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Abstract

The goal of Project GAUSS (Genesis of Asteroids and evolUtion of the Solar Sys-

tem) is to return samples from the dwarf planet Ceres. Ceres is the most accessible

candidate of ocean worlds and the largest reservoir of water in the inner Solar Sys-

tem. It shows active volcanism and hydrothermal activities in recent history. Recent

evidence for the existence of a subsurface ocean on Ceres and the complex geochem-

istry suggest past habitability and even the potential for ongoing habitability. GAUSS

will return samples from Ceres with the aim of answering the following top-level

scientific questions:

– What is the origin of Ceres and what does this imply for the origin of water and

other volatiles in the inner Solar System?

– What are the physical properties and internal structure of Ceres? What do they

tell us about the evolutionary and aqueous alteration history of dwarf planets?

– What are the astrobiological implications of Ceres? Is it still habitable today?

– What are the mineralogical connections between Ceres and our current collec-

tions of carbonaceous meteorites?
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1 Background

Though the Rosetta mission to comet 67P/Churyumov-Gerasimenko came to an end

only recently, in 2016, it is important to recall that the planning activity eventually

leading to its approval by ESA was initiated more than three decades earlier in 1983.

An equally, if not more, ambitious project in the framework of “Voyage 2050” is

proposed here. The target is the innermost dwarf planet, Ceres, which was discovered

on New Year’s Day of 1801, by the Italian astronomer Giuseppe Piazzi at Palermo

Observatory. At the time of its discovery, Ceres was considered to be the missing

planet between the orbits of Mars and Jupiter as predicted by the Titius-Bode law

[38]. Ceres’ location was confirmed in December the same year using the orbital

elements calculated by then 24-year-old Carl Friedrich Gauss [111]. The name of

the project with the acronym of GAUSS for “Genesis of Asteroids and evolUtion of

the Solar System” is partly a tribute to this scientific episode of great importance in

astronomy and planetary science.

2 Scientific rationale

2.1 Ceres in the history of the solar system

The formation of the oldest solids found in the Solar System – calcium-aluminium

inclusions (CAIs) – dates back 4567.5 Myr [22]. After that, the formation of gas

giants must finish before the dispersal of the protoplanetary gas disc, which lasts 2-

10 Myr [4, 46]. Then, about 30-100 Myr later, the terrestrial planets formed in the

planetesimal disc [50].

The planetesimal disc not only provided all the materials that constitute the terres-

trial planets and cores of gas giants, but also exerted perturbing forces on the grown

planets [40, 55]. This perturbation might have continuously modified the planetary

orbits in a relatively gentle way [32]. Before the dispersal of the gas disc, planets

could have already experienced migration due to the interaction with the massive gas

disc [118]. During the planetary migration afterwards, mechanisms such as low-order

mean motion resonance between planets brought up abrupt variations in the orbital

configuration of planets [115]. The interaction between the planetesimal disc and

migrating planets/protoplanets reconfigured the structure of the Solar System [36,

70, 118]. However, the growth and evolution of terrestrial planets and asteroids (in a

wide radial range from Mars’ orbit to the Kuiper belt) in the early stages of the Solar

System are not fully understood.

Given that their properties depend on their formation circumstances and evolution-

ary processes experienced since their formation, small bodies (e.g., asteroids, comets,

and trans-Neptunian objects) in the Solar System are of interest to researchers

because they provide a way to probe the protoplanetary disc from which our Solar

System formed [6, 52, 103]. By determining the chemical and physical properties

of various small bodies in our Solar System, we can gain insight into chemical and

thermal conditions in different areas of the protoplanetary disc and also investigate

the chemical, thermal, collisional, and dynamical processes that have shaped those
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Fig. 1 Relative distribution of taxonomic types for a bias-corrected sample of 656 main-belt asteroids.

Letters indicate different compositional types. Refer to Table 1 in [37] for the definition of each type.

Locations of major resonances with Jupiter are indicated at the top. (Figure reprinted from [37])

populations since their formation. A successful scenario of planet migration should

provide the mechanisms that were able to efficiently deliver planetesimals from dif-

ferent zones to the main belt. In addition, the structure of the main belt, the mass

depletion, the proper excitation of orbital eccentricities and inclinations, should all

be reproduced.

One of the earliest attempts to map the compositional structure of our asteroid belt

and use it to infer information about the origin and evolution of the Solar System was

performed by [37]. They found a systematic distribution of compositional types of

asteroids in the main asteroid belt that they suggested was consistent with chemical

condensation models of the Solar System (Fig. 1). The authors concluded that it was

unlikely that this distribution could be explained by the chaotic transport of objects

from different regions of the Solar System into the asteroid belt, and proposed instead

that it indicated that the asteroids formed at or near their present locations.

The work of [37] has since undergone a major update in the form of a study by

[27], who used the Sloan Digital Sky Survey (SDSS) Moving Object Catalog data to

derive taxonomic classifications for about 35000 objects, including objects as small

as 5 km in diameter. The inclusion of much smaller objects in this sample than were

previously available, as well as the computation of compositional distributions by

mass (instead of by number, see Fig. 2 in [28]) suggest that the asteroid belt preserves

a history of Solar System evolution that is far more complex than previously thought

[28, 36, 63, 118], with asteroids of various taxonomic types scattered throughout the
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asteroid belt, including in regions where they are not expected based on dynami-

cally static Solar System formation models. Instead, the history of the Solar System

as recorded by main-belt asteroids likely includes relatively brief periods of dra-

matic mixing caused by giant planetary migration, e.g., those proposed as parts of

the well-known Nice and Grand Tack models [63, 64, 70, 115, 115, 118] as well as

less dramatic but ongoing processes such as collisions and small body migration due

to mean-motion resonances with the giant planets and the Yarkovsky effect (e.g., [7,

8, 31, 35, 88]).

The fraction and composition of ice in a body is of particular interest due to the

strong temperature constraints they provide. The so-called “snow line” refers to the

distance from the Sun at which the temperature dips below the condensation tem-

perature of water, causing it to freeze into solid ice and then become incorporated

into accreting planetesimals. The exact location of the snow line in our protoplane-

tary disc was dependent on a variety of poorly constrained environmental conditions

including opacity, mass density, and accretion rate in the disc, and is also thought to

have shifted with time as planetesimal accretion progressed and the aforementioned

properties of the disc changed [71].

Bodies formed in the outer Solar System such as between Jupiter and Neptune

(the original accretion zone of current Oort Cloud objects; [40, 120]) and beyond

the orbit of Neptune (the Kuiper Belt) are well beyond the snow line. Closer to the

Sun, the situation is less certain. Observations of asteroids suggest that the snow line

probably existed as close as 2.5 au from the Sun [37, 52], but theoretical studies [19,

62, 97] have placed it as close in as the orbit of Mars, or even closer. If this is true, it

means that objects throughout the main asteroid belt could have incorporated some

water ice at the time of their formation.

Evidence of past and present-day ice has in fact been found in main-belt aster-

oids. Studies of meteorites linked to the asteroid belt as well as remote spectroscopic

observations of asteroids have revealed the presence of aqueously altered minerals,

indications that liquid water was once present [47, 53, 90]. Meanwhile, spectroscopic

evidence of water ice frost has been reported for various main-belt asteroids including

(24) Themis [41, 89, 110], while some main-belt objects have even been observed to

exhibit comet-like activity that has been attributed to the sublimation of present-day

volatile ices, i.e., the so-called main-belt comets [48]. The location, abundance, dis-

tribution, and inferred water content of currently and formerly icy main-belt objects

provide valuable clues for discerning the primordial location and evolution of the

snow line, although this of course is also complicated by the aforementioned likely

transport of at least some small bodies from their original formation locations due to

giant planet migration and other dynamical processes.

The bulk-rock isotope anomalies of meteorites reveal an isotopic dichotomy: two

distinct trends defined by the non-carbonaceous (NC) bodies and the carbonaceous

(CC) bodies respectively (Fig. 2). The CC bodies include carbonaceous chondrites,

a few ungrouped achondrites, and IIC, IID, IIF, IIIF, IVB iron meteorites. The NC

bodies include Earth, the Moon, Mars, ordinary chondrites, enstatite chondrites, and

most of achondrites. This dichotomy has been further observed in Mo, W, Ru, and Ni

isotopic systematics [11, 58, 72, 80]. However, the origins of the isotopic anomalies

and their correlations are unknown, although 54Cr-enrichment can be attributed to
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Fig. 2 Dichotomy of stable isotopes among planetary materials. (Figure reprinted from [119])

nano-sized Cr-oxide probably ejected from supernovas [83]. Based on the isotopic

dichotomy, [119] proposed that the CC bodies formed in the outer Solar System and

the NC bodies formed in the inner Solar System. The formation of Jupiter blocked

the material exchange between the two groups. As a consequence of radial migration

and mass growth of the giant planets in the Solar System, some CC planetesimals

and embryos moved inwards from the outer Solar System to the main belt [58, 88,

118, 119].

Ceres, the largest object in the main belt, preserves many clues to the formation

and evolution of the main belt, as well as of the Solar System. The surface material of

Ceres is similar to carbonaceous chondrite, though no meteorite has so far been linked

with Ceres [91]. Interpretation of the data from the Dawn mission with geochemical

simulations show that the surface mineralogy of Ceres is consistent with the aqueous

alteration of CI and CM chondrite [15].

The ammonia detected on Ceres [23] suggests that Ceres could have originated

in the outer Solar System, and migrated to its current neighbourhood. However,

this scenario still misses definitive evidence. Ceres could have formed in the outer

Solar System or formed in situ and accreted materials radially transported from the

outer Solar System [68]. The stable isotope anomalies of samples from Ceres could

provide ground truth on its formation location (Fig. 2). Furthermore, geochemical

information in returned samples could be used to understand the evolution path of

Ceres.

2.2 Results from the dawnmission

The Dawn mission performed a 3.5 years rendezvous with Ceres starting from early

2015, mapping its geomorphology at resolutions down to ∼35 m globally [92],

derived surface mineralogy at resolutions down to 140 m [33], the top layer (∼0.5-

1 m) elemental abundance at effective resolutions of tens of km, as well as the gravity

field to 18 degrees of spherical harmonics[56]. During the last mission phase, Dawn
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entered a long elliptical orbit with an altitude of 35 km at periapsis for a detailed

study of the narrow longitudinal strip at about 240◦ E that stretches from north of

Occator crater and goes up to Azacca crater on the other hemisphere. During this

phase, images were acquired with resolutions as high as 3.5 m/pixel.

The Dawn results confirmed that Ceres is volatile-rich, has a partially differen-

tiated interior, and has experienced global aqueous alteration. Dawn revealed Ceres

as a geologically active dwarf planet with brine-driven volcanism as recently as of

a few Myr and probably even at present. Ammoniated phyllosilicates are distributed

all over the surface of Ceres [3, 23]. The incorporation of ammonia in Ceres’ surface

mineralogy is an indication that Ceres may have accreted materials from the giant

planet formation region.

The surface layer of Ceres is rich in water of hydration and water ice. The abun-

dance of water ice is relatively low towards the equator and high towards the polar

regions [81]. The latitudinal variation is consistent with the evolution of subsurface

water ice as controlled by the thermal condition on the surface and shallow sub-

surface of Ceres [99, 100] and the low obliquity of Ceres [96]. Water ice has been

directly identified in about ten specific places on the surface, near rim shadows in

fresh craters at latitudes poleward of 30◦ [20, 21], and inside the permanently shad-

owed craters in the polar regions [79, 101]. The existence of water ice in the first few

km of the crust is also inferred by analyzing lobate morphologies [98].

The abundant water ice on Ceres (Fig. 3) led to differentiation and aqueous alter-

ation that shaped the mineralogical composition of Ceres in its crust and mantle [15].

Near-infrared data returned by the Visible and InfraRed mapping spectrometer (VIR)

on board the Dawn spacecraft detected carbonates and ammonium salts that are pre-

viously found only on Earth and Enceladus [24]. The existence of brines at depth

played a key role in driving the geological process on Ceres, including volcanism and

activities in its geologically recent history [94, 95, 105].

The most prominent geomorphological feature that is considered of volcanic ori-

gin is Ahuna Mons (Fig. 4) [94, 95]. Its distinct size, shape, and morphology are

consistent with being a volcanic dome formed by extrusions of highly viscous melt-

bearing material. At the summit is the buildup of a brittle carapace, which partially

fractured and disintegrated to generate the slope debris. The bright streaks in the

slope debris are rich in Na-carbonates [12, 123, 124]. The gravitational relaxation

of the enclosed ductile core shapes the overall topographic profile of the summit,

requiring an extruded material of high viscosity. The age of the most recent activity

on Ahuna Mons is about 210 ± 30 Myr [94]. Other possible features involving the

presence of melt include smaller domes [108, 109], fractures in the crater floor [9],

post-impact modification by the deposition of extended plains material with pits and

widely dispersed deposits that form a diffuse veneer on the preexisting surface [57].

Shallow subsurface volatiles are also evident from the many other geomorphologi-

cal features, such as the pitted terrain [107]. On the other hand, the crater morphology

and the simple-to-complex crater transition indicate that Ceres’ outer shell is likely

neither pure ice nor pure rock, but a mixture of ice, rock, salts and/or clathrates that

allows for limited and spatially variable viscous relaxation [5, 45].

The distinctive bright regions within Occator crater are one of the most remark-

able features on Ceres observed by Dawn (Fig. 5). Occator crater is about 90 km in
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Fig. 3 Comparison view of water abundances on Earth, Mars, and Ceres

diameter, hosting the bright deposits covering the pit-dome complex named Cere-

alia Facula in the center, and a group of secondary bright deposits named Vinalia

Faculae on the east side of the crater floor. While Ceres’ average surface contains

Mg- and Ca-carbonates and Mg- and NH4-phyllosilicates, Occator’s faculae contain

Na-carbonate, Al-phyllosilicates, and NH4-chloride [86]. Theoretical modelling sug-

gested the possibility of a brine reservoir beneath Occator crater, and the gradual

Fig. 4 Perspective view of Ahuna Mons on Ceres from Dawn Framing Camera data (no vertical

exaggeration). The mountain is 4 km high and 17 km wide in this south-looking view (image credit:

NASA/JPL/Caltech/IAPS/MPS/DLR/INAF/ASI)
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Fig. 5 Top: Perspective view of Occator crater from the south and the bright deposits from Dawn Framing

Camera data. The Cerealia Facula is saturated in this brightness stretch. Bottom left: Zoom-in view of

the Cerealia Facula at the center of Occator crater shows the details of the bright deposit. Bottom right:

Zoom-in view of the Vinalia Faculae (image credit: NASA/JPL/Caltech/IAPS/MPS/DLR/INAF/ASI)

freezing of this reservoir was the driver of briny lavas [84]. The salts lower the eutec-

tic point and extend the duration of volcanic activity on Ceres. Laboratory studies

suggest that a slow freezing process (<30 K/min) of the exposed ammonium-sodium-

carbonate-chloride-rich brines is most compatible with the observed composition of

brines observed in Occator crater [112]. A variety of morphological features are

observed in the crater. Linear and concentric fractures on the crater floor are asso-

ciated with cryomagmatic intrusion, and degassing or desiccation processes for the

volatile rich Occator ejecta [10]. The cross-cutting relationship between stratigraphic

units indicate that the Cerealia Facula was emplaced in multiple episodes [106].

Crater counting in the Occator ejecta yields an age of about 20 Myr [75], while the

age of faculae is only a few Myr [73, 74].

The presence of water ice on the surface of Ceres, as well as the widespread dis-

tribution of shallow subsurface water has been associated with the active outgassing

of Ceres previously observed from Earth orbit or the Earth-Sun L2 Lagrange point

[1, 59]. However, the observed surface water ice exposures on Ceres do not appear
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to be sufficient to supply the observed water production rate [60, 61, 102]. Multiple

attempts to detect water outgassing around Ceres failed, suggesting that water out-

gassing from Ceres is variable but also does not appear to depend on heliocentric

distance [93]. Variation in the amount of water ice was detected on the wall of the Jul-

ing crater, indicating the possible existence of a seasonal water cycle [85]. Another

hypothesis proposes that the solar energetic particles might be a driver of outgassing

[116]. The water loss mechanisms on Ceres and the characteristics of its transient

water exosphere are therefore still uncertain.

Gravitational data and geophysical modelling suggested that Ceres is partially dif-

ferentiated to a ∼40 km thick and strong crust composed of rock, ice, salts, and/or

clathrates with no more than 30% water ice [5, 30, 34]. Below the crust is a denser

rocky mantle with a relatively weak upper layer potentially with brine-filled pore

space that controls the global shape of Ceres [34]. The possibility of a dehydrated

rocky core below 100 km cannot be ruled out [54].

VIR first detected an organic absorption feature at 3.4-µm on Ceres. This sig-

nature is diagnostic of organic matter and is mainly localized on a broad region of

∼1000 km2 close to the ∼50 km Ernutet crater [25]. The shape of the 3.4-µm band

and the lack of an associated 3.25-µm feature could exclude organics with a high

content of aromatic carbon such as anthraxolites as main carriers of the features on

Ceres, in favour of hydrocarbons rich in aliphatic carbon [25]. Laboratory studies

have found organic-rich analogues that could reproduce absorption bands in the VIR

spectra [117]. However, the exact nature and concentraton history of the organic mat-

ter is still unclear, making this a compelling scientific question for any future space

mission to Ceres [117]. Furthermore, organic compounds possibly also exist on top

of Cerealia Facula, the brightest spot located roughly in the middle of crater Occator

[26].

The volcanism and hydrothermal activity in the recent history of Ceres, the exis-

tence of brines on a global scale at the present suggest an active planetary body that

could have strong astrobiological significance. The occurrence on Ceres of ammonia-

bearing hydrated minerals, water ice, carbonates, salts, and organic material, revealed

a complex chemical environment, potentially favourable to prebiotic chemistry in a

subsurface aqueous environment [25]. The ability to detect, determine, and quantify

any organics on Ceres is a clear step toward assessing habitability [16].

Dawn findings have placed Ceres among Solar System “ocean worlds”, bodies

that host current liquid ocean (not necessarily global, according to [44]). Originally

classified as a “candidate” ocean world in NASA’s Roadmap to Ocean Worlds [44],

Ceres is now suggested as a “real” ocean world in the light of latest results from

analyses of Dawn data acquired during its extended mission ([13] and references

therein), noting however that the occurrence of liquid may be limited to local or

regional reservoirs. In summary, as illustrated in Fig. 6, Dawn revealed the great

scientific significance of Ceres:

– Rich in water ice and other volatiles relevant to our understanding of the history

of volatiles and organic matter in the inner Solar System

– Formation and evolutionary history representative of ice-rich objects in the outer

Solar System
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Fig. 6 Summary of Dawn’s observations of Ceres addressed in the text. (a) Geophysical data confirmed

the abundance of water ice and the need for gas and salt hydrates to explain the observed topogra-

phy and crustal density. (b) Various types of carbonates and ammonium chloride have been found in

many sites across Ceres’ surface (e.g., salts exposed on the floor of Dantu crater). (c) Ernuter crater

(∼52 km, above) and its area present carbon species in three forms (reduced in CxHy form, oxidized

in the form of carbonates and intermediate as graphitic compounds). (d) Ceres shows extensive evi-

dence for water ice in the form of ground ice and exposure via mass wasting and impacts (Left: Juling

crater, ∼20 km). (e) Recent expressions of volcanism point to the combined role of radiogenic heating

and low-eutectic brines in preserving melt and driving activity (Left: Ahuna Mons, ∼4.5 km tall). (f)

Impacts could create local chemical energy gradients in transient melt reservoirs throughout Ceres’ his-

tory (Left: Cerealia Facula, ∼14 km diameter). (Figure reprinted from [16]; credit for individual images:

NASA/JPL/Caltech/IAPS/MPS/DLR/INAF/ASI)

– Geologically active with minerals present only on Earth and Enceladus

– Closest and most accessible dwarf planet with volcanism and hydrothermal

activity

– Ammonia-bearing hydrated minerals, water ice, carbonates, salts, and organic

matter make a complex chemical environment that could favour prebiotic

chemistry

2.3 The need for Ceres samples

Vesta has now joined Mars and the Moon as the best understood extraterrestrial bod-

ies, due at least in part to the fact that we have samples of all of them to study in the

laboratory. Ceres can join that group with a future sample return.

Some exploration and scientific arguments for a Ceres sample return are:

– Although carbonaceous chondrites provide the best analog for Ceres [69], we

have no meteorites from Ceres. The value of having samples for proper calibra-

tion of flight instruments and rigorous interpretation of remote sensing data is

illustrated by studies of Vesta, Mars, and the Moon [51].
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– Global spectral mapping of Ceres by Dawn’s VIR demonstrates that its surface is

covered almost everywhere by the same assemblage (ammoniated clay, serpen-

tine, carbonate, and a darkening agent), but in slightly differing proportions [3].

Thus, a representative regolith sample can be collected from nearly any location

on the surface.

– The ice table begins below several meters depth near the equator, and approaches

the surface at higher latitudes [81]. Sampling the regolith in the equatorial region

would thus not require cryogenic collection and return.

– We have never before sampled an ocean world, and Ceres could be the most

reachable target. There is geophysical evidence for Ceres being an ocean world

[16], and our understanding of its alteration is based on the detection of a few

minerals. Other phases in minor proportions in a returned sample could constrain

the conditions of alteration. It is also likely that Ceres’ regolith contains some

amorphous phases that could not be characterized by remote sensing.

– There is presently some controversy about the extent to which Ceres’ surface has

been contaminated by exogenic chondrite impactors. These could be recognized

and quantified by petrologic examination of a returned sample.

– Ceres’ chronology is based on crater size distribution analysis, which is depen-

dent on the reference impactor flux [66], leaving the absolute ages uncertain.

Radiometric dating of a sample from a mapped geologic unit [121] could help

anchor Ceres’ chronology and the impactor flux in the asteroid belt.

– At several locations on Ceres, notably Ahuna Mons and Occator Crater, brines

have recently erupted and deposited salts (sodium-carbonate, ammonium chlo-

ride, plus more phases that have not been identified [12, 24, 113, 114, 123]. Small

quantities of these phases, which provide important constraints on the nature of

subsurface fluids, may be present in regolith samples close to such outcrops.

– Organic matter discovered at one location on Ceres [25] suggests that it should

be widely distributed in lesser amounts. The presence of carbon all across Ceres’

surface with abundances greater than in CI chondrites suggests a widespread

water alteration process associated with organic chemistry [67, 82]. Understand-

ing the organic component on Ceres has important implications for prebiotic

chemistry and astrobiology.

– We do not know whether Ceres formed near its present location in the asteroid

belt or in the giant planet region and was later scattered into the main belt by

giant planet migration and resonances. Measurement of isotopes of H, C, and N

will place constraints on the origin of water and organics. Isotopes of oxygen,

chromium, titanium, etc. [104] can place Ceres into its proper formation setting,

as it has for other bodies for which we have samples.

– Comets from the outer Solar System have long been suspected as the source of

Earth’s water [78]. However, while a recent deuterium-to-hydrogen (D/H) ratio

measurement for a comet is compatible with terrestrial ocean water [42], most

comet D/H measurements are not [2]. Meanwhile, dynamical studies [76] indi-

cate that large quantities of Earth’s water could have been supplied by objects

from the region of the Solar System coinciding with the present-day outer aster-

oid belt. If Ceres can be determined to have formed in situ, a D/H ratio (in

addition to other isotopic ratios) measured for Ceres would help to assess the
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plausibility of the main asteroid belt as a source of the terrestrial water that is so

critical to the rise of life on Earth.

3 Mission scenarios

3.1 Overview

If we follow the long-term trend in the development of scientific missions to the

Moon and Mars, respectively, and that of asteroidal exploration, we would probably

reach the conclusion that they might likely converge on a large-scale international

space program of Ceres. NASA’s Dawn mission has yielded many exciting results,

but the scientific observations were limited to just three remote-sensing instruments,

namely the framing camera, the visible and near-infrared mapping spectrometer,

the gamma-ray spectrometer/neutron detector, as well as gravity science. A more

comprehensive payload on future orbiter(s) is needed for a full characterization and

understanding of the surface and atmospheric/exospheric environment of Ceres. In

addition, just like in the case of lunar or Mars exploration, different types of plat-

forms such as lander and rovers might be required to address astrobiology objectives.

A sample return mission might be regarded as the final step. Furthermore, the water-

and organic-rich environment of Ceres makes it an attractive candidate location for

future research stations in support of deep space exploration.

As implied by “Dawn”, the name of the first mission to Ceres, and the name of

the present mission proposal “GAUSS”, the in-depth exploration of Ceres should be

viewed in terms of detailed investigations of the genesis and evolution of the asteroid

belt and the Solar System. The contribution of future in-situ and sample return explo-

ration of Ceres in the context of studying the Solar System ocean worlds and their

habitability is illustrated in Fig. 7. It can therefore be envisaged that besides orbiter

observations, a set of lander(s) and rover(s) would be needed. It is also possible that

this program can be composed of a series of missions over several decades to address

different specific scientific questions.

Even though our main focus is to initiate the planning of an ESA-L-class-level

sample return mission, it could be streamlined to a Rosetta/Philae lander style mis-

sion for cost reasons and expediency. The cost envelope might hence be fitted within

the budget of an M-class project depending on the mission component to be cho-

sen. Similar consideration would probably be pursued by CNSA also if it agrees to

support a joint assessment study. It is important to emphasize that a sample return

mission might still be possible with the participation of additional national agen-

cies, besides CNSA and ESA as postulated here. Possible mission scenarios are

summarized in Table 1.

In the scenario of a cryogenic sample return mission, GAUSS will first perform

a high-resolution global remote sensing investigation, characterizing the geophys-

ical and geochemical properties of Ceres. Candidate sampling sites will then be

identified, and observation campaigns will be run for an in-depth assessment of the

candidate sites. Once the sampling site is selected, a lander will be deployed on

the surface to collect samples and return them to Earth in cryogenic conditions that
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Fig. 7 The contribution of future Ceres in-situ and sample return mission to the exploration of the Solar

System ocean worlds and their habitability (Based after [44])

preserve the volatile and organic composition as well as the original physical state

enabled by state of the art technologies.

The scientific goals and related measurement objectives of Project GAUSS are

summarized in the traceability matrix (Table 2). The four scientific goals focus on

understanding: the origin of Ceres, its evolution and current state, its habitability,

and its connection to the carbonaceous meteorite collections. The results from these

investigations will have direct implications on our understanding of the evolution of

the Solar System and in particular of the icy satellites.

Table 1 Summary of mission

scenarios Mission type Mission component Mission class

Sample return Orbiter+lander+return

capsule

L-class, or M-class with

significant contribution

from CNSA

Landing/Roving Orbiter+lander /

hopper / rover

M-class with possible lan-

der/rover contribution by

CNSA
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Table 2 Traceability matrix for Project GAUSS

Scientific goal Measurement objective Instrument

The origin and transportation of water and other volatiles in the inner Solar

System: Where does Ceres come from?

Ceres chronology Crater counting, radiomet-

ric dating of samples

Sample analysis, camera, topo-

graphic camera

Connection between Ceres

composition and pre-solar

materials

Stable isotopes of oxygen,

chromium, titanium

Sampling mechanism, microscopic

camera

Volatile inventory on Ceres Surface and subsurface

water, other volatile

species including Na, K,

S, Cl, etc.

Sampling mechanism, Near-

Infrared spectrometer (NIR),

Thermal Infrared spectrometer

(TIR), Active Particle-induced X-

ray Spectrometer (APXS), Gamma

Ray Spectrometer (GRS)

Contamination from

exogenous materials on

Ceres and their roles in

the evolution of Ceres

Surface mineralogy, petro-

logical units in samples

Sampling mechanism, camera,

NIR, TIR, microscopic camera

Physical properties and internal structure of Ceres: What do ice dwarf planets

look like?

Structure of the near-

subsurface and deep

interior, and the implica-

tions to the differentiation

and aqueous alteration

processes of Ceres

Surface mineralogy, ele-

mental abundance, gravity

Imaging, NIR, TIR, seismology,

radar, subsurface science package

Geological processes, in

particular current and past

cryovolcanism

Topography and morphol-

ogy, gravity

Imaging, lidar, radar, radio science,

seismometer

The existence and char-

acteristics of Ceres’ exo-

sphere

Gas species around Ceres Gas chromatography-mass spec-

trometer (GC-MS), Ion and mass

spectrometer, UV spectrometer,

dust detector

The astrobiological implications of Ceres: Was it habitable in the past and is it

still today?

Existence of liquid water

inside Ceres, its extent,

distribution, and depth

Topography, morphology,

gravity

Camera, radar, lidar, topographic

camera, radio science, seismome-

ter, subsurface science package

Redox condition on Ceres,

the existence and forms of

oxidants

Elemental abundance,

forms, and isotopic ratios

of O, S, Cl, N

Sampling mechanism, NIR, TIR,

APXS, GRS

Abundance, sources and

sinks, and chemical forms

of life-forming elements;

source of terrestrial water

Elemental abundance,

forms, and isotopic ratios

of C, H, N, O, S

Sampling mechanism, NIR, TIR,

APXS, GRS
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Table 2 (continued)

Scientific goal Measurement objective Instrument

Inventory and com-

position of organic

compounds, their origins

and evolutions

Existence, abundance, and

types of organic materials

Sample mechanism, NIR,

TIR

Mineralogical connection between Ceres and the collections of primitive mete-

orites: Where are Ceres meteorites?

Thermal metamorphism

and aqueous alteration

history of Ceres

Mineralogy, petrological

characterization, isotope

ratios

Sampling mechanism, NIR, TIR

Fractionation of elements

and the geochemical pro-

cesses

Mineralogy, elemental

abundance, isotope ratios

Sampling mechanism, NIR, TIR

3.2 Candidate sites for in-situ investigation and sample return

The geomorphological features on the surface of Ceres are connected to its interior

and formed through recent geological processes (Fig. 8). The mantle of Ceres is com-

posed of hydrated minerals, and may be enriched in organics and high-density, low

melting point organic matter in localized areas. The ∼40 km thick crust above the

mantle is composed of the original ocean materials, salts, carbonates, and brine. Brine

reservoirs existed in the recent past and drove volcanic activity. Ahuna Mons might

be an extrusion feature of briny mud and organics from the upper mantle [95]. The

surface layer of crust is covered by a mixture of infalls, salts, and organics. Cerealia

Facula is covered by salts that are left behind after subsurface brine was accessed by

impact-produced fractures and reached the surface through the cracks and eventually

evaporated [87]. The Haulani crater is one of the youngest impact craters, associ-

ated with bright blue rays of ejecta that are freshly exposed crustal materials and

could represent the original ocean materials [113].Therefore, the Dawn observations

of Ceres indicate these sites carry profound scientific implications serving the scien-

tific goals identified for Project GAUSS for in-situ investigations and sample returns

(Fig. 9).

3.3 Proposed payload

Only three instruments and gravity science were carried by Dawn. A more compre-

hensive payload would be needed to characterize Ceres itself and its atmospheric and

space environment. This is especially true with the detection of water plume activity

by Herschel [59]. Similar to the Cassini measurements at Enceladus, repeated fly-

through of the gas plume would allow the identification of the chemical composition

and isotopic ratios of the gas molecules, thus providing a probe to the nature of the

subsurface lake/ocean. The proposed payload and their heritage are summarized in

Table 3. It is assumed that some of the scientific instruments will have been suc-

cessfully developed for CNSA’s Tianwen-1 mission to Mars and the China Asteroid



Experimental Astronomy

Fig. 8 Surface geomorphological features on Ceres and their connections to the interior structure (image

credit: NASA/JPL/Caltech/IAPS/MPS/DLR/INAF/ASI)

Explorer (CAEX) to small bodies. By the same token, the sampling and reentry tech-

nology are also assumed to be derived from China’s sampling missions to the Moon,

Mars, and asteroids. The instrumentation on the Philae lander on ESA’s Rosetta, the

Rosalind Franklin Rover (RFR) of ExoMars, the Yutu rovers of Chang’e missions,

and the Zhurong rover of the Tianwen-1 mission, will provide strong preparation and

heritage for the Ceres rover.

It is important to emphasize the astrobiological significance of the in-situ explo-

ration of geological landmarks of special interest. These include the Ernutet crater

and the Occator crater. To achieve high confidence in detecting organic materials on

the surface of Ceres and assess their nature, the mid-IR range 2-12µm turns out to

be crucial at the spatial resolution that could be achieved by a spacecraft in orbit

around Ceres, not necessarily with imaging capabilities. Covering this sensitivity

range would allow:

– Complementing surface mineralogy as derived by VIR in the overall 0.4-5.1 µm

spectral range by using thermal emission spectroscopy from 2-12 µm, deter-

mining the specific class of compounds responsible for the organics-rich area

observed close to crater Ernutet, and shedding light on its origin (endogenous vs.

exogenic). This spectral range would ultimately provide the capability to greatly

expand our inventory of astrobiologically important compounds, and to remotely

sense complex organics.

– Assess any potential ongoing activity and occurrence of organics, particularly on

top of Cerealia Facula in crater Occator.

– Perform an in-depth characterization of the 34-km crater Haulani, one of the

youngest geologic features on Ceres and home to the most prominent thermal

signature observed on the entire surface of the dwarf planet [113, 114].
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Fig. 9 Candidate sites on Ceres for in-situ and/or sample return. The Ceres basemap is a

composite color map of Ceres generated by Dawn Framing Camera images with R, G, B

= 960, 550, 440 nm, respectively (from Castillo-Rogez et al, Pre-decadal survey, image credit:

NASA/JPL/Caltech/IAPS/MPS/DLR/INAF/ASI)

– Retrieve surface temperatures, grain size, porosity and surface roughness using

thermal emission from 2-12 µm, thus accessing temperature values below 180 K

with high accuracy, which were precluded to Dawn/VIR.

– Ultimately characterize the best landing site for a surface element in terms of

composition and roughness (regolith depth).

The Fourier Transform Spectrometer (FTS) working principle is based on the

Michelson interferometer, which is an infrared spectrometer suitable for covering a

broad spectral range from the near infrared to the mid infrared with constant, high

spectral resolution (typically up to 1-2 cm-1). FTSs simultaneously detect light vary-

ing the optical path difference (OPD) and encoding the signal at each wavelength

with a cosine modulation at a frequency proportional to the wavenumber ν=1/λ. This

interferogram is then transformed into a spectrum, i.e., from the optical path domain

to the optical frequency domain. The OPD could be produced by rotating a double

pendulum system around its axis, rather than translating the moving mirror along a

linear direction like in the classical Michelson interferometer. Compared to the first

generation of FTS (e.g. PFS on board the ESA Mars Express spacecraft), in recently

upgraded versions have been proposed that offer a significant reduction in mass and

size, adopting innovative technical solutions.

3.4 Trajectory design

Considering the fact that the target asteroid is located between the orbits of Mars

and Jupiter (the semi-major axis of Ceres is about 2.768 au), in the transfer design

we take advantage of a gravity assist of Mars in order to reduce the required fuel

https://science.nasa.gov/science-red/s3fs-public/atoms/files/Exploration%20of%20Ceres%20Habitability.pdf?fbclid=IwAR3u1ws2Atwm_ZdQa1VIXKvdJ0dlaKTBYtbmvTC4P1VdAeGTqTfoFrFIrnM
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Table 3 Strawman payload on the Orbiter and the Lander

Payload name Heritage

Orbiter Wide-angle and narrow-angle camera Chang’e 1-3, Dawn, Rosetta, BepiColombo

Infrared imaging spectrometer Dawn, Rosetta, Chang’e-4, CAEX

Fourier Transform Spectrometer Mars Express, ExoMars

Thermal mapper CAEX

Ultraviolet imaging spectrometer Chang’e-3, MMX

GRS Change’e 1-2

Long-wavelength radar CAEX

Lidar BepiColombo

Dust detector Rosetta, CAEX

Ion and mass spectrometer Rosetta, CAEX

Particles and Fields package Rosetta, CAEX

Radio Science Rosetta

Lander Topographic camera system Chang’e 3-4; Mars rovers; Philae

Microscopic camera Philae, CAEX, CLUPI (ExoMars)

APXS Chang’e 1-3

GRS Chang’e 1-2

Laser-induced breakdown spectroscopy Tianwen-1, Curiosity

GC-MS Philae, CAEX

Subsurface science package Philae, CAEX

Active seismometer Insight, Chang’e 7

consumption. In the preliminary transfer scenario, the sequence is given as follows:

(a) launching from the Earth; (b) Mars’ gravity assist; (c) rendezvous with Ceres; (d)

returning to the Earth. The launch window is assumed to be after January 1st, 2035.

The planar transfer trajectory is reported in Fig. 10 and the associated parameters are

provided in Table 4.

3.5 Technological developments required

Here we discuss the key technological requirements and main challenges for a Ceres

sample return mission.

Flight dynamics It is assumed, that by the time of the Voyage 2050 programme,

the capacity of launch vehicles poses no challenge for sending a spacecraft with a

lander and re-launch system to Ceres. Ceres does not have an atmosphere that exhib-

ited any detectable dynamical effects on the Dawn spacecraft at altitudes down to

35 km. Therefore, an atmospheric entry system is not needed to land on Ceres. The

descent and landing system for Ceres can be derived from the already mature Chinese

Chang’e 3 and 4 descent and landing system. The technology for a re-launch system

already exists since the Apollo era, and a similar system is already in development
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Fig. 10 The transfer trajectory for Ceres’ sample return mission. In the transfer scenario, a Mars’ gravity

assist is taken into consideration. The probe launches from the Earth on April 28th, 2037. The arc from

the Earth to Mars is shown in black line, the arc from Mars to the target asteroid is given in blue line, the

rendezvous segment is presented in cyan line, and the return trajectory from the asteroid to the Earth is

marked in green line. The critical points of time are represented by red dots

for the various Mars sample return missions under study (see Visions and Voyages,

the Planetary Science Decadal Survey 2013-2022 report, National Research Council

of the National Academies). The escape velocity from Ceres’ surface of about 0.5

km/s is much lower than that of the Moon (2.4 km/s) and Mars (5 km/s). Therefore,

the re-launch system from Ceres’ surface for sample return can be much smaller and

light-weight than those for the Apollo system (which also had a complicated life-

support system) or any Mars sample return system in development. It can be expected

that the needed technology will have been developed and matured by the 2030-2040

timeframe, and should be much more efficient (small and light-weight) than the cur-

rently available system and hence will require a less powerful launch vehicle than

required by present technology. Earth re-entry is already mature and is not expected

to pose any challenge. In addition, an ion propulsion system, like the one used by the

Dawn spacecraft should be much more efficient.

Sampling on Ceres One or more approaches need to be developed for sampling the

surface layer of Ceres. Sampling on Ceres is different from that on the Moon or

Mars, which have relatively strong surface gravity and don’t require an anchoring

mechanism. Ceres sampling would also be different from that on small asteroids such

as the targets of JAXA’s Hayabusa and Hayabusa 2, and NASA’s OSIRIS-REx, which

have loose regolith and micro-gravity allowing for a touch-and-go approach. With its

surface gravitational acceleration of ∼0.27 m/s2, a robust anchoring mechanism may

be required for sampling on Ceres, depending on the sampling system. A drilling

system may also be needed to drill into the relatively strong rock-ice-salt mixture

with a density of ∼1.3 g/cm3 [29]. A drilling depth of decimetres, but less than one

metre is likely needed in order to reach the water-ice rich layers or subsurface ice
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Table 4 Parameters of the interplanetary trajectory for the Ceres sample return mission

Time points Velocity impulse

Launch April 28, 2037 Hyperbolic excess velocity (V∞) 4.961 km/s

Mars’ gravity assist May 21, 2039 Deep space maneuver at perimartian (�VM ) 1.981 km/s

Rendezvous with CeresAugust 8, 2040 Braking velocity for rendezvous with Ceres (�Vf )5.400 km/s

Departure from Ceres July 17, 2042 Accelerating velocity for departing from Ceres 4.813 km/s

Earth re-entry December 13, 2043

table at high latitudes [81]. Technologies currently being developed for landing on

and sampling asteroids might provide the necessary heritage for project GAUSS, e.g.,

technologies being developed for the Chinese small body mission [125]. The various

sampling mechanisms and collection system for Mars sample return currently in use

[65, 122] are good references for the future development of a Ceres sample return

system. Note that ESA and NASA signed a statement of intent on Mars sample return.

Cryogenic sample collection, containment, and curation The idea of cryogenic sam-

ple return from icy Solar System bodies has been around for a long time. The Rosetta

mission was originally designed to return samples from a comet at cryogenic tem-

perature [49]. This is probably the most challenging part of the entire project. To

preserve the volatile and organic compounds in their original status, samples should

not be thermally or aqueously altered during the collection, storage and transport,

and they should be shielded from contamination by terrestrial volatiles upon return.

Therefore, the samples need to be collected and sealed in the containers under cryo-

genic temperature and overpressure. A temperature of <∼170 K is required, and the

original temperature of subsurface samples (probably ∼140 K; [43, 99]) is desired,

throughout the entire collection, return, and curation process for preserving water

ice. The sample return capsule should have a number of separated and individually

sealed containers that can be overpressured to prevent the loss of volatiles such as

H2O, HCN, S-bearing species, and cyanides [17, 18].

3.6 Planetary protection

As revealed by the Dawn observations, the surface of Ceres is organic rich, with cer-

tain areas exhibiting higher concentration (e.g. the Ernutet crater; [25]). Furthermore,

multiple regions on Ceres show signs of recent or even ongoing brine-driven activ-

ity that could expose fresh materials from Ceres’ interior. Although it is unlikely that

the organic matter on Ceres is of biological origin, it is required to assess planetary

protection strategies for any future lander or sample return mission to Ceres. Based

on the current guidelines for planetary protection [39] and synthesized analyses of

the Dawn results, we summarize in Table 5 preliminary considerations on planetary

protection for different types of mission to Ceres.
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Table 5 Planetary protection categories for different types of missions to Ceres

Mission type Category Note

Lander/Rover Most part of the surface II* Like Dawn, the mission

is at least Category III if

it includes a Mars gravity

assist.

Occator faculae IV

Sample return Different possible sites,

including organic-rich

areas

V Determination on the

sub-category of being

“restricted” or “unre-

stricted” depends on

location.

Further information to be found in Castillo-Rogez, J. C. et al. “Planetary Protection Requirements for

Future Exploration of Ceres–State of Understanding after the Dawn Mission” (in revisions)

4 International context

We note that the ESA roadmap to Ceres needs to be constructed within an inter-

national context. NASA has recently selected in situ exploration and sample return

concepts at Ceres to be studied in preparation for the 2023-2032 planetary science

decadal survey [14]. That study will cover a range of architectures with a focus

on long-range mobility, sample acquisition, and return to Earth. CNSA has also

expressed interest in a mission to Ceres beyond its exploration of the Moon, Mars

and small bodies [127]. It is, therefore, essential for ESA to explore cooperative

opportunities through joint assessment studies with international agencies.

This mission concept came about during a round-table discussion at the 4th Lunar

and Deep-Space Exploration International Conference between July 22 and 24, 2019,

in Zhuhai, China. One important objective of this proposal is therefore to promote

scientific cooperation of the Chinese planetary science community with its European

counterpart, taking advantage of the momentum of CNSA and the spirit of ESA’s

“Voyage 2050 Initiative”. It might begin with a joint assessment study co-sponsored

by both agencies or their representatives. The assessment should identify the scien-

tific objectives, technical requirements, mission architecture, and possible division of

responsibilities and authorities.

The extensive orbital measurements of the Dawn mission can be used as a robust

basis for planning this large scale mission. Because of the efforts of several agen-

cies including JAXA, NASA, and ESA over the last two decades, the exploration of

asteroids has become a major component of deep space missions. On the one hand,

sample return missions and the related technologies have been championed by JAXA

that have successfully executed the Hayabusa mission to the S-type asteroid Itokawa

and the Hayabusa2 mission to the C-type asteroid Ryugu. This line of approach will

be extended to a sample return mission (Mars Moon Explorer or MMX) to the Mar-

tian moon Phobos and likely a sample return mission to a Jovian Trojan asteroid [77].

Following the Dawn mission, NASA has demonstrated its strong interest in aster-

oid in-situ exploration by performing the OSIRIS-REx sample-collection project to
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the B-type asteroid Bennu, and developing two more asteroid rendezvous missions,

one to the large M-type asteroid 16 Psyche, and the other one (Lucy) to a number

of Jovian Trojans (flybys). The Chinese space agency, CNSA, has recently issued an

AO calling for instrument proposals and international cooperation for its first aster-

oid sample return mission to a near-Earth asteroid, followed by a rendezvous mission

with a main-belt comet [126]. There is also an ongoing assessment study for a sam-

ple return mission to an inner-belt E-type asteroid. In parallel to this heightened level

of activities by JAXA, NASA and CNSA, ESA has approved the daring “Comet

Interceptor” project on the heel of the Rosetta/Philae mission.

If the above set of planned (or proposed) space projects can be successfully car-

ried out, then the first phase of reconnaissance/sample-return missions to major

phenotypes of small asteroids and short-period comets–as a global enterprise–

would be completed by 2030-2035. It is also expected that the basic knowledge

gained and technologies introduced would be applied to the next phase of aster-

oidal exploration–beginning around 2030, if not earlier, with the goal to address the

need of planetary defense against asteroid impact hazard, and asteroidal mining for

commercial reasons.

The lunar samples returned by the Apollo missions half a century ago continue to

spur cutting-edge science. We believe that Ceres should be viewed as the next frontier

space laboratory to extend our knowledge of the Solar System much further beyond.
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66. Marchi, S., Barbieri, C., Küppers, M., Marzari, F., Davidsson, B., Keller, HU., Besse, S., Lamy, P.,

Mottola, S., Massironi, M., Cremonese, G.: The cratering history of asteroid (2867) Steins. Planet.

Space Sci. 58(9), 1116–1123 (2010). https://doi.org/10.1016/j.pss.2010.03.017, arXiv:1003.5655

67. Marchi, S., Raponi, A., Prettyman, T.H., De Sanctis, M.C., Castillo-Rogez, J., Raymond, C.A.,

Ammannito, E., Bowling, T., Ciarniello, M., Kaplan, H., Palomba, E., Russell, C.T., Vinogradoff,

V., Yamashita, N.: An aqueously altered carbon-rich Ceres. Nature Astronomy 3, 140–145 (2019).

https://doi.org/10.1038/s41550-018-0656-0

68. McKinnon, W.B.: Where Did Ceres Accrete - In Situ in the Asteroid Belt, Among the Giant Plan-

ets, Or in the Primordial Transneptunian Belt? In: AAS/Division for Planetary Sciences Meeting

Abstracts #44, AAS/Division for Planetary Sciences Meeting Abstracts, p. 111.14 (2012)

69. McSween, H.Y., Emery, J.P., Rivkin, A.S., Toplis, M.J., Castillo-Rogez, J.C., Prettyman, T.H., De,

S.anctis.M.C., Pieters, C.M., Raymond, C.A., Russell, C.T.: Carbonaceous chondrites as analogs

for the composition and alteration of Ceres. Meteorit. Planet. Sci. 53(9), 1793–1804 (2018).

https://doi.org/10.1111/maps.12947

70. Morbidelli, A., Levison, H.F., Tsiganis, K., Gomes, R.: Chaotic capture of Jupiter’s Trojan asteroids

in the early Solar System. Nature 435(7041), 462–465 (2005). https://doi.org/10.1038/nature03540

71. Morbidelli, A., Bitsch, B., Crida, A., Gounelle, M., Guillot, T., Jacobson, S., Johansen, A., Lam-

brechts, M., Lega, E.: Fossilized condensation lines in the Solar System protoplanetary disk. Icarus

267, 368–376 (2016). https://doi.org/10.1016/j.icarus.2015.11.027, arXiv:1511.06556

72. Nanne, J.A.M., Nimmo, F., Cuzzi, J.N., Kleine, T.: Origin of the non-carbonaceous-

carbonaceous meteorite dichotomy. Earth Planet. Sci. Lett. 511, 44–54 (2019).

https://doi.org/10.1016/j.epsl.2019.01.027

73. Nathues, A., Platz, T., Thangjam, G., Hoffmann, M., Mengel, K., Cloutis, E.A., Le Corre, L., Reddy,

V., Kallisch, J., Crown, D.A.: Evolution of occator crater on (1) ceres. AJ 153(3), 112 (2017).

https://doi.org/10.3847/1538-3881/153/3/112

74. Nathues, A., Platz, T., Thangjam, G., Hoffmann, M., Scully, J.E.C., Stein, N., Ruesch, O.,

Mengel, K.: Occator crater in color at highest spatial resolution. Icarus 320, 24–38 (2019).

https://doi.org/10.1016/j.icarus.2017.12.021

75. Neesemann, A., van Gasselt, S., Schmedemann, N., Marchi, S., Walter, S.H.G., Preusker, F.,

Michael, G.G., Kneissl, T., Hiesinger, H., Jaumann, R., Roatsch, T., Raymond, C.A., Russell, C.T.:

The various ages of Occator crater, Ceres: Results of a comprehensive synthesis approach. Icarus

320, 60–82 (2019). https://doi.org/10.1016/j.icarus.2018.09.006

76. O’Brien, D.P., Izidoro, A., Jacobson, S.A., Raymond, S.N., Rubie, D.C.: The Deliv-

ery of Water During Terrestrial Planet Formation. Space Sci. Rev. 214(1), 47 (2018).

https://doi.org/10.1007/s11214-018-0475-8, arXiv:1801.05456

77. Okada, T., Iwata, T., Matsumoto, J., Chujo, T., Kebukawa, Y., Ito, M., Aoki, J., Kawai, Y., Yokota, S.,

Saito, S., Terada, K., Toyoda, M., Yabuta, H., Yurimoto, H., Matsuura, S., Tsumura, K., Yonetoku,

D., Mihara, T., Matsuoka, A., Nomura, R., Yano, H., Hirai, T., Nakamura, R., Ulamec, S., Jaumann,

R., Bibring, J.P., Grand, N., Szopa, C., Palomba, E., Helbert, J., Herique, A., Kumamoto, A., Grott,

https://doi.org/10.1002/2017JE005335
https://doi.org/10.1029/2018JE005780
https://doi.org/10.1086/500287
http://arxiv.org/abs/.....
https://doi.org/10.1038/nature08094
https://doi.org/10.1088/0004-6256/142/5/152
https://doi.org/10.1016/j.pss.2010.03.017
http://arxiv.org/abs/1003.5655
https://doi.org/10.1038/s41550-018-0656-0
https://doi.org/10.1111/maps.12947
https://doi.org/10.1038/nature03540
https://doi.org/10.1016/j.icarus.2015.11.027
http://arxiv.org/abs/1511.06556
https://doi.org/10.1016/j.epsl.2019.01.027
https://doi.org/10.3847/1538-3881/153/3/112
https://doi.org/10.1016/j.icarus.2017.12.021
https://doi.org/10.1016/j.icarus.2018.09.006
https://doi.org/10.1007/s11214-018-0475-8
http://arxiv.org/abs/1801.05456


Experimental Astronomy

M., Auster, H.U., Klingelhoefer, G., Yoshida, F., Yoshikawa, M., Matsushita, M., Saiki, T., Kato,

H., Mori, O., Kawaguchi, J.: OKEANOS - a Solar Power Sail Mission to a Jupiter Trojan Asteroid

and Its Updated Science Mission Proposal. In: Lunar and Planetary Science Conference, Lunar and

Planetary Science Conference, p. 1305 (2019)

78. Owen, T., Bar-Nun, A.: Comets, impacts, and atmospheres. In: Deep Earth and Planetary Volatiles,

p. 35 (1994)

79. Platz, T., Nathues, A., Schorghofer, N., Preusker, F., Mazarico, E., Schröder, S.E., Byrne, S.,
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