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Gauss Type Quadrature Rules for

Cauchy Principal Value Integrals

By David Elliott and D. F. Paget

Abstract.   Two quadrature rules for the approximate evaluation of Cauchy principal

value integrals, with nodes at the zeros of appropriate orthogonal polynomials, are

discussed. An expression for the truncation error, in terms of higher order derivatives,

is given for each rule. In addition, two theorems, containing sufficient conditions for

the convergence of the sequence of quadrature rules to the integral, are proved.

1.   Introduction.   For X E (a, b), let /(/; X) denote the Cauchy principal value

integral

(1.1) I(f-,X) = fb^dx=lixn(fX-*+(l )^^dx,
Ja    x-X e->o V a J X + e/     x~X

where the interval (a, b) may be finite or infinite.  The weight function w is nonnega-

tive on (a, b) with /* w(x) dx > 0, and we shall assume that f£w(x)x" dx exists for

n = 0, 1, 2, . . . .  It is well known that for such w, there exists a sequence of orthog-

onal polynomials {pn} such that pn(x) = &„x" + • • • with kn > 0 for n = 0, 1, 2,...,

so that pn is of exact degree «; and, furthermore,

i1-2) fa   W<xK(x)pm(x)dX = hnbmn.

It also follows that the zeros x¡  ,  i = 1(1)« of pn are real, simple and lie in (a, b).

In order to obtain an approximate value of /(/; X) we shall approximate to it by quad-

rature sums Qn which use the values of the function /at the points x¡ n,  i = 1(1)«.

Such quadrature rules are said to be of Gauss type (see [5] ).

Two closely related Gauss type methods for the approximate evaluation of /(/; X)

were published in 1972 by Paget and Elliott [14] and Hunter [9].  For a given «,

Paget and Elliott approximated to/by the Lagrange interpolation polynomial Ln(f),

say, of degree < (n - I) and defined by

i   «    ^      V* Pnix)fixi,n) £.   ,    , w       ,
(1.3) Ln(f;x) = Z     ,,       w   _        x  = Z   li,nix)fiXi,n)>

i=l   Pn\xi,n)\x     xi,n>       i=l

where /,-„(x;-„) = 5,-;- so that fixin) = Ln(J;xin) for i = 1(1)«.   The quadrature sum

Qnif, X) is then defined by

(l-4) Qnif\ X) = iiKif); X) = ¿ A, „(X)/(x,. ),
1=1
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302 DAVID ELLIOTT AND D. F. PAGET

say.   For « = 0, 1, 2, . . . , let qn denote the function defined by

,,„ , .      £b w(t)pn(t) ^

(1.5) qn(x) = \a      t_x     dt,      a<x<b.

Since we can write

Cb    , JPniO - P„ix) \
<lnix) = Ja wi0{-—-) dt + pn(x)q0(x),

we see that this set of functions exists provided q0 exists, an assumption which is made

throughout this paper.  The coefficients A¡ „(X) in (1.4) are then given by

1nixi,n) * ?«(X)

PniHn^Hn-^)'       ^^"'
(1.6) Ain(\)

<lnixi,n)IPnixi,n)' *■ = x i,n ■

We now consider Hunter's method.   He makes one variation to the method just

described.  Suppose first that X is not a zero of pn, then Hunter approximates to /by

the Lagrange interpolation polynomial Ln+X(f), say, of degree < « which is such that

LU i(/; xi,n) = fixi,n)> »' = KO", and Ln +,(/; X) = /(X).  Thus, we find

. n    (x - X)/,- „(x) P„(x)

(1.7(a)) Ll+X(f;x) = £ \        '•'' f(X{>n) + Silm
i=l      ixi,n       K> PnW

provided p„(X) # 0.  Hunter takes for his quadrature sum the (n + 1) point rule

Qn + iif), say, where

d*))       ô:+1(/;X)=/(Lt+1(/);X) = t   ,,„^+^™
'=1       '    xi,n~K Pni*)

again provided that p„(X) #= 0.   The coefficients p¡ n axe the Christoffel numbers of

the corresponding «-point Gaussian quadrature rule and are defined by

= lÁHn) = *A-1

(1'9) ''"       Pn(Xi,n)        kn-lPnixi,n)Pn-liXi,nj'

for i = 1(1)«, (see Szegö [20, Eq. (3.4.7)]).

If X is a zero of pn, then appropriate modifications must be made to (1.7(a)) and

(1.8(a)).  Again, Ln+X(f) is chosen so that it takes the values of/at the points x¡ n,

i = 1(1)«; but if X = Xjn, then we also require that Ln'+,(/; x.- „) = f'(x¡ n).  We

find, when X = x;- n, that

. n \   (X - X. „)/(x,. „) - (X - X,.    )/(x.    )

tUl(f>x)=     Z      W*>- (x      -x     )-
i=l;i¥=j ( v*i,n j,n>

(1.7(b)) , ,

+ lj,niX)fiXj,n) + -77—, /(*/.„)■

The quadrature sum is now given by
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RULES FOR CAUCHY PRINCIPAL VALUE INTEGRALS 303

QLlif>xj,n)=tiLfn + lif);xj,n)

"        QniXi,n)fiXi,n) ~ QniXj,n)fiXj,n)

(l-8(b)) ' iM*i Pnixi,n)ixi,n-Xj,n)

, l'¿Xi,n) „       .    ,  «n<*j,n)    ,

It should be pointed out that particular cases of these two quadrature rules, or

minor variants of them, have been given prior to 1972 by many authors, see [6], [8],

[12], [15], [17], [18] and [19].   Hunter [9] described his algorithm in the particular

case of w = 1 and the interval (-1, 1), so that the orthogonal polynomials were taken

to be the Legendre polynomials Pn, although he did consider the case when the inte-

grand possessed m > 1 simple poles on (-1, 1) and not just one simple pole at the

point X as we have done here.  Hunter's analysis has subsequently been generalized in

various ways, see [3], [10] and [21].   Interpolation of/at the points cos(m/n), i =

0(1)«, in the case when w(x) = 1 has been proposed in [2], [16].  A surprising omis-

sion from all the quoted references is that no one has given an expression for the re-

mainder / - Q in terms of higher derivatives of/   It is well known for Gaussian quad-

rature (see [5]), that if g E C2n(a, b), then

(1.10) fn w(x)six) dx = £ Pj ng(x{ „) + hj2n\v)l [k2„(2n)\],
Ja i=i     '

where 17 E (a, b), but no comparable result has been given for Gauss type quadrature

rules for Cauchy principal value integrals. In Section 2, we shall give such forms for

the truncation errors for both the quadrature sums Q„(f; X) and Qn+X(f; X).

The quadrature sum Qn+X(f, X), as given by (1.8(a)), appears at first glance to be

an attractive one since it can be considered as Gaussian quadrature applied to the inte-

grand f(x)/(x - X), plus one extra term.  However, it is apparent that if X is close to a

zero of pn, then Qn + x (/; X) is likely to be obtained as the difference of two large num-

bers; if X is a zero of pn, then we have already noted in (1.8(b)) the modifications that

must be made to the quadrature sum.   Furthermore, none of the authors who have

written on this method have discussed the computation of qn(X) for a given X and arbi-

trary «.   In [14] the authors discussed an algorithm for the evaluation of Qn(f\ X)

based on the use of the Clenshaw recurrence algorithm [4].  In Section 3 we shall in-

vestigate how the method of [14] can be used for the evaluation of Qn + X(f; X).

Finally, in Section 4, we shall investigate the convergence of both Qn(f, X) and

Qn+X(f; X) to /(/; X) as « —► °°, when the interval (a, b) is finite.  Sufficient condi-

tions will be given in each case to guarantee convergence.  Although the convergence

of Qn(f; X) to /(/; X) has been discussed for the Jacobi weight function in [7], we

shall first demonstrate convergence of Qn(f; X) to /(/; X) for a more general weight

function.  The section concludes with a discussion of the convergence of Qn+X(f, X)

to /(/; X), a problem which does not appear to have been discussed previously (but

see [22]).
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304 DAVID ELLIOTT AND D. F. PAGET

2. Truncation Errors for Qn(f; X) and Qn + X(f; X). We shall first consider the

quadrature rule Qn(f; X), and let /?„(/; X) = /(/; X) - Q„(f\ X) denote the truncation

error at the point X E (a, b).  In order to obtain the required expression for /?„(/; X),

we shall assume that / possesses a continuous derivative of order (2« + 1) on (a, b).

Let the function s„ be defined on (a, b) by

/(x)-¿„(/;x)        n      /(x)-/(x,.„)

(21) S"W= !»„(*) = k   Pnixi,n)ix - xi,nY

from (1.3), since Ln(\\x) = 1.  We observe that boths„ and s'n are defined even when

x is a zero of pn, by taking the appropriate limits.  Now, since £„(/) is the Lagrange

interpolation polynomial to /at the zeros of pn, we also have (see [5]),

fix) - Lnif; x) = [pnix)f<") ($(*))] / [knn\],

where % E (a, b) and also depends on x.   Thus, in particular,

(2.2) snm=f{n)(ïi)l[knn\},

say for some £j 6 (a, b).  From (1.4), (1.5) and (2.1) we can write

xft   H<x)p„(x)Sn(x)

tsn(x)-sn(\)^f»     ,  ,      ,  JSnyX)~SnW\   ,
(2.3) = sn(\)qn(\) + ja w(x)p„(x)(—^-j dx

= R„(f; X) + R2„(f; X) say,

where, from (2.2),

(2.4) Rln(f; X) = s„(\)qn(X) = (qn(X)f(n)iïx))lik„nl).

In order to obtain a similar expression for R2if; X) we apply the «-point Gauss quad-

rature rule (1.10) to the integral.  Since the integrand vanishes at each node point (even

when X is a zero of pn), we obtain

(2'5)       "»X)M(S? j5^ L""w(   x-x    JJL-

where t? £ (a, b).  Let />„_ j(x; X) denote the polynomial of degree <(« - 1) in x de-

fined by

P„-xix\ X) = [fW - Ln(f;x) - Pn(x)sn(\)]l(x - X).

It is readily verified that the numerator is a polynomial of degree < « in x which is

zero when x = X.  Then we can write

/ s„(x) - s„(X)\ rl

(2.6) p„(x)(      x_x      ) = Vi(*;V)+ Jo/'(A + (s-\)S)<ft,

the integral being simply (/(x) -/(X))/(x - X).  Substituting (2.6) into (2.5) gives

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



RULES FOR CAUCHY PRINCIPAL VALUE INTEGRALS 305

On inverting the order of differentiation and integration, and applying the mean value

theorem to the resulting integral, we find

(2.8) R2nif, X) = (hnJ<2" + 1\^2))l(k2n(2n + l)\),

where £2 E (a, b).  Combining (2.4) and (2.8) gives us our first required result, that is

(2-9)        ^(/;X)=^/(")(^) + ̂ T7T, /2"+1)(^
Knn- fc„(2« + 1)!

where %x, %2 E (a, b) and depend upon X.

The truncation error Rn+X(f; X) = /(/; X) - Qn+X(f; X) for the quadrature sum

Qn + X(f, X) may now be readily obtained. Let us suppose first that X is not a zero of

pn.  From (2.3) we can write

(2.10) /(/; X) = ¿ At „(X)/(x,. „) + S„(X)<7„(X) + Rlif; X).
i = i

On substituting for sn(X) from (2.1), recalling the definition of ^4, „(X) from (1.6), and

using the definition of Qn+X(f; X) from (1.8(a)), we find from (2.8) that

(2.11) /(/; A) = Ql+X(f; X) + 7^7— /<2"+1>«2),
kn(2n + l)\

where \2 E (a, b).  If X is a zero of pn, then it can be verified, on using (1.8(b)), that

(2.11) is again valid, thus completing our analysis.

We see from (2.9) and (2.11), respectively, that Qn(f; X) is exact whenever/is a

polynomial of degree < (« - 1) and Qn+X(f; X) is exact whenever/is a polynomial of

degree < 2«. This follows from the construction of the quadrature rules and has been

observed previously. From (2.10) we see that the quadrature rules are the same if X is

chosen so that it is a zero of qn.

3.  An Algorithm for Evaluating Q\+X(f; X).  We shall first outline the algorithm

described in [14], for the evaluation of the quadrature sum Qn(f, X).  This depended

upon the observation that both pk and qk satisfy the same linear three term recurrence

relation, which we shall suppose is given by

(3.1) uk+x(x) = (Akx + Bk)uk(x)-Ckuk_l(x),      Ak=kk+x/kk,

for k = 0, 1,2, ... .  In [14], this recurrence relation was used to set up a codiagonal

matrix Mn, say, of order «, whose eigenvalues are the zeros x¡ n, i = 1(1)«, of the

polynomial pn.  To each x¡ n the corresponding eigenvector pf is given by nj =

iPoixi „)> P\ixi n)> ■ ■ ■ > Pn-iixi,n)) ^rom which the Christoffel numbers p¡ n may be

computed since p¡ n = (Zt^1 pfix¡ „))_1, for / = 1(1)«.   If the Lagrange interpolation

polynomial Ln(f;x) is written as

n-l

(3.2) K(f\x)= £ ak  pk(x),
k=0

where

rb "
(3.3) akn =Kl)a *(*)£„(/; x)pk(x) dx = hkl g Vi,nPkixi¡n)fixi¡n),

i=i
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306 DAVID ELLIOTT AND D. F. PAGET

for k = 0(1) (« - 1), then the quadrature sum Qn(f\ X) is given by

n-l

(3.4) Ö„(/; X) = L ak,n1kW-

Since the functions qk satisfy the recurrence relation (3.1), Clenshaw's algorithm [4]

may be used to evaluate the sum in (3.4), for a given value of X.   If we put q_x(\)

= 0, then all that is required to implement this algorithm is an explicit expression

for <70(X).

We now consider a similar algorithm for the evaluation of Qn+X(f, X).   If we

write h

,„- Ll+X(f;x)= £  4.»+iP*(*).
(3.5) k=o

where

(3.6) 4,« + i =hklf^w(x)tl+iif;x)pk(x)dx,

then we find, on using (1.10) and the orthogonality of the {pk}, that

(3.7) 4„+1 =aKn,   for fc = 0(1) (n-l).

Suppose first that X is not a zero of pn.  Since

Kl ft *(*) [ix - *)/(* - *,,„)] pHx) dx=l,    for i = 1 (1)«,

it follows from (3.6) and (1.7(a)) that

t « 1        ffW-fixt,n)\
(3-8(a))        fl"'"+i=£p>-)(-^—)•

On the other hand, if X is a zero x, „ of pn, then again, from (3.6) and (1.7(b)), we

find that

t A 1        (fixj,n)-fixi,n)\     fiXj,n)
(3.8(b)) <„ + i =   L    77—; I _ 1+ 77—: •

i = 1;i=é/   Pn^i.nJ \     xj,n      xi,n      /      Pn^j.n'

The values of l/p'n(x¡ n), i = 1(1)«, may be readily obtained from the eigenvectors p(-

of the matrixMn, since we have 1 lp'n(xit„) = p{npn_x(xin)/(An_xhn_x).   Thus

(3-9) eî+i(r,X)= ¿   at        ̂ (X),
k=0

which again may be summed by means of the Clenshaw algorithm.  Compared with the

evaluation of Q„if\ X), the quadrature sum Qn+Xif; X) requires the computation of

one extra coefficient a„ n+x-  Once a procedure has been provided for the evaluation

°f ifQO ~ fixi n))IQ< - x¡ n), particularly when X is either close to, or equal to, a zero

of pn, then we have an algorithm for the evaluation of Qn+X (/; X) which will be com-

parable to that for Qn(f; X).

4.  Convergence Theorems for Qn and Qn+X-  Throughout this section we assume

that the interval (a, b) is finite and, without any loss of generality, we shall take it to

be(-l, 1).

Firstly, we shall consider the convergence of Q„(f, X) to /(/; X) for a given
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X E (-1, 1).  In order to do this we need to make an assumption concerning the be-

havior of the functions qk(\).  We assume that

(4.1) \qk(X)\<A(\)hf,      k = 0,1,2,...,

where A depends upon X, but is independent of k.   This assumption does not appear

to be very restrictive.  It is readily verified that it is satisfied by the Chebyshev polyno-

mials of both kinds, and the Legendre polynomials.  Furthermore, following an analysis

given by Barrett [1], Paget [13] has obtained the asymptotic form of qk(\) for large

k under the fairly general assumption that both w and logw are integrable on (-1, 1).

From this asymptotic analysis, it can be shown that (4.1) is satisfied for the resulting qk.

A function / is said to be Holder continuous of order p on [-1, 1 ] if |/(x x ) -

/(x2)| < j4 |Xj -x2|m for any pair of points x., x2 E [-1, 1], where A is independent

of Xj and x2.

Theorem 4.1. Suppose w is such that qk exist for k = 0, 1, 2, . . . and further-

more that (4.1) is satisfied. If fis Holder continuous of order p on [-1, 1] with xh <

p < 1, then for a given X E ( - 1, 1),

(4.2) lim   Qnif; X) = /(/; X).

Proof.   Let p*_ x denote the polynomial, of degree < (« - 1), of best uniform

approximation to / on [- 1, 1 ].  Write r*_ x(x) = f(x) - p*_x(x), and

En-iif>=      W*    l'î-iWI-
*e[-l,l]

It is well known that En_,(/)< Cn~ß, but Kalandiya [11] has further shown that

r*_ j is Holder continuous of order v say where 0 < v < ju/2. Furthermore, for any

xx,x2 E [-1, 1],

(4-3) |r*_1(x1)-/-*_1(x2)|<JS(.)(«-l)-('J-2^|x1 -x2\v,

where B(v) is independent of «, x, and x2.   Since

n       ir*-iix)-rn-iW\
*nif> *) = J_, "(*)^-    x-X ) & + ^-iW'oW/^O

(4.4) n   w(x)Ln(r*_x;x)
~T i-^- dx'

•J-1 x-X

then from (4.3), the first integral on the right of (4.4) exists and tends to zero in the

limit as « —> °°. The second term on the right of (4.4) also tends to zero as « —► °°,

so that the convergence of Rn to zero will depend on

•W = V- 1 lW(X>Lnir*n- 1 ; *)/(* - X)] dx.

Now Ln(r*_ j ; x) is a polynomial of degree < (« - 1); if we write

n-i

(4.5) Lnir*-l'x)=  Z   PkPki*)'
k=0

then we shall have

(4.6) J„iV = Z (h'£pk)(hk1Aqk(\)).
k=0
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By Holder's inequality,

/n-l \%/n-l \V4

since
n- iJn —   1

_, w(x)L2n(r*n_x;x)dx =   £   hki°l>
fc=0

and using (4.1), we obtain

\t„W\ < (/! , w(x)L2„(r%_ , ; x) cfcV* ¿(X)n*.

On evaluating the integral using (1.10), recalling that
n

Ln(r*_x;x)=   £    h,nix)r*n-liXi,n)>
i=l

noting that |r*_jC«t«)l <E„-iif), for i = 1(1)«, and Hnk=0pkn = /I, w(x)dx, we

find

(4.7) \Jn(\)\<ACk)(^f1_iw(x)dxyÁn'AEn_x(f).

Since /?„_ x(f) < Cn~ß, where C is some constant, and ^ > i4 we have lim^^^^iX)

= 0, and the theorem is proved.  D

It is worth noting that convergence of Q„(f', X) to /(/; X) has previously been dis-

cussed by Elliott and Paget [7] in the particular case when w(x) = (1 -x)a(l + x)*3,

a, ß > - 1.  They found, using an asymptotic analysis, that there was convergence for

all Holder continuous / such that 0 < p < 1.  Since Ln(r*_ x ; x) is a polynomial of

degree < (n - 1), one can write

JnW = £ Ai>tt(\)r*_,(*,„)
f=i

so that |/„(X)| < En_x(f)'Ln=x \Ain(X)\.  In [7], the authors showed that for large «,

S"=1 \A¡ „(X)| < K + L log «, where K, L are independent of «.   We have not attempted

an asymptotic analysis in this more general case.

We shall now consider convergence of the sequence [Qn (f; X)} to /(/; X) for a

given X E (-1, 1) as « —> °°.  From the construction of the rules Qn(f\ X) it is obvious

that we need to assume differentiability of/

Theorem 4.2. Suppose /' is continuous on [-1,1], then for any given X E

(-1,0,
(4.8) „î™ ÔÎ(/;X)=/(/;X).

Proof.   Let g(x, X) be defined by

i(/(*)-/(X))/(x-X),      x#X,
(4.9) gix, X) = J

(f(X),     x = X.

From (1.1), (1.8(a)), (1.8(b)) it can be verified that if we write R\ + x(f; X) = /(/; X)

-ÔÎ+1(/;X),then

(4.10) ttï+x(f;\)=fliW(x)g(x,\)dx-ipkrng(xkn,\)+f(\)Rn + x(U\),
k=l
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this result being valid irrespective of whether X is or is not a zero of pn.  From (2.11),

we have trivially that Rn + X(l ; X) = 0.  Thus, R„ + l(f; X) is given by the remainder

when «-point Gauss quadrature (based on the zeros of pn), is applied to the function

g.   Since under the stated conditions on / the function g is continuous it follows (see,

for example, [5]) that lim,,^/?£+,(/; X) = 0, as required. D

Mathematics Department

University of Tasmania

Hobart, Tasmania, Australia

1. W. BARRETT, "An asymptotic formula relating to orthogonal polynomials," /. London

Math. Soc. (2), v. 6, 1973, pp. 701-704.   MR 48 #593.

2. M. M. CHAWLA & N. JAYARAJAN, "Quadrature formulas for Cauchy principal value

integrals," Computing, v. 15, 1975, pp. 347-355.   MR 54 #4068.

3. M. M. CHAWLA & T. R. RAMAKRISHNAN, "Modified Gauss-Jacobi quadrature for-

mulas for the numerical evaluation of Cauchy type singular integrals," BIT, v. 14, 1974, pp. 14—21.

MR 51 #9437.

4. C. W. CLENSHAW, "A note on the summation of Chebyshev series," Math. Comp., v. 9,

1955, pp. 118-120.   MR 17, 194.

5. P. J. DAVIS & P. RABINOWITZ, Methods of Numerical Integration, Academic Press,

New York, 1975.

6. L. M. DELVES, "The numerical evaluation of principal value integrals," Comput. J.,

v. 10, 1967/1968, pp. 389-391.   MR 36 #4802.
7. D. ELLIOTT & D. F. PAGET, "On the convergence of a quadrature rule for evaluating

certain Cauchy principal value integrals," Numer. Math., v. 23, 1975, pp. 311-319; v. 25, 1976,

pp. 287-289.   MR 52 #1115; 53 #14870.
8. F. ERDOGAN & G. D. GUPTA, "On the numerical solution of singular integral equa-

tions," Quart. Appl. Math., v. 29, 1972, pp. 525-534.   MR 53 #12042.

9. D. B. HUNTER, "Some Gauss-type formulae for the evaluation of Cauchy principal

values of integrals," Numer. Math., v. 19, 1972, pp. 419-424.   MR 47 #7899.
10. N. I. IOAKIMIDIS & P. S. THEOCARIS, "The Gauss-Hermite numerical integration

method for the solution of the plane elastic problem of semi-infinite periodic cracks," Internat. J.

Engrg. Sel, v. 15, 1977, pp. 271-280.

11. A. I. KALANDIYA, "On a direct method of solution of an equation in wing theory with

an application to the theory of elasticity," Mat. Sb., v. 42, 1957, pp. 249—272.   (Russian)

MR 21 #6800.
12. V. I. LEBEDEV & O. V. BABURIN, "Calculation of the principal values, weights and

nodes of the Gauss quadrature formulae of integrals," U.S.S.R. Comput. Math, and Math. Phys.,

v. 5, 1965, pp. 81-92.     MR 32 #6670.
13. D. F. PAGET, Generalized Product Integration, Ph. D. thesis, Univ. of Tasmania, 1976.

14. D. F. PAGET & D. ELLIOTT, "An algorithm for the numerical evaluation of certain

Cauchy principal value integrals," Numer. Math., v. 19, 1972, pp. 373-385.   MR 51 #2256.

15. R. PIESSENS, "Numerical evaluation of Cauchy principal values of integrals," BIT, v.

10, 1970, pp. 476-480.   MR 43 #7066.
16. R. PIESSENS, M. VAN ROY-BRANDERS & I. MERTENS, "The automatic evaluation

of Cauchy principal value integrals," Angewandte Informatik, v. 1, 1976, pp. 31—35.

17. J. F. PRICE, Discussion of Quadrature Formulas for Use on Digital Computers, Rep.

Dl-82-0052, Boeing Sei. Res. Labs., 1960.
18. G. N. PYKHTEEV, "On the evaluation of certain singular integrals with a kernel of the

Cauchy type," J. Appl. Math. Mech., v. 23, 1959, pp. 1536-1548.   MR 22 #12698.
19. V. J.E. STARK, "A generalized quadrature formula for Cauchy integrals," AIAA J., v.

9, 1971, pp. 1854-1855.   MR 45 #4639.
20. G. SZEGÖ, Orthogonal Polynomials, 3rd ed., Amer. Math. Soc. Colloq. Publ., v. 23,

Amer. Math. Soc, Providence, R. I., 1967.   MR 1, 14.
21. P. S. THEOCARIS & N. I. IOAKIMIDIS, "Numerical solution of Cauchy type singular

integral equations," Trans. Acad. Athens, v. 40, 1977, pp. 1-39.
22. G. J. TSAMASPHYROS & P. S. THEOCARIS, "On the convergence of a Gauss quadra-

ture rule for evaluation of Cauchy type singular integrals," BIT, v. 17, 1977, pp. 458-464.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use


