Galilean and Carrollian light
cone structures in the sense that (3.41) relates the notions of metricity while (3.42) swaps
the notion of boost transformations.

When there is no coupling to ® on the TNC side and no coupling to ® on the Carrollian
side, there is another relation between TNC and Carrollian geometry that interchanges
like tensors as in (3.26). For example if we apply this duality to the Carrollian affine
connection (2.67) which has the property that it does not depend on ® we obtain

1 . . .

Ihy = =007, + 5h" (auhp,, + Ophy — a,,hM,) — WK, (3.44)
where now the extrinsic curvature is given by K, = —%E@EW. We recognize the first two
terms of (3.44) as the TNC connection that is independent of ® used in [15]. The third

term containing the extrinsic curvature is just a harmless tensorial redefinition of the TNC
connection. Put another way, in [15] we used the connection

1 N R R
Dy = =8* 97y + S (auh,,y + Oy — ayh“p) , (3.45)

17 -



obeying V0¥ = —h"?K,, but we could have equally absorbed the right hand side into the
TNC connection leading to (3.44) which obeys V9" = 0. This direct relation between
TNC and Carrollian affine connections does not extend to cases where the connections
depend on @ or ® as is obvious from the fact that then for example a Carrollian connection
no longer has the property that V7, = 0 (see also the discussion at the end of section 2.3).

4 Ultra-relativistic gravity

In [15] it was shown how one can make TNC geometries dynamical by using an effective field
theory approach where one writes all relevant and marginal terms that are second order
in time derivatives, preserve time reversal invariance leading to the most general forms
of Horava-Lifshitz gravity. Here we will start such an analysis for the case of dynamical
Carrollian geometries. Since these have an ultra-relativistic light cone structure we will
refer to the resulting theories as ultra-relativistic gravity. In order to decide whether a term
is relevant, marginal or irrelevant we need to assign dilatation weights to the Carrollian
fields 7, e}, and M*.

We can extend the Carroll algebra by adding dilatations D to it resulting in the
Lifshitz-Carroll algebra® [48, 49] whose extra commutators involving D are

ID,H] = —zH, [D,P]=-Py, [D,Cd=(1-2)0C,. (4.1)

We can thus assign dilatation weight —z to 7, and —1 to ef;. Further in order that 7,
and 7, have the same dilatation weights we assign a weight 2 — z to M*, i.e. under a local
D transformation with parameter Ap we have

dpTu = zApT,, (4.2)
(5[)62 = AD@Z’

dpMH = —(2 — z)ApM*H,
so that ® has dilatation weight 2(1 — 2), i.e.
Sp® = —2(1 - 2)Apd. (4.5)

Note that 7, and e}, have the same dilatation weights as in the case of TNC geometry but
that the weight of ® is opposite to that of ®. The reason for this is that in TNC geometry
the vector M), has dilatation weight z — 2 as follows for example from demanding that o
and v* in (3.4) both have the same dilatation weight z.

We will next consider actions in 2+1 dimensions with 0 < z < 1 by demanding local
Carrollian invariance, i.e. by demanding that the Carrollian fields 7, e}, and M* only enter
the action via the invariants 7, h,, and ®. Further we will impose that the action is at
most second order in time derivatives and preserves time reversal invariance.

3This algebra with z = 0 is realized in higher dimensional uplifts of Lifshitz space-times. For example a
z = 2 Lifshitz space-time can be uplifted to a 5-dimensional z = 0 Schrédinger space-time [43-47]. In order
to support this geometry one needs to add an axionic scalar which breaks the z = 0 Schrédinger algebra
down to the z = 0 Lifshitz-Carroll algebra.
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It is instructive to first consider the case with no coupling to ®. As can be expected
from the observations of section 3.3, where it is shown that a Carrollian geometry without ®
can be obtained from a TNC geometry without ® by interchanging like tensors as in (3.26),
the resulting actions should be of the HL: form, but with 0 < z < 1. Indeed using the results
of [15] and the map (3.26) the following action is consistent with our coupling prescription
for Carrollian gravity in 2 4+ 1 dimensions with 0 < z < 1

SO . 2
S — / e [C <KWKpoh“ph”" (W K) ) - v] : (4.6)
where e = det (7, ,ej;) which is invariant under local C' and J transformations, where
K,, = —%Evhw is the extrinsic curvature and where the potential V is taken to be
V=-2A4+cR+ @ﬁ’“’a#a,, ) (4.7)

In here we defined

R = ety Ry () = —eleye™ e R,0" (4.8)
ay, = Loy,

where the Riemann tensor R, ” is defined in (2.29) with the connection (2.67) and where
a, = L7, is the Carrollian counterpart of the TNC torsion vector a, = L;7, [15]. An
action of this type with A = 1 and no potential term was considered in [30, 31] as resulting
from the ¢ — 0 limit of the Einstein-Hilbert action.* All terms in (4.6) are relevant for
0 < z < 1 because the potential apart from the cosmological constant term involves terms
of dilatation weight 2 and the kinetic terms have dilatation weight 2z all of which are less
than 2 + z which is the negative of the dilatation weight of the integration measure e. The
case with z = 0 will be studied separately below. The dimensionless parameter A is the
same as the one appearing in HL gravity [27, 28].

Let us now introduce the scalar ®. The first thing to observe is that for any z > 0 we
can add the following coupling to the kinetic terms

- A A ~ 2
o <KWKpohW’h”" A (W Kw) ) : (4.10)

since this has dilatation weight 2 which is less than z + 2. Further we can always add a
term linear in ® to the potential since 2(1 — z) < 2+ 2 for 0 < z < 1. On the other hand
couplings such as ®R or a kinetic term for ® such as (v“é)u(i))2 have dilatation weight
4 — 2z and so in order that this is less than z + 2 we need z > 2/3. We will not consider
such terms as we are primarily interested in those terms that are generic for 0 < z < 1.
When we include ® we are thus led to the more general action

g — /d3:c€ [(0 + C19) (KHVKPJBMPEVU — A (BMVKW)2> - V] , (4.11)

41 would like to thank Marc Henneaux for useful discussions about the ¢ — 0 limit of the Einstein-
Hilbert action.
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where the potential is given by
V=20 + R+ cah™aya, + c3®. (4.12)

The equation of motion of ® imposes the constraint

~ N ~ 2
Ky Kpo WP = A (W) = (%3 . (4.13)
1

On the other hand the variation with respect to h,, will bring time derivatives onto P
upon partial integration making the scalar ® dynamical. It is interesting to contrast this
with the case 1 < z < 2 where we couple to TTNC geometry in the presence of o (section
11 of [15]) where the field ® imposes constraints on the terms in the potential rather than
on the kinetic terms. The parameters in (4.11) have the following mass dimensions

(O] = M2%, [C1) =M, [Al=M>**, [c] =[cs] = M?, [c3] =M. (4.14)

Finally we consider the special case z = 0 and show that one can construct a local
dilatation invariant action, i.e. an action with anisotropic Weyl invariance. Using that for
z = 0 the integration measure e has weight —2 we need to construct terms with weight 2.
Under local dilatations the extrinsic curvature transforms as (for general z)

5DK[U/ = (2 — Z)ADK;W — thpa,,AD . (4.15)

A . 2
It follows that K, K ,;h* h"" — % (h”” K W) is invariant under local scale transformations

with weight 2z. Using that for z = 0 the scalar ® has weight 2 we find that the following
term

_ S 1 /- 2
o (KWKpgh“phW -5 (hWK;w> ) , (4.16)
has weight 2 for z = 0. Other terms with weight 2 are

7 uv
M aya,,

D, (4.17)
jNA hHp Vo 1 v 2
W aya, ( K Kpahh' = 2 <h K,w) .
Hence the following action has anisotropic Weyl invariance with z =0
_ . L 1 /- 2
S = / dBae [(Clcb + Gl aya, ) (KWKpgh“ph”" -3 (7 Ko ) ) = v] . (4.18)
where the potential is given by
V=l aa, + c3® . (4.19)

This action with anisotropic Weyl invariance for z = 0 only has dimensionless coupling
constants.
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We note that the spatial Ricci scalar R transforms under local D transformations as
(in d = 2 spatial dimensions)

5pR = —2ApR + 20"V ,0,Ap . (4.20)

Different from the conformal TNC case (section 12 of [15]) here we cannot use the vector
a, to make a local D invariant combination out of R and derivatives of a, because for
z = 0 the vector a, is invariant under local D transformations.

5 Discussion

It would be interesting to extend this work in the following directions.

It has been known for a long time that the asymptotic symmetry algebra of asymp-
totically flat space-times is given by the Bondi-Metzner-Sachs (BMS) algebra [50-52] (see
also [53, 54]). In 3 bulk dimensions it has been shown that the BMS algebra is isomorphic
to the 2-dimensional Galilean conformal algebra [55, 56] (which is a contraction of the rel-
ativistic conformal group [57]). Recently conformal extensions of the Carroll algebra have
been studied in [13, 58] and it has been shown that the BMS algebra forms a conformal
extension of the Carroll algebra [13]. Regarding the case of flat space holography in 3 bulk
dimensions the Galilean structures seen at infinity can be interpreted as Carrollian be-
cause in 1+1 boundary dimensions interchanging space and time leads to an isomorphism
between the Carroll and Galilei algebras. Further, future and past null infinity form Car-
rollian space-times [13]. It could therefore be insightful to explore the connections between
the gauging of the Carroll algebra and flat space holography further.

The space-time symmetries of warped conformal field theories involve Carrollian boosts
that together with the scale transformations form the z = 0 Lifshitz-Carroll algebra [14].
It would be interesting to apply the methods for the gauging of the Carroll algebra as
performed here to study the coupling of these WCFTs to curved backgrounds.

More generally along similar lines one can couple field theories to Carrollian geome-
tries and study global symmetries by defining conformal Killing vectors, define an energy-
momentum tensor by varying the invariants 7, and h,, much like it was done for field
theories coupled to TNC geometries [3, 19, 22, 23]. It would be interesting to understand
what the role of the scalar ® is when coupling field theories to Carrollian geometries, i.e.
to understand what the response is to varying this background field.

Finally, one can study the actions for ultra-relativistic or Carrollian gravity further by
e.g. studying their phase space formulation, count the number of degrees of freedom, etc.
It would be interesting to generalize the 3-dimensional actions of ultra-relativistic gravity
constructed here to higher dimensions and to study the equations of motion by looking for
various classes of solutions such as cosmological and spherically symmetric space-times. It
would be interesting to study the perturbative properties of these theories for example by
linearizing around flat space-time and study the form of the propagators, etc.
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