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GAUSS SUMS AND KLOOSTERMAN SUMS OVER
RESIDUE RINGS OF ALGEBRAIC INTEGERS
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ABSTRACT. Let O denote the ring of integers of an algebraic number field of
degree m which is totally and tamely ramified at the prime p. Write {4 =
exp(2mi/q), where ¢ = p”. We evaluate the twisted Kloosterman sum

T N
D x(N(e)gg TN,
ag(0/q0)*
where T" and N denote trace and norm, and where x is a Dirichlet character

(mod q). This extends results of Sali¢ for m = 1 and of Yangbo Ye for prime
m dividing p — 1. Our method is based upon our evaluation of the Gauss sum

S x(N(a) @,

ag(0/q0)*
which extends results of Mauclaire for m = 1.

1. INTRODUCTION

Let E be a field of degree m over Q, and let Op denote the ring of integers in
E. Suppose that p is a prime and 8 C O is a prime ideal such that

(1.1) pOp =P", p [m,
that is, p is totally and tamely ramified in E. For

(1.2) q=p", r>1,
consider the finite quotient rings

(1.3) R, =2Z/qZ, Of=Og/qOE,

which have cardinalities ¢ and ¢™, respectively. For a € Op viewed as an element
of Oy, write N(a) and T'(a) to denote the norm and trace of o from O, to R,. For
any positive integer n, set

(1.4) Cn = exp(2mi/n).
For Dirichlet characters x,n (mod ¢) and z € Ry, define the Gauss sum
(1.5) G(x) = Gm(x) = Y X(N(a)¢

acO

and the (twisted) Kloosterman sum

(1.6) K, z)=Kn(n,z2) = Z U(N(Oé))C(IT(a)+Z/N(a)~
ac0y
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4430 RONALD EVANS

In the case that 7 is the trivial character, write n = 1 and set
K(z) = K(1,z2).

The sums in (1.5) - (1.6) are well-defined, since the summands would be unchanged
if a multiple of ¢ were added to a.

Mauclaire [9], [10], [2, Theorem 1.6.4, p. 40], Odoni [12], [2] Theorem 1.6.2,
p. 33], and Funakura [6], [2 Theorem 1.6.3, p. 37] explicitly evaluated the Gauss
sums G(x) for all » > 2. In §2 (Theorem 2.2), we extend Mauclaire’s results by
evaluating the Gauss sums Gy, (x) for all m.

Salié [13] evaluated the Kloosterman sums K;(1, z) for all » > 2. Ye [16] evalu-
ated the Kloosterman sums K, (1, z) in terms of a twisted hyper-Kloosterman sum
over Ry, in the case that m is prime, m|(p — 1), and E/Q is cyclic; see (3.1). In
§3 (Theorem 3.2), we apply Theorem 2.2 to extend Ye’s result in the case r > 2 by
evaluating K, (n, z) for all m (where m need not be a prime nor a divisor of p —1).
Our evaluations are in terms of twisted hyper-Kloosterman sums over R; which in
turn have been explicitly evaluated in [B]. In Theorem 3.3, we extend Ye’s result
in the case 7 = 1 by evaluating K,,(1, z) for all (not necessarily prime) m dividing
p—1.

In contrast with Ye’s determination, we do not require results from local class
field theory. Our proof requires only relatively basic results from local and global
algebraic number theory.

Ye [18] has pointed out that the results of [I6] can be generalized to cyclic
extensions E of composite degree m over Q, by applying repeated liftings of prime
degree as in Arthur and Clozel [, Eq. (6.7), p. 60]. For work related to [16] where
the prime p is unramified in E, see Ye [I7]. We note that in both [I6] and [I7], E
is assumed to be cyclic over Q, whereas in this paper, there is no such restriction.

In §4 (Theorem 4.1), we give a general product formula for the Gauss sums
G (x), which reduces in the case m = r = 1 to the famous Davenport-Hasse
product formula [3], [2, Theorem 11.3.5, p. 355] for Gauss sums (mod p) given in
(3.16).

2. EVALUATION OF GAUSS SUMS Gy, (X)

In the case m = 1, the Gauss sum G,(x) over O reduces to the familiar Gauss
sum G1(x) over R; defined by

(2.1) Gi(x) = > x(a)

acER?

No explicit evaluation of G () is known for general x in the case r = 1 (i.e., ¢ = p),
but for r > 2, G1(x) can be evaluated as follows. We have

(2.2) G1(x) =0 if x is nonprimitive, r > 2

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



GAUSS SUMS AND KLOOSTERMAN SUMS 4431
(see [2, Egs. (1.6.4)—(1.6.5)]). If » > 2 and x is primitive, then
V9 Cgs if r is even,

\/agqsl"’, if p>2andr >3 isodd,

(2:3) Gi(x) =
vV $qCs; if p=2andr>5isodd,

Va3 GG XY, ifp=2andr =3,
provided that v(x) = 1, where v = v(x) is defined for r > 2 by

(2.4) x(1+p°) = (", foreven r =2s > 2,
(2.5) x(5) =(-1)", for ¢q=8 (le,p=2, r=3),
and
1
(2.6) x(1+p° + 5])23) = C,;»iu foroddr=2s+1>3, g¢q#38.
(In (2.6) and in the sequel, 4 (modp) is interpreted as (p +1)/2 (mod p) when
p>2.)

The evaluation of G1(x) in (2.3) was proved by Mauclaire [9], [L0]. For a short-
ened proof, see [2, Theorem 1.6.4, p. 40] (where “inner sum on y” should be
corrected to read “inner sum on z” in [2, p. 41]).

For r > 2, the assertion that x is primitive is equivalent to the assertion that p
does not divide v(x). When r > 2 and v(x) = 1, the (primitive) character x is said
to be normalized. When r > 2 and x is primitive but not necessarily normalized,
we can evaluate G1(x) in terms of a normalized Gauss sum in (2.3), as follows.
First write

(2.7) x=¢£",

where ¢ is a normalized character (mod ¢), and v = v(x) is chosen relatively prime
to ¢(p — 1). Then

(2.8) Gi(x) = G1(&") = x()ou (G1(€)),

where 0, € Gal(Q(Cy(p—1))/Q) is defined by 0, (Cop—1)) = (j,—1y- Since G1(§) is
evaluated in (2.3), we see that (2.8) yields an evaluation of G1(x) for any primitive
character y, when r > 2.

In Theorem 2.2 below, we extend the evaluations of G1(x) given above by eval-
uating the Gauss sums G,,(x) for all m. We begin with a lemma which gives a
useful representation of the elements of O,. While its proof is p-adic, the lemma
allows us to prove our main results in the language of global rather than local rings.

Lemma 2.1. There exists T € O of degree m over Q such that

(2.9) 7" = pu (mod ¢qOg) for some integer uZ 0 (mod p),

(2.10) Tr/q(r) =0 (mod q) (1<i<m-—1),
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4432 RONALD EVANS

and

m—1
(2.11) O, = {Z T € Rq} .
1=0

Moreover, the m conjugates of T over Q have the form ¢\ + qB:;, 1 <i < m,
where the B; are algebraic integers.

Proof. Choose any w € Op with P|w, ie., w € P — P2 Then the irreducible
polynomial of w over Q is p-Eisensteinian of degree m, and F = Q(w). We also
have [I1, Theorem 5.5, p. 217] Ep = Qp(w) and [Egp : Qp] = m, where Eyp is the
B-adic completion of E, and Q, denotes the p-adic rationals. Let Z, denote the
p-adic integers. By [8, Ex. 13-14, pp. 74, 140] (cf. [I5} pp. 324-325]), there exists
an element m € Egp such that

(2.12) Ep = Qp(r), Opy = Zp(m),
(2.13) 7™ = pu, for some u € Z,
(2.14) mO0py = POry»

and

(2.15) T —w € P°Op,,.

Since X™ — pu is the irreducible polynomial of 7 over Q,,, the m conjugates of 7
over Q, are m¢? (0 < j < m — 1), where § is a primitive m-th root of unity in a
field extension of Q,. Thus

(2.16) Trg, /g, (7") =0, 1<i<m-—1,

where Tr denotes the trace. By (2.12)—(2.13), every o € Op can be m-adically
represented in the form

m—1
(2.17) o= Z a;mt a; € Zyp.
i=0

We can find 7 € Og such that

(2.18) 7 = m(mod qOg,, ),

by reducing (mod ¢) an appropriate linear combination of w,w?, ..., w™ ™! over Z,.
Then 7 has degree m over QQ, by the same argument we used to show that w has
degree m over Q. By (2.13) and (2.18), we see that (2.9) holds for some integer u
with w = p (mod ¢Z,). By (2.16), (2.18) and the fact that

TfEm/Qp (Ti) = TI‘E/Q(Ti)

[11, Corollary, p. 266], we see that (2.10) holds. Equality (2.11) follows easily
from (2.17) - (2.18). The last assertion of the lemma results from applying the m
different Qp-embeddings of Ep to both sides of (2.18). O

We now evaluate the Gauss sums G(x) = G (x) over Oy in terms of the Gauss
sums G (x) over Ry discussed at the beginning of this section.
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GAUSS SUMS AND KLOOSTERMAN SUMS 4433

Theorem 2.2. Ifr =1, then

(2.19) G(x) =p" X" (m)G1(X™).
If r > 2 and x is nonprimitive, then G(x) = 0. If r > 2 and x is primitive, then,
with v(x) defined by (2.4) — (2.6),

Gl (X)mp(mil)/Q (%)rv ) Zf2 /r m,
_p)(1— o=\ /o )
G (x)mpm=b/2¢ P (7/3;) ) (—,,(X)) . if 2|m,

p

(220) G(x) =

where D is the discriminant of the number field E, and where G1(x) is explicitly
given by (2.8).

Remark. If 2|m, then p > 2 by (1.1). Moreover, p™~!||D by [T}, Theorem 4.8, p.
166]. Hence the Legendre symbols in (2.20) make sense. For a formulation of (2.20)
in the case 2|m in which v(x) does not appear, see (2.45).

Proof. For a € O, write

m—1
(2.21) o= Z T, a; € Ry,

i=0
as in (2.11). First suppose that » = 1, so that ¢ = p. Recall the definitions of T'
and N below (1.3). By Lemma 2.1, T'(a) = magy and N(«a) = o', since ¢ = p.
Thus

G(X) _ Z (aO )Cmao =pm- 1 Z ™ Cma =pm- l—m( )Gl( )’
ag,...,aem—1€ER, acR,
which proves (2.19).

Suppose now that » > 2. If y is nonprimitive, then G(x) = 0 by an argument
analogous to that proving (2.2). Next assume that x is primitive. If m = 1, then
(2.20) follows from the definition (2.1) of G1(x). Hence assume that m > 1.

We first prove (2.20) when x is normalized. There are three cases.

Case 1: v(x) =1, r=2s, s> 1.
The elements a € O may be written

a =z + zwp® (2 € Ops, w e Ops),
S0
GO = D x(N@)T® S (N1 +wp*))¢ .
2€0%, wEOs
Since

N1 +wp*) =1+ T(w)p* = (1+p°)"™  (mod g),

it follows from the normalization (2.4) that
- S

Using Lemma 2.1, one sees that the inner sum Y vanishes unless z = 1 (mod 7p*~1),
w
in which case

> = Card(0,) = p™" = (V)™
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4434 RONALD EVANS

Thus, writing z = 1 4+ 2p*~! with

m—1
T = Z = O, (@1, ., Tm—1 € Ryp),
i=1

we have

(2.22) G(x) = (a)™ Y x(N(L+ap*h)).

T1,..Tm—1€ERp

Write N(1 + zp*~1) as a product of m conjugates and expand. One sees, using
Lemma 2.1, that

m—1
(223) N(]. + :cps_l) =1- pQS_l {% Z TiTm—i + f(xlv v 7xm1)} )
i=1

where f(x1,...,2Zm,m—1) is a Z-linear combination of monomials x;, ...x;, with
3<n<m, i1+--+i, =m. If m =2, fis interpreted as 0. (Note that each
coefficient in f is divisible by p*~!, so the term f could have been omitted from
(2.23) were it not for the pesky case s = 1.) Since

e N i i+ (1, Tm—1)
i=1

N(1+azp ) =(1 +ps)7ps_l{ =z }

?

the normalization (2.4) gives

m—1
L S TiTm—i+f(T1,e T m—1)
i=1

XN +2p 1) =G
Therefore, by (2.22) and (2.3),

m—1
ML S TiTm—i+f(T1,e T m—1)
i=1

224) GG = >, G

T1,..Tm—1€ERp

Now, ,,—1 does not actually appear in the polynomial f(z1,...,2m—1) and so
unless 1 = 0, the sum on ,,—1 in (2.24) vanishes when m > 2. Therefore we
may set 1 = 0 in the summands of (2.24) when m > 2. Further, x,,_o does not
appear in the polynomial f(0,z32,...,%m—1), and so unless x2 = 0, the sum on
Tpm—2 vanishes when m > 4. Continuing in this way, we see that one may set

T1 =22 = "= T[(m-1)/2] = 0

in the summands of (2.24). With this substitution, all terms of the polynomial f
vanish, and so (2.24) becomes
pm=1/2, it2 fm,
2.25 G "G = Pl .
( ) 1(x) (x) pm=2)/2 '3 ¢ y2/2, if 2|m,
y=0

where we’ve written y for the variable x,,, /5. This proves (2.20) for odd m. Assume
now that 2|m. Then

p—1

2 e [ —1 m/2
(2.26) Zg;ﬂuy 2= /p <%> ¢{t-p-m (_>

y=0 P
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GAUSS SUMS AND KLOOSTERMAN SUMS 4435
(see [2, Theorem 1.5.2, p. 26]). In view of (2.25) - (2.26), it remains to prove that
-1 m/2 -D 1-m
@ G)-G) (5
p p p
By Lemma 2.1,

Ng/q(r) = —pu (mod q),
so by (2.18), N := N, g, () satifies

0)-(2)

Ngjg(w)/p = N/p (mod pZ,),

By (2.15),

and so

(2:28) (E> _ <_]Z/p) _ (—(NE/@%u)/p)m—l) |

where the last equality uses the fact that m is even. Let g(z) € Z[z] denote the
(p-Eisensteinian) irreducible polynomial of w over Q, discussed near the beginning
of the proof of Lemma 2.1. Since

g'(w) = mw™ ! (mod pOE)
and m is even, (2.28) yields

—-N / 1—-m
220) (1) - (Pstronwy
p p
By a well-known formula for the discriminant of the basis 1,w, ...,w™ ! for E [T}

Prop. 2.4, p. 53], the “numerator” on the right side of (2.29) may be replaced by
(—=1)m+2/2Dpl=m This proves (2.27) and completes the proof of (2.20) in Case
1.

Case 2: v(x)=1,r=2s+1, s> 1, ¢ £8.
In this case, s > 1 when p = 2. The elements o € O} may be written

a =z + zwp® (2 € Op,w € Operr)
S0

GOO= D> X(NECT® 3 x(N(1+wp))g 5

ZEO;S weop,;+1

Observe that
1
N(+uwp®) =14 p T(w) + 5p*(T(w)* = T(w?)),
so since s > 1 when p = 2,

1 s
N(1+wp) = (1+p° + 5p*) T2,
It thus follows from the normalization (2.6) that

(2.30) Gix)= > x(N(=)¢HS(2),

z€05s
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4436 RONALD EVANS

where
_ T (zw+p°w? /2—w)
S(z) = Z Cps+1 .
wEOps-H
Writing
w =z + yp° (x € Ops,y € Op),
we have

z(z— z2p® —
S(z) =Y TR AN (TGD),
z y

The inner sum »_ vanishes unless z = 1 (mod 7), in which case Y = p™. Thus set

Yy y
m—1
(2.31) p=14> Zi € Rpe.
i=1
Writing
xr=a+bp (a € Op, b€ Ops-r),
we have
2 T(a(z—1
(2.32) S(z)=pm Y AU (2),
where
b(z—
Ul)= > ¢,
beop571
Writing
m—1
b= Z b, b; € Rps—1,
i=0
we have, by (2.31) and Lemma 2.1,
m—1 m—1
mpu 3. Zibm_i mu Z: Zibm—i
Uz = >, G = > G
bo,.sbm—1 bo,.-isbm—1
Therefore U(z) vanishes unless p*~! divides each of 21, 22, ..., 2m_1, in which case
U(z) = p™=~1. Thus, with
m—1
z=14p" ") g € Ry,
i=1
(2.32) becomes
m—1 )
2, Tla 3 ar’)
S(Z) :psm Z Cg(a /Q)CZD2 i=1
acOy
Writing
m—1
a= Zaﬂz, a; € Ry,
i=0
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GAUSS SUMS AND KLOOSTERMAN SUMS 4437

we obtain
m—1
2
mag/24+mu 3 am—igi
CERD DR
aQ,--;&m—1

Thus S(z) vanishes unless ¢; = -+ = ¢n—1 = 0, i.e., S(z) vanishes unless z = 1.
Since

s _ 2
S(1) = prmHmTh N g,
deR,

(2.30) yields
m,m(s 2),m/2— md? /2
G(x) = ¢rpmt1/2pm/2=1 N gmd’/

(2.33) et
= v p™ >t Y G,
deR,
By (2.3),
w_ [JGOmG, i p >,
2.34 =
2 i) {Guchgm, itp=2.

By [2, Theorem 1.5.2, p. 26],

(2.35) S iz = {\/1_? (%) s P %fp > 2,
deR, 1+im=p(Z) &, ifp=2.
When p and m are odd, the law of quadratic reciprocity gives
p m 1-p)(1—m
(2.36) (&)= <;> gmia-m,
Combining (2.33) - (2.36), we complete the proof of (2.20) in Case 2.
Case 3: v(x) =1, ¢ =8.

The elements o € Of can be written

a=a+2ab (a €05, be Oy),

SO
(2.37) Gx) = D x(N(@)G @ > x(N(1 +2b))¢] .
ac03 beOy
Observe that
(2.38) N(1+2b) = 1+ 2T(b) + 2(T(b)* — T(b*)).
Write
m—1
azl—i—ZaiTi, a; € Ro,
=1
and
m—1
b= Y b, b; € Ry.
1=0
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4438 RONALD EVANS

We have T'(b) = mby, and, since m is odd, T'(b)? = m?b3 = b3. Also,
m—1
TOH) =TO) +T2u Y bibm_i).
i=1
Since m is odd, > b;b,,—; is even, so
2T (b%) = 2T (b3) = 2mbZ.
Thus (2.38) becomes

(2.39) N(1+ 2b) = 1+ 2mbg + 2b2 — 2mb3.
Now,
m—1
(2.40) T'(ab) = mbo + 2mu Z aibm—i.
i=1

By (2.39) - (2.40), we see that (2.37) becomes

G(X) = D x(N (@) 3" x(1+ 2mbo + 263(1 — m))C™
acO3 boERy

(2.41) et

X Z (_1) i§1 aibmiil

b1,....,bm_1€ERy

The inner sum on by, ..., b, _1 vanishes unless a1, ...,a,,_1 are all even, in which
case a = 1 and this inner sum equals 4™~ . Thus (2.41) becomes

GO0 = 4™ > x(1+2mbo + 205(1 — m))¢™
boER4

= A1+ X3 + x(B)G™ + x(T)6™ )
Since x(5) = —1 by (2.5),
G(x) = 4™ {1 = x(=1)¢" + 1= x(-1)¢"}
=221 — x(-1)¢y

— (V)" (2)

m
“1y2 [ 2
m
where the last equality follows from (2.3). This proves (2.20) in Case 3, which
completes the proof of (2.20) for normalized x.
We now drop the assumption that x is normalized, and consider the general
situation where y is given by (2.7). For brevity, we rewrite (2.20) in the normalized

case as

(2.42) G(§) = G1(§)" A(m),

where

(243) (m) (&) pmnr2, if2 fm

2.43 A(m) = o em) [ [ —Dpi-m\ Tt - )
- () (22870 Y ™ s g
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GAUSS SUMS AND KLOOSTERMAN SUMS 4439

Applying the automorphism o, to both sides of (2.42), we have, by (2.7) and (2.8),
G(x) = G1(x)"ov (A(m)).
To prove (2.20), it remains to show that

A(m), if 2 fm,

(2.44) o (A(m)) = {(z) A(m), if 2|m.

If 2 fm, (2.44) follows because A(m) € Z. Now suppose that 2|m (so that p > 2).
Then A(m) = n\/pi®?=D*/4 for some n € Z. Now (2.44) follows since

p—1
(112 22
VAR
x=0

(see [2, Theorem 1.2.4, p. 15]) and

Ly 2 v ik 2
2 (Zcif ) -(9)zq
=0 =0

O
We remark that in the case 2|m, (2.20) can also be written
(2.45)
(—p)(1—m) (=Dp"™\""" (m
G(x) = G1(\)" Gy (xg)p™ D72 P (T) (;) Cifr> 2,

xz

where ¢ is the Legendre symbol, viz., ¢(z) = (5). To see this, write x = £” as

in (2.7). In view of (2.4) - (2.6), v({¢) = 1, so G1(&p) = G1(€) by (2.3); then,
applying o, to both sides of this equality, we obtain, by (2.8),

(2.46) Gi(x9) = (%) Gi(x), if r>2.

3. EVALUATION OF KLOOSTERMAN SUMS K (7, z)

In the case that E/Q is cyclic, p is an odd prime, and m is a prime dividing
(p—1), Ye [16, Theorem 1] gave essentially the following evaluation of the Kloost-
erman sum K (z) (defined below (1.6)):

—m 1)(r+1
31) K(s) = pm-vy2 (MY (=Dp! ey (1-p)(1-m) 57 Iy
( . ) (Z)_p - (:8 (Z)a z € q>

p p
where H(z) is the twisted hyper-Kloosterman sum defined by
(3.2) H(z)= > (gl ap Hyepttomta/ o)

T1,Tm ERY

for any character ¢ (mod p) of order m. (Note that H does not depend on the
choice of ¢.) Our formulation (3.1) does not quite agree with the statement in [16]
Theorem 1]. This is because when m = 2, the factor n(p) in [16, Theorem 1, p.

r+1
1159] should be corrected to read n(p)®*, which turns out to equal (%/p) in

our notation.
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4440 RONALD EVANS

For z € R and any characters A, B (mod ¢), define another twisted hyper-
Kloosterman sum J(A4, B, z) by

(3.3) J(A,B,z) = Z A1) B(ys - -y )¢+ Fym 2/ (1ym)
Y1, Yym ERY

In (3.11) below, we give a formula for H(z) in terms of the sum J(A4, B, z) which
is valid for » > 2. The sums H(z) and J(A, B, z) are special cases of the general
twisted hyper-Kloosterman sum

K(Ay,...,Ap, 2) = Z A (1) -+ Ay ()G HEm b2/ (1)

;cl,...,meRj;

which has been evaluated for r > 2 by Evans [5]. In the case » = 1, the sum

K(Aq,...,Am, z) (as well as its analogue over general finite fields) was estimated
by Katz {7) pp. 48-49]. When the characters Ay, ..., A,, are all trivial, the sum
K(Ay,...,An, 2) reduces to the familiar hyper-Kloosterman sum J(1, 1, z), evalu-

ated for r > 2 by Smith [14]. (Some errors in Smith’s formulations [14, Theorem 5]
are corrected in [5].)

Using the Davenport-Hasse product formula (3.14), one can evaluate a sum re-
lated to H(z) in the case r = 1, namely

S blaasd e agp g,

Z2,.., Tm ERY
see Duke [M], Katz [7, p. 85] for evaluations of this sum and its analogue over finite
fields.

The following lemma expresses the Kloosterman sums K (7, z), J(A4, B, z), and
H(z) in terms of Gauss sums G(x); cf. Katz [7, p. 47].

Lemma 3.1. Let z € R and let A, B,n be characters (mod q). Then
1
(3.4) K(n,z) = —>_ X(2)G1(x)G(xn)
vla) <

(where x runs through the ©(q) characters (mod q)) and

1
(3.5) J(A,B,z) = =0 ZX YG1(x)G1(xAB)G, (xB)"™~
Also, if ¢ is a character of order m (in which case m|(p — 1)), then

(3.6) H(z) = ﬁ S X6 (0 [T 6.

=0

Proof. For c € Ry,

1, ife=1

1 )
@;X@ - {0, i1,
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Hence,
1
— > X(2)Gi1()G
=) EX:X( )G1(x)G(xn)
1
=20 Do) Y X D X(N(@)n(N ()¢
X YyER: Q€O
= > n(N(a)¢ TN = K(y,2).
ac0y
This proves (3.4). The proofs of (3.5) and (3.6) are completely analogous. O

Theorem 3.2 below extends Ye’s evaluation (3.1) of K(1, z) for r > 2 by showing
that for any odd prime p, (3.1) holds for all (not necessarily prime) values of m
dividing p — 1. More generally, for 7 > 2 and any prime p > 2, Theorem 3.2 gives
an evaluation of K (7, z) for all m (not necessarily prime or a divisor of p — 1), in
terms of the sum J defined in (3.3). For evaluations of J, see [14], [5].

The case r = 1 will be considered in Theorem 3.3.

Theorem 3.2. Let r > 2 and z € R;. Let n) be any character (mod q) and let ¢
denote the Legendre symbol, viz., ¢(x) = (%) Then

— pm=1/2 (PN :
(3.7) K(n,z)=p (&) sama), itz fm,
and
_Dplfm r+1
(3.8) K(n,z)=p™" ”“(p) <T> PO 1060n, 2), it 2|m,

where J(A, B, z) is defined by (3.3). Moreover, for every odd prime p and every m
dividing (p — 1), (3.1) holds.

Proof. If m is odd, then by (3.4) and (2.20),
vl
K(n,z) = pm= 1)/2( ) _)Z X)G1(xn)™
X

= p(m=1/2 (E> J(1,m,2),

where the last equality follows from (3.5) with A = 1, B = 5. This proves (3.7).
If m is even, then by (3.4) and (2.45),

. —Dpt=m N\ m ) (1—m) 1
K(n,z) = p( 1)/2 < > m él p)(1—m)
p p v(q)

X Zx )G1(X)G1 (xnd)Gr (xn)™ "
By (3.5) with A = qb, = 1, this proves (3.8).
Next let p be an odd prime = 1 (mod m). It remains to prove (3.1).

Let 9 be a character (mod p) of order m and write x = £” as in (2.7). In view of
(2.4) - (2.6), v(&?) =1 for all i, so that by (2.3), G1(£4') = G1(€) for all i. Thus

(3.9) [1 Gu(ev) = Gue™.
=0
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Since v = v(y) is relatively prime to p — 1, it follows that v is relatively prime to
m. Hence, applying o, to both sides of (3.9), we obtain, by (2.8),

Mo =(4)" aor

Thus, by (2.46),

m—1 .
] Gl(X)ma if 2 /{/m,
) 11) 10 {Gl(X)m_lal(X¢), if 2|m.
Putting (3.10) in (3.6) and then using (3.5), we see that for r > 2,
J(l,l,z), if 2 /Ym,

(8.11) H(z) = {J(¢> 1,2), if 2jm.

Set n =1 in (3.7) - (3.8) and make the substitution (3.11). Then using (2.36) for
odd m and noting that (£) =1 (since p =1 (mod m)), we obtain (3.1). O

For the remainder of this section, let = 1. Then

K(n,2) = Y n(N(a))¢ @/,
ac0y

By (2.11), we can write
a=a+aiT+ -+ amar™ ! (aER;, a; € Ry).

Then N(a) = a™ and T(«) = ma, so that
p—1

(3.12) K(n,z)=p™! Z nm(a)q)”“*z/“m, when r=1.
a=1

In Theorem 3.3 below, we extend Ye’s result (3.1) for » = 1 by showing that for
any odd prime p, (3.1) holds for all m dividing p — 1.

We will need the product formula of Davenport-Hasse [2] Theorem 11.3.5, p.
355] for the Gauss sums

p—1
(3.13) Y0 =Y x(a)g,
a=1
namely,

(3.14)

=]

oy = T 1)/ T ).
7=0 j=1

where 1 is a character (mod p) of order m (so that m|(p — 1)). Note that v(y) is
the Gauss sum G1(x) in the case r = 1. It is not difficult to show that for p > 2,

(3.15) Wﬁlv(wa‘) = pm=1)/2 (%) ) m=D),

Jj=1
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see [2| p. 352]. Substituting (3.15) into (3.14), we obtain the following version of
the Davenport-Hasse formula, when p > 2, m|(p — 1):

(3.16) X" (m)y(x™")p D (%) ¢ = H Y.

Theorem 3.3. Let r =1 and z € R}, where p is an odd prime. Then (3.1) holds
for every m dividing (p — 1).

Proof. Let 1 be a character (mod p) of order m. Since by (2.19),

G(x) =p" X" (m)y(xX™),
if follows from (3.16) that

(3.17) G(X)=p(m_1)/2< )C(l P H (x¥).
p u

Substituting (3.17) into (3.4) with n = 1, we obtain

(315) K(e) =m0 (2) 0 ),

p
by (3.6). This completes the proof, as (3.18) is the same as (3.1) in the case
r=1. (|

4. A PRODUCT FORMULA FOR GAUSS SUMS G(x)

In Theorem 4.1 below, we give a product formula for the Gauss sums G(x), which
in the case m = r = 1 reduces to the Davenport-Hasse product formula (3.16).

Theorem 4.1. Let p be an odd prime and let 1 be a character (mod p) of order ¢
(so that £|(p — 1)). Let x be any character (mod q). Then if r > 2,

(4.1) X (OG(plDem D20 HGW

where C(x) € {x1,£i} is defined by
(4.2)

(%)H a2 fm, 2
Clx) = { = (g) ( )Zfl (v(x))“il)(mil) , if 2 f

p p

—1 _m\ {1 -1
Cél—pxl—mxe—l)()(%) (_D”T) (%) ,if 2lm, 2Ir,

with v(x) defined by (2.4) and (2.6). If in the case r = 1, we define the (previously
undefined) expression v(x) by setting v(x) = 1, then (4.1) also holds when r = 1,
provided that (m,f) = 1.

<3

D les

Proof. We first consider the case » > 2. If x is nonprimitive, then both sides of
(4.1) vanish by Theorem 2.2. Assume therefore that x is primitive.

First suppose that x is normalized, i.e., v(x) = 1. In this case x3/ is normalized,
i.e., v(xy’) = 1, for each j. Hence by (2.20) and (2.3),

(4.3) G(x) = G(x¢?), for all j.
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Choose b relatively prime to g(p — 1) such that b = ¢ (mod ¢), and define ¢ by
bc =1 (mod g(p — 1)). We claim that

(44 >IN = 3 (N (@)¢f 0.

acO acO

To verify (4.4), apply o. to both sides to obtain G(x) on the left and G(x°*) on
the right; then note that v(x) = v(x) = 1, so that G(x) = G(x) by (2.20) and

(2.3).
We can rewrite (4.4) as

(4.5) G (x) =X (OGKX).
In view of (4.3) and (4.5), the proposed equality (4.1) is equivalent to
(4.6) oy (G(x))pDImm=RC(x) = Gy
By (2.42) and by (2.44) with v = b, the left side of (4.6) equals

e m—41

Gi)™ (5] Amp oD ()
while the right side of (4.6) equals
G ()™ A(m)".

Thus (4.6) (and hence (4.1)) is equivalent to

e m—+1
a0 C = A (L) G )™ oG 0™,

Substitute the value of G1(x) given by (2.3) into (4.7) to see, after a tedious cal-
culation, that (4.7) is equivalent to (4.2) when v(x) = 1. This completes the proof
of (4.1) for r > 2 when v(x) = 1. To prove (4.1) for r > 2 and general v(x), first
write down (4.1) with ¢ in place of x (in the notation of (2.7)). Then, applying o,
to both sides, we obtain (4.1). This completes the proof of the theorem in the case
r>2.

Now let r = 1 and assume that (m,£) = 1. It remains to prove

—1
(4.8) XOG I =TT G,
=0
where
—1
(4.9) C = (0P ({) (ﬂ) .
8 p) \p

Since, by (2.19),
G(x) =X"(m)p" v (x™)

for every character x (mod p), we have in particular,

(4.10) G(xw?) = X" (m)y(m)™ p" (X" ™)
for all 7, and
(4.11) XOGK) =X (mOp™ (™).
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Because (m,f) = 1, it follows that 1™ runs through the same characters as 17
does when j runs through 0,1,2,...,¢ — 1. Thus, by (4.10),

-1 —16-1
N —m mo1) [T o
(4.12) [T cow?) =xm(m)p'tm=2 (—> | J RIESE"a!
Jj=0 p =0
By (3.16) with m = ¢,
-1
j _ 1 o) (e
@m) I = e op e (5 ) 0.
5=0
Multiplying (4.13) by (4.12) and then dividing the resulting equality by (4.11), we
obtain (4.8). O
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