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1 Introduction

Over the recent years it has become clear that non-relativistic symmetry groups play an

important role in many examples of non-AdS holography. This has been made most ap-

parent in the case of Lifshitz holography where it is has been shown that the boundary

geometry is described by Newton-Cartan geometry in the presence of torsion [1–3]. Further

also in the case of Schrödinger holography there are many hints that the boundary field

theory couples to a certain non-Riemannian geometry [4–8]. In AdS/CFT the fact that the

boundary geometry is described by Riemannian geometry, just like the bulk geometry, is a

special feature of the precise fall-off of the AdS metric (and its asymptotically locally AdS

generalizations [9, 10]) near the boundary. It is however not expected that the Riemannian

nature of the boundary geometry seen in AdS/CFT is a generic feature in other non-AdS

holographic dualities. Hence in order to better understand known candidates for non-AdS

holography we must learn how to describe various non-Riemannian geometries.

Recently it has been argued that the Carroll algebra, which can be obtained as an

ultra-relativistic limit (c → 0) of the Poincaré algebra [11, 12], plays an important role

in flat space holography [13]. The c → 0 contraction of the Poincaré algebra results in

a peculiar light cone structure where the light cone has collapsed to a line. The Carroll

algebra is given by

[Jab, Pc] = δacPb − δbcPa ,
[Jab, Cc] = δacCb − δbcCa ,
[Jab, Jcd] = δacJbd − δadJbc − δbcJad + δbdJac ,

[Pa, Cb] = δabH ,
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where a = 1, . . . , d. In here H is the Hamiltonian, Pa spatial momenta, Jab spatial rotations

and Ca Carrollian boosts. In Cartesian coordinates with time t and space coordinates

xi a Carrollian boost means t → t + ~v · ~x. In [13] it is shown that future and past null

infinity form Carrollian space-times and that the BMS algebra forms a conformal extension

of the Carroll algebra. It is therefore of interest to understand in full generality what

Carrollian space-times are and how field theories couple to them (see e.g. the work of [14]

on coupling warped conformal field theories to geometries obtained by gauging the Carroll

algebra). When gauging this algebra we associate vielbeins τµ and eaµ to the time and space

translation generators H and Pa, respectively.

For the case of relativistic field theories we know that they couple to Riemannian ge-

ometry. The latter and its torsionful extension, known as Riemann-Cartan geometry, can

be obtained by a procedure known as gauging the Poincaré algebra (see e.g. appendix A

of [15]). Similar gauging techniques also allow one to describe torsional Newton-Cartan

(TNC) geometry which was found in a holographic context in [1, 3, 16, 17]. We refer

to [3, 18–23] for the use of TNC geometry in a field theoretical context (see [24] for a

nice geometrical account of TNC geometry). In order to obtain torsional Newton-Cartan

geometry one gauges the centrally extended Galilei algebra known as the Bargmann alge-

bra [2, 15, 25].

Given the relevance of the Carroll algebra to flat space holography it is a natural

question to ask if we can gauge the Carroll algebra and what the resulting geometrical

structure is. The gauging of the Carroll algebra will be discussed in section 2. First this

is done in full generality involving the Carrollian vielbeins τµ, eaµ and a Carrollian metric

compatible affine connection Γρµν . Then we introduce a contravariant vector Mµ and show

that the Carrollian metric compatible affine connection Γρµν can fully be written in terms

of τµ, eaµ and Mµ. The role of Mµ is to ensure that Γρµν when written in terms of the

Carrollian vielbeins remains invariant under local (tangent space) Carrollian boosts. In

the next section, section 3, it will be shown that the resulting geometrical structure can

be realized as the geometry induced on a null hypersurface embedded in a Lorentzian

space-time of one dimension higher. Further in section 3 we show that the duality between

Newton-Cartan and Carrollian space-times observed in [26] can be extended when we

include the vector Mµ. The Newton-Cartan dual of Mµ is a co-vector Mµ that can be

written as mµ−∂µχ where mµ is the connection corresponding to the Bargmann extension

of the Galilei algebra and χ is a Stückelberg scalar that must be added to the formalism

whenever there is torsion [1, 2, 15].

In [15] it has been shown that when torsional Newton-Cartan geometry is made dy-

namical the resulting theory of gravity corresponds to Hořava-Lifshitz gravity [27, 28]

including the extension of [29]. More specifically, depending on the type of torsion, one is

either dealing with projectable (no torsion) or non-projectable (so-called twistless torsion)

HL gravity. In both these cases there is a preferred foliation of spacelike hypersurfaces. The

case of general torsion is an extension of HL gravity in which the timelike vielbein is not

required to be hypersurface orthogonal. Since the tangent space group in HL gravity is the

Galilean group it is natural to refer to this type of gravitational theories as non-relativistic

theories of gravity. In the same spirit, the Carrollian geometry can be made dynamical.

– 2 –
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We do this using an effective action approach. By this we mean that we assign dilatation

weights to the Carrollian fields τµ, eaµ and Mµ and allow for all possible terms that are

relevant or marginal and invariant under local tangent space (Carrollian) transformations.

Since the tangent space light cone structure is ultra-relativistic we refer to this as ultra-

relativistic gravity. They naturally come with a dynamical exponent z < 1. We show that

for z = 0 one can construct actions that are invariant under anisotropic Weyl rescalings of

the Carrollian fields τµ, eaµ and Mµ. All of this will be the subject of section 4.

A special case of such Carrollian theories of gravity are obtained from the ultralocal

(in the sense of no space derivatives) limit of general relativity (GR) that was studied

in [30, 31] by sending the speed of light to zero. This Carrollian limit of GR is also referred

to as the strong coupling limit in which Newton’s constant tends to infinity as this has the

same effect as sending c to zero [32, 33]. Further the Carrollian limit also features in the

near horizon limit of embedded branes [34], tachyon condensation [35] and cosmological

billiards [36].

Note added. While this manuscript was being finalized, the preprint [37] appeared on

the arXiv, which overlaps with the results of sections 2 and 3.

2 Gauging the Carroll algebra

2.1 From local Carroll to diffeomorphisms and Carrollian light cones

The Carroll algebra is obtained as a contraction of the Poincaré algebra by sending the

speed of light to zero [11, 12]. The nonzero commutators of the Carroll algebra are

[Jab, Pc] = δacPb − δbcPa , (2.1)

[Jab, Cc] = δacCb − δbcCa , (2.2)

[Jab, Jcd] = δacJbd − δadJbc − δbcJad + δbdJac , (2.3)

[Pa, Cb] = δabH , (2.4)

where a = 1, . . . , d. We thus see that the algebra is isomorphic to the semi-direct product

of SO(d) with the Heisenberg algebra whose central element is the Hamiltonian.

In order to gauge the algebra we follow the procedure of [15, 25] where the gauging

of the Galilei algebra and its central extension, the Bargmann algebra, were discussed

(without torsion [25] and including torsion [15]). For an earlier discussion of gauging the

Carroll algebra see [38].

We define a connection Aµ as

Aµ = Hτµ + Pae
a
µ + CaΩµ

a +
1

2
JabΩµ

ab , (2.5)

where µ takes d + 1 values related to the fact that there is one time and d space trans-

lation generators. We thus work with a (d + 1)-dimensional space-time. This connection

transforms in the adjoint as

δAµ = ∂µΛ + [Aµ,Λ] . (2.6)

– 3 –
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Without loss of generality we can write Λ as

Λ = ξµAµ + Σ , (2.7)

where Σ is given by

Σ = Caλ
a +

1

2
Jabλ

ab . (2.8)

We would like to think of ξµ as the generator of diffeomorphisms and Σ as the internal

(tangent) space transformations. To this end we introduce a new local transformation

denoted by δ̄ that is defined as

δ̄Aµ = δAµ − ξνFµν = LξAµ + ∂µΣ + [Aµ,Σ] , (2.9)

where Fµν is the field strength

Fµν = ∂µAν − ∂νAµ + [Aµ,Aν ]

= HRµν(H) + PaRµν
a(P ) + CaRµν

a(C) +
1

2
JabRµν

ab(J) . (2.10)

In components the δ̄ transformations act as

δ̄τµ = Lξτµ + eaµλa , (2.11)

δ̄eaµ = Lξeaµ + λabe
b
µ , (2.12)

δ̄Ωµ
a = LξΩµ

a + ∂µλ
a + λabΩµ

b − λbΩµ
ab , (2.13)

δ̄Ωµ
ab = LξΩµ

ab + ∂µλ
ab + λacΩµ

cb − λbcΩµ
ca . (2.14)

The Lie derivatives along ξµ correspond to the generators of general coordinate transforma-

tions whereas the remaining local transformations with parameters λa and λab correspond

to local tangent space transformations.1 The tangent space has a Carrollian light cone

structure by which we mean that the light cones have collapsed to a line. This can be seen

from the fact that there are no boost transformations acting on the spacelike vielbeins eaµ.

The component expressions for the field strengths read

Rµν(H) = ∂µτν − ∂ντµ + eaµΩνa − eaνΩµa , (2.15)

Rµν
a(P ) = ∂µe

a
ν − ∂νeaµ − Ωµ

abeνb + Ων
abeµb , (2.16)

Rµν
a(C) = ∂µΩν

a − ∂νΩµ
a − Ωµ

abΩνb + Ων
abeµb , (2.17)

Rµν
ab(J) = ∂µΩν

ab − ∂νΩµ
ab − Ωµ

caΩν
b
c + Ων

caΩµ
b
c . (2.18)

2.2 The affine connection

The next step is to impose vielbein postulates allowing us to describe the properties of

the curvatures in Fµν in terms of the curvature and torsion of an affine connection Γρµν

1We emphasize that in order to obtain the δ̄ transformations, i.e. the diffeomorphisms and local tangent

space transformations we did not need to impose any so-called curvature constraints. For a discussion of

the curvature constraints we refer the reader to section 2.3.
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that by definition is invariant under the tangent space Σ transformations. We define the δ̄

covariant derivative Dµ as

Dµτν = ∂µτν − Γρµντρ − Ωµae
a
ν , (2.19)

Dµeaν = ∂µe
a
ν − Γρµνe

a
ρ − Ωµ

a
be
b
ν . (2.20)

The form of the covariant derivatives is uniquely fixed by demanding covariance. The

vielbein postulates are then

Dµτν = 0 , (2.21)

Dµeaµ = 0 . (2.22)

We choose the right hand side to be zero because i). it obviously transforms covariantly and

ii). even if we could write something else that transforms covariantly we can absorb this into

the definition of Γρµν . We can now solve for Ωµa and Ωµ
a
b in terms of Γρµν by contracting

the vielbein postulates with the inverse vielbeins vµ and eµa that are defined via

vµτµ = −1 , vµeaµ = 0 , eµaτµ = 0 , eµae
b
µ = δba . (2.23)

They transform under the δ̄ transformations as

δ̄vµ = Lξvµ , (2.24)

δ̄eµa = Lξeµa + vµλa + λa
beµb , (2.25)

and they satisfy the inverse vielbein postulates

Dµvν = ∂µv
ν + Γνµρv

ρ = 0 , (2.26)

Dµeνa = ∂µe
ν
a + Γνµρe

ρ
a − vνΩµa − Ωµa

beνb = 0 . (2.27)

From (2.19)–(2.22) it follows that the torsion Γρµν relates to the curvatures Rµν(H)

and Rµν
a(P ) via

2Γρ[µν] = −vρRµν(H) + eρaRµν
a(P ) . (2.28)

We can define a Riemann tensor in the usual way as follows

[∇µ,∇ν ]Xσ = Rµνσ
ρXρ − 2Γρ[µν]∇ρXσ , (2.29)

where ∇µ only contains the affine connection and where Rµνσ
ρ is given by

Rµνσ
ρ = −∂µΓρνσ + ∂νΓρµσ − ΓρµλΓλνσ + ΓρνλΓλµσ . (2.30)

Using the vielbein postulates, i.e. the relation between the affine connection and the tangent

space connections, we find

Rµνσ
ρ = −vρeσaRµνa(C)− eσaeρbRµν

ab(J) . (2.31)
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We have traded the connections Ωµ
a and Ωµ

ab for Γρµν . The latter connection has more

components and so they cannot all be free. In fact the vielbein postulates (2.21)–(2.27)

constrain Γρµν in the following way

∇µvν = 0 , ∇µhνρ = 0 , (2.32)

where we defined hµν = δabe
a
µe
b
ν . We will also adopt the notation hµν = δabeµaeνb . In order

to find out what the independent components of Γρµν are we will obtain the most general so-

lution to these metric compatibility equations. We note that both vµ and hµν are invariant

under the tangent space transformations. They form the notion of Carrollian metrics.

We start with the condition ∇µhνρ = 0. By permuting the indices and summing the

resulting equations appropriately we obtain

2Γσ(µρ)hνσ = ∂µhνρ + ∂ρhµν − ∂νhρµ − 2Γσ[µν]hσρ − 2Γσ[ρν]hµσ . (2.33)

Contracting this equation with vν we find

Kµρ = −vνhσρΓσ[νµ] − v
νhσµΓσ[νρ] , (2.34)

where the extrinsic curvature Kµρ is defined as

Kµρ = −1

2
Lvhµρ . (2.35)

From (2.34) we conclude that

Γρ[νµ] = τ[νKµ]λh
σλ +Xσ

[νµ] , (2.36)

where Xσ
[νµ] is such that

vνhσρX
σ
[νµ] + vνhσµX

σ
[νρ] = 0 . (2.37)

Substituting (2.36) into (2.33) and adding 2Γσ[µρ]hνσ to both sides (using (2.36)) we obtain

2Γσµρhνσ = ∂µhνρ + ∂ρhµν − ∂νhρµ + 2τ[νKµ]ρ + 2τ[νKρ]µ + 2τ[µKρ]ν

+2Xσ
[νµ]hσρ + 2Xσ

[νρ]hσµ + 2Xσ
[µρ]hνσ . (2.38)

Contracting this with hνλ and using hνσh
νλ = δλσ + τσv

λ we find the following most general

solution to ∇µhνρ = 0

Γλµρ = −vλτσΓσµρ +
1

2
hνλ (∂µhνρ + ∂ρhµν − ∂νhρµ)− hνλτρKµν

+hνλ
(
Xσ

[νµ]hσρ +Xσ
[νρ]hσµ +Xσ

[µρ]hνσ

)
. (2.39)

By contracting this result with vρ it can be shown that(
δλρ + vλτρ

)
∇µvρ = 0 , (2.40)

so that in order to find the most general Γρµν obeying both ∇µvν = 0 and ∇µhνρ = 0 it

remains to impose

τρ∇µvρ = 0 . (2.41)

– 6 –
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This latter condition is equivalent to vρ∇µτρ = 0 so that

Γσµρτσ = ∂µτρ +Xµρ , (2.42)

with

Xµρ = −∇µτρ = −Ωµae
a
ρ , (2.43)

satisfying

vρXµρ = 0 . (2.44)

We thus conclude that the most general Γλµρ is of the form

Γλµρ = −vλ∂µτρ +
1

2
hνλ (∂µhνρ + ∂ρhµν − ∂νhρµ)− hνλτρKµν

−vλXµρ +
1

2
hνλYνµρ , (2.45)

where Yνµρ is given by

Yνµρ = 2Xσ
[νµ]hσρ + 2Xσ

[νρ]hσµ + 2Xσ
[µρ]hνσ , (2.46)

which has the property that vνYνµρ = vρYνµρ = 0 as follows from (2.37). The connec-

tion (2.45) has torsion that is given by

Γλ[µρ] = −vλ∂[µτρ] − hνλτ[ρKµ]ν − vλX[µρ] +
1

2
hνλYν[µρ] . (2.47)

An alternative way of writing (2.45) that makes manifest the property ∇µvν = 0 is as

follows

Γλµρ = τρ∂µv
λ − hρσ∂µhσλ +

1

2
hρσh

κσhνλ (∂κhµν − ∂µhνκ − ∂νhµκ)

−vλXµρ +
1

2
hνλYνµρ . (2.48)

The requirement is that Γρµν transforms as an affine connection under general coordi-

nate transformations and remains inert under C and J (tangent space) transformations.

The first line of (2.45) transforms affinely, i.e. it has a term ∂µ∂ρξ
λ plus terms that trans-

form tensorially. In fact the last term of the first line containing the extrinsic curvature

transforms as a tensor and is thus not responsible for producing the ∂µ∂ρξ
λ term. This

means that all terms on the second line of (2.45) must transform as tensors, i.e. Xµρ and

Yνµρ transform as tensors under general coordinate transformations.

As a check that we have in fact managed to write all the components of Ωµ
a and Ωµ

ab

in terms of a Carrollian metric compatible Γρµν we count the number of components in

hσρX
σ
[νµ] (since this determines Yνµρ via equation (2.2)) and Xµν . The tensor hσρX

σ
[νµ]

has 1
2(d+ 1)2d− 1

2d(d+ 1) = 1
2d

2(d+ 1) components and it satisfies 1
2d(d+ 1) constraints

vνhσρX
σ
[νµ]+v

νhσµX
σ
[νρ] = 0 giving 1

2(d+1)d2− 1
2d(d+1) = 1

2(d−1)d(d+1) free components.

The tensor Xµν has (d+1)2 components satisfying (d+1) constraints vνXµν giving d(d+1)

free components. Together this gives d(d+1)((d−1)+2)/2 = d(d+1)2/2 components which

is also the number of components in Ωµ
a (d(d+1) components) and Ωµ

ab ((d+1)d(d−1)/2

– 7 –
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components). Equation (2.43) expresses the relation between Xµρ and Ωµ
a. Using that

the vielbein postulates (2.21) and (2.22) imply

Γρµν = −vρ∂µτν + vρΩµae
a
ν + eρa∂µe

a
ν − Ωµ

a
be
ρ
ae
b
ν , (2.49)

we obtain the following relation between Ωµ
a
b and hρσYσµν

1

2
hρσYσµν = −1

2
hρσ (∂µhσν + ∂νhµσ − ∂σhµν) + hρστνKµσ + eρa∂µe

a
ν − Ωµ

a
be
ρ
ae
b
ν . (2.50)

Finally in order that our Γρµν satisfies all the required properties we must ensure that

it is invariant under local C and J transformations. It is manifestly J invariant so we are

left to ensure local C invariance. Using that

δCτµ = λµ , (2.51)

δCh
µν = (hµσvν + hνσvµ)λσ , (2.52)

where λµ = eaµλa, one can shown that Γρµν is C invariant if and only if Xµρ and Yνµρ
transform as

δCXµρ = −
(
∂µλρ − Γσµρλσ

)
, (2.53)

δCYνµρ = 2λρKµν − 2λνKµρ . (2.54)

These transformation rules are compatible with the properties vρXµρ = 0 and vνYνµρ =

vρYνµρ = 0. For the transformation of Xµρ this is by virtue of λν∇µvν = 0 (i.e. metric

compatibility). The transformation of Xµρ involves the connection Γρµν . However it does

not involve the tensor Xµρ on the right hand side of (2.53) because Γρµν is contracted with

λρ which has the property that vρλρ = 0. In fact we can rewrite the right hand side

of (2.53) as follows. Using (2.45) we find

Γσµρλσ =
1

2
(∂µλρ + ∂ρλµ)− 1

2
Luhµρ +

1

2
uντρLvhµν +

1

2
uνYνµρ , (2.55)

where we defined the vector uµ = hµσλσ and where we used (2.35). Using that

uνLvhµν = vν (∂νλµ − ∂µλν)− vνLuhµν , (2.56)

we obtain for δCXµρ the result

δCXµρ = −1

2

(
δνρ + τρv

ν
)

(∂µλν − ∂νλµ + Luhµν) +
1

2
uκYκµρ , (2.57)

making it manifest that δC (vρXµρ) = vρδCXµρ = 0. One may wonder why there is a

term transforming into uκYκµρ. The reason is that the transformation of hνλYνµρ in (2.45)

produces such terms through (2.52) and these need to be cancelled.

Using (2.55) and (2.35) we can also write the variation of Xµρ in the following manner

δCXµρ = −1

2
(∂µλρ − ∂ρλµ)− 1

2
Luhµρ +

1

2
uν (Yνµρ − 2τρKµν + 2τνKµρ) . (2.58)

– 8 –



J
H
E
P
0
8
(
2
0
1
5
)
0
6
9

This way of writing δCXµρ is useful when one tries to write the right hand side as the

δC of something which we will do in the next subsection. The term uντνKµρ has been

added to make manifest that uν contracts a term that is C-boost invariant. Of course

because uντν = 0 the added term vanishes. If we write in (2.58) and likewise in (2.54) the

parameter λµ = hµνu
ν then uµ always contracts or multiplies a term that is manifestly

Carrollian boost invariant. This is not the case for the parameter λµ because it sometimes

is contracted with hµν which is not invariant under local C transformations.

2.3 Introducing the vector Mµ

So far we have considered the most general case where the δ̄ transformations are realized

on the set of fields τµ, eaµ, Ωµ
a and Ωµ

ab or what is the same τµ, eaµ and Γρµν where the

latter is metric compatible in the sense that ∇µvν = ∇µhνρ = 0. In the remainder we will

realize the algebra on a smaller set of fields.

Sometimes when gauging algebras, as happens e.g. when gauging the Poincaré algebra,

it is possible to realize the δ̄ transformations on a smaller set of fields by imposing curvature

constraints whose effect is to make some of the connections in Aµ dependent on other

connections in Aµ. For example in the case of the gauging of the Poincaré algebra setting

the torsion to zero, i.e. imposing the curvature constraint Rµν
a(P ) = 0 (where P denotes

the space-time translations), enables one to express the spin connection coefficients ωµ
ab

in terms of eaµ.

In the case of the gauging of the Bargmann algebra imposing curvature constraints

(without introducing new fields) to write the Galilean boost and spatial rotation connec-

tions in terms of the vielbeins and the central charge gauge connection is only possible when

there is no torsion [25]. When there is torsion the curvature constraints become dependent

on an additional Stückelberg scalar field χ that is not present in Aµ. This field needs to

be added to ensure the correct transformation properties of the Galilean boost and spatial

rotation connections when writing them as dependent gauge connections [1, 2, 15]. In

the context of formulating Hořava-Lifshitz (HL) gravity as a theory of dynamical torsional

Newton-Cartan geometry [15] the Stückelberg scalar field χ plays an important role in mak-

ing the identification between TNC and HL variables. In the context to Hořava-Lifshitz

gravity this field was introduced in [29] and dubbed the Newtonian prepotential.

In the case of field theory on Newton-Cartan space-times including torsion is crucial

because it allows one to compute the energy current [1, 16, 17, 19, 23]. The fact that one

needs to introduce an extra Stückelberg scalar field to the formalism when there is torsion

does not mean that any field theory on such a background has a non-trivial response to

varying the Stückelberg scalar. It can happen that there are additional local symmetries

in the model that allow one to remove this field from the action [3, 23]. The main message

is that once we start imposing curvature constraints the resulting reduced set of fields on

which the algebra is realized do not need to correspond to a constrained algebra gauging

and may involve new fields.

In both the gauging of the Poincaré algebra and of the Bargmann algebra the effect

of the curvature constraints is to make the connection Γρµν a fully dependent connection.
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Imposing the curvature constraint Rµν
a(P ) = 0 in the Poincaré case leads to the Levi-

Cività connection.2

In the case of the gauging of the Bargmann algebra in the presence of torsion the

algebra of δ̄ transformations is realized on τµ, eaµ and Mµ = mµ − ∂µχ. One can also say

that from the point of view of gauging the Galilei algebra one needs to add the vector

Mµ to construct a Γρµν that obeys all the properties of an affine connection [15]. In other

words from the point of view of adding curvature constraints to the gauging of the Galilei

algebra we add a vector Mµ with appropriately chosen transformation properties to realize

the algebra on the smaller number of fields τµ, eaµ and Mµ as opposed to τµ, eaµ, Ωµ
a (local

Galilean boosts) and Ωµ
ab (local spatial rotations).

In the case discussed here we will realize the algebra of δ̄ transformations on τµ, eaµ
and a contravariant vector field Mµ where Mµ transforms under the δ̄ transformations as

δ̄Mµ = LξMµ + eµaλ
a = LξMµ + hµνλµ = LξMµ + uµ . (2.59)

We are not aware of an extension of the Carroll algebra such that Mµ can be constructed

from the additional connections appearing in Aµ corresponding to the extended Carroll

algebra. The guiding principle will be to write Γρµν in terms of τµ, eaµ and Mµ in such a

way that it obeys all the required properties. In other words we need to write the tensors

Xµρ and Yσµν in terms of τµ, eaµ and Mµ ensuring that they transform correctly under the

δ̄ transformations. A raison d’être for the vector Mµ will be given in the next section.

One of the benefits of working with Xµρ and Yσµν is that their transformation properties

under local tangent space C and J transformations is much simpler than for the equivalent

set of objects Ωµ
a and Ωµ

ab. Both Xµρ and Yσµν are invariant under J transformations and

their the C transformations are given in (2.53) (or equivalently (2.58)) and (2.54). We will

now use the additional Mµ vector to write down a realization of Xµρ and Yσµν in terms of

τµ, eaµ and Mµ.

Using (2.58) and (2.59) we can write

0 = δC

(
Xµρ +

1

2
∂µ (hρσM

σ)− 1

2
∂ρ (hµσM

σ) +
1

2
LMhµρ

−1

2
Mν (Yνµρ − 2τρKµν + 2τνKµρ)

)
. (2.60)

Hence a realization of Xµρ (but not the most general one) is to write

Xµρ = −1

2
∂µ (hρσM

σ) +
1

2
∂ρ (hµσM

σ)− 1

2
LMhµρ

+
1

2
Mν (Yνµρ − 2τρKµν + 2τνKµρ) , (2.61)

obeying vρXµρ = 0. Likewise for Yνµρ we can take

Yνµρ = 2hρσM
σKµν − 2hνσM

σKµρ , (2.62)

2There also exists the possibility to set the Riemann curvature 2-form Rµν
ab(M), where M is the

generator of Lorentz transformations, equal to zero. This leads to the so-called Weitzenböck connection

(see for example [39]). We refer to [14] for similar ideas in the context of gauging the Carroll algebra.
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which transforms as in (2.54) and obeys vνYνµρ = vρYνµρ = 0. Substituting (2.61)

and (2.62) into (2.45) we obtain

Γλµρ = −vλ∂µτ̂ρ +
1

2
h̄νλ (∂µhρν + ∂ρhµν − ∂νhµρ)− h̄νλτ̂ρKµν + h̄νλτ̂νKµρ , (2.63)

where we defined

τ̂µ = τµ − hµνMν , (2.64)

h̄µν = hµν −Mµvν −Mνvµ , (2.65)

which are manifestly C invariant. Another C invariant (scalar) quantity that we can define

is Φ̄ which is given by

Φ̄ = −Mντν +
1

2
hνσM

νMσ . (2.66)

The affine connection (2.63) has the property that if we replace all h̄µν by Hµν = h̄µν +

αΦ̄vµvν the resulting expression for Γλµρ remains unchanged, i.e. does not depend on α.

Hence we can take α = 2 and write for Γλµρ in (2.63)

Γλµρ = −vλ∂µτ̂ρ +
1

2
ĥνλ (∂µhρν + ∂ρhµν − ∂νhµρ)− ĥνλτ̂ρKµν , (2.67)

where ĥνλ is defined by

ĥνλ = h̄νλ + 2Φ̄vνvλ , (2.68)

for which τ̂µĥ
µν = 0. The connection (2.67) is independent of Φ̄ because it can be shown

that Mµ appears in τ̂µ and ĥµν only via hµνM
ν . This is made more manifest below

following the discussion around equations (2.70) and (2.73).

The connection (2.63) satisfies by design the metric compatibility conditions ∇µvν =

∇µhνρ = 0. However it also satisfies the conditions

∇µτ̂ν = ∇µĥνρ = 0 , (2.69)

where ∇µτ̂ν follows immediately by inspection of (2.63) using that ĥµν τ̂ν = 0. The second

property ∇µĥνρ = 0 follows from all the other metric compatibility conditions and the fact

that ĥνρ is fully determined once τ̂µ and hµν are known. The property ∇µτ̂ν = 0 implies

that ∇µτρ = ∇µ (hρσM
σ) = −Xµρ where we used (2.64) and (2.43) and is compatible with

the transformation under local C transformations given in (2.53). We stress though that

the properties (2.69) are special for the particular realization of Γλµρ given in (2.63) and

will not be true for other realizations of Γλµρ that for example also depend on the scalar

invariant Φ̄.

We can define a new set of vielbeins τ̂µ, eaµ whose inverse is vµ, êµa with the latter

defined by

êµa = eµa −Mρeρav
µ . (2.70)

These new vielbeins satisfy

vµτ̂µ = −1 , vµeaµ = 0 , êµa τ̂µ = 0 , êµae
b
µ = δba . (2.71)
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Out of these objects we can build a Lorentzian symmetric rank two tensor gµν via

gµν = −τ̂µτ̂ν + hµν = −τ̂µτ̂ν + δabe
a
µe
b
ν , (2.72)

whose inverse is

gµν = −vµvν + ĥµν = −vµvν + δabêµa ê
ν
b . (2.73)

Since the connection (2.63) satisfies ∇µτ̂ν = ∇µhνρ = 0 it in particular obeys ∇µgνρ =

0. Since it furthermore has torsion the connection (2.63) must be a special case of a

Riemann-Cartan connection. By this we mean a torsionful connection obeying ∇µgνρ = 0.

Any such connection must be of the form [39]

Γλµρ =
1

2
gνλ (∂µgρν + ∂ρgµν − ∂νgµρ) + gνλ

(
Γκ[νρ]gκµ + Γκ[νµ]gκρ + Γκ[µρ]gκν

)
. (2.74)

By using (2.72) and (2.73) we can show that (2.63) is of this form with torsion given by

Γλ[µρ] = −vλ∂[µτ̂ρ] − ĥνλτ̂[ρKµ]ν , (2.75)

compatible with (2.47).

The connection (2.63) is not the most general affine connection compatible with our

requirements. We still have the freedom to add to Xµρ and Yνµρ terms that are invariant

under local Carrollian boosts. When we add a term to Yνµρ we should also add the

corresponding term to (2.61) because 1
2M

νYνµρ appears in Xµρ. Further any term added

to Yνµρ must obey the property that when contracted with vν or vρ it vanishes since Yνµρ
obeys this property. Equation (2.67) is independent of Φ̄ and the only terms that we can

still add to Γρµν without affecting its properties come from Φ̄ dependent terms that we add

to Xµρ and Yνµρ. An example of such a term is to add to Xµρ a term proportional to

Φ̄Kµρ which is C invariant and orthogonal to vρ. The effect is to redefine Γλµρ by a term

proportional to Φ̄vλKµρ. Yet another term that we can add to Xµρ compatible with Γλµρ
remaining invariant under C, J transformations, transforming affinely, and being metric

compatible in the Carrollian sense, is a term proportional to hµρv
σ∂σΦ̄. Any of these affine

connections is an allowed connection and so one can choose them to suit one’s convenience.

The same phenomenon happens for the case of torsional Newton-Cartan (TNC) geometry.

Sometimes it is useful to work with a TNC connection that does not depend on the scalar

Φ̃ (the TNC counterpart of Φ̄ defined in (3.5)) as is for example the case when making

contact with Hořava-Lifshitz gravity [15] and sometimes it is useful to work with a TNC

connection depending linearly on Mµ as is for example the case when coupling field theories

with particle number symmetry to TNC backgrounds [3, 22, 23].

3 The geometry on null hypersurfaces

A natural example of a space-time with a Carrollian metric structure is a null hypersurface

embedded into a Lorentzian space-time of one dimension higher [13, 26]. Before introducing

a Carrollian space-time as the geometry on a null hypersurface it is useful to consider first

the case of a Newton-Cartan space-time as the geometry orthogonal to a null Killing vector.

This will also enable us to compare the two cases later.
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3.1 Newton-Cartan space-time

It is well known that Newton-Cartan geometry on a manifold with coordinates xµ can be

obtained by null reduction [16, 17, 40–42], i.e. by starting from a Lorentzian space-time

with one extra dimension u whose metric is of the form

ds2 = 2τµdx
µ (du−mνdx

ν) + hµνdx
µdxν

= 2τµdx
µdu+ h̄µνdx

µdxν , (3.1)

where we take ∂u to be a Killing vector so that τµ and h̄µν are independent of u and where

h̄µν = hµν −mµτν −mντµ . (3.2)

Note that for this metric we have guu = 0. The inverse metric components are

gµν = hµν , gµu = −v̂µ , guu = 2Φ̃ , (3.3)

where

v̂µ = vµ − hµνmν , (3.4)

Φ̃ = −vµmµ +
1

2
hµνmµmν . (3.5)

The metric (3.1) is the most general Lorentzian metric with a null Killing vector ∂u. The

coordinate transformations that preserve the form of the null Killing vector are

u′ = u− σ(x) , (3.6)

x′µ = x′µ(x) . (3.7)

Under the shift in u the vector mµ transforms as a U(1) connection

m′µ = mµ − ∂µσ . (3.8)

A TNC metric compatible connection can be found by taking the Levi-Cività connection of

the higher dimensional space-time with all its legs in the xµ directions and to add torsion

to this by hand so as to make it metric compatible in the TNC sense, i.e. ∇µτν = ∇µhνρ =

0 [16, 17]. Instead of speaking about null reduction, one can say that TNC geometry is the

geometry on the space-time orthogonal to the null Killing vector ∂u.

If we insist that the connection on the TNC space-time is naturally induced from the

Levi-Cività connection on the higher dimensional space-time we need to impose that ∂u is

hypersurface orthogonal. To see this write for the higher dimensional metric

ds2 = gABdx
AdxB = (UAVB + UBVA + ΠAB) dxAdxB , (3.9)

where xA = (u, xµ). The vectors UA and VA are nullbeins defined by

UAUA = 0 , V AVA = 0 , UAVA = −1 , UAΠAB = V AΠAB = 0 . (3.10)
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We choose UA = (∂u)A, so that

Uu = 0 , Uµ = −τµ , Vu = −1 , Vµ = mµ , ΠuA = 0 , Πµν = hµν , (3.11)

and

V u = −vµmµ , V µ = −vµ , Πuu = hµνmµmν , Πuµ = hµνmν , Πµν = hµν . (3.12)

In order that we have a TNC connection on the space-time orthogonal to UA we demand

that ∇AUB projected along all directions orthogonal to UA gives zero, i.e.

UAUB∇AUB = 0 , (3.13)

UAΠB
C∇AUB = 0 , (3.14)

ΠA
CU

B∇AUB = 0 , (3.15)

ΠA
CΠB

D∇AUB = 0 , (3.16)

where ∇A contains the Levi-Cività connection. These conditions lead to the TNC metric

compatibility condition ∇µτν = 0. Likewise to obtain ∇µhνρ = 0 we impose that ∇AΠBC

with all indices projected onto directions orthogonal to UA gives zero. Since we have

∇AΠBC = −UB∇AV C − V C∇AUB − UC∇AV B − V B∇AUC , (3.17)

which follows from the fact that ∇AgBC = 0 we obtain

ΠD
BΠE

C∇AΠBC = 0 , (3.18)

UBUC∇AΠBC = 0 , (3.19)

ΠD
BUC∇AΠBC = −ΠDC∇AUC . (3.20)

Hence to enforce ∇µhνρ = 0 we only need that ΠDC∇AUC contracted with UA and ΠA
B

gives zero. These conditions are already imposed in (3.14) and (3.16). Since UA is a null

Killing vector equations (3.13) to (3.15) together with the symmetric part of (3.16) are

satisfied. What remains is to impose that the spatial projection of the antisymmetric part

of ∇AUB vanishes which is equivalent to demanding that UA is hypersurface orthogonal.

Put another way it must be that

∇AUB = UAXB − UBXA , (3.21)

for some vector XA obeying UAXA = 0 (as follows from the fact that UA is a null Killing

vector and thus geodesic) but otherwise arbitrary in order that the Levi-Cività connection

induces a Newton-Cartan connection on the space-time orthogonal to ∂u. Since the left

hand side of (3.21) is just 1
2 (∂AUB − ∂BUA) and Xu = 0 the only non-trivial component

of (3.21) is when A = µ and B = ν expressing the fact that τµ is hypersurface orthogonal,

but not necessarily closed. This is the case referred to as twistless torsional Newton-Cartan

geometry (TTNC) [16, 17]. In this case metric compatibility ∇µτν = 0 requires a torsionful

connection. We can thus obtain a torsionful connection from a Riemannian geometry by

projecting along directions orthogonal to a hypersurface orthogonal null Killing vector.
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One may wonder how this is possible since the connection of the Riemannian space-

time is symmetric. From the properties of UA we infer that

∂µτν + ∂ντµ = 2Γρ(g)µντρ , (3.22)

∂µτν − ∂ντµ = 2τµXν − 2τνXµ , (3.23)

where Γρ(g)µν is the Levi-Cività connection with all indices in the xµ directions. From the

first of these two equations we read off that the symmetric part of TNC connection satisfies

Γρ(µν)τρ = Γρ(g)µντρ. In order to repackage these equations into ∇µτν = 0 we see that Xµ

contributes to a torsion tensor Γρ[µν]τρ = τµXν − τνXµ. In other words the torsion can be

introduced due to the fact that we are dealing with a geometry orthogonal to a null vector

UA so that there is a certain arbitrariness encoded in XA when solving for (3.16). The

torsion is thus described by a vector Xµ. In [15] the torsion vector is denoted by aµ which

relates to Xµ via aµ = −2Xµ. It determines whether we are dealing with projectable or

non-projectable Hořava-Lifshitz gravity.

The conditions (3.21) together with UA being a null Killing vector guarantee that

a TTNC metric compatible Γρµν exists but the projection equations onto the space-time

orthogonal to UA do not tell one the precise form of this connection. This is to be expected

since there is a certain arbitrariness in the expression for Γρµν .

We recall that in order to write an expression for Γρµν in terms of the TNC fields τµ, eaµ
and mµ that does not refer to an embedding in a higher dimensional space-time we need

to add a Stückelberg scalar χ when there is torsion [1, 2, 15]. This amounts to replacing

everywhere mµ by Mµ = mµ − ∂µχ.

3.2 Carrollian space-time

To obtain an embedding of a Carrollian space-time into a Lorentzian space-time of one

dimension higher all that is required is to do the same as for the Newton-Cartan case but

with the difference that it is now the inverse metric for which we take guu = 0. In other

words we write down the most general metric for which guu = 0. Such a metric is given by

ds2 = du
(
2Φ̄du− 2τ̂µdx

µ
)

+ hµνdx
µdxν , (3.24)

where Φ̄ is given in (2.66) and τ̂µ is given in (2.64). The components of the inverse metric are

guu = 0 , gµu = vµ , gµν = h̄µν , (3.25)

where h̄µν is given by (2.65). The Carrollian space-time can be thought of as the geometry

on the null hypersurface u = cst whose normal is ∂Au, i.e. it is the geometry orthogonal to

∂Au. When Φ̃ = Φ̄ = 0 the Newton-Cartan and Carrollian geometry are the same. This is

because the metrics (3.1) and (3.24) become identical. One simply has the correspondence

τµ ↔ τ̂µ , v̂µ ↔ vµ , ĥµν ↔ hµν , hµν ↔ ĥµν . (3.26)

In section 3.3 we will discuss in more detail the relation between TNC and Carrollian

geometry.
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The coordinate transformations that preserve the null foliation are given by

u = u′ , (3.27)

xµ = xµ
(
u′, x′

)
. (3.28)

Under this transformation the vector Mµ transforms as

M ′µ = Mν ∂x
′µ

∂xν
+
∂x′µ

∂u
. (3.29)

If we demand that ∂u is a Killing vector the coordinate transformations cannot depend on

u so that Mµ simply transforms as a vector. Alternatively if we work at a fixed value of u,

i.e. a specific null hypersurface, the coordinate transformation of xµ cannot depend on u

either and again Mµ transforms as a vector on the u = cst hypersurface. We thus see from

the embedding point of view that there is no extra symmetry associated with the vector

Mµ while there is one in the NC case where we had a U(1) acting on mµ corresponding to

the Bargmann extension of the Galilei algebra.

We now discuss under what conditions the Carrollian metric compatible connection

can be obtained from the Levi-Cività connection in the higher dimensional space-time. To

this end consider again (3.9) and (3.10). This time we choose UA = ∂Au implying that

Uu = 0 , Uµ = −vµ , V u = −1 , V µ = Mµ , ΠuA = 0 , Πµν = hµν , (3.30)

as well as

Πuµ = hµνM
ν , Πuu = hµνM

µMν , Πµν = hµν , Vu = −τµMµ , Vµ = −τµ .
(3.31)

Imposing that ∇µvν = 0 amounts to demanding that

UAUB∇AUB = 0 , (3.32)

ΠA
CUB∇AUB = 0 , (3.33)

UAΠC
B∇AUB = 0 , (3.34)

ΠA
CΠD

B∇AUB = 0 . (3.35)

The first and the second conditions are satisfied because UA is null while the third is

satisfied because we furthermore know that ∇AUB = ∇BUA due to our choice of UA as

∂Au. The most general expression for ∇AUB compatible with all of the above conditions

and the properties of UA is given by

∇AUB = UAXB + UBXA , (3.36)

where XA satisfies UAXA = 0 but is otherwise an arbitrary vector. Using that ∇AgBC = 0,

i.e. that

∇AΠBC = −UB∇AVC − UC∇AVB − VB∇AUC − VC∇AUB , (3.37)

we find that

ΠB
DΠC

E∇AΠBC = 0 , (3.38)

UBUC∇AΠBC = 0 , (3.39)

ΠB
DU

C∇AΠBC = −UAΠD
CXC , (3.40)
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where in the last relation we used (3.36). Hence ∇AΠBC vanishes when projected along

directions orthogonal to UA. Therefore, whereas in the NC case we had to demand equa-

tion (3.21) in the Carrollian case we need that (3.36) holds in order that the induced

connection comes from the Levi-Cività connection of the higher dimensional space-time.

3.3 Comparing Newton-Cartan and Carrollian space-times

As one can notice by comparing the discussions of sections 3.1 and 3.2 there are strong

similarities between the geometry of TNC and Carrollian space-times. In fact in [26] a

certain duality between the two geometries has been proposed. Here we will extend this

duality to include the TNC vector Mµ and the Carrollian vector Mµ. The TNC metric-like

objects are given by τµ and hµν whereas the Carrollian metric-like objects are given by vµ

and hµν suggesting the duality [26]

τµ ↔ vµ , hµν ↔ hµν , (3.41)

where TNC variables are written on the left and Carrollian fields on the right. When

including the vector Mµ = mµ − ∂µχ for TNC geometry and Mµ for the Carrollian case

we propose to extend this duality to

Mµ ↔Mµ , (3.42)

so that the remaining invariants are related by

v̂µ ↔ τ̂µ , h̄µν ↔ h̄µν , Φ̃↔ Φ̄ , (3.43)

where again on the left we have the TNC invariants h̄µν , v̂µ and Φ̃ given in equa-

tions (3.2), (3.4) and (3.5) (with mµ replaced by Mµ), respectively and on the right we

have the Carrollian invariants h̄µν , τ̂µ and Φ̄ given in equations (2.64), (2.65) and (2.66),

respectively. The duality (3.41) and (3.42) interchanges the Galilean and Carrollian light

cone structures in the sense that (3.41) relates the notions of metricity while (3.42) swaps

the notion of boost transformations.

When there is no coupling to Φ̃ on the TNC side and no coupling to Φ̄ on the Carrollian

side, there is another relation between TNC and Carrollian geometry that interchanges

like tensors as in (3.26). For example if we apply this duality to the Carrollian affine

connection (2.67) which has the property that it does not depend on Φ̄ we obtain

Γλµρ = −v̂λ∂µτρ +
1

2
hνλ

(
∂µĥρν + ∂ρĥµν − ∂ν ĥµρ

)
− hνλτρKµν , (3.44)

where now the extrinsic curvature is given by Kµν = −1
2Lv̂ĥµν . We recognize the first two

terms of (3.44) as the TNC connection that is independent of Φ̃ used in [15]. The third

term containing the extrinsic curvature is just a harmless tensorial redefinition of the TNC

connection. Put another way, in [15] we used the connection

Γλµρ = −v̂λ∂µτρ +
1

2
hνλ

(
∂µĥρν + ∂ρĥµν − ∂ν ĥµρ

)
, (3.45)
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obeying ∇µv̂ν = −hνρKνρ but we could have equally absorbed the right hand side into the

TNC connection leading to (3.44) which obeys ∇µv̂ν = 0. This direct relation between

TNC and Carrollian affine connections does not extend to cases where the connections

depend on Φ̃ or Φ̄ as is obvious from the fact that then for example a Carrollian connection

no longer has the property that ∇µτ̂µ = 0 (see also the discussion at the end of section 2.3).

4 Ultra-relativistic gravity

In [15] it was shown how one can make TNC geometries dynamical by using an effective field

theory approach where one writes all relevant and marginal terms that are second order

in time derivatives, preserve time reversal invariance leading to the most general forms

of Hořava-Lifshitz gravity. Here we will start such an analysis for the case of dynamical

Carrollian geometries. Since these have an ultra-relativistic light cone structure we will

refer to the resulting theories as ultra-relativistic gravity. In order to decide whether a term

is relevant, marginal or irrelevant we need to assign dilatation weights to the Carrollian

fields τµ, eaµ and Mµ.

We can extend the Carroll algebra by adding dilatations D to it resulting in the

Lifshitz-Carroll algebra3 [48, 49] whose extra commutators involving D are

[D,H ] = −zH , [D,Pa] = −Pa , [D,Ca] = (1− z)Ca . (4.1)

We can thus assign dilatation weight −z to τµ and −1 to eaµ. Further in order that τ̂µ
and τµ have the same dilatation weights we assign a weight 2− z to Mµ, i.e. under a local

D transformation with parameter ΛD we have

δDτµ = zΛDτµ , (4.2)

δDe
a
µ = ΛDe

a
µ , (4.3)

δDM
µ = −(2− z)ΛDM

µ , (4.4)

so that Φ̄ has dilatation weight 2(1− z), i.e.

δDΦ̄ = −2(1− z)ΛDΦ̄ . (4.5)

Note that τµ and eaµ have the same dilatation weights as in the case of TNC geometry but

that the weight of Φ̄ is opposite to that of Φ̃. The reason for this is that in TNC geometry

the vector Mµ has dilatation weight z − 2 as follows for example from demanding that v̂µ

and vµ in (3.4) both have the same dilatation weight z.

We will next consider actions in 2+1 dimensions with 0 ≤ z < 1 by demanding local

Carrollian invariance, i.e. by demanding that the Carrollian fields τµ, eaµ and Mµ only enter

the action via the invariants τ̂µ, hµν and Φ̄. Further we will impose that the action is at

most second order in time derivatives and preserves time reversal invariance.

3This algebra with z = 0 is realized in higher dimensional uplifts of Lifshitz space-times. For example a

z = 2 Lifshitz space-time can be uplifted to a 5-dimensional z = 0 Schrödinger space-time [43–47]. In order

to support this geometry one needs to add an axionic scalar which breaks the z = 0 Schrödinger algebra

down to the z = 0 Lifshitz-Carroll algebra.
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It is instructive to first consider the case with no coupling to Φ̄. As can be expected

from the observations of section 3.3, where it is shown that a Carrollian geometry without Φ̄

can be obtained from a TNC geometry without Φ̃ by interchanging like tensors as in (3.26),

the resulting actions should be of the HL form, but with 0 ≤ z < 1. Indeed using the results

of [15] and the map (3.26) the following action is consistent with our coupling prescription

for Carrollian gravity in 2 + 1 dimensions with 0 ≤ z < 1

S =

∫
d3xe

[
C

(
KµνKρσĥ

µρĥνσ − λ
(
ĥµνKµν

)2)
− V

]
, (4.6)

where e = det (τµ , e
a
µ) which is invariant under local C and J transformations, where

Kµν = −1
2Lvhµν is the extrinsic curvature and where the potential V is taken to be

V = −2Λ + c1R+ c2ĥ
µνaµaν . (4.7)

In here we defined

R = êµa ê
ν
bRµν

ab(J) = −êµa êνb êσaebρRµνσρ , (4.8)

aµ = Lv τ̂µ , (4.9)

where the Riemann tensor Rµρν
ρ is defined in (2.29) with the connection (2.67) and where

aµ = Lv τ̂µ is the Carrollian counterpart of the TNC torsion vector aµ = Lv̂τµ [15]. An

action of this type with λ = 1 and no potential term was considered in [30, 31] as resulting

from the c → 0 limit of the Einstein-Hilbert action.4 All terms in (4.6) are relevant for

0 < z < 1 because the potential apart from the cosmological constant term involves terms

of dilatation weight 2 and the kinetic terms have dilatation weight 2z all of which are less

than 2 + z which is the negative of the dilatation weight of the integration measure e. The

case with z = 0 will be studied separately below. The dimensionless parameter λ is the

same as the one appearing in HL gravity [27, 28].

Let us now introduce the scalar Φ̄. The first thing to observe is that for any z ≥ 0 we

can add the following coupling to the kinetic terms

Φ̄

(
KµνKρσĥ

µρĥνσ − λ
(
ĥµνKµν

)2)
, (4.10)

since this has dilatation weight 2 which is less than z + 2. Further we can always add a

term linear in Φ̄ to the potential since 2(1 − z) ≤ 2 + z for 0 ≤ z < 1. On the other hand

couplings such as Φ̄R or a kinetic term for Φ̄ such as
(
vµ∂µΦ̄

)2
have dilatation weight

4 − 2z and so in order that this is less than z + 2 we need z > 2/3. We will not consider

such terms as we are primarily interested in those terms that are generic for 0 ≤ z < 1.

When we include Φ̄ we are thus led to the more general action

S =

∫
d3xe

[(
C + C1Φ̄

)(
KµνKρσĥ

µρĥνσ − λ
(
ĥµνKµν

)2)
− V

]
, (4.11)

4I would like to thank Marc Henneaux for useful discussions about the c → 0 limit of the Einstein-

Hilbert action.
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where the potential is given by

V = −2Λ + c1R+ c2ĥ
µνaµaν + c3Φ̄ . (4.12)

The equation of motion of Φ̄ imposes the constraint

KµνKρσĥ
µρĥνσ − λ

(
ĥµνKµν

)2
=

c3
C1

. (4.13)

On the other hand the variation with respect to hµν will bring time derivatives onto Φ̄

upon partial integration making the scalar Φ̄ dynamical. It is interesting to contrast this

with the case 1 < z ≤ 2 where we couple to TTNC geometry in the presence of Φ̃ (section

11 of [15]) where the field Φ̃ imposes constraints on the terms in the potential rather than

on the kinetic terms. The parameters in (4.11) have the following mass dimensions

[C] = M2−z , [C1] = M z , [Λ] = M2+z , [c1] = [c2] = M z , [c3] = M3z . (4.14)

Finally we consider the special case z = 0 and show that one can construct a local

dilatation invariant action, i.e. an action with anisotropic Weyl invariance. Using that for

z = 0 the integration measure e has weight −2 we need to construct terms with weight 2.

Under local dilatations the extrinsic curvature transforms as (for general z)

δDKµν = (2− z)ΛDKµν − hµνvρ∂ρΛD . (4.15)

It follows that KµνKρσĥ
µρĥνσ− 1

2

(
ĥµνKµν

)2
is invariant under local scale transformations

with weight 2z. Using that for z = 0 the scalar Φ̄ has weight 2 we find that the following

term

Φ̄

(
KµνKρσĥ

µρĥνσ − 1

2

(
ĥµνKµν

)2)
, (4.16)

has weight 2 for z = 0. Other terms with weight 2 are

ĥµνaµaν ,

Φ̄ , (4.17)

ĥµνaµaν

(
KµνKρσĥ

µρĥνσ − 1

2

(
ĥµνKµν

)2)
.

Hence the following action has anisotropic Weyl invariance with z = 0

S =

∫
d3xe

[(
C1Φ̄ + C2ĥ

µνaµaν

)(
KµνKρσĥ

µρĥνσ − 1

2

(
ĥµνKµν

)2)
− V

]
, (4.18)

where the potential is given by

V = c2ĥ
µνaµaν + c3Φ̄ . (4.19)

This action with anisotropic Weyl invariance for z = 0 only has dimensionless coupling

constants.
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We note that the spatial Ricci scalar R transforms under local D transformations as

(in d = 2 spatial dimensions)

δDR = −2ΛDR+ 2ĥµν∇µ∂νΛD . (4.20)

Different from the conformal TNC case (section 12 of [15]) here we cannot use the vector

aµ to make a local D invariant combination out of R and derivatives of aµ because for

z = 0 the vector aµ is invariant under local D transformations.

5 Discussion

It would be interesting to extend this work in the following directions.

It has been known for a long time that the asymptotic symmetry algebra of asymp-

totically flat space-times is given by the Bondi-Metzner-Sachs (BMS) algebra [50–52] (see

also [53, 54]). In 3 bulk dimensions it has been shown that the BMS algebra is isomorphic

to the 2-dimensional Galilean conformal algebra [55, 56] (which is a contraction of the rel-

ativistic conformal group [57]). Recently conformal extensions of the Carroll algebra have

been studied in [13, 58] and it has been shown that the BMS algebra forms a conformal

extension of the Carroll algebra [13]. Regarding the case of flat space holography in 3 bulk

dimensions the Galilean structures seen at infinity can be interpreted as Carrollian be-

cause in 1+1 boundary dimensions interchanging space and time leads to an isomorphism

between the Carroll and Galilei algebras. Further, future and past null infinity form Car-

rollian space-times [13]. It could therefore be insightful to explore the connections between

the gauging of the Carroll algebra and flat space holography further.

The space-time symmetries of warped conformal field theories involve Carrollian boosts

that together with the scale transformations form the z = 0 Lifshitz-Carroll algebra [14].

It would be interesting to apply the methods for the gauging of the Carroll algebra as

performed here to study the coupling of these WCFTs to curved backgrounds.

More generally along similar lines one can couple field theories to Carrollian geome-

tries and study global symmetries by defining conformal Killing vectors, define an energy-

momentum tensor by varying the invariants τ̂µ and hµν much like it was done for field

theories coupled to TNC geometries [3, 19, 22, 23]. It would be interesting to understand

what the role of the scalar Φ̄ is when coupling field theories to Carrollian geometries, i.e.

to understand what the response is to varying this background field.

Finally, one can study the actions for ultra-relativistic or Carrollian gravity further by

e.g. studying their phase space formulation, count the number of degrees of freedom, etc.

It would be interesting to generalize the 3-dimensional actions of ultra-relativistic gravity

constructed here to higher dimensions and to study the equations of motion by looking for

various classes of solutions such as cosmological and spherically symmetric space-times. It

would be interesting to study the perturbative properties of these theories for example by

linearizing around flat space-time and study the form of the propagators, etc.
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