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GAUSSIAN APPROXIMATION FOR HIGH DIMENSIONAL

TIME SERIES

BY DANNA ZHANG AND WEI BIAO WU

University of California, San Diego and University of Chicago

We consider the problem of approximating sums of high dimensional
stationary time series by Gaussian vectors, using the framework of functional
dependence measure. The validity of the Gaussian approximation depends
on the sample size n, the dimension p, the moment condition and the de-
pendence of the underlying processes. We also consider an estimator for
long-run covariance matrices and study its convergence properties. Our re-
sults allow constructing simultaneous confidence intervals for mean vectors
of high-dimensional time series with asymptotically correct coverage proba-
bilities. As an application, we propose a Kolmogorov–Smirnov-type statistic
for testing distributions of high-dimensional time series.

1. Introduction. During the past decade, there has been a significant devel-
opment on high-dimensional data analysis with applications in many fields. In
this paper, we shall consider simultaneous inference for mean vectors of high-
dimensional stationary processes, so that one can perform family-wise multiple
testing or construct simultaneous confidence intervals, an important problem in
the analysis of spatial-temporal processes. To fix the idea, let (Xi) be a station-
ary process in R

p with mean μ= (μ1, . . . ,μp)
⊤ and finite second moment in the

sense that E(X⊤
i Xi) <∞. In the scalar case in which p = 1 or when p is fixed,

under suitable weak dependence conditions, we can have the central limit theorem
(CLT):

1√
n

n
∑

i=1

(Xi −μ)⇒N(0,�), where � =
∞
∑

k=−∞
E

(

(X0 −μ)(Xk −μ)⊤
)

.

See, for example, [4, 14, 20, 37, 44] among others. In the high dimension case in
which p can also diverge to infinity, [33] showed that the central limit theorem can
fail for i.i.d. random vectors if

√
n= o(p). In this paper, we shall consider an alter-

native form: Gaussian approximation for the largest entry of the sample mean vec-
tor X̄n = n−1 ∑n

i=1Xi . For a vector v = (v1, . . . , vp)
⊤, let |v|∞ = maxj≤p |vj |.

Specifically, our primary goal is to establish the Gaussian Approximation (GA)
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in R
p

sup
u≥0

∣

∣P
(√
n|X̄n −μ|∞ ≥ u

)

− P
(

|Zj |∞ ≥ u
)∣

∣ → 0,(1.1)

where both n,p→ ∞. Here, the Gaussian vector Z = (Z1, . . . ,Zp)
⊤ ∼N(0,�).

Chernozhukov, Chetverikov and Kato [10] studied the Gaussian approximation for
independent random vectors. There has been limited research on high-dimensional
inference under dependence. The associated statistical inference becomes consid-
erably more challenging since the autocovariances with all lags should be consid-
ered. Zhang and Cheng [49] extended the Gaussian approximation in [10] to very
weakly dependent random vectors which satisfy a uniform geometric moment con-
traction condition. The latter condition is also adopted in [8] for self-normalized
sums. Chernozhukov, Chetverikov and Kato [11] did a similar extension to strong
mixing random vectors. Here, we shall establish (1.1) for a wide class of high-
dimensional stationary process under suitable conditions on the magnitudes of p,
n and the mild dependence conditions on the process (Xi).

In Section 2, we shall introduce the framework of high-dimensional time series
and some concepts about functional dependence measures that are useful for estab-
lishing an asymptotic theory. The main result for Gaussian approximation of the
normalized mean vector and the choice of the normalization matrix is presented
in Section 3. Depending on the moment and the dependence conditions, both high
dimension and ultra high dimension cases are discussed. In Section 3.1, we apply
our Gaussian approximation result to simultaneous inference of entries of sample
covariance matrices of high-dimensional time series. In Section 4, we shall develop
a Kolmogorov–Smirnov-type statistic for testing distributions of high-dimensional
time series.

To perform statistical inference based on (1.1), one needs to estimate the long-
run covariance matrix �. The latter problem has been extensively studied in the
scalar and the low-dimensional case; see [1, 5, 23, 30, 32], among others. In
Section 5, we study the batched-mean estimate of long-run covariance matrices
and derive a large deviation result about quadratic forms of stationary processes.
The latter tail probability inequalities allow dependent and/or non-sub-Gaussian
processes under mild conditions, which are expected to be useful in other high-
dimensional inference problems for dependent vectors. The consistency of the
batched-mean estimate ensures the validity of the quantile estimates of L∞ norms
of sample means; see Section 5.1.

We provide in Section 6 some sharp inequalities for tail probabilities for high
dimensional dependent processes in the polynomial tail case. The readers are re-
ferred to Appendix (supplementary material [48])C for the tail probability inequal-
ities in the one-dimensional case under finite polynomial moment and exponential
moment conditions, respectively. Part of the proofs are relegated to Section 7. Ap-
pendix D includes a simulation study.



GAUSSIAN APPROXIMATION FOR HIGH DIMENSIONAL TIME SERIES 1897

We now introduce some notation. For a random variable X and q > 0, we write
X ∈ Lq if ‖X‖q := (E|Xj |q)1/q <∞, and for a vector v = (v1, . . . , vp)

⊤, let the
norm-s length |v|s = (∑p

j=1 |vj |s)1/s , s ≥ 1. Write the p × p identity matrix as
Idp . For two real numbers, set x ∨ y = max(x, y) and x ∧ y = min(x, y). For
two sequences of positive numbers (an) and (bn), we write an ≍ bn (resp., an �
bn or an ≪ bn) if there exists some constant C > 0 such that C−1 ≤ an/bn ≤ C
(resp., an/bn ≤ C or an/bn → 0) for all large n. We use C,C1,C2, . . . to denote
positive constants whose values may differ from place to place. A constant with
a symbolic subscript is used to emphasize the dependence of the value on the
subscript. Throughout the paper, we assume p = pn → ∞ as n→ ∞.

2. High-dimensional time series. Let εi, i ∈ Z, be i.i.d. random elements and
F i = (. . . , εi−1, εi); let (Xi) be a stationary process taking values in R

p that as-
sumes the form

(2.1) Xi = (Xi1,Xi2, . . . ,Xip)⊤ =G
(

F
i),

where G(·) = (g1(·), . . . , gp(·))⊤ is an R
p-valued measurable function such that

Xi is well-defined. In the scalar case with p = 1, (2.1) allows a very general class
of stationary processes (cf. [35, 38, 40, 41, 43–45]). It includes linear processes as
well as a large class of nonlinear time series models. For example, if εi, i ∈ Z, are
i.i.d. d-dimensional random vectors with mean 0 and E(ε⊤i εi) <∞, and Ai, i ≥ 0,
are p × d coefficient matrices with real entries such that

∑∞
i=0 tr(A⊤

i Ai) <∞,
where tr(·) denotes the trace of a matrix. Then by Kolmogorov’s three-series theo-
rem, the linear process

(2.2) Xi =
∞
∑

l=0

Alεi−l

exists, and it is of form (2.1) with a linear functional G. In particular, the vector
AR(1) process Xi =AXi−1 + εi has form (2.2) with Al =Al if maxj≤p |λj (A)|<
1, where A is a coefficient matrix and λ1(A), . . . , λp(A) are eigenvalues of A.
Within this framework, (εi) can be viewed as independent inputs of a physical sys-
tem and all the dependencies among the outputs (Xi) result from the underlying
data-generating mechanismG(·). The function gj (·), 1 ≤ j ≤ p, is the j th coordi-
nate projection of G(·). Unless otherwise specified, assume throughout the paper
that EXi = 0 and maxj≤p ‖Xij‖q <∞ for some q ≥ 2. Let Ŵ(l)= (γjk(l))pj,k=1 =
E(XiX

⊤
i+l) be the autocovariance matrix and recall the long-run covariance matrix

� = (σjk)pj,k=1 =
∞
∑

l=−∞
Ŵ(l)(2.3)

if it exists. Note that σjj = ∑∞
l=−∞ γjj (l), 1 ≤ j ≤ p, is the long-run variance of

the component process X·j = (Xij )i∈Z. For the latter process, following [44] we
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define the functional dependence measure:

(2.4) δi,q,j = ‖Xij −Xij,{0}‖q =
∥

∥Xij − gj
(

F
i,{0})∥

∥

q,

where F i,{k} = (. . . , εk−1, ε
′
k, εk+1, . . . , εi) is a coupled version of F i with εk

in F i replaced by ε′k , and εi, ε′l , i, l ∈ Z, are i.i.d. random elements. Note that
F i,{k} = F i if k > i. To account for the dependence in the process X·j , we define
the dependence adjusted norm

(2.5) ‖X·j‖q,α = sup
m≥0
(m+ 1)α
m,q,j , α ≥ 0, where 
m,q,j =

∞
∑

i=m
δi,q,j .

Due to the dependence, it may happen that maxj≤p ‖Xij‖q <∞ while ‖X·j‖q,α =
∞. Elementary calculations show that, if Xij , i ∈ Z, are i.i.d., then ‖Xij‖q ≤
‖X·j‖q,α ≤ 2‖Xij‖q , suggesting that the dependence adjusted norm is equivalent
to the classical Lq norm.

To account for high-dimensionality, we define

�q,α = max
1≤j≤p

‖X·j‖q,α and ϒq,α =
( p

∑

j=1

‖X·j‖qq,α
)1/q

,

which can be interpreted as the uniform and the overall dependence adjusted norms
of (Xi)i∈Z, respectively. The form (2.1) and its associated dependence measures
provide a convenient framework for studying high-dimensional time series. Zhang
and Cheng [49] considered the special case which imposes the stronger geometric
moment contraction condition max1≤j≤p
m,q,j ≤ Cρm with ρ ∈ (0,1) and some
constant C. This assumption can be fairly restrictive. In this paper �q,α can be
unbounded in p. Additionally, we define the L∞ functional dependence measure
and its corresponding dependence adjusted norm for the p-dimensional stationary
process (Xi)

ωi,q =
∥

∥|Xi −Xi,{0}|∞
∥

∥

q;

∥

∥|X·|∞
∥

∥

q,α = sup
m≥0
(m+ 1)α�m,q , α ≥ 0, where �m,q =

∞
∑

i=m
ωi,q .

Clearly, we have �q,α ≤ ‖|X·|∞‖q,α ≤ϒq,α .

3. Gaussian approximations. In this section, we shall present main results
on Gaussian approximations. Theorem 3.2 concerns the finite polynomial moment
case with both weaker and stronger temporal dependence. If the underlying process
has finite dependence adjusted sub-exponential norms, Theorem 3.3 asserts that
an ultra-high dimension p can be allowed. Theorem 7.4 in Section 7.1 provides a
convergence rate of the Gaussian approximation.
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Recall (2.3) for the long-run covariance matrix �. Let �0 = diag(�) be the
diagonal matrix of �, and D0 = diag(σ 1/2

11 , . . . , σ
1/2
pp )=�1/2

0 . Assume μ= 0. We
consider the following normalized version of (1.1):

ρn := sup
u≥0

∣

∣P
(√
n
∣

∣D−1
0 X̄n

∣

∣

∞ ≥ u
)

− P
(
∣

∣D−1
0 Z

∣

∣

∞ ≥ u
)
∣

∣ → 0.(3.1)

ASSUMPTION 3.1. There exists a constant c > 0 such that min1≤j≤p σjj ≥ c.

To state Theorem 3.2, we need to define the following quantities:

�q,α =ϒq,α ∧
(
∥

∥|X·|∞
∥

∥

q,α(logp)3/2
)

, L1 =
(

�2,α�2,0(logp)2
)1/α

,

W1 =
(

�6
3,0 +�4

4,0
)(

log(pn)
)7
, W2 =�2

2,α
(

log(pn)
)4
,

W3 =
(

n−α(log(pn)
)3/2
�q,α

)1/(1/2−α−1/q)
,

N1 = (n/ logp)q/2/�qq,α, N2 = n(logp)−2�−2
2,α,

N3 =
(

n1/2(logp)−1/2�−1
q,α

)1/(1/2−α)
.

THEOREM 3.2. Let Assumption 3.1 be satisfied. (i) Assume that �q,α <∞
holds with some q ≥ 4 and α > 1/2 − 1/q (the weaker dependence case),

�q,αn
1/q−1/2(

log(pn)
)3/2 → 0(3.2)

and

L1 max(W1,W2)= o(1)min(N1,N2).(3.3)

Then the Gaussian approximation (3.1) holds. (ii) Assume 0< α < 1/2 − 1/q (the
stronger dependence case). Then (3.1) holds if �q,α(logp)1/2 = o(nα) and

L1 max(W1,W2,W3)= o(1)min(N2,N3).(3.4)

REMARK 1. A careful check of the proof of Theorem 3.2 indicates that if it is
further assumed that max1≤j≤p σjj is bounded from above, the Gaussian approx-
imation is also valid for the nonnormalized maximum, that is, for both cases of
Theorem 3.2,

(3.5) sup
u≥0

∣

∣P
(√
n|X̄n|∞ ≥ u

)

− P
(

|Zj |∞ ≥ u
)
∣

∣ → 0.

REMARK 2 (Optimality of our result on the allowed dimension p). Assume
α > 1/2 − 1/q . In the special case with �q,α ≍ 1 and �q,α ≍ p1/q , (3.2) becomes

p
(

log(pn)
)3q/2 = o

(

nq/2−1)

,(3.6)
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which by elementary manipulations implies (3.3), and hence the GA (3.1). It turns
out that condition (3.6), or equivalently p(logp)3q/2 = o(nq/2−1), is optimal up
to a multiplicative logarithmic term. Consider the special case in which Xij , i, j ∈
Z, are i.i.d. symmetric random variables with E(X2

ij )= 1 and the tail probability

P(Xij ≥ u)= u−qℓ(u), u≥ u0, where ℓ(u)= (logu)−2. By Theorem 1.9 of [29],
we have the expansion: for a sequence yn ≥ √

n, as n→ ∞,

P(X11 + · · · +Xn1 ≥ yn)
ny

−q
n ℓ(yn)+ 1 −�(yn/

√
n)

→ 1.(3.7)

LetMn =X11 + · · · +Xn1, Z = (Z1, . . . ,Zp)
⊤ ∼N(0, Idp) and assume

nq/2−1 = o
(

p(logn)−2(logp)−q/2
)

.(3.8)

Then the GA (3.1) does not hold. To see this, let u= (2 logp)1/2. Then pP(|Z1| ≥
u) → 0, and, by (3.7) and (3.8), pP(Mn ≥ √

nu) → ∞. Hence, P
p(|Mn| ≤√

nu)→ 0 and P
p(|Z1| ≤ u)→ 1, implying that

ρn ≥
∣

∣P
(√
n|X̄n|∞ ≤ u

)

− P
(

|Zj |∞ ≤ u
)∣

∣

=
∣

∣P
p(

|Mn| ≤
√
nu

)

− P
p(

|Z1| ≤ u
)∣

∣

=
∣

∣

[

1 − 2P(Mn ≥
√
nu)

]p − P
p(

|Z1| ≤ u
)
∣

∣ → 1.

Note that (3.8) is equivalent to nq/2−1 = o(p(logp)−2−q/2), suggesting that (3.6)
is optimal up to a logarithmic term.

Now suppose there exist 0 ≤ κ1 ≤ κ2 such that �q,α ≍ pκ1 and�q,α ≍ pκ2 , and
pτ ≍ n. Elementary but tedious calculations show that, in the weaker dependence
case α > 1/2 − 1/q , if

(3.9) τ >max
{

κ2

1/2 − 1/q
,

2κ1

α
+ 8κ1,

2

q

(

2κ1

α
+ 8κ1

)

+ 2κ2

}

,

then conditions in (i) of Theorem 3.2 are satisfied, while for the stronger depen-
dence case with 0< α < 1/2 − 1/q , a larger sample size n is required:

(3.10) τ >max
{

κ2

α
,

2κ1

α
+ 8κ1, (1 − 2α)

(

2κ1

α
+ 8κ1

)

+ 2κ2

}

.

The lower bounds in (3.9) and (3.10) are both nondecreasing of κ1, κ2 and nonin-
creasing in q,α.

Next we consider the sub-exponential case in which Xij satisfies a stronger
moment condition than the existence of finite qth moment. Assume that Xij has
finite moment with any order. For ν ≥ 0 and α ≥ 0, define the dependence adjusted
sub-exponential norm

‖X·j‖ψν ,α = sup
q≥2

‖X·j‖q,α
qν

and �ψν ,α = max
j≤p

‖X·j‖ψν ,α.
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By this definition, if Xij , i ∈ Z are i.i.d., ‖X·j‖ψν ,α is equivalent to the sub-
Gaussian norm (ν = 1) or sub-exponential norm (ν = 1/2), due to the equivalence
of ‖X·j‖q,α and ‖Xij‖q . The parameter ν measures how fast ‖X·j‖q,α increases
with q .

To state Theorem 3.3, we let β = 2/(1 + 2ν) and define

L2 =
(

(logp)1/β+1/2�ψν ,α
)1/α

, N4 = n(logp)−1−2/β�−2
ψν ,0
,

W4 =
(

log(pn)
)3+2/β

�2
ψν ,0 +

(

log(pn)
)4
.

THEOREM 3.3. Let Assumption 3.1 be satisfied. Assume that �ψν ,α <∞ for
some ν ≥ 0, α > 0 and

(3.11) max(L1,L2)max(W1,W4)= o(N4), Lα1 max(W1,W4)= o(n).

Then the Gaussian approximation (3.1) holds.

If�ψν ,α ≍ 1, then the ultra high-dimensional case with logp = o(nc)with some
c > 0 is allowed, where specifically we can let

(3.12) c=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1/(8 + 2/α + 2/β), 2/3 ≤ β ≤ 2,

1/
[

7 + (1/β + 1/2)(1/α + 2)
]

, 1/2 ≤ β < 2/3,

1/
[

3 + 2/β + (1/β + 1/2)(1/α + 2)
]

, 0< β < 1/2.

3.1. Simultaneous inference of covariances. Let X1, . . . ,Xn be i.i.d.
p-dimensional vectors with mean 0 and covariance matrix Ŵ0 = (γjk)

p
j,k=1 =

E(XiX
⊤
i ). We estimate Ŵ0 by the sample covariance matrix Ŵ̂0 = (γ̂jk)pj,k=1 =

n−1 ∑n
i=1XiX

⊤
i . To perform simultaneous inference on γjk,1 ≤ j, k ≤ p, one

needs to derive the asymptotic distribution of the maximum deviation
maxj,k≤p |γ̂jk−γjk| or the normalized version maxj,k≤p |γ̂jk−γjk|/τjk ; cf. equa-
tion (2) in [46]. The former is also referred to as the mutual coherence of the data
matrix in the compressed sensing literature (see, e.g., [15]). Jiang [21] established
the Gumbel convergence of the maximum deviation under some polynomial mo-
ment condition and under the setup that all entries of Xi are also independent.
See [26, 28, 50] and [25] for some refined results. Cai and Jiang [7] showed that
max|j−k|>sn |γ̂jk− γjk| also converges to the Gumbel distribution if (Xij )1≤j≤p is
Gaussian and sn-dependent for each i. Xiao and Wu [46] considered the extension
to the non-Gaussian case and allowed a general dependence structure among en-
tries of Xi . However, the latter two paper both require that the vectors X1, . . . ,Xn
are i.i.d. The problem of further extension to temporally dependent Xi is open. In
analyzing fMRI functional connectivity in brain networks in the format of multi-
variate time series, researchers use the maximum correlation between time series
to identify edges that connect the corresponding nodes in a network (cf. [13, 18,
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19, 24], among many others). Such applications suggest that an asymptotic theory
for maximum deviations of sample covariances is needed.

Our Theorems 3.2 and 3.3 can be applied to the above problem of further exten-
sion to temporally dependent processes. Let (Xi) be a mean zero p-dimensional
stationary process of form (2.1). To apply Theorems 3.2 and 3.3, one needs to
deal with the key issue of computing the functional dependence measure of the
p2-dimensional vector Xi = vec(XiX⊤

i − E(XiX
⊤
i )). Interestingly, our frame-

work allows a natural and elegant treatment. Let a = (j, k), j, k ≤ p and Xia =
XijXik − γa , where γa = E(XijXik). By Hölder’s inequality, the functional de-
pendence of the component process (Xia)i :

ϕi,q/2,a :=
∥

∥XijXik −E(XijXik)−Xij,{0}Xik,{0} +E(Xij,{0}Xik,{0})
∥

∥

q/2

≤ 2‖XijXik −Xij,{0}Xik,{0}‖q/2
(3.13)

≤ 2
∥

∥Xij (Xik −Xik,{0})
∥

∥

q/2 + 2
∥

∥(Xij −Xij,{0})Xik,{0}
∥

∥

q/2

≤ 2‖Xij‖qδi,q,k + 2‖Xik‖qδi,q,j .

Hence, we can have an upper bound of the dependence adjusted norm of (Xia)

‖X·a‖q/2,α := sup
m≥0
(m+ 1)α

∞
∑

i=m
ϕi,q/2,j,k

(3.14)
≤ 2‖X·j‖q,0‖X·k‖q,α + 2‖X·k‖q,0‖X·j‖q,α.

Consequently, the uniform and the overall dependence adjusted norms of Xi are

max
a

‖X·a‖q/2,α ≤ 4�q,0�q,α,
(3.15)

(

∑

a

‖X·a‖q/2q/2,α
)2/q

≤ 4

( p
∑

j=1

‖X·j‖q/2q,0

)2/q( p
∑

j=1

‖X·j‖q/2q,α
)2/q

.

Similarly, the L∞ dependence adjusted norm for the process (Xi) can be calculated
by

(3.16)
∥

∥|X·|∞
∥

∥

q/2,α ≤ 4
∥

∥|X·|∞
∥

∥

q,0

∥

∥|X·|∞
∥

∥

q,α.

With (3.13)–(3.16), conditions in Theorems 3.2 and 3.3 can be formulated accord-
ingly, and under those conditions we can have the following Gaussian approxima-
tion:

(3.17) sup
u≥0

∣

∣

∣P

(√
nmax

a
|γ̂a − γa|/τa ≥ u

)

− P

(

max
a

|Za/τa| ≥ u
)
∣

∣

∣ → 0,

where Z = (Za)a ∼N(0,�X ), �X is the p2 × p2 long-run covariance matrix of
(Xi)i and (τ 2

a )a is the diagonal matrix of �X .
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4. A uniform test for distributions of time series. In this section, we shall
apply the Gaussian approximation result Theorem 3.2 and test distributions of time
series. For the process (Xi) defined in (2.1), let Fj (u) = P(Xij ≤ u), u ∈ R, be
the cumulative distribution function (c.d.f.) of Xij , 1 ≤ j ≤ p; let Fj,0(·) be the
reference c.d.f. We are interested in testing the null hypothesis:

H0 : Fj (·)= Fj,0(·) for all j = 1, . . . , p.(4.1)

In the classical Kolmogorov–Smirnov test with p = 1 and i.i.d. data Xi1, i ∈ Z,
one uses a test statistic that involves the supremum distance between the empirical
and the reference c.d.f.s. Here, we shall apply a smoothing procedure and consider
testing an equivalent form of (4.1). In particular, we let h(u)=H ′(u) be a proba-
bility density function (p.d.f.) such that h(u) > 0 for all u ∈ R, supu h(u) <∞ and
let

(4.2) Hj (u)=
∫

R

Fj (v)h(u− v) dv and Hj,0(u)=
∫

R

Fj,0(v)h(u− v) dv.

For example, we can let h(·) be the standard Gaussian p.d.f. In this case, Hj (·)
is the c.d.f. of Xij + η, where η ∼ N(0,1) is independent of Xij . Here, we shall
consider testing the following equivalent form of (4.1):

H0 :Hj (·)=Hj,0(·) for all j = 1, . . . , p,(4.3)

by using the goodness-of-fit test statistic of the form supu∈I |Ĥj (u) − Hj,0(u)|,
where I ⊂R is an interval and Ĥj (u) is an unbiased estimate of Hj (u):

Ĥj (u)=
1

n

n
∑

i=1

H(u−Xij ).(4.4)

Similar smoothing ideas appeared in the literature. Researchers applied kernel
smoothing to overcome the shortcoming of discontinuity of empirical distribution
functions; see, for example, [3, 9, 16, 36, 42, 47], among others.

Here, we shall develop a Gaussian approximation theory for


n := max
1≤j≤p

sup
u∈I

√
n
∣

∣Ĥj (u)−Hj (u)
∣

∣.(4.5)

To this end, we shall carry out a detailed calculation for the functional dependence
measures defined in Section 2 of H(u−Xij ). For presentational clarity here, we
only consider marginal distributions and linear processes (Xi) defined in (2.2).
We remark that our approach also applies to testing for joint distributions and for
nonlinear processes.

ASSUMPTION 4.1. The process (Xi) is of form (2.2) with εi =
(εi1, . . . , εid)

⊤, where εij are i.i.d. with mean 0 and ‖εij‖γ < ∞, γ > 2; and
coefficient matrices Ai = (ai,jk)j≤p,k≤d satisfy

∑∞
i=0 tr(A⊤

i Ai) <∞.
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For j, k = 1, . . . , p and u, v ∈ R, define the long-run covariance function

(4.6) σj,k(u, v)=
∞
∑

l=−∞
Cov

(

H(u−X0j ),H(v−Xlk)
)

.

Let {Zj (u), j = 1, . . . , p;u ∈ R} be a mean 0 Gaussian process such that its co-
variance function is given by (4.6).

ASSUMPTION 4.2. There exists a constant c > 0 and a closed finite interval
I ⊂ R such that min1≤j≤pminu∈I σj,j (u,u)≥ c.

THEOREM 4.3. Let Assumptions 4.1 and 4.2 be satisfied, and suppose there
exists a constant C1 > 0 such that for all m≥ 0,

(4.7)
∞
∑

i=m

(

d
∑

k=1

max
j

|ai,jk|2
)min(γ /q,1)/2

≤ C1(1 ∨m)−α

holds for some q ≥ 4 and α > 0. Let ι = min(γ /q,1)/2. There exists some con-
stant κ > 0 depending on α and ι such that if p satisfies

(4.8) logp = o
(

nκ
)

,

we have

(4.9) sup
u≥0

∣

∣

∣P(
√
n
n ≥ u)− P

(

max
1≤j≤d

sup
x∈I

∣

∣Zj (x)
∣

∣ ≥ u
)
∣

∣

∣ → 0.

REMARK 3. A careful check of the proof of Theorem 4.3 indicates that, for
the index κ in (4.8), we can let κ = κ1 = [(2ι+2)/α+8ι+11]−1 if α > 1/2−1/q ,
and κ = min(κ1, α/(3 + ι)) if 0< α < 1/2 − 1/q .

For i.i.d. random vectors, [22] considered uniform convergence of empirical
distribution functions. Theorem 4.3 might be the first result in the literature con-
cerning weak convergence of empirical processes in the high-dimensional setting
under dependence.

PROOF OF THEOREM 4.3. We shall divide the proof into 5 steps: discretiza-
tion of the empirical process; representation of the covariance function; continuity
of the approximating Gaussian process; computation of the functional dependence
measures; and application of Theorem 3.2.

Step 1: discretization of the empirical process. Without loss of generality, let
I = [0,1]. Let L = n2 and uℓ = ℓ/L, ℓ = 1, . . . ,L. For V = {(j, ℓ) : 1 ≤ j ≤
p,1 ≤ ℓ≤ L}, define the (pL)-dimensional vector Mi = (Miv)v∈V with Miv =
H(uℓ−Xij )−EH(uℓ−Xij ) for v = (j, ℓ) ∈ V . Let M̄n = n−1 ∑n

i=1 Mi . Since
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H(·) is increasing and h0 = supu h(u) <∞, we have by the triangle inequality
that

∣

∣
n −
√
n|M̄n|∞

∣

∣ ≤ h0
√
n

L
= h0

n
√
n
.(4.10)

Step 2: representation of the covariance function. Define the projection opera-
tor P i · = E(·|F i)−E(·|F i−1) and

(4.11) Dj (u)=
∞
∑

l=0

P
0H(u−Xlj ), j = 1, . . . , p.

Recall (4.6) for σj,k(u, v). By the orthogonal decomposition,

H(u−X0j )−EH(u−X0j )=
∞
∑

m=−∞
P
mH(u−X0j )

and the stationarity of (Xi), we have the representation

σj,k(u, v)=
∞
∑

l=−∞

∞
∑

m=−∞
E

[

P
mH(u−X0j )P

mH(v −Xlk)
]

(4.12)
= E

[

Dj (u)Dk(v)
]

.

Since P0H(u−Xlj )= E[H(u−Xlj )−H(u−Xlj,{0})|F0], by the first inequality
in (4.21) and Jensen’s inequality, we have

(4.13)
∥

∥P
0H(u−Xlj )

∥

∥ ≤
∥

∥H(u−Xlj )−H(u−Xlj,{0})
∥

∥ ≤ 2h0bl‖εij‖,

where bi = (∑d
k=1 maxj |ai,jk|2)1/2. By (4.7), #{i : bi ≥ 1} ≤ C1. If bi < 1, then

bi ≤ bmin(1,γ /q)
i . Hence,

∑∞
i=0 bi ≤ 2C1 and

(4.14)
(

σjj (u,u)
)1/2 =

∥

∥Dj (u)
∥

∥ ≤
∞
∑

l=0

∥

∥P
0H(u−Xlj )

∥

∥ ≤ 4C1h0‖εij‖.

Step 3: continuity of the approximating Gaussian process. Let ζ = |u− v| ≤ 1.
Then |H(u−Xlj )−H(v −Xlj )| ≤ h0ζ . By (4.11) and (4.13),

(4.15)
∥

∥Dj (v)−Dj (u)
∥

∥ ≤
∞
∑

l=0

min
(

4h0bl‖εij‖, h0ζ
)

.

By (4.7), since 2ι ≤ 1 and ζ ≤ 1, we have
∑∞
i=mmin(bi, ζ ) ≤ C1m

−α for all
m≥ 1. Let J = ⌈ζ−1/(1+α)⌉. Then

J
∑

i=0

min(bi, ζ )+
∞
∑

i=J+1

min(bi, ζ )≤ (J + 1)ζ +C1J
−α

(4.16)
≤ (C1 + 3)ζα/(1+α).
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Hence, by (4.12) and (4.15), for C2 = h0(4‖εij‖ + 1)(C1 + 3) we obtain
∥

∥Zj (u)−Zj (v)
∥

∥

2 = σj,j (u,u)+ σj,j (v, v)− 2σj,j (u, v)
(4.17)

=
∥

∥Dj (v)−Dj (u)
∥

∥

2 ≤ C2
2 |u− v|2α/(1+α)

when |u− v| ≤ 1. Let 0 < t ≤ 1 and λ = α/(1 + α). By (4.17) and the Fernique
inequality (cf. Section 4.1.3 of [17]), there exists constants c1, c2, c3 > 0 only de-
pending λ such that for all w ≥ c2C2t

λ,

P

[

sup
0≤y≤t

∣

∣Zj (v + y)−Zj (v)
∣

∣ ≥w
]

≤ c1
[

1 −�(c3w/
(

C2t
λ)],(4.18)

where �(·) is the standard normal c.d.f. For u ∈ I = [0,1], write ⌊u⌋L =
L−1⌊Lu⌋, where ⌊·⌋ is the floor function. As u changes from 0 to 1, ⌊u⌋L take
values u0, u1, . . . , uL. Let

w = C3L
−λ(log(pn)

)1/2
,(4.19)

where C3 is a sufficiently large constant. Then by (4.18), we have

P

[

sup
u∈I,1≤j≤p

∣

∣Zj (u)−Zj
(

⌊u⌋L
)∣

∣ ≥w
]

≤ pLc1
[

1 −�
(

c3wL
λ/C2

)]

(4.20)

≤ C4

pn
.

Step 4: computation of the functional dependence measures. We shall first
bound the functional dependence measures of the vector process (Mi)i which
is induced by H(u−Xij ). Let εij , εi′j ′, i, i ′, j, j ′ ∈ Z, be i.i.d. random variables
and ε′i = (ε′i1, . . . , ε′id)⊤. Note that Xij −Xij,{0} = ai,j ·(ε0 − ε′0), where ai,j · is the
j th row of the Ai = (ai,jk)j≤p,k≤d . Then

sup
u

∣

∣H(u−Xij )−H(u−Xij,{0})
∣

∣ ≤ min
(

1, h0|Xij −Xij,{0}|
)

= min
(

1, h0
∣

∣ai,j ·
(

ε0 − ε′0
)∣

∣

)

(4.21)

≤
(

h0
∣

∣ai,j ·
(

ε0 − ε′0
)∣

∣

)min(γ /q,1)
.

Recall bi = (
∑d
k=1 maxj |ai,jk|2)1/2. By Lemma C.5, we have

(4.22)
∥

∥

∥max
j

∣

∣ai,j ·
(

ε0 − ε′0
)∣

∣

∥

∥

∥

min(γ,q)
≤ C5bi

√

logp,

where the constant C5 depends on γ, q and ‖εij‖γ . Hence,
∥

∥

∥sup
j,u

∣

∣H(u−Xij )−H(u−Xij,{0})
∣

∣

∥

∥

∥

q
≤

[

Emax
j

(

h0
∣

∣ai,j ·
(

ε0 − ε′0
)
∣

∣

)min(γ,q)
]1/q

≤ C6(logp)ιb2ι
i ,
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which by (4.7) implies

∥

∥|M·|∞
∥

∥

q,α := sup
m≥0
(m+ 1)α

∞
∑

i=m

∥

∥

∥max
j,ℓ

∣

∣H(xℓ −Xij )−H(xℓ −Xij,{0})
∣

∣

∥

∥

∥

q

(4.23)
≤ C7(logp)ι.

Then we can obtain the upper bounds of the dependence adjusted norms by

(4.24) �q,α ≤
(

log(pL)
)3/2∥

∥|M·|∞
∥

∥

q,α, �2,α ≤�q,α ≤
∥

∥|M·|∞
∥

∥

q,α.

Step 5: application of Theorem 3.2. By Theorem 3.2 [cf. (3.5) in Remark 1,
which is applicable here in view of (4.14) and Assumption 4.2], we have

(4.25) sup
u≥0

∣

∣

∣P
(√
n|M̄n|∞ ≥ u

)

− P

(

max
j≤p

max
ℓ≤L

∣

∣Zj (uℓ)
∣

∣ ≥ u
)
∣

∣

∣ → 0,

if the conditions of Theorem 3.2 are satisfied. Specifically, we have L1 =
O([(logp)2ι(logpn)2]1/α), max(W1,W2) = O((logp)6ι(logpn)7) as well as
n(logpn)−4(logp)−2ι =O(min(N1,N2)). For α > 1/2 − 1/q , there exists some
κ depending on α and ι such that if logp = o(nκ), (3.2) and (3.3) hold. The other
case with 0< α < 1/2 − 1/q can be dealt with similarly. Since

(4.26)
(

√
n

L
+ 1

pn

)

√

log(pL)→ 0,

by the triangle inequality and Theorem 3 of [12], (4.9) follows in view of (4.10),
(4.20), (4.25) and (4.26). �

5. Estimation of long-run covariance matrices. Given the realization
X1, . . . ,Xn, to apply the Gaussian approximation (3.1), we need to estimate the
long-run covariance matrix �. Note that �/(2π) is the value of the spectral den-
sity matrix of (Xi) at zero frequency. In the one or low-dimensional case, there is
a large literature concerning spectral density estimation; see, for example, [2, 27,
30, 34, 39] among others. Assume EXi = 0. We then consider the batched mean
estimate:

(5.1) �̂ = 1

Mw

w
∑

b=1

YbY
⊤
b = 1

Mw

w
∑

b=1

(

∑

i∈Lb
Xi

)(

∑

i∈Lb
Xi

)⊤
,

where the window Lb = {1 + (b− 1)M, . . . , bM}, b= 1, . . . ,w, the window size
|Lb| =M → ∞ and the number of blocksw = ⌊n/M⌋. Theorems 5.1 and 5.2 con-
cern the convergence of the above estimate for processes with finite polynomial
and finite sub-exponential dependence adjusted norms, respectively. The conver-
gence rate depends in a subtle way on the temporal dependence characterized by α
[cf. (2.5)], the uniform and the overall dependence adjusted norms �q,α and ϒq,α ,
respectively, the same size n and the dimension p.
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THEOREM 5.1. Assume �q,α <∞ with q > 4, α > 0, and M = O(nς ) for
some 0< ς < 1. Let Fα =wM (resp., wMq/2−αq/2 or wq/4−αq/2Mq/2−αq/2) for
α > 1 − 2/q (resp., 1/2 − 2/q < α < 1 − 2/q or α < 1/2 − 2/q). Then for x ≥√
wM�2

q,α , we have

P
(

n
∣

∣diag(�̂)−Ediag(�̂)
∣

∣

∞ ≥ x
)

�
Fαϒ

q
q,α

xq/2
+ p exp

(

− Cq,αx
2

wM2�4
4,α

)

,(5.2)

P
(

n|�̂ −E�̂|∞ ≥ x
)

�
pFαϒ

q
q,α

xq/2
+ p2 exp

(

− Cq,αx
2

wM2�4
4,α

)

(5.3)

for all large n, where the constants in � only depend on ς , α and q .

Under stronger moment conditions, we can have an exponential inequality.

THEOREM 5.2. Assume �ψν ,0 <∞ for some ν ≥ 0. Then for all x > 0, we
have

P
(

n
∣

∣diag(�̂)−Ediag(�̂)
∣

∣

∞ ≥ x
)

� p exp
(

− xγ

4eγ (
√
wM�2

ψν ,0
)γ

)

,(5.4)

P
(

n|�̂ −E�̂|∞ ≥ x
)

� p2 exp
(

− xγ

4eγ (
√
wM�2

ψν ,0
)γ

)

,(5.5)

where γ = 1/(1 + 2ν) and the constants in � only depend on ν.

REMARK 4. An alternative estimate of �, which also works with unknown
mean EXi , is

(5.6) �̃ = 1

wM

w
∑

b=1

(

∑

i∈Lb
Xi −MX̄

)(

∑

i∈Lb
Xi −MX̄

)⊤
,

where X̄ = (wM)−1 ∑wM
i=1 Xi , w = ⌊n/M⌋. Then |�̃− �̂|∞ =M|X̄|2∞. Applying

Lemma C.2 to
∑wM
i=1 Xij , one can conclude that Theorems 5.1 and 5.2 still hold

for �̃ with E�̂ therein replaced by �M := ∑M
i=−M(1 −|i|/M)Ŵi (which equals to

E�̂ if EXi = 0).

COROLLARY 5.3. (i) Under conditions in Theorem 5.1, we have |�̃−�|∞ =
OP(Rn), where

Rn = n−1 max
{

p2/qF 2/q
α ϒ2

q,α,
√
wM�2

4,α

√

logp,
√
wM�2

q,α

}

(5.7)
+�2,0�2,αv(M),
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with v(M) = 1/M if α > 1, v(M) = (logM)/M if α = 1 and v(M) = 1/Mα if
0 < α < 1. (ii) Under conditions in Theorem 5.2, we have |�̃ − �|∞ = OP(R

∗
n)

with

(5.8) R∗
n = n−1√wM�2

ψν ,0(logp)1/γ +�2,0�2,αv(M).

The above corollary easily follows from Theorems 5.1 and 5.2 since the bias
|�M −�|∞ ��2,0�2,αv(M); see the proof of Lemma 7.3.

5.1. Computing approximated cutoff values. To apply the Gaussian approx-
imation (3.1) for hypothesis testing or construction of simultaneous confidence
intervals, we need to compute χθ , the θ th quantile of |D−1

0 Z|∞, 0 < θ < 1. The
latter can be computed by simulation if the long-run covariance matrix� is known.
When it is unknown, we shall use the estimate �̃ in (5.6). Let D̃0 = [diag(�̃)]1/2.
We estimate χθ by χ̃θ , the conditional θ -quantile of |D̃−1

0 �̃1/2η|∞ given (Xi)ni=1,
where η ∼ N(0, Idp) is independent of (Xi)ni=1. Note that χ̃θ can be computed
by extensive simulations. This is a Gaussian multiplier resampling method using
estimated long-run covariance matrices. Given the level α ∈ (0,1), we can reject
the null hypothesis H0 : μ = μ0 at level α if

√
n|D̃−1

0 (X̄n − μ0)|∞ > χ̃1−α . The
(1 − α)th simultaneous confidence intervals for μ = (μ1, . . . ,μp)

⊤ can be con-

structed as μ̂j ± χ̃1−ασ̃
1/2
jj /

√
n, 1 ≤ j ≤ p. Corollary 5.4 concerns validity of this

approach.

COROLLARY 5.4. (i) Let conditions of Theorem 3.2 and Theorem 5.1 be sat-
isfied. Further assume Rn log2 p→ 0 with Rn given by (5.7). Then

(5.9) sup
θ∈(0,1)

∣

∣P
(√
n
∣

∣D̃−1
0 X̄n

∣

∣

∞ ≥ χ̃1−θ
)

− θ
∣

∣ → 0.

(ii) Under conditions of Theorem 3.3 and Theorem 5.2, if R∗
n log2 p→ 0 with

R∗
n given by (5.8), we have (5.9).

PROOF. (i) Recall (3.1) for ρn. Let  n = √
n|(D̃−1

0 −D−1
0 )X̄n|∞. By the tri-

angle inequality and Theorem 3 of [12], for w > 0, we have

ρ̃n := sup
u∈R

∣

∣P
(√
n
∣

∣D̃−1
0 X̄n

∣

∣

∞ ≥ u
)

− P
(
∣

∣D−1
0 Z

∣

∣

∞ ≥ u
)
∣

∣

≤ ρn + sup
u∈R

P
(

||D−1
0 Z|∞ − u| ≤w

)

+ P( n ≥w)

� ρn +w
√

logp+ P( n ≥w).

Let Vn = max1≤j≤p |(σjj/σ̃jj )1/2 − 1| and Ln = max1≤j≤p |σjj − σ̃jj |. Then
 n ≤ Vn

√
n|D−1

0 X̄n|∞. Let c be the constant in Assumption 3.1. On the event
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A0 = {Ln ≤ x} for x ≤ c/2, we have Vn ≤ 2Ln/c. Hence,

P( n ≥w)≤ P(Vn ≥ 2x/c)+ P
(√
n
∣

∣D−1
0 X̄n

∣

∣

∞ ≥ cy/2
)

≤ P(Ln ≥ x)+ ρn + P
(
∣

∣D−1
0 Z

∣

∣

∞ ≥ cy/2
)

,

where w = xy, 0< x < c/2, y > 0. It follows that

ρ̃n � ρn + xy
√

logp+ P(Ln ≥ x)+ P
(∣

∣D−1
0 Z

∣

∣

∞ ≥ cy/2
)

.

We let y = C√
logp, where C > 0 is a sufficiently large constant. Note that the

marginal variances of D−1
0 Z are 1. Let

rn = 1

n
max

{

F 2/q
α ϒ2

q,α,
√
wM�2

4,α

√

logp,
√
wM�2

q,α

}

+�2,0�2,αv(M).

Let x = rn
√

logp. Since Rn log2p→ 0 and rn ≤ Rn, by Corollary 5.3, we have
P(A0)→ 1. Theorem 3.2 ensures ρn → 0. Hence, ρ̃n → 0.

Let Tn = |�̃ −�|∞ and Wn = max1≤j≤p |σ̃jj/σjj − 1|. By the elementary in-
equality |1 −

√
ab| ≤ |1 − a| + (1 − a)2 + |1 − b| + (1 − b)2, we have

∣

∣D̃−1
0 �̃D̃−1

0 −D−1
0 �D−1

0

∣

∣

∞ ≤ max
1≤j,k≤p

(∣

∣

∣

∣

σ̃jk − σjk√
σjjσkk

∣

∣

∣

∣

+
∣

∣

∣

∣

1 −

√

σ̃jj σ̃kk
√
σjjσkk

∣

∣

∣

∣

)

(5.10)

≤ Tn

c
+ 2Wn + 2W 2

n ≤ 3Tn
c

+ 2T 2
n

c2 .

Let event A = {Tn ≤ zn} where zn = R1/2
n / logp. Since Rn log2 p→ 0, we have

zn/Rn → ∞. By Corollary 5.3, P(A)→ 1. Since zn → 0, by (5.10) and following
the arguments of Theorem 3.1 in [10], we have

sup
θ∈(0,1)

∣

∣P
(√
n
∣

∣D̃−1
0 X̄n

∣

∣

∞ ≥ χ̃1−θ
)

− θ
∣

∣ � ρ̃n + π
(

3zn
c

+ 2z2
n

c2

)

+ P(Tn ≥ zn),

where π(z)= z1/3(1 ∨ log(p/z))2/3. Since Rn log2 p→ 0, (5.9) follows.
(ii) The proof is similar to (i), and thus is omitted. �

6. Inequalities for high-dimensional time series with finite polynomial mo-

ments. Tail probability inequalities play an important role in simultaneous infer-
ence. In this section, we shall derive powerful tail probability inequalities for high-
dimensional stationary vectors; cf. Theorems 6.1 and 6.2. They are of independent
interest. The proofs require Theorem 4.1 of [31], a deep Rosenthal–Burkholder-
type bound on moments of Banach-spaced martingales, and Lemma C.6, a Fuk–
Nagaev-type inequality for the sum of independent random vectors. We refer the
readers to Appendix C for tail probability inequalities in the one-dimensional case
under finite polynomial or exponential moment conditions.
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Let Xi be a mean zero p-dimensional stationary process and Tn = ∑n
i=1Xi ,

Tn,m = ∑n
i=1Xi,m where Xi,m = E(Xi |εi−m, . . . , εi). We are interested in bound-

ing the tail probabilities of P(|Tn − Tn,m|∞ ≥ x) and P(|Tn|∞ ≥ x) for large x.
Write ℓ= ℓ(p)= 1 ∨ logp.

THEOREM 6.1. Assume ‖|X·|∞‖q,α < ∞, where q > 2 and α ≥ 0, and
�2,α <∞:

(i) If α > 1/2−1/q , for x �
√
nℓ�2,αm

−α+n1/qℓ3/2‖|X·|∞‖q,αm1/2−1/q−α ,

P
(

|Tn − Tn,m|∞ ≥ x
)

�
nℓq/2‖|X·|∞‖qq,α
mαq+1−q/2xq

+ exp
(

−Cq,αx
2m2α

n�2
2,α

)

holds for all 1 ≤m≤ n, where the constant in � only depends on q and α.
(ii) If 0< α < 1/2−1/q , then for x �

√
nℓ�2,αm

−α+n1/2−αℓ3/2‖|X·|∞‖q,α ,

P
(

|Tn − Tn,m|∞ ≥ x
)

�
nq/2−αqℓq/2‖|X·|∞‖qq,α

xq
+ exp

(

−Cq,αx
2m2α

n�2
2,α

)

.

PROOF. Let s = ℓ = 1 ∨ logp. Then P(|Tn − Tn,m|∞ ≥ x) is equivalent
to P(|Tn − Tn,m|s ≥ x), since for any vector v = (v1, . . . , vp)

⊤, |v|∞ ≤ |v|s ≤
p1/s |v|∞. Let L= ⌊(logn− logm)/(log 2)⌋, ̟l = 2l if 1 ≤ l < L, ̟L = ⌊n/m⌋
and τl = m̟l for 1 ≤ l < L, τ0 = m, τL = n. Define Mn,l = Tn,τl − Tn,τl−1 for
1 ≤ l ≤ L and write

(6.1) Tn − Tn,m = Tn − Tn,n +
L

∑

l=1

Mn,l .

Notice that Tn − Tn,n = ∑∞
j=n Tn,j+1 − Tn,j . By Lemma C.5,

∥

∥|Tn − Tn,n|s
∥

∥

q ≤
∞
∑

j=n

∥

∥|Tn,j+1 − Tn,j |s
∥

∥

q ≤
∞
∑

j=n
Cq(ns)

1/2ωj+1,q ,

where the constant Cq only depends on q . By Markov’s inequality, we have

(6.2) P
(

|Tn − Tn,n|s ≥ x
)

≤ ‖|Tn − Tn,n|s‖qq
xq

≤
Cq(ns)

q/2�
q
n+1,q

xq
.

For each 1 ≤ l ≤L, define

Yi,l =
(iτl)∧n
∑

k=(i−1)τl+1

(Xk,τl −Xk,τl−1), for 1 ≤ i ≤ ⌊n/τl⌋;

Ren,l =
∑

i is even

Yi,l and Ron,l =
∑

i is odd

Yi,l .
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Let c = q/2 − 1 − αq; let λl = l−2/(π2/3) if 1 ≤ l ≤ L/2 and λl = (L + 1 −
l)−2/(π2/3) if L/2 < l ≤ L. Since Yi,l and Yi′,l are independent for |i − i ′| > 1,
by Lemma C.6, for any x > 0,

P
(
∣

∣Ren,l
∣

∣

s − 2E
∣

∣Ren,l
∣

∣

s ≥ λlx
)

≤ Cq
∑

i is even E|Yi,l|qs
(λlx)q

+ exp
(

− (λlx)
2

3
∑

i is even |σYi ,l|2s

)

,

where σYi ,l = (‖Yi1,l‖2, . . . ,‖Yip,l‖2)
⊤. By Lemma C.5,

∥

∥|Yi,l|s
∥

∥

q ≤ Cq(τls)1/2ω̃l,q, where ω̃l,q =
τl

∑

k=τl−1+1

ωk,q ≤ ‖|X·|∞‖q,α
ταl−1

.

For 1 ≤ j ≤ p, by Theorem 3.2 of [6],

‖Yij,l‖2 ≤ √
τl δ̃l,2,j , where δ̃l,2,j =

τl
∑

k=τl−1+1

δk,2,j ≤ ‖X·j‖2,α

ταl−1
,

which implies |σYi ,l|s � τ 1/2τ−α
l−1�2,α . So, we obtain

P
(∣

∣Ren,l
∣

∣

s − 2E
∣

∣Ren,l
∣

∣

s ≥ λlx
)

(6.3)

≤ C1ns
q/2

xq
·
τ
q/2−1
l ω̃

q
l,q

λ
q
l

+ exp
(

−
C2(λlx)

2τ 2α
l−1

n�2
2,α

)

.

By Lemma 8 in [12],

E
∣

∣Ren,l
∣

∣

s �
√
nsτ−α

l−1�2,α + n1/qs3/2τ
1/2−1/q
l ω̃l,q

�

√
ns�2,α

(m̟l)α
+ n1/qs3/2‖|X·|∞‖q,α

(m̟l)−c/q
.

Notice that λ−1
l (m̟l)

c/q � nc/q for c > 0 and minl≥0 λl̟
−c/q
l > 0 for c < 0, and

minl≥0 λl̟
α
l > 0. Hence, E|Ren,l|s � λlx always holds and (6.3) implies

(6.4) P
(∣

∣Ren,l
∣

∣

s ≥ λlx
)

≤ C1ns
q/2

xq
·
τ
q/2−1
l ω̃

q
l,q

λ
q
l

+ exp
(

−
C2(λlx)

2τ 2α
l−1

n�2
2,α

)

.

A similar inequality holds for Ron,l . Let

A=
L

∑

l=1

̟ c
l

λ
q
l

and B =
L

∑

l=1

exp
(

−C5x
2λ2
l̟

2α
l

nm−2α�2
2,α

)

.
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Since
∑L
l=1 λl ≤ 1 and |Mn,l|s ≤ |Ren,l|s + |Ron,l|s , by (6.4),

P

(
∣

∣

∣

∣

∣

L
∑

l=1

Mn,l

∣

∣

∣

∣

∣

s

≥ 2x

)

≤
L

∑

l=1

P
(

|Mn,l|s ≥ 2λlx
)

≤
L

∑

l=1

[

P
(
∣

∣Ren,l
∣

∣

s ≥ λlx
)

+ P
(
∣

∣Ron,l
∣

∣

s ≥ λlx
)]

(6.5)

≤ C3nm
csq/2‖|X·|∞‖qq,α
xq

A+C4B.

Let ν := minl≥1 λ
2
l̟

2α
l > 0. By the definition of ̟l and λl and by elementary

calculations, there exists a constant C6 > 1 such that for all t ≥ 1,

(6.6)
L

∑

l=1

exp
(

−C5tλ
2
l̟

2α
l

)

≤ C6 exp(−C5tν).

If c > 0, it can be obtained that A ≤ C7̟
c
L ≤ C7n

c/mc. If c < 0, then A ≤ C8.
Hence, combining (6.1), (6.2), (6.5), (6.6), Theorem 6.1 follows. �

THEOREM 6.2. Assume ‖|X·|∞‖q,α < ∞, where q > 2 and α ≥ 0, and
�2,α <∞: (i) If α > 1/2 − 1/q , then for x �

√
nℓ�2,α + n1/qℓ3/2‖|X·|∞‖q,α ,

(6.7) P
(

|Tn|∞ ≥ x
)

≤ Cq,αnℓ
q/2‖|X·|∞‖qq,α
xq

+Cq,α exp
(

−Cq,αx
2

n�2
2,α

)

.

(ii) If 0< α < 1/2 − 1/q , then for x �
√
nℓ�2,α + n1/2−αℓ3/2‖|X·|∞‖q,α ,

(6.8) P
(

|Tn|∞ ≥ x
)

≤ Cq,αn
q/2−αqℓq/2‖|X·|∞‖qq,α

xq
+Cq,α exp

(

−Cq,αx
2

n�2
2,α

)

.

PROOF. The proof is similar to that of Theorem 6.1, and thus is omitted. �

7. Proofs of Theorem 3.2 and Theorem 3.3. The main result in this section
is Theorem 7.4, which provides an error bound of the Gaussian approximation.
Theorems 3.2 and 3.3 follow from Theorem 7.4.

7.1. An error bound of the Gaussian approximation. We shall apply the m-
dependence approximation approach. For m≥ 0, define

(7.1) Xi,m = (Xi1,m, . . . ,Xip,m)⊤ = E(Xi |εi−m, εi−m+1, . . . , εi).

Write TX = ∑n
i=1Xi and TX,m = ∑n

i=1Xi,m. For simplicity, suppose n = (M +
m)w, where M ≫m and M,m,w→ ∞ (to be determined) as n→ ∞. We apply
the block technique and split the interval [1, n] into alternating large blocks Lb =
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[(b− 1)(M +m)+ 1, bM + (b− 1)m] and small blocks Sb = [bM + (b− 1)m+
1, b(M +m)], 1 ≤ b ≤w. Let

Yb =
∑

i∈Lb
Xi, Yb,m =

∑

i∈Lb
Xi,m, TY =

w
∑

b=1

Yb, TY,m =
w

∑

b=1

Yb,m.

Let Zb, 1 ≤ b ≤ w, be i.i.d. N(0,MB) and Zb,m be i.i.d. N(0,MB̃), where the
covariance matrices B and B̃ are respectively given by

(7.2) B = (bij )pi,j=1 = Cov(Yb/
√
M) and B̃ = (b̃ij )pi,j=1 = Cov(Yb,m/

√
M).

Write TZ,m = ∑w
b=1Zb,m and let Z ∼N(0,�).

LEMMA 7.1. (i) Assume �q,α <∞ for some q > 2 and α > 0. Then there
exists some constant Cq,α such that for y > 0

(7.3) P
(

|TX − TY,m|∞ ≥ y
)

� f ∗
1 (y)+ f ∗

2 (y)=: f ∗(y)

where the constant in � only depends on q and α,

(7.4) f ∗
1 (y)=

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

y−qnmq/2−1−αq�qq,α + p exp
(

−Cq,αy
2m2α

n�2
2,α

)

,

α > 1/2 − 1/q,

y−qnq/2−αq�qq,α + p exp
(

−Cq,αy
2m2α

n�2
2,α

)

,

α < 1/2 − 1/q,

and

(7.5) f ∗
2 (y)=

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

y−qwm�qq,α + p exp
(

− Cq,αy
2

mw�2
2,α

)

,

α > 1/2 − 1/q,

y−q(wm)q/2−αq�qq,α + p exp
(

− Cq,αy
2

wm�2
2,α

)

,

α < 1/2 − 1/q.

(ii) Assume �ψν ,α <∞ for some ν ≥ 0 and α > 0. Let β = 2/(1 + 2ν). Then
there exists a constant Cβ > 0 such that for y > 0,

(7.6) P
(

|TX − TY,m|∞ ≥ y
)

� f ⋄
1 (y)+ f ⋄

2 (y)=: f ⋄(y),

where the constant in � only depends on β and α,

f ⋄
1 (y)= p exp

{

−Cβ
(

ymα√
n�ψν ,α

)β}

,

f ⋄
2 (y)= p exp

{

−Cβ
(

y√
mw�ψν ,0

)β}

.
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LEMMA 7.2. LetD = (dij )pi,j=1 be a diagonal matrix. Assume that there exist

constants c > 0, c2 > c1 > 0 such that c <min1≤j≤p djj and c1 ≤ b̃jj/djj ≤ c2 for
all 1 ≤ j ≤ p. Assume �q,0 <∞ for some q ≥ 4. Then for all λ ∈ (0,1),

sup
t∈R

∣

∣P
(∣

∣D−1/2TY,m/
√
n
∣

∣

∞ ≤ t
)

− P
(∣

∣D−1/2TZ,m/
√
n
∣

∣

∞ ≤ t
)∣

∣

�w−1/8(

�
3/4
3,0 ∨�1/2

4,0

)(

log(pw/λ)
)7/8 +w−1/2(

log(pw/λ)
)3/2
um(λ)+ λ

=: h
(

λ,um(λ)
)

,

where the constant in � depends on c, c1, c2 and q and α for (i), and β for (ii)
below, and um(λ)≤ u∗

m(λ) in (i), and um(λ)≤ u⋄
m(λ) in (ii).

(i) Assume �q,α <∞ for some q ≥ 4 and α > 0, then

(7.7) u∗
m(λ)=

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

max
{

�q,α
(

λ−1w
)1/q
M1/q−1/2,�2,α

√

log(pw/λ)
}

,

α > 1/2 − 1/q,

max
{

�q,α
(

λ−1w
)1/q
M−α,�2,α

√

log(pw/λ)
}

,

α < 1/2 − 1/q.

(ii) Assume �ψν ,0 <∞ for some ν ≥ 0. Then

(7.8) u⋄
m(λ)= max

{

�ψν ,0
(

log(pw/λ)
)1/β

,
√

log(pw/λ)
}

.

LEMMA 7.3. Assume �2,α < ∞ for some α > 0. Let D = (dij )pi,j=1 be a
diagonal matrix such that there exist some constants 0<C1 <C2 such that C1 ≤
σjj/djj ≤ C2 for all 1 ≤ j ≤ p. Then we have

sup
t∈R

∣

∣P
(∣

∣D−1/2TZ,m/
√
n
∣

∣

∞ ≤ t
)

− P
(∣

∣D−1/2Z
∣

∣

∞ ≤ t
)∣

∣

� π
(

max
1≤j≤p

d−1
jj �2,α�2,0

(

m−α + v(M)
)

+wm/n
)

,

where π(x)= x1/3(1 ∨ log(p/x))2/3 for x > 0 and v(M) is the same as defined in
Corollary 5.3.

THEOREM 7.4. Let �0 = diag(�) and D0 = �
1/2
0 . Let Assumption 3.1

be satisfied. (i) Assume �q,α < ∞, where q ≥ 4 and α > 0. Let χ(m,M) =
�2,α�2,0(m

−α + v(M))+ wm/n, where v(M) is given in Corollary 5.3. Recall
(3.1) for ρn. Then for every λ ∈ (0,1) and η > 0,

ρn � f
∗(

√
nη)+ η

√

logp+ h
(

λ,u∗
m(λ)

)

+ π
(

χ(m,M)
)

.(7.9)

(ii) Assume �ψν ,α <∞, where ν ≥ 0 and α > 0. Then for every λ ∈ (0,1) and
η > 0,

ρn � f
⋄(

√
nη)+ η

√

logp+ h
(

λ,u⋄
m(λ)

)

+ π
(

χ(m,M)
)

.(7.10)
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PROOF. (i) By Lemma 7.2(i) and Lemma 7.3, we have for every λ ∈ (0,1),
sup
t∈R

∣

∣P
(∣

∣D−1
0 TY,m/

√
n
∣

∣

∞ ≤ t
)

− P
(∣

∣D−1
0 Z

∣

∣

∞ ≤ t
)∣

∣

(7.11)
� h

(

λ,u∗
m(λ)

)

+ π
(

�2,α�2,0
(

m−α + v(M)
)

+wm/n
)

.

Observe that the Gaussian vector D−1
0 Z has marginal variance 1. By Theorem 3

of [12], for every η > 0,

(7.12) sup
t∈R

P
(∣

∣

∣

∣D−1
0 Z

∣

∣

∞ − t
∣

∣ ≤ η
)

� η
√

logp.

By the triangle inequality, for every η > 0, we have

sup
t∈R

∣

∣P
(
∣

∣D−1
0 TX/

√
n
∣

∣

∞ > t
)

− P
(
∣

∣D−1
0 TY,m/

√
n
∣

∣

∞ > t
)
∣

∣

≤ P
(∣

∣D−1
0 (TX − TY,m)/

√
n
∣

∣

∞ > η
)

+ sup
t∈R

P
(∣

∣

∣

∣D−1
0 TY,m/

√
n
∣

∣

∞ − t
∣

∣ ≤ η
)

,

which implies Theorem 7.4(i) in view of Lemma 7.1(i), (7.11) and (7.12).
(ii) Inequality (7.10) can be obtained by replacing f ∗ and u∗

m with f ⋄ and u⋄
m

in the above proof. �

7.2. Proofs of Theorem 3.2 and Theorem 3.3.

PROOF. Recall (7.3) for f ∗(·). By Theorem 7.4, for α > 1/2 − 1/q , to have
(3.1), we need

(7.13) π
(

�2,α�2,0
(

m−α + v(M)
)

+wm/n
)

→ 0

and for some η > 0 and λ ∈ (0,1),

f ∗(
√
nη)+ η

√

logp→ 0,(7.14)

h
(

λ,u∗
m(λ)

)

→ 0.(7.15)

First, (7.13) requires m≫ L1, wm≪ n(logp)−2, w≪ n(logp)−2(�2,α�2,0)
−1

if α > 1 and w ≪ n/L1 if 0 < α < 1. Moreover, (7.14) requires m≫ max(L0,

(�2,α logp)1/α) with L0 = (n1/q−1/2(logp)1/2�q,α)1/(α−1/2+1/q) and wm ≪
min(N1,N2). And (7.15) needs (3.2) and w ≫ max(W1,W2). We also need
M ≍ n/w ≫ m. Notice that (�2,α logp)1/α � L1, N2 � n(logp)−2, N2 ≤
n(logp)−2(�2,α�2,0)

−1 and under (3.2), L0 → 0. If

(7.16) L1 max(W1,W2)= o(1)min(n,N1,N2),

then we can always choose m and w such that (3.1) holds. Observe that N2 � n,
then (7.16) is reduced to (3.3).

For 0 < α < 1/2 − 1/q , the function f ∗ in (7.14) is replaced by f ⋄

[cf. (7.6)], which implies �q,α(logp)1/2 = o(nα), m ≫ (�2,α logp)1/α and
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wm ≪ min(N2,N3). And u∗
m in (7.15) is replaced by u⋄

m, implying
w≫ max(W1,W2,W3). By the similar argument, if (3.4) is further assumed, then
(3.1) also holds for the case 0< α < 1/2 − 1/q .

The proof of Theorem 3.3 is similar to that of Theorem 3.2, and thus is omitted.
�

REMARK 5. In the proof of Theorem 3.2, we exclude the case α = 1 when
α > 1/2 − 1/q . If α = 1, we need to impose the additional assumption

(7.17) max(W1,W2)= o
(

n/(L1 logn)
)

to ensure (7.13). The above condition is very mild since (3.3) implies that
max(W1,W2) = o(n/L1). If logn � (logp)2�2

2,α , which trivially holds in the
high-dimensional case p ≍ nκ with some κ > 0, we have N2 =O(n/ logn), and
hence (3.3) implies (7.17). Similarly, in Theorem 3.3 we shall further assume
max(W1,W4)= o(n/(L1 logn)) if α = 1.
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