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Gauss Interpolation Formulas

and Totally Positive Kernels*

By David L. Barrow

Abstract.   This paper simplifies and generalizes an earlier result of the author's on Gauss

interpolation formulas for the one-dimensional heat equation.   Such formulas approxi-

mate a function at a point (x*, t*) in terms of a linear combination of its values on an

initial-boundary curve in the (x, t) plane.   The formulas are characterized by the require-

ment that they be exact for as many basis functions as possible.   The basis functions are

generated from a Tchebycheff system on the line t = 0 by an integral kernel K(x, y, t),

in analogy with the way heat polynomials are generated from the monomials x' by the

fundamental solution to the heat equation.   The total positivity properties of K(x, y, t)

together with the theory of topological degree are used to establish the existence of the

formulas.

1.   Introduction.   In a recent paper [1] we discussed formulas of the form

m

(1) u(x*, t*) -  Z Ak»iXk- tk)
k=l

for approximating solutions to the heat equation

(i\ On = ̂ a
K) 3r    ax2'

The function u is prescribed on an initial-boundary curve C in the (x, t) plane, and

(x*, t*) is a fixed point where an approximate solution is desired.   The formula (1),

where the points (xk, tk) lie on C and the weights Ak aie positive, is characterized by

the requirement that it be exact for as many "basis functions" as possible. In [1] we

proved the existence of w-point formulas which are exact for all heat polynomials of

degree n = 2m - I, and that this is best possible, in the sense that no m-point formula

is exact for all heat polynomials of degree n x > 2m - 1.   Such formulas were called

Gauss interpolation formulas, because of their similarity to Gaussian quadrature

formulas.

A heat polynomial of degree n is a linear combination of the functions

[i/21    xi-2j.j

where [a] means the greatest integer less than or equal to a.   Each i».(x, t) solves (2)

and satisfies

u¡(x, 0) = x' = 4>.(x).

If we now introduce the fundamental solution to the heat equation
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GAUSS INTERPOLATION FORMULAS 985

K(x, y, t) = -=L=- exp(- (x - y)2/At),      t > 0,
\JAllt

we can express the heat polynomials as

(3) ut(x, t) = j^K(x, y, t)(t>i(y) dy,      t > 0.

Now, it is known that for each t > 0, the kernel K is extended totally positive

(cf. Karlin [2], and below), and that the functions 0(.(x) = x', i = 0, 1, ... , n, form

a Tchebyeheff system (cf. Karlin and Studden [3]).    These facts can be used to

simplify the proof of the result from [1] mentioned above.  More significantly, the

concept of total positivity allows considerable generalization of the results of [1]. For

example, Karlin and McGregor have shown that fundamental solutions for a large class

of one-dimensional parabolic problems are totally positive [5].   If such fundamental

solutions can be shown to satisfy a little more, namely, the hypotheses of Theorem 1

below (as in fact some of the specific examples from [4] seem to do), then we will

have shown the existence of Gauss interpolation formulas for solutions to these para-

bolic problems.  In Section 3 we prove that one of the examples from [4] does in-

deed satisfy the hypotheses of Theorem 1 ; we also give a numerical example based on

this case.

A further generalization incorporated into Theorem 1 is the consideration of

formulas of the form

(A) u(x*,t*)^ Ç ¿k (« +« ^J (**.'*),

where a = <x(x, t) is a prescribed continuous function on the curve C.  Such a formula

could be used, for example, in the case where the data au + bux = / is known on C,

for a and b fixed continuous functions with a > 0.  One first obtains the formula (4)

corresponding to a = b/a, and then applies it to the data f/a.

In the next section we state and prove the main results of this paper, Theorems

1 and 2. Theorem 2 is concerned with the linear independence of certain linear func-

tional on a space of functions of two variables, and can be thought of as providing

a "zero-counting" procedure for such functions. The corollary to Theorem 2 is a key

step in the proof of Theorem 1.

2.   Main Results.  We first introduce some notation for certain determinants

associated with a function K(x, y) (cf. Karlin [2, Chapter 2]).   Here x and y take

values in the totally ordered sets X and Y, respectively.  Let xx < x2 < • • • < xr be

selections from X, and yx < y2 < • • • < yr from Y.   The determinant of the matrix

whose (/, /)th entry is K(x¡, v.) will be denoted by

If this determinant is nonnegative for all such choices of the x('s and j-'s, then K is

said to be totally positive.

If X is an open interval and xx < x2 < • • • < xr are values from Xand yx < y2

< " " ' <yr, then
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986 DAVID L. BARROW

I X., x2,

K*

yi,y2> •■■>yr/

will denote the determinant of the matrix described as follows:   if x¡ = xj+ j = • • • =

x¡+¡ is a block of coincident x's, then the (i + k)th row of the matrix will have the

entries

— Kix^X      k = 0,l,...,l
dxK

(assuming K is sufficiently differentiable). If this determinant is always positive when-

ever at most r of the x's coincide, we say that K is extended totally positive of degree

r in the variable x.

We now state the hypotheses for Theorem 1.   Let K(x, y, t) be a real valued

function continuous on X x X x (0, °°), where X is an open interval.  K is assumed

to have the following properties:

Kl.   For each t > 0, K is extended totally positive of degree 3 in the variable x;

K2.   There is a class of functions DK which are integrable with respect to the

measure dp = K(x, y, f) dy over the interval X; furthermore, we assume that if f E DK,

and if

Ttf(x) =  [k(x, y, t)f(y) dy,      t > 0,

(5)
= /(*),      t = 0,

then Ttf(x) is continuous for (x, t) E X x [0, °°) if f E C(X); also, we assume that

differentiation under the integral sign up to order 2 in x is legitimate:

à"Ttf(x) =    r   d»K(x, y, t)

dxv K       3*

r  dvK(x, y,t)    , ,
=   J   --TV-^fifiày,      » = 0,l,2,f>0;

K3.  fxK(x, y, t)dy= 1 for t > 0.

K4.  The family of linear operators Tt is a semigroup:   Ts+t = Tt ° T$.

Now let n be a positive integer and let {<P¡}"=0 C C2(í) n DK be an extended

Tchebycheff system of order 3 (cf. [3, p. 6]).  This is equivalent modulo the sign

of one of the functions </>(-, to the statement that any polynomial p(x) = 2"_of3.0.(x)

has at most n zeroes, counting multiplicities up to order 3.  Also, we specify that

0o(x)=l.

We next define the family of functions

(6) ufic,f)&Tjfic),      1 = 0,1,...,«,

in analogy with (3).  We can now state

Theorem  1.  Let C: {(x(s), t(s)): 0 < s < 1} be a Jordan arc in the (x, t)

plane satisfying:

(i) x(s) G X, 0 < s < 1 ;

(ii) (jc(0), r(0)) = (a, r*), (x(\), t(\)) = (b, t*), with a < b and t* > 0;

(iii) 0 < t(s) < t* for 0 < s < 1.

Let a(s) be continuous for 0 < x < 1, and consider a to be defined on C via the

parametrization for C: a(x(s), t(s)) = a(s). Assume a(a, t*) < 0 < a(b, t*).   Then for
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GAUSS INTERPOLATION FORMULAS 987

any a <x* < b and n = 2m - 1 (m > 2), there is a formula of the form

(7) «(*V*)~f  Ak(u + a^ixk,tk)

which is exact for all polynomials p(x, t) = H"=0ßtii^x, t).  The weights Ak are

positive and the points (xk, tk) lie on C, with tk < t*. Furthermore, no such formula

can hold for all polynomials of degree nx> n.

The proof of Theorem 1 will be postponed until we establish some lemmas and

Theorem 2.

Lemma 1. For fE C2(X), let Z(3)(/) be the number of zeroes off, counting

multiplicities up to order 3, and let S(f) be the number of strict sign changes of fon

X.   Then for fE C2(X) n DK, / ^ 0, and t > 0,

(8) Z(3)(Ttf) < S(f).

Proof.   The proof is identical to the proof of the (a) part of Theorem 3.2, p.

239 of [2].  The requirement there that /be bounded is obviated by our hypotheses

on K and DK.

Corollary.  IffE DK, / ^ 0 and f> 0, then Ttf(x) > 0 for t > 0 and x E X.

Proof.  S(f) = 0, so Ttf has no zeroes, by the lemma.  Hence, 7^/is positive (it

is nonnegative since K(x, y, t) is, as follows from its total positivity).

For convenience, we introduce the vector notation

u(x, t) = (uQ(x, t), ux(x, t), ... , un(x, t))

and

<P(x) = (<pQ(x),<px(x),... ,<pn(x)) = u(x, 0).

Theorem 2.  Let the functions {u¡(x, t)}, i = 0, I, ... ,n, be as in the hypoth-

eses for Theorem 1.    Let (xk,  tk), k = 1, 2, ... , / +/, / > 0, ; > 1, be distinct

points in the half-plane t > 0 such the the first I of them have equal t-coordinates

which are greater than or equal to those of the other points; i.e., r, = t~ = ' ' ' =

r, > tk, k — I + 1./ + /.   Suppose also that n + I > I + 2j.   Then the vectors

*»VH&v{&*u}Z>t{
are linearly independent.

Proof. We may assume that n + I = I + 2j, for otherwise we could adjoin

points to the line t = tx, increasing /, to achieve this. Suppose the theorem were

false.  Then there would exist a nontrivial polynomial p(x, t) = E"-^.«^*, t) satisfying

p(xk, tk) = 0,   k= 1,2,... ,/ + /,

and

Px(xk,tk) = 0,      k = l+ 1, ... ,/ + /.

We will show that this is impossible.

For t > 0, let Z(t) denote the number of zeroes of p(x, t) in x, counting
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multiplicities up to order three.   Let S(t) be the number of sign changes of p(x, t) in

x.  Lastly, Iet/=/j +/2, where/', is the number of the points (xk, tk),k = 1+ I,...,

I + j, on the line t = tx.  Then clearly

(8) Z(tx)>l + 2jx

and

(9) Z(0) < «,

the last inequality holding because the functions u¡(x, 0) form an extended Tcheby-

cheff system of order 3.

It will now be convenient to classify the types of zeroes that p(x, t) may have.

For t > 0, let z¡(t), i = 1,2,3, denote the number of x's such that:

fori= l,p(x,t) = 0,px(x,t)i=0;

for i = 2, p(x, t) = px(x, t) = 0, p does not change sign at x;

for / = 3, p(x, t) = px(x, t) = 0, p does change sign at x.

Thus, each (xk, tk) with k = I + I, ...,/+/ is a zero of type z2 or z3.   Further-

more, it is clear that

(10) Z(t) > zx(t) + 2z2(0 + 3z3(r) > zx(t) + z3(t) = S(t).

By Lemma 1, we have for any Ô > 0,

(11) Z(t + 8) = Z(3)(Tsp(-,t)) < S(p(-, t)) = S(t).

Combining (10) and (11), we obtain

(12) Z(t + 8) < S(t) = zx(t) + z3(t) < Z(t) > zx(t) + 2z2(t) + 3z3(t).

Hence, Z(t) is nonincreasing in t and decreases by at least two due to each of

the points (xk, tk), k = I + 1,...,/+ /, where p = px = 0.  Thus we have

(13) Z(tx ) < Z(0) - 2/2 < n - 2/2 = / + 2jx - 1,

which is a contradiction of (8).

Corollary. Assuming all the hypotheses of Theorem 1, a necessary condition

for the existence of a formula (7) with Ak > 0 and (xk, tk) E C which is exact for

polynomials of degree n = 2m - 1 or less, is that all m points be distinct, and for

k= 1,2, ... ,m,Ak>0 and tk<t*.

Proof.   We first show that a formula with fewer than m points is impossible.

Suppose that

(14) u(x*, t*) = £ M" + <*"*)(**• '*)>
k-l

where / < m.   If we now adjoin points to the line t = t*, to give / = 2(m - /) in all,

and reindex, we see that (14) is impossible by Theorem 2.

To see that tk < t* for all k, suppose first that tx = t* and tk <t*,k = 2,

... ,m.  If we take / = 0 and / = m, Theorem 2 implies the existence of a polynomial

p(x, t) = ^„fyw/x, t) satisfying p(xk, tk) = 0, k = I, ... , m; px(xk, tk) = 0, k =

2, ... ,m\ and Px(xx, tx) = 1.  But then the formula (7) gives
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m

p(x*, f) = Z Ak(P + °P*X*fc. t*) = Ai<a, t*) < 0.
fc=i

This in turn implies that p(x, t*) has at least two distinct zeroes in x, which, by Theo-

rem 2 with / = 2 and / = m - 1, implies p = 0, a contradiction.  The other two pos-

sibilities, tx < tm = t* and tx = tm = f* are dispensed with similarly.  This completes

the proof of the corollary.

Lemma 2.   The vector q = u(x*, t*) has a unique representation of the form

m

(is) ?=ZW.
fc=l

where xk E X and Xk > 0, k = 1, ... , m.

Proof.   Since ufx*, t*) = fxKix*, y, t*)$j(y) dy, i = 0, 1, ... , n, the com-

ponents of q form a "moment sequence" with respect to the functions {<¡>¡ix)} on X.

It follows by Theorem 1 of [7] that there is a representation for q of the form

(16) q=Zyk<Xyk)
k=l

with yk > 0, yk E X, k = 1, ... , p.   Let c, d be such that {yk} C (c, d) C X. Since

the functions {<¡>¡}, i = 0, ... , n, form a Tchebycheff system on [c, d], we may appeal

to the results of [3, Chapter 2].  The equation (16) shows that q belongs to the

"moment cone" generated by the {0¿} on [c, d] (i.e., those vectors c whose compo-

nents ct = fç(/>i(s) dp(s) for some bounded, right-continuous function pJ(s)).  Moreover,

the Corollary to Lemma 1 implies that q is actually in the interior of the moment cone.

The conclusion of Lemma 2 now follows from Corollary 3.1, p. 47 of [3].

Proof of Theorem 1.  As in [1], the proof uses the concept of topological degree

to establish the existence of a solution to a system of A equations in A unknowns.

We begin by reviewing the needed properties of degree theory (see Schwartz [8] or

Ortega and Rheinboldt [6] ).

Let D be an open bounded set in the Euclidean space RN, with D and dD de-

noting its closure and boundary, respectively.   Let F: D —* RN be continuous.  Then

if q E RN and q $ F(bD), the degree of F with respect to D and q is defined, has an

integer value, and will be denoted by deg(F, D, q).  The following are some basic

properties of the degree:

(i)  Suppose that F E C'(D), q £ F(W), and that for each zED where

F(z) = q, it is true that det(F'(z)) =£ 0. Then there are a finite number of points

zt E D where F(z¡) = q, and deg(F, D, q) = ^-sgnídetíF'íz,.))).

(ii)  If deg(F, D, q) =£ 0, there is at least one point z ED such that F(z) = q.

(iii)  Let F(z, X) be continuous on D  . [0, 2], such that F(z, X) =£ q for any

z E dD, 0 < X < 2.  Then deg(F(-, X), D, q) is constant, independent of X.

We will apply these properties by constructing a function F(z, X), a set D, and a

point q, such that deg(F(-, 0), D, q) = ±1, F(z, X) ̂  q for z E ÖD, 0 < X < 2, and

hence deduce that deg(F(-, 2), D, q) = ±1.   This will imply that the equation F(z, 2)

= q has a solution in D, which will be equivalent to the existence statement of Theo-

rem 1.
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Let A = 2m = n + 1 and let D C RN be the set

D= {z = (Ax,A2,... ,Am,sx,s2,... ,sm):

(17)
0<sx<s2<--- <sm<l,0<Ak<l,k= I,... ,m}.

Let u(x, t) be as before, and let q = u(x*, t*).  Let CQ: {(x0(s), tQ(s)), 0 < s < 1} be

a Jordan arc to be described below, and let Cx be the curve C of Theorem 1 (para-

metrized by xx(s) = x(s), tx(s) = t(s)).  For (s, X) G [0, 1] x [0, 1], let Cx be the

curve

(x(s, X), t(s, X)) = (\xx(s) + (1 - X)x0(s), Xr,(s) + (1 - X)r0(s)).

Thus, as X varies from 0 to 1, Cx is a continuous deformation of C0 into Cx.

We define F(z, X) as

m

F(z, X) =  Z Ak<x(sk> *)' tisk> À»>      0 < X < 1,
fc=i

m

= Z M" + (A - l)«u,X*i(sfc), 'i(sfc)).      1< a < 2.
fc=l

Let C0: (x0(s), f0(s)) be any Jordan arc (i.e., continuous,non-self-intersecting)

satisfying:

(a) (x0(0), f0(0)) = (a, f*), (x0(l), r0(l)) = (i, r*);

(b) (x0(s), r0(j)) C X x [0, f*) for 0 < s < 1 ;

(c) C0 includes an open interval of the x-axis which contains the points {xk} of

Lemma 2, with the parametrization chosen so that if xk = x0(sfc), then dxQisk)/ds = 1.

Lemma 3. If z G Wand 0 < X < 2, then F(z, X) * q.

Proof.   This is an immediate application of the Corollary to Theorem 2.   Note

that if z G dD, one or more of the following is true:

(i)  sx = 0orsm = 1,

(ii)  sk = sk+ x for some k = 1,2, ... ,m - I,

(iii)  some ,4fc = 0,

(iv)  some 4fc = 1.

Thus, if z G dD and F(z, X) = q with one of the first three cases occurring, there

would exist a formula (7) of a kind ruled out by the corollary (applied with a possibly

different curve C or function a).  In case (iv), we use the fact that uQ(x, t) = 1 so that

Z^Lj.4,. = 1, and conclude that case (iii) must also hold.

We now claim that

(18) deg(F(-,0),A7) = ±l.

The fact that F(z, 0) = q has a unique solution in D follows immediately from Lemma

2.   At this solution,

¥%$- =   [«*,),..., <Kxm),Ax f (,.), ... M« gc*m)] ,

where xt, x2, ... , xm are the points of Lemma 2.  The determinant of this matrix is
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nonzero, since the positive v4fe's may be factored out and the {0^, i = 0, ... , n, form

an extended Tchebycheff system of order three.  The equality (18) now follows from

property (i) of the degree.

Combining (18) and Lemma 3 with properties (ii) and (iii) of the degree, we

deduce that the equation F(z, 2) = q has a solution z ED.  This proves the existence

statement of Theorem 1.  The fact that such a formula cannot hold for all polynomials

of degree nx > n follows from Theorem 2.

3.   An Example.  We conclude with an example illustrating an instance of Theo-

rem 1.   It should be pointed out that the example is not arbitrary, but was chosen be-

cause the fundamental solution K(x, y, t) and the family of solutions {w(-(x, t)} used

in Theorem 1 are known explicitly for this case.

Consider the diffusion equation [4, pp. 170-171] on X = (- °°, °°)

ri9i *£ = ex2±(e-x**a\ = #a_2x —
uy' dt      ax v     a*/   dx2      fe'

The Cauchy problem for this equation has the fundamental solution

(20) K(x, y, t) = a(t)exV(- b(t)x2)exp(- b(t)y2)exV(c(t)xy),

where a(t) = «1 - e"4'))"1/2, b(t) = e-4t/(l - e~4t), and c(t) = 2e~2tl(l - e~4t).

We first show that, for each t > 0, this kernel is extended totally positive, of arbitrary

degree, in both x and y.   Indeed, by Theorem 2.6, p. 55 of [2], it is sufficient to

show that foi m = 1,2, ... ,

m

(21) **(í3)>o

(where we suppress the dependence of K on r); (21) is established by arguing as in

[2, pp. 99-100], where (21) is proved for K(x, y) = exy. Properties K2-K4 likewise

can be shown to hold.

We take for the functions {u{(x, t)} the class of solutions to (19)

(22) ufic, t) = e-2itH¡(x),      i - 0, 1, ... ,

2    • 2
where H¡(x) = (- l)!e* d'/dx'e~x   are the Hermite polynomials. We let the coefficient

a in (7) be zero and take for the image of the curve C the set (0, t): 0 < t < .1, (x, 0):

0 < x < 1, and (1, t), 0 < f < .1.  Formulas (7) were calculated for t* = .1 and x* =

.25, .5, and .75, with m = 2, 3, ... , 6, by numerically solving 2m nonlinear equations

in each case.

The formulas for (x*, t*) = (.5, .1) are given in Table 1. Table 2 presents the

result of applying these formulas to the problem of interpolating the function u(x, t)

which satisfies (19) and

u(0, t) = e2t,

u(x,0) = ex2,      0<x<l,

u(l,t) = e2t+\

this function being u(x, t) = e2t+x2.
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Table 1

Interpolation formulas for (x*, t*) = (.5, .1)

.5

.5

.35269431

.41343840

.23386729

.26874349

.26561142

.27676509

.18888000

.20936116

.15094470

.35320546

.13407306

.15241562

.15282969

.16747343

.22581758

.24931337

.87309498 (-1)

.11725642

.33604788 (-2)

.81537027

.0

.45103057
1.0

.19419862

.66696976
1.0

.0

.0

.43742786

.87996367
1.0

.0

.0

.27120875

.63648509
1.0
1.0

.0

.0

.38492690 (-1)

.0

.24033195 (-1)

.52478250 (-1)

.0

.0

.43361146

.60423741 (-1)

.28924570 (-2)

.0

.0

.53738453 (-1)

.67010371 (-1)

.20535510 (-1)

.0

.0

.88217190 (-2)

.61648245 (-1)

Table 2

Interpolation formulas applied to u(x, t) = exp(2r + x2)

(x*,t*) =

Exact

(.25,.1)

1.2629568
1.2938350
1.2992568
1.3000442
1.3001549
1.3001765

(•5,.l)

1.4720844
1.5546484
1.5660694
1.5679052
1.5682518
1.5683122

(.75,.1)

1.9516098
2.1200954
2.1394610
2.1427821
2.1435101
2.1436286

All calculations described in this paper were performed on the AMDAHL 470

computer at the Data Processing Center at Texas A & M University, using double pre-

cision arithmetic in FORTRAN, which carries approximately 16 significant digits.
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