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This paper develops a new direct approach to approximating
suprema of general empirical processes by a sequence of suprema
of Gaussian processes, without taking the route of approximating
whole empirical processes in the sup-norm. We prove an abstract
approximation theorem applicable to a wide variety of statistical
problems, such as construction of uniform confidence bands for func-
tions. Notably, the bound in the main approximation theorem is non-
asymptotic and the theorem does not require uniform boundedness of
the class of functions. The proof of the approximation theorem builds
on a new coupling inequality for maxima of sums of random vectors,
the proof of which depends on an effective use of Stein’s method for
normal approximation, and some new empirical process techniques.
We study applications of this approximation theorem to local and se-
ries empirical processes arising in nonparametric estimation via kernel
and series methods, where the classes of functions change with the
sample size and are non-Donsker. Importantly, our new technique is
able to prove the Gaussian approximation for the supremum type
statistics under weak regularity conditions, especially concerning the
bandwidth and the number of series functions, in those examples.

1. Introduction. This paper is concerned with the problem of approxi-
mating suprema of empirical processes by a sequence of suprema of Gaussian
processes. To formulate the problem, let X1, . . . , Xn be i.i.d. random vari-
ables taking values in a measurable space (S,S) with common distribution
P . Suppose that there is a sequence Fn of classes of measurable functions
S ! R, and consider the empirical process indexed by Fn:

Gnf =
1p
n

nX

i=1

(f(Xi)� E[f(X1)]), f 2 Fn.

⇤First arXiv version: December 31, 2012. Revised August 24, 2016. V. Chernozhukov
and D. Chetverikov are supported by a National Science Foundation grant. K. Kato is
supported by the Grant-in-Aid for Young Scientists (B) (25780152), the Japan Society for
the Promotion of Science.

Keywords and phrases: coupling, empirical process, Gaussian approximation, kernel es-
timation, local empirical process, series estimation, supremum

1



2 CHERNOZHUKOV CHETVERIKOV KATO

For a moment, we implicitly assume that each Fn is “nice” enough and post-
pone the measurability issue. This paper tackles the problem of approximat-
ing Zn = supf2Fn

Gnf by a sequence of random variables eZn equal in dis-
tribution to supf2Fn

Bnf , where each Bn is a centered Gaussian process in-
dexed by Fn with covariance function E[Bn(f)Bn(g)] = Cov(f(X1), g(X1))
for all f, g 2 Fn. We look for conditions under which there exists a sequence
of such random variables eZn with

(1) |Zn � eZn| = OP(rn),

where rn ! 0 as n ! 1 is a sequence of constants. These results have
immediate statistical implications; see Remark 2.5 and Section 3 ahead.

The study of asymptotic and non-asymptotic behaviors of the supremum
of the empirical process is one of the central issues in probability theory, and
dates back to the classical work of [34]. The (tractable) distributional ap-
proximation of the supremum of the empirical process is of particular impor-
tance in mathematical statistics. A leading example is uniform inference in
nonparametric estimation, such as construction of uniform confidence bands
and specification testing in nonparametric density and regression estimation
where critical values are given by quantiles of supremum type statistics [see,
e.g., 2, 37, 51, 29, 28, 12]. Another interesting example appears in econo-
metrics where there is an interest in estimating a parameter that is given as
the extremum of an unknown function such as a conditional mean function.
[14] proposed a precision-corrected estimate for such a parameter. In con-
struction of their estimate, approximation of quantiles of a supremum type
statistic is needed, to which the Gaussian approximation plays a crucial role.

A related but different problem is that of approximating whole empirical
processes by a sequence of Gaussian processes in the sup-norm. This problem
is more difficult than (1). Indeed, (1) is implied if there exists a sequence of
versions of Bn (which we denote by the same symbol Bn) such that

(2) kGn �BnkFn := sup
f2Fn

|(Gn �Bn)f | = OP(rn).

There is a large literature on the latter problem (2). Notably, Komlós et
al. [36] (henceforth, abbreviated as KMT) proved that kGn � BnkF =
Oa.s.(n

�1/2 log n) for S = [0, 1], P = uniform distribution on [0, 1], and F =
{1[0,t] : t 2 [0, 1]}. See [42] and [5] for refinements of KMT’s result. [43],
[35] and [51] developed extensions of the KMT construction to more general
classes of functions.

The KMT construction is a powerful tool in addressing the problem (2),
but when applied to general empirical processes, it typically requires strong
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conditions on classes of functions and distributions. For example, Rio [51] re-
quired that Fn are uniformly bounded classes of functions having uniformly
bounded variations on S = [0, 1]d, and P has a continuous and positive
Lebesgue density on [0, 1]d. Such conditions are essential to the KMT con-
struction since it depends crucially on the Haar approximation and binomial
coupling inequalities of Tusnády. Note that [35] directly made an assumption
on the accuracy of the Haar approximation of the class of functions, but still
required similar side conditions to [51] in concrete applications; see Section
11 in [35]. [20], [1] and [53] considered the problem of Gaussian approxi-
mation of general empirical processes with different approaches and thereby
without such side conditions. [20] used a finite approximation of a (possibly
uncountably) infinite class of functions and apply a coupling inequality of
[60] to the discretized empirical process (more precisely, [20] used a version
of Yurinskii’s inequality proved by [18]). [1] and [53], on the other hand, used
a coupling inequality of [61] instead of Yurinskii’s and some recent empirical
process techniques such as Talagrand’s [56] concentration inequality, which
leads to refinements of Dudley and Philipp’s results in some cases. However,
the rates that [18], [1] and [53] established do not lead to tight conditions
for the Gaussian approximation in non-Donsker cases, with important ex-
amples being the suprema of empirical processes arising in nonparametric
estimation, namely the suprema of local and series empirical processes (see
Section 3 for detailed treatment).

We develop here a new direct approach to the problem (1), without tak-
ing the route of approximating the whole empirical process in the sup-norm
and with different technical tools than those used in the aforementioned
papers (especially the approach taken does not rely on the Haar expansion
and hence differs from the KMT type approximation). We prove an abstract
approximation theorem (Theorem 2.1) that leads to results of type (1) in
several situations. The proof of the approximation theorem builds on a num-
ber of technical tools that are of interest in their own rights: notably, 1) a
new coupling inequality for maxima of sums of random vectors (Theorem
4.1), where Stein’s method for normal approximation (building here on [7]
and originally due to [54, 55]) plays an important role (see also [50, 44, 9]); 2)
a deviation inequality for suprema of empirical processes that only requires
finite moments of envelope functions (Theorem 5.1), due essentially to the
recent work of [4], complemented with a new “local” maximal inequality for
the expectation of suprema of empirical processes that extends the work of
[59] (Theorem 5.2). We study applications of this approximation theorem
to local and series empirical processes arising in nonparametric estimation
via kernel and series methods, and demonstrate that our new technique is
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able to provide the Gaussian approximation for the supremum type statis-
tics under weak regularity conditions, especially concerning the bandwidth
and the number of series functions, in those examples.

It is instructive to briefly summarize here the key features of the main
approximation theorem. First, the theorem establishes a non-asymptotic
bound between Zn and its Gaussian analogue eZn. The theorem requires
each Fn to be pre-Gaussian (i.e., assuming the existence of a version of
Bn that is a tight Gaussian random variable in `1(Fn); see below for the
notation), but allows for the case where the “complexity” of Fn increases
with n, which places the function classes outside any fixed Donsker class;
moreover, neither the process Gn nor the supremum statistic Zn need to be
weakly convergent as n ! 1 (even after suitable normalization). Second,
the bound in Theorem 2.1 is able to exploit the “local” properties of the class
of functions, thereby, when applied to, say, the supremum deviation of kernel
type statistics, it leads to tight conditions on the bandwidth for the Gaussian
approximation (see the discussion after Theorem 2.1 for details about these
features). Note that our bound does not rely on “smoothness” of Fn — in
contrast, in [51], the bound on the Gaussian approximation for empirical
processes depends on the total variation norm of functions. This feature is
helpful in deriving good conditions on the number of series functions for
the Gaussian approximation of the supremum deviation of projection type
statistics treated in Section 3.2 since, for example, the total variation norm
is typically large or difficult to control well for such examples. Finally, the
theorem only requires finite moments of the envelope function, which should
be contrasted with [35, 51, 1, 53] where the classes of functions studied are
assumed to be uniformly bounded. Hence the theorem is readily applicable
to a wide class of statistical problems to which the previous results are not,
at least immediately. We note here that although the bounds we derive are
not the sharpest possible in some examples, they are better than previously
available bounds in other examples, and are also of interest because of their
wide applicability. In fact the results of this paper are already applied in our
companion paper [10] and the paper [8] by other authors.

To the best of our knowledge, [48] is the only previous work that consid-
ered the problem of directly approximating the distribution of the supremum
of the empirical process by that of the corresponding Gaussian process. How-
ever, they only cover the case where the class of functions is independent of
n and Donsker as the constant C in their master Theorem 2 is dependent
on F (and how C depends on F is not specified), and their condition (1.4)
essentially excludes the case where the “complexity” of F grows with n,
which means that their results are not applicable to the statistical problems
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considered in this paper (see Remark 2.5 or Lemma A.1 ahead). Moreover,
their approach is significantly different from ours.

In this paper, we substantially rely on modern empirical process theory.
For general references on empirical process theory, we refer to [39, 58, 19, 3].
Section 9.5 of [19] has excellent historical remarks on the Gaussian approx-
imation of empirical processes. For textbook treatments of Yurinskii’s and
KMT’s couplings, we refer to [16] and Chapter 10 in [49].

1.1. Organization. In Section 2, we present the main approximation the-
orem (Theorem 2.1). We give a proof of Theorem 2.1 in Section 6. In Section
3, we study applications of Theorem 2.1 to local and series empirical pro-
cesses arising in nonparametric estimation. Sections 4 and 5 are devoted to
developing some technical tools needed to prove Theorem 2.1 and its sup-
porting Lemma 2.2. In Section 4, we prove a new coupling inequality for
maxima of sums of random vectors, and in Section 5, we present some in-
equalities for empirical processes. We put some additional technical proofs,
some examples, and additional results in the Appendices. Due to the page
limitation, all the Appendices are placed in the Supplemental Material [13].

1.2. Notation. Let (Ω,A,P) denote the underlying probability space. We
assume that the probability space (Ω,A,P) is rich enough, in the sense
that there exists a uniform random variable on (0, 1) defined on (Ω,A,P)
independent of the sample. For a real-valued random variable ⇠, let k⇠kq =
(E[|⇠|q])1/q, 1  q < 1. For two random variables ⇠ and ⌘, we write ⇠

d
= ⌘

if they have the same distribution.
For any probability measure Q on a measurable space (S,S), we use the

notation Qf :=
R
fdQ. Let Lp(Q), p � 1, denote the space of all measurable

functions f : S ! R such that kfkQ,p := (Q|f |p)1/p < 1. We also use
the notation kfk1 := supx2S |f(x)|. Denote by eQ the L2(Q)-semimetric:
eQ(f, g) = kf � gkQ,2, f, g 2 L2(Q).

For an arbitrary set T , let `1(T ) denote the space of all bounded functions
T ! R, equipped with the uniform norm kfkT := supt2T |f(t)|. We endow
`1(T ) with the Borel �-field induced from the norm topology. A random
variable in `1(T ) refers to a Borel measurable map from Ω to `1(T ). For
" > 0, an "-net of a semimetric space (T, d) is a subset Tε of T such that
for every t 2 T there exists a point tε 2 Tε with d(t, tε) < ". The "-covering
number N(T, d, ") of T is the infimum of the cardinality of "-nets of T ,
that is, N(T, d, ") := inf{Card(Tε) : Tε is an "-net of T} (formally define
N(T, d, 0) := limε#0N(T, d, "), where the right limit, possibly being infinite,
exists as the map " 7! N(T, d, ") is non-increasing). For a subset A of a
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semimetric space (T, d), let Aδ denote the �-enlargement of A, that is, Aδ =
{x 2 T : d(x,A)  �} where d(x,A) = infy2A d(x, y).

The standard Euclidean norm is denoted by | · |. The transpose of a vector
x is denoted by xT . We write a . b if there exists a universal constant
C > 0 such that a  Cb. Unless otherwise stated, c, C > 0 denote universal
constants of which the values may change from place to place. For a, b 2 R,
we use the notation a _ b = max{a, b} and a+ = a _ 0.

Finally, for a sequence {zi}
n
i=1, we write En[zi] = n�1

Pn
i=1 zi, that is, En

abbreviates the symbol n�1
Pn

i=1. For example, En[f(Xi)] = n�1
Pn

i=1 f(Xi).

2. Abstract approximation theorem. Let X1, . . . , Xn be i.i.d. ran-
dom variables taking values in a measurable space (S,S) with common dis-
tribution P . In all what follows, we assume n � 3. Let F be a class of mea-
surable functions S ! R. Here we assume that the class F is P -centered,
that is, Pf = 0, 8f 2 F . This does not lose generality since otherwise we
may replace F by {f � Pf : f 2 F}. Denote by F a measurable envelope
of F , that is, F is a non-negative measurable function S ! R such that
F (x) � supf2F |f(x)|, 8x 2 S.

In this section the sample size n is fixed, and hence the possible depen-
dence of F and F (and other quantities) on n is dropped.

We make the following assumptions.

(A1) The class F is pointwise measurable, that is, it contains a countable
subset G such that for every f 2 F there exists a sequence gm 2 G
with gm(x) ! f(x) for every x 2 S.

(A2) For some q � 2, F 2 Lq(P ).
(A3) The class F is P -pre-Gaussian, that is, there exists a tight Gaussian

random variable GP in `1(F) with mean zero and covariance function

E[GP (f)GP (g)] = P (fg) = E[f(X1)g(X1)], 8f, g 2 F .

Assumption (A1) is made to avoid measurability complications. See Sec-
tion 2.3.1 of [58] for further discussion. This assumption ensures that, for
example, supf2F Gnf = supf2G Gnf , and hence the former supremum is a
measurable map from Ω to R. Note that by Example 1.5.10 in [58], assump-
tion (A3) implies that F is totally bounded for eP , and GP has sample paths
almost surely uniformly eP -continuous.

To state the main result, we prepare some notation. For " > 0, define
Fε = {f � g : f, g 2 F , eP (f, g) < "kFkP,2}. Note that by Theorem 3.1.1
in [19], under assumption (A3), one can extend GP to the linear hull of F
in such a way that GP has linear sample paths (recall that the linear hull
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of F is defined as the collection of functions of the form
Pm

j=1 ↵jfj where
↵j 2 R, fj 2 F , j = 1, . . . ,m). With this in mind, let

(3) �n(") = E[kGnkFε ] _ E[kGP kFε ].

For the notational convenience, let us write

(4) Hn(") = log(N(F , eP , "kFkP,2) _ n).

Note that since F is totally bounded for eP (because of assumption (A3)),
Hn(") is finite for every 0 < "  1. Moreover, write M = max1in F (Xi)
and F · F = {fg : f 2 F , g 2 F}. The following is the main theorem of this
paper. The proof of the theorem will be given in Section 6.

Theorem 2.1 (Gaussian approximation to suprema of empirical pro-
cesses). Suppose that assumptions (A1), (A2) with q � 3, and (A3) are
satisfied. Let Z = supf2F Gnf . Let  > 0 be any positive constant such that
3 � E[kEn[|f(Xi)|

3]kF ]. Then for every " 2 (0, 1] and � 2 (0, 1), there

exists a random variable eZ d
= supf2F GP f such that

P

n
|Z � eZ| > K(q)∆n(", �)

o
 � {1 + �n(", �)}+

C log n

n
,

where K(q) > 0 is a constant that depends only on q, and

∆n(", �) := �n(") + ��1/q"kFkP,2 + n�1/2��1/qkMkq + n�1/2��2/qkMk2
+ n�1/4��1/2(E[kGnkF·F ])

1/2H1/2
n (") + n�1/6��1/3H2/3

n (").

�n(", �) :=
1

4
P{(F/)31(F/ > c��1/3n1/3Hn(")

�1/3)}.

At this point, Theorem 2.1 might seem abstract but in fact it has wide
applicability. We provide a general discussion of key features of the theorem
in Remark 2.3 below after we present bounds on the main terms in the
theorem.

Recall that we have extended GP to the linear hull of F in such a way
that GP has linear sample paths. Hence

kGnkF = sup
f2F[(�F)

Gnf, kGP kF = sup
f2F[(�F)

GP f,

where �F := {�f : f 2 F}, from which one can readily deduce the following
corollary. Henceforth we only deal with supf2F Gnf .
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Corollary 2.1. The conclusion of Theorem 2.1 continues to hold with

Z replaced by Z = kGnkF , eZ replaced by eZ d
= kGP kF , and with different

constants K(q) and C where K(q) depends only on q and C is universal.

Theorem 2.1 is useful only if there are suitable bounds on the following
triple of terms, appearing in its statement:

(5) �n("), E[kEn[|f(Xi)|
3]kF ] and E[kGnkF·F ].

To bound these terms, the entropy method or the more general generic
chaining method [57] are useful. We will derive bounds on these terms using
the entropy method since typically it leads to readily computable bounds.
However, we leave the option of bounding the terms in (5) by other means,
e.g., the generic chaining method (in some applications the latter is known
to give sharper bounds than the entropy approach).

Consider, as in [58, p.239], the (uniform) entropy integral

J(�) = J(�,F , F ) =

Z δ

0
sup
Q

q
1 + logN(F , eQ, "kFkQ,2)d",

where the supremum is taken over all finitely discrete probability measures
on (S,S); see [58], Sections 2.6 and 2.10.3, and [19], Chapter 4, for examples
where the uniform entropy integral can be suitably bounded. We assume the
integral is finite:

(A4) J(1,F , F ) < 1.

Remark 2.1. In applications F and F (and even S) may change with
n, that is, F = Fn and F = Fn. In that case, assumption (A4) is inter-
preted as J(1,Fn, Fn) < 1 for each n, but it does allow for the case where
J(1,Fn, Fn) ! 1 as n ! 1. ⌅

We first note the following (standard) fact.

Lemma 2.1. Assumptions (A2) and (A4) imply assumption (A3).

For the sake of completeness, we verify this lemma in the Supplemental
Material [13]. The following lemma provides bounds on the quantities in (5).
Its proof is given in the Supplemental Material [13].

Lemma 2.2 (Entropy-based bounds on the triple (5)). Suppose that as-
sumptions (A1), (A2) and (A4) are satisfied. Then for " 2 (0, 1],

�n(") . J(")kFkP,2 + n�1/2"�2J2(")kMk2.
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Moreover, suppose that assumption (A2) is satisfied with q � 4, and for k =
3, 4, let �k 2 (0, 1] be any positive constant such that �k � supf2F kfkP,k/kFkP,k.
Then

E[kEn[|f(Xi)|
3]kF ]� sup

f2F
P |f |3

. n�1/2kMk3/23

"
J(�

3/2
3 ,F , F )kFk3/2P,3 +

kMk3/23 J2(�
3/2
3 ,F , F )p

n�33

#
,

E[kGnkF·F ] . J(�24 ,F , F )kFk2P,4 +
kMk24J2(�24 ,F , F )p

n�44
.

Remark 2.2 (On the usefulness of the above bounds). The bounds
above are designed to handle cases when the suprema of weak moments,
P |f |3 and Pf4, are much smaller than the moments of the envelope func-
tion, which is the case for all the examples studied in Section 3 where all
the proofs for the results in that section follow from application of Theorem
2.1 combined with Lemma 2.2. ⌅

Remark 2.3 (Key features of Theorem 2.1). Before going to the
applications, we discuss the key features of Theorem 2.1. First, Theorem
2.1 does not require uniform boundedness of F , and requires only finite mo-
ments of the envelope function. This should be contrasted with the fact that
many papers working on the Gaussian approximation of empirical processes
in the sup-norm, such as [35, 51, 1, 53], required that classes of functions
are uniformly bounded. There are, however, many statistical applications
where uniform boundedness of the class of functions is too restrictive, and
the generality of Theorem 2.1 in this direction will turn out to be useful
— a typical example of such an application is the problem of performing
inference on a nonparametric regression function with unbounded noise us-
ing kernel and series estimation methods. One drawback is that �, which
in applications we take as � = �n ! 0, is typically at most O(n�1/2), and
hence Theorem 2.1 generally gives only “in probability bounds” rather than
“almost sure bounds” (though in some cases, it is possible to derive “almost
sure bounds” from this theorem; see, in particular, Appendix C of the Sup-
plemental Material). The second feature of Theorem 2.1 is that it is able to
exploit the “local” properties of the class of functions F . By Lemma 2.2,
typically, we may take 3 ⇡ supf2F P |f |3 and E[kGnkF·F ] ⇡ supf2F

p
Pf4

(up to logarithmic in n factors). In some applications, for example, nonpara-
metric kernel and series estimations considered in the next section, the class
F = Fn changes with n and supf2Fn

kfkP,k/kFnkP,k with k = 3, 4 decrease
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to 0 where Fn is an envelope function of Fn. The bound in Theorem 2.1 (with
help of Lemma 2.2) effectively exploits this information and leads to tight
conditions on, say, the bandwidth and the number of series functions for the
Gaussian approximation; roughly the theorem gives bounds on the approx-
imation error of the form (nhdn)

�1/6 for kernel estimation and (Kn/n)
�1/6

for series estimation (up to logarithmic in n factors), where hn ! 0 is the
bandwidth and Kn ! 1 is the number of series functions. This feature will
be clear from the proofs for the applications in the following section. ⌅

Remark 2.4 (An application to VC type classes). Although applications
of the general results in this section are not restricted to cases with bounded
envelopes (and we indeed treat examples with unbounded envelopes in Sec-
tion 3; see Propositions 3.2 and 3.3-(ii) ahead), combination of Theorem
2.1 and Lemma 2.2 will lead to a simple bound for VC type classes with
bounded envelopes. We state this special case for the reader’s convenience.
Recall the definition of VC type classes:

Definition 2.1 (VC type class). Let F be a class of measurable func-
tions on a measurable space (S,S), to which a measurable envelope F is
attached. We say that F is VC type with envelope F if there are constants
A, v > 0 such that supQN(F , eQ, "kFkQ,2)  (A/")v for all 0 < "  1,
where the supremum is taken over all finitely discrete probability measures
on (S,S).

The definition of VC class itself allows F to be unbounded. Note that VC
type class is a wider concept than VC subgraph class (see [58], Chapter 2.6
for its definition), as long as an envelope exists. The VC type property is
“stable” under summation, product, or more generally Lipschitz-type trans-
formations, for which it is much easier to check whether a function class
is VC type; see Lemma A.6 in the Supplemental Material [13] (the above
discussion applies to general cases where envelopes are possibly unbounded).

We have the following corollary of Theorem 2.1.

Corollary 2.2. Suppose that assumption (A1) is satisfied. In addi-
tion, suppose that the class F is VC type with a bounded envelope F and
constants A � e and v � 1. Let Z = supf2F Gnf , and let � be such that
supf2F E[f(X1)

2]  �2  kFk21. Then for every � 2 (0, 1), there exists a
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random variable eZ d
= supf2F GP f such that

P

(
|Z � eZ| >

kFk1Kn

(�n)1/2
+

(kFk1�)1/2K3/4
n

�1/2n1/4
+

kFk1/31 �2/3K
2/3
n

�1/3n1/6

)

 C

✓
� +

log n

n

◆
,

where Kn = cv(log n _ log(AkFk1/�)).

The proof of this corollary can be found in [12] (using our Theorem 2.1
and its supporting Lemma 2.2). ⌅

Remark 2.5 (Gaussian approximation in the Kolmogorov distance). The-
orem 2.1 combined with Lemma 2.2 can be used to show that the result (1)
holds for some sequence of constants rn ! 0 (subject to some conditions;
possible rates of rn are problem-specific). In statistical applications, how-
ever, one is typically interested in the result of the form (here we follow the
notation used in Section 1)

(6) sup
t2R

|P(Zn  t)� P( eZn  t)| = o(1), n ! 1.

That is, the approximation of the distribution of Zn by that of eZn in the
Kolmogorov distance is required (recall that the Kolmogorov distance be-
tween the distributions of two random variables ⇠1 and ⇠2 is defined by
supt2R |P(⇠1  t)�P(⇠2  t)|). To derive (6) from (1), we invoke the follow-
ing lemma.

Lemma 2.3 (Gaussian approximation in Kolmogorov distance: non-asymp-
totic result). Consider the setting described in the beginning of this section.
Suppose that assumptions (A1)-(A3) are satisfied, and that there exist con-
stants �, �̄ > 0 such that �2  Pf2  �̄2 for all f 2 F . Moreover, suppose

that there exist constants r1, r2 > 0 and a random variable eZ d
= supf2F GP f

such that P{|Z � eZ| > r1}  r2. Then

sup
t2R

|P(Z  t)� P( eZ  t)|  Cσr1

n
E[ eZ] +

p
1 _ log(�/r1)

o
+ r2,

where Cσ is a constant depending only on � and �̄.

It is now not difficult to give conditions to deduce (6) from (1). Formally,
we state the following lemma.
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Lemma 2.4 (Gaussian approximation in Kolmogorov distance: asymptotic
result). Suppose that there exists a sequence of (P -centered) classes Fn of
measurable functions S ! R satisfying assumptions (A1)-(A3) with F = Fn

for each n, and that there exist constants �, �̄ > 0 (independent of n) such
that �2  Pf2  �̄2 for all f 2 Fn. Let Zn = supf2Fn

Gnf , and denote
by Bn a tight Gaussian random variable in `1(Fn) with mean zero and
covariance function E[Bn(f)Bn(g)] = P (fg) for all f, g 2 Fn. Moreover,

suppose that there exist a sequence of random variables eZn
d
= supf2Fn

Bnf

and a sequence of constants rn ! 0 such that |Zn � eZn| = OP(rn) and
rnE[ eZn] = o(1) as n ! 1. Then as n ! 1, supt2R |P(Zn  t) � P( eZn 
t)| = o(1).

Note here that we allow the case where E[ eZn] ! 1. In the examples
handled in the following section, typically, we have E[ eZn] = O(

p
log n). ⌅

3. Applications. This section studies applications of Theorem 2.1, and
its supporting Lemma 2.2, to local and series empirical processes arising in
nonparametric estimation via kernel and series methods. In both examples,
the classes of functions change with the sample size n and the corresponding
processes Gn do not have tight limits. Hence regularity conditions for the
Gaussian approximation for the suprema will be of interest. All the proofs in
this section, and motivating examples for series empirical processes treated
in Section 3.2, are gathered in the Supplemental Material [13].

3.1. Local empirical processes. This section applies Theorem 2.1 to the
supremum deviation of kernel type statistics. Let (Y1, X1), . . . , (Yn, Xn) be
i.i.d. random variables taking values in the product space Y ⇥ R

d, where
(Y,AY) is an arbitrary measurable space. Suppose that there is a class G
of measurable functions Y ! R. Let k(·) be a kernel function on R

d. By
“kernel function”, we simply mean that k(·) is integrable with respect to
the Lebesgue measure on R

d and its integral on R
d is normalized to be 1,

but we do not assume k(·) to be non-negative, that is, higher order kernels
are allowed. Let hn be a sequence of positive constants such that hn ! 0
as n ! 1, and let I be an arbitrary Borel subset of R

d. Consider the
kernel-type statistics

(7) Sn(x, g) =
1

nhdn

nX

i=1

g(Yi)k(h
�1
n (Xi � x)), (x, g) 2 I ⇥ G.

Typically, under suitable regularity conditions, Sn(x, g) will be a consistent
estimator of E[g(Y1) | X1 = x]p(x), where p(·) denotes a Lebesgue density
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of the distribution of X1 (assuming its existence). For example, when g ⌘ 1,
Sn(x, g) will be a consistent estimator of p(x); when Y = R and g(y) = y,
Sn(x, g) will be a consistent estimator of E[Y1 | X1 = x]p(x); and when
Y = R and g(·) = 1(·  y), y 2 R, Sn(x, g) will be a consistent estimator of
P(Y1  y | X1 = x)p(x). In statistical applications, it is often of interest to
approximate the distribution of the following quantity:

(8) Wn = sup
(x,g)2I⇥G

cn(x, g)
q
nhdn(Sn(x, g)� E[Sn(x, g)]),

where cn(x, g) is a suitable normalizing constant. A typical choice of cn(x, g)
would be such that Var(

p
nhdnSn(x, g)) = cn(x, g)

�2 + o(1). Limit theorems
for Wn are developed in [2, 37, 17, 51, 21, 41], among others.

[21] called the process g 7!
p

nhdn(Sn(x, g) � E[Sn(x, g)]) a “local” em-
pirical process at x (the original definition of the local empirical process
in [21] is slightly more general in that hn is replaced by a sequence of bi-
measurable functions). With a slight abuse of terminology, we also call the
process (x, g) 7!

p
nhdn(Sn(x, g)� E[Sn(x, g)]) a local empirical process.

We consider the problem of approximating Wn by a sequence of suprema
of Gaussian processes. For each n � 1, let Bn be a centered Gaussian process
indexed by I ⇥ G with covariance function

(9) E[Bn(x, g)Bn(x̌, ǧ)]

= h�d
n cn(x, g)cn(x̌, ǧ) Cov[g(Y1)k(h

�1
n (X1 � x)), ǧ(Y1)k(h

�1
n (X1 � x̌))].

It is expected that under suitable regularity conditions, there is a sequence
fWn of random variables such that fWn

d
= sup(x,g)2I⇥G Bn(x, g) and as n !

1, |Wn �fWn|
P! 0. We shall argue the validity of this approximation with

explicit rates.
We make the following assumptions.

(B1) G is a pointwise measurable class of functions Y ! R uniformly
bounded by a constant b > 0, and is VC type with envelope ⌘ b.

(B2) k(·) is a bounded and continuous kernel function on R
d, and such that

the class of functions K = {t 7! k(ht+ x) : h > 0, x 2 R
d} is VC type

with envelope ⌘ kkk1.
(B3) The distribution of X1 has a bounded Lebesgue density p(·) on R

d.
(B4) hn ! 0 and log(1/hn) = O(log n) as n ! 1.
(B5) CI⇥G := supn�1 sup(x,g)2I⇥G |cn(x, g)| < 1. Moreover, for every fixed

n � 1 and for every (xm, gm) 2 I⇥G with xm ! x 2 I and gm ! g 2 G
pointwise, cn(xm, gm) ! cn(x, g).



14 CHERNOZHUKOV CHETVERIKOV KATO

We note that [47] and especially [26, 27] give general sufficient conditions
under which K is VC type.

We first assume that G is uniformly bounded, which will be relaxed later.

Proposition 3.1 (Gaussian approximation to suprema of local empirical
processes: bounded case). Suppose that assumptions (B1)-(B5) are satis-
fied. Then for every n � 1, there is a tight Gaussian random variable Bn

in `1(I ⇥ G) with mean zero and covariance function (9), and there is a

sequence fWn of random variables such that fWn
d
= sup(x,g)2I⇥G Bn(x, g) and

as n ! 1,

|Wn �fWn| = OP{(nh
d
n)

�1/6 log n+ (nhdn)
�1/4 log5/4 n+ (nhdn)

�1/2 log3/2 n}.

Even when G is not uniformly bounded, a version of Proposition 3.1 con-
tinues to hold provided that suitable restrictions on the moments of the
envelope of G are assumed. Instead of assumption (B1), we make the follow-
ing assumption.

(B1)0 G is a pointwise measurable class of functions Y ! R with mea-
surable envelope G such that E[Gq(Y1)] < 1 for some q � 4 and
supx2Rd E[G4(Y1) | X1 = x] < 1. Moreover, G is VC type with enve-
lope G.

Then we have the following proposition.

Proposition 3.2 (Gaussian approximation to suprema of local empirical
processes: unbounded case). Suppose that assumptions (B1)0 and (B2)-
(B5) are satisfied. Then the conclusion of Proposition 3.1 continues to hold,
except for that the speed of approximation is

OP{(nh
d
n)

�1/6 log n+ (nhdn)
�1/4 log5/4 n+ (n1�2/qhdn)

�1/2 log3/2 n}.

Remark 3.1 (Discussion and comparison to other results). It is instruc-
tive to compare Propositions 3.1 and 3.2 with implications of Theorem 1.1
of Rio [51], which is a very sharp result on the Gaussian approximation (in
the sup-norm) of general empirical processes indexed by uniformly bounded
VC type classes of functions having locally uniformly bounded variation.

1. Rio’s [51] Theorem 1.1 is not applicable to the case where the envelope
function G is not bounded. Hence Proposition 3.2 is not covered by [51].
Indeed, we are not aware of any previous result that leads to the conclusion
of Proposition 3.2, at least in this generality. For example, [37] considered the
Gaussian approximation of Wn in the case where Y = R and g(y) = y, but
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also assumed that the support of Y1 is bounded. [21] proved in their Theorem
1.1 a weak convergence result for local empirical processes, which, combined
with the Skorohod representation and Lemma 4.1 ahead, implies a Gaussian
approximation result for Wn even when G is not uniformly bounded (but
without explicit rates); however, their Theorem 1.1 (and also Theorem 1.2) is
tied with the single value of x, that is, x is fixed, since both theorems assume
that the “localized” probability measure, localized at a given x, converges
(in a suitable sense) to a fixed probability measure (see assumption (F.ii) in
[21]). The same comment applies to [22]. In contrast, our results apply to
the case where the supremum is taken over an uncountable set of values of x,
which is relevant to statistical applications such as construction of uniform
confidence bands.

2. In the special case of kernel density estimation (i.e., g ⌘ 1), Rio’s The-

orem 1.1 implies (subject to some regularity conditions) that |Wn � fWn| =
Oa.s.{(nh

d
n)

�1/(2d)
p
log n+ (nhdn)

�1/2 log n} for d � 2 (the d = 1 case is for-
mally excluded from [51] but Giné and Nickl showed that the same bound
can be obtained for d = 1 case [the proof of Proposition 5 in 28]). Hence
Rio-Giné-Nickl’s error rates are better than ours when d = 1, 2, 3, but ours
are better when d � 4 (aside from the difference between “in probability”
and almost sure bounds). Another approach to couplings of kernel density
estimators is proposed in Neumann [45] where the distribution of Wn is cou-
pled to the distribution of the smoothed bootstrap, which is then coupled
to the distribution of the empirical bootstrap. Neumann’s Theorem 3.2 im-
plies that one can construct a sequence X1, . . . , Xn, its copy X1, . . . , Xn,
and empirical bootstrap sample X⇤

1 , . . . , X
⇤
n from X1, . . . , Xn so that if we

define W ⇤
n by (7) and (8) with X1, . . . , Xn replaced by X⇤

1 , . . . , X
⇤
n, then

|Wn �W ⇤
n | = OP((nhd)

�1/(2+d)(log n)(4+d)/(2(2+d))). Thus Neumann’s error
rates of (empirical bootstrap) approximation are better than our error rates
of (Gaussian) approximation when d  4 but ours are better when d � 5.
Also we note that Neumann’s approach requires similar side conditions as
those of Rio’s approach, is tied with kernel density estimation and not as
general as ours.

3. Consider, as a second example, kernel regression estimation (that is,
Y = R and g(y) = y). In order to formally apply Rio’s Theorem 1.1 to
this example, we need to assume that, for example, (Y1, X1) is generated
in such a way that (Y1, X1) = (h(U,X1), X1) where the joint distribution
of (U,X1) has support [0, 1]

d+1 with continuous and positive Lebesgue den-
sity on [0, 1]d+1, and h is a function [0, 1]d+1 ! R which is bounded and of
bounded variation [for example, let F�1

Y1|X1
(· | x) denote the quantile function

of the conditional distribution of Y1 given X1 = x and take U uniformly dis-
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tributed on (0, 1) independent of X1; then (Y1, X1)
d
= (F�1

Y1|X1
(U | X1), X1),

but for the above condition to be met, we need to assume that F�1
Y1|X1

(u | x)

is (bounded and) of bounded variation as a function of u and x, which is
not a typical assumption in estimation of the conditional mean]. Subject to
such side conditions, Rio’s Theorem 1.1 leads to the following error rate:
|Wn�fWn| = Oa.s.{(n

d/(d+1)hdn)
�1/(2d)

p
log n+(nhdn)

�1/2 log n}. See, for ex-
ample, [14], Theorem 8. In contrast, Propositions 3.1 and 3.2 do not require
such side conditions. Moreover, aside from the difference between “in prob-
ability” and almost sure bounds, as long as hn = O(n�a) for some a > 0,
our error rates are always better when d � 2. When d = 1, our rate is better
as long as nh4n/ log

c n ! 0 (and vice versa) where c > 0 is some constant. ⌅

Remark 3.2 (Converting coupling to convergence in Kolmogorov dis-
tance). By Remark 2.5, we can convert the results in Propositions 3.1 and
3.2 into convergence of the Kolmogorov distance between the distributions
of Wn and its Gaussian analogue fWn. In fact, under either the assumptions
of Proposition 3.1 or 3.2, by Dudley’s inequality for Gaussian processes [58,

Corollary 2.2.8], it is not difficult to deduce that E[fWn] = O(
p
log n). Hence

if moreover there exists a constant � > 0 (independent of n) such that
Var(cn(x, g)

p
nhdnSn(x, g)) � �2 for all (x, g) 2 I ⇥ G (giving primitive reg-

ularity conditions for this assumption is a standard task; note also that under
either the assumptions of Proposition 3.1 or 3.2, Var(cn(x, g)

p
nhdnSn(x, g))

is bounded from above uniformly in (x, g) 2 I ⇥ G), we have

|Wn �fWn| = oP(log
�1/2 n) ) sup

t2R
|P(Wn  t)� P(fWn  t)| = o(1).

Note that |Wn � fWn| = oP(log
�1/2 n) (i) if nhdn/ log

c n ! 1 under the
assumptions of Proposition 3.1, and (ii) if n(1�2/q)hdn/ log

c n ! 1 under
the assumptions of Proposition 3.2, where c > 0 is some constant. These
conditions on the bandwidth hn are mild, and interestingly they essentially
coincide with the conditions on the bandwidth used in establishing exact
rates of uniform strong consistency of kernel type estimators in [23, 24]. ⌅

Remark 3.3 (Constructing under-smoothed uniform bands). The re-
sults in Propositions 3.1 and 3.2 are useful for constructing one- and two-
sided uniform confidence bands for various nonparametric functions, such
as density and conditional mean, estimated via kernel methods. For con-
creteness, consider a kernel density estimator bSn(x) = Sn(x, g) defined in

(7) with g ⌘ 1. Let �n(x) =

q
Var(bSn(x)), and define Wn as in (8) with

cn(x, g) = 1/(�n(x)
p
nhdn). Also define Cn(x) = [bSn(x) � c(↵)�n(x),1)
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where c(↵) is a constant specified later with ↵ 2 (0, 1) a confidence level.
Assume that the bandwidth hn is chosen in such a way that

(10) sup
x2I

|E[bSn(x)]� p(x)|

�n(x)
= o(log�1/2 n).

Conditions like (10) are typically referred to as under-smoothing [see 28,
p.1130 for related discussion]. Then

P(p(x) 2 Cn(x), 8x 2 I)  P(Wn  c(↵) + o(log�1/2 n))

= P(fWn  c(↵) + o(log�1/2 n)) + o(1) = P(fWn  c(↵)) + o(1),(11)

and likewise P(p(x) 2 Cn(x), 8x 2 I) � P(fWn  c(↵)) � o(1), under the

conditions specified in Remark 3.2 where fWn is defined in Proposition 3.1.
Here the last equality in (11) follows from the anti-concentration inequality
for Gaussian processes (see Lemma A.1 in the Supplemental Material [13])

together with the fact that E[fWn] = O(
p
log n). Hence Cn(·) is a one-sided

uniform confidence band of level ↵ if we set c(↵) to be the (1� ↵)-quantile

of the distribution of fWn, which in turn can be estimated via a bootstrap
procedure; see our companion paper [12]. Another way is to use a bound

on the (1 � ↵)-quantile of fWn using sharp deviation inequalities available
to Gaussian processes, which leads to analytic construction of confidence
bands; see, for example, [14] for this approach. In some applications, the
distribution of the approximating Gaussian process is completely known,
and in that case the distribution of fWn can be simulated via a direct Monte
Carlo method; see [52] for such examples. Finally, we mention that there
are alternative, yet more conservative, approaches on construction of con-
fidence bands based on non-asymptotic concentration inequalities (and not
on Gaussian approximation); see [40] and [33]. ⌅

3.2. Series empirical processes. Here we consider the following problem.
Let (⌘1, X1), . . . , (⌘n, Xn) be i.i.d. random variables taking values in the
product space E ⇥ R

d, where (E ,AE) is an arbitrary measurable space.
Suppose that the support of X1 is normalized to be [0, 1]d, and for each
K � 1, there are K basis functions  K,1, . . . , K,K defined on [0, 1]d. Let
 K(x) = ( K,1(x), . . . , K,K(x))T . Examples of such basis functions are
Fourier series, splines, Cohen-Daubechies-Vial (CDV) wavelet bases [15],
Hermite polynomials and so on. Let Kn be a sequence of positive constants
such that Kn ! 1 as n ! 1. Let G be a class of measurable functions
E ! R such that E[g2(⌘1)] < 1 and E[g(⌘1) | X1] = 0 a.s. for all g 2 G, and
let I be an arbitrary Borel measurable subset of [0, 1]d. Suppose that there
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are sequences of Kn⇥Kn matrices A1n(g) and A2n(g) indexed by g 2 G. We
assume that smin(A2n(g)) > 0 for all g 2 G. In what follows, we let smin(A)
and smax(A) denote the minimum and maximum singular values of a matrix
A, respectively. Consider the following empirical process:

Sn(x, g) =
 Kn(x)TA1n(g)

T

|A2n(g) Kn(x)|

"
1p
n

nX

i=1

g(⌘i) 
Kn(Xi)

#
, x 2 I, g 2 G,

which we shall call the “series empirical process” (we shall formally follow
the convention 0/0 = 0). The problem here is the Gaussian approximation
of the supremum of this series empirical process:

Wn := sup
(x,g)2I⇥G

Sn(x, g).

We address this problem in what follows. The study of distributional ap-
proximation of this statistic is motivated by inference problems for functions
using series (or sieve) estimation. See Examples B.1 and B.2 in the Sup-
plemental Material [13] for concrete examples, coming from nonparametric
conditional mean and quantile estimation using the series method. These
examples explain and motivate various forms of Sn arising in mathematical
statistics.

Returning to the general setting, let Bn be a centered Gaussian process
indexed by I ⇥ G with covariance function

E[Bn(x, g)Bn(x̌, ǧ)]

= ↵n(x, g)
T
E[g(⌘1)ǧ(⌘1) 

Kn(X1) 
Kn(X1)

T ]↵n(x̌, ǧ),(12)

where ↵n(x, g) = A1n(g) 
Kn(x)/|A2n(g) 

Kn(x)|. It is expected that under

suitable regularity conditions, there is a sequence fWn of random variables

such that fWn
d
= sup(x,g)2I⇥G Bn(x, g) and as n ! 1, |Wn � fWn|

P! 0. We
shall establish the validity of this approximation with explicit rates.

We make the following assumptions.

(C1) G is a pointwise measurable VC type class of functions E ! R with
measurable envelope G such that E[g2(⌘1)] < 1 and E[g(⌘1) | X1] = 0
a.s. for all g 2 G.

(C2) There exist some constants c1, C1 > 0 such that smax(A2n(g))  C1

and smin(A2n(g)) � c1 for all g 2 G and n � 1.
(C3) bn := supx2[0,1]d | 

Kn(x)| _ 1 < 1 and there exists a constant C2 >

0 such that smax(E[ 
Kn(X1) 

Kn(X1)
T ])  C2 for all n � 1. The
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map (x, g) 7! A1n(g) 
Kn(x)/|A2n(g) 

Kn(x)| =: ↵n(x, g) is Lipschitz
continuous with Lipschitz constant  Ln(� 1) in the following sense:

|↵n(x, g)� ↵n(x̌, ǧ)|  Ln{|x� x̌|+ (E[(g(⌘1)� ǧ(⌘1))
2])1/2},

8x, x̌ 2 [0, 1]d, 8g, ǧ 2 G.(13)

Here bn and Ln are allowed to diverge as n ! 1.
(C4) log bn = O(log n) and logLn = O(log n) as n ! 1.

For many commonly used basis functions such as Fourier series, splines
and CDV wavelet bases, bn = O(

p
Kn) as n ! 1; see, for example, [31] and

[46]. The Lipschitz condition (13) is satisfied if infx2[0,1]d | 
Kn(x)| � c2 > 0,

| Kn(x) �  Kn(x̌)|  L1n|x � x̌|, and kA1n(g) � A1n(ǧ)kop _ kA2n(g) �
A2n(ǧ)kop  L2n(E[(g(⌘1) � ǧ(⌘1))

2])1/2, where c2 > 0 is a fixed constant
and L1n, L2n are sequences of constants possibly divergent as n ! 1 (kAkop
denotes the operator norm of a matrix A). Then (13) is satisfied with Ln =
O(L1n _ L2n). Assumption (C4) states mild growth restrictions on Kn and
Ln and is usually satisfied.

Proposition 3.3 (Gaussian approximation to suprema of series empirical
processes). Suppose that assumptions (C1)-(C4) are satisfied. Moreover,
suppose either (i) G is bounded (i.e., kGk1 < 1), or (ii) E[Gq(⌘1)] < 1
for some q � 4 and supx2[0,1]d E[G

4(⌘1) | X1 = x] < 1. Then for every
n � 1, there is a tight Gaussian random variable Bn in `1(I ⇥ G) with

mean zero and covariance function (12), and there exists a sequence fWn of

random variables such that fWn
d
= sup(x,g)2I⇥G Bn(x, g) and as n ! 1,

|Wn �fWn|

=

(
OP{n

�1/6b
1/3
n log n+ n�1/4b

1/2
n log5/4 n+ n�1/2bn log

3/2 n}, (i),

OP{n
�1/6b

1/3
n log n+ n�1/4b

1/2
n log5/4 n+ n�1/2+1/qbn log

3/2 n}, (ii).

Remark 3.4 (Discussion and comparisons with other approximations).
Proposition 3.3 is a new result, and its principal attractive feature is the
weak requirement on the number of series functions Kn (recall that, for
example, for Fourier series, splines, and CDV wavelet bases, we have bn =
O(

p
Kn)). Another approach to deduce a result similar to Proposition 3.3

is to apply Yurinskii’s coupling (see Theorem 4.2 ahead) to random vectors
g(⌘i) 

Kn(Xi), which, however, requires a rather stringent restriction on Kn,

namely K5
n/n ! 0, for ensuring |Wn � fWn|

P! 0 even in the simplest case
where E = R and g(⌘) = ⌘. See, for example, [14], Theorem 7. Moreover, the
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use of Rio’s [51] Theorem 1.1 here is not effective since the total variation
bound is large or difficult to control well in this example, which results in
restrictive conditions on Kn (also Rio’s [51] Theorem 1.1 does not cover case
(ii) where G may not be bounded). ⌅

Remark 3.5 (Converting coupling to convergence in Kolmogorov dis-
tance). As before, we can convert the results in Proposition 3.3 into con-
vergence of the Kolmogorov distance between the distributions of Wn and
its Gaussian analogue fWn. Suppose that bn = O(

p
Kn). By Dudley’s in-

equality for Gaussian processes [58, Corollary 2.2.8], it is not difficult to

deduce that E[fWn] = O(
p
log n) under the assumptions of Proposition 3.3.

Hence if moreover there exists a constant � > 0 (independent of n) such
that Var(Sn(x, g)) � �2 for all (x, g) 2 I ⇥ G, by Lemma 2.4, we have

|Wn �fWn| = oP(log
�1/2 n) ) sup

t2R
|P(Wn  t)� P(fWn  t)| = o(1).

Note that |Wn � fWn| = oP(log
�1/2 n) if Kn(log n)

c/n ! 0 in case (i) and
if Kn(log n)

c/n1�2/q ! 0 in case (ii), where c > 0 is some constant. These
requirements on Kn are mild, in view of the fact that at least Kn/n ! 0 is
needed for consistency (in the L2-norm) of the series estimator [see 32]. ⌅

Remark 3.6 (Constructing under-smoothed uniform confidence bands).
Results in Proposition 3.3 can be used for constructing one- and two-sided
uniform confidence bands for various nonparametric functions, such as den-
sity, conditional mean, and conditional quantile, estimated via series meth-
ods following the same arguments as those described in Remark 3.3 above.
⌅

4. A coupling inequality for maxima of sums of random vectors.

The main ingredient in the proof of Theorem 2.1 is a new coupling inequality
for maxima of sums of random vectors, which is stated below.

Theorem 4.1 (A coupling inequality for maxima of sums of random vec-
tors). Let X1, . . . , Xn be independent random vectors in R

p with mean zero
and finite absolute third moments, that is, E[Xij ] = 0 and E[|Xij |

3] < 1 for
all 1  i  n and 1  j  p. Consider the statistic Z = max1jp

Pn
i=1Xij.

Let Y1, . . . , Yn be independent random vectors in R
p with Yi ⇠ N(0,E[XiX

T
i ]),

1  i  n. Then for every � > 0 and � > 1/�, there exists a random variable

eZ d
= max1jp

Pn
i=1 Yij such that

P(|Z � eZ| > 2��1 log p+ 3�)  "+ C���1{B1 + �(B2 +B3)}

1� "
,
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where " = "β,δ is given by

(14) " =
p
e�α(1 + ↵) < 1, ↵ = �2�2 � 1 > 0,

and

B1 = E

"
max

1j,kp
|

nX

i=1

(XijXik � E[XijXik])|

#
,

B2 = E

"
max
1jp

nX

i=1

|Xij |
3

#
,

B3 =
nX

i=1

E


max
1jp

|Xij |
3 · 1

✓
max
1jp

|Xij | > ��1/2

◆�
.

A different, though related, Gaussian approximation inequality was ob-
tained in Theorem 2.1 of [11] with different techniques. We have chosen
to present a new theorem here because 1) it is based on the Stein’s ex-
changeable pairs technique, which is well understood in the literature, and
our theorem might be helpful for deriving further results in the future; 2)
applying Theorem 2.1 of [11] here would require solving a complicated op-
timization problem to find the best bound for the coupling problem; and 3)
our new theorem does not require truncating normal random vectors, allow-
ing us to avoid an additional layer of complication in the final application
to empirical processes.

The following corollary is useful for many applications. Recall n � 3.

Corollary 4.1 (An applied coupling inequality for maxima of sums of
random vectors). Consider the same setup as in Theorem 4.1. Then for

every � > 0, there exists a random variable eZ d
= max1jp

Pn
i=1 Yij such

that

(15) P(|Z� eZ| > 16�) . ��2{B1+�
�1(B2+B4) log(p_n)} log(p_n)+

log n

n
,

where B1 and B2 are as in Theorem 4.1, and

B4 =
nX

i=1

E


max
1jp

|Xij |
3 · 1

✓
max
1jp

|Xij | > �/ log(p _ n)

◆�
.

Proof of Corollary 4.1. In Theorem 4.1, take � = 2��1 log(p _ n).
Then ↵ = �2�2 � 1 = 4 log2(p _ n)� 1 � 2 log(p _ n) (recall n � 3 > e), so
that "  2 log(p _ n)/(p _ n)  2n�1 log n. This completes the proof. ⌅
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Theorem 4.1 is a coupling inequality similar in nature to Yurinskii’s [60]
coupling for sums of random vectors (as opposed to the maxima of such
vectors as in the current theorem). Before proving Theorem 4.1, let us first
recall Yurinskii’s coupling inequality.

Theorem 4.2 (Yurinskii’s coupling for sums of random vectors; [60]; see
also [38]). Consider the same setup as in Theorem 4.1. Let Sn =

Pn
i=1Xi.

Then for every � > 0, there exists a random vector Tn
d
=
Pn

i=1 Yi such that

P(|Sn � Tn| > 3�) . B0

✓
1 +

| log(1/B0)|

p

◆
,

where B0 = p��3
Pn

i=1 E[|Xi|
3].

For the proof, see [49], Section 10.4. Because of the general fact that
max1jn |xj |  |x| for x 2 R

p, one has

| max
1jp

(Sn)j � max
1jn

(Tn)j |  max
1jp

|(Sn � Tn)j |  |Sn � Tn|.

Hence if we take eZ = max1jp(Tn)j ,

(16) P(|Z � eZ| > 3�) . B0

✓
1 +

| log(1/B0)|

p

◆
.

Unfortunately, when p is large, the right side needs not be small. This is
because B0 is proportional to

Pn
i=1 E[|Xi|

3] and this quantity may be larger
than what we want.

To better understand the difference between (15) and (16), consider the
situation where p is indexed by n and p = pn ! 1 as n ! 1. More-
over, consider the simple case where Xij = xij/

p
n and |xij |  b (xij are

random; b is a fixed constant). Then B1 = O(n�1/2 log1/2 pn), B2 + B4 =
O(n�1/2). The former estimate is deduced from the fact that, using the
symmetrization and the maximal inequality for Rademacher averages con-
ditional on X1, . . . , Xn [use 58, Lemmas 2.2.2 and 2.2.7], one has B1 .p

log(1 + p)E[max1jp(
Pn

i=1X
4
ij)

1/2]. On the other hand, pn
Pn

i=1 |Xi|
3 =

O(n�1/2p
5/2
n ). Therefore, to make |Z � eZ|

P! 0, the former (15) allows pn to
be of an exponential order (pn can be as large as log pn = o(n1/4); hence,
for example, pn can be of order en

α
for 0 < ↵ < 1/4), while the latter (16)

restricts pn to be pn = o(n1/5). Note that, under the exponential moment
condition, instead of Yurinskii’s coupling, we can use Zaitsev’s coupling in-
equality [61, Theorem 1.1] but it still requires pn = o(n1/5) to deduce that

|Z � eZ|
P! 0 (although by using Zaitsev’s coupling, we indeed have an ex-

ponential type inequality for |Z � eZ|).
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Remark 4.1 (Connection to Theorem 2.1). The importance of Theorem
4.1 in the context of the proof of Theorem 2.1 is described as follows. In the
proof of Theorem 2.1, we make a finite approximation of F by a minimal
"kFkP,2-net of (F , eP ) and apply Theorem 4.1 to the “discretized” empirical
process; hence in this application, p = N(F , eP , "kFkP,2). The fact that The-
orem 4.1 allows for “large” p means that a “finer” discretization is possible,
and as a result, the bound in Theorem 2.1 depends on the covering number
N(F , eP , "kFkP,2) only through its logarithm: logN(F , eP , "kFkP,2). ⌅

We will use a version of Strassen’s theorem to prove Theorem 4.1. We
state it for the reader’s convenience. The proof of this result can be found
in the Supplemental Material [13].

Lemma 4.1 (An implication of Strassen’s theorem). Let µ and ⌫ be Borel
probability measures on R, and let V be a random variable defined on a
probability space (Ω,A,P) with distribution µ. Suppose that the probability
space (Ω,A,P) admits a uniform random variable on (0, 1) independent of
V . Let " > 0 and � > 0 be two positive constants. Then there exists a random
variable W , defined on (Ω,A,P), with distribution ⌫ such that P(|V �W | >
�)  " if and only if µ(A)  ⌫(Aδ) + " for every Borel subset A of R.

Proof of Theorem 4.1. For the notational convenience, write eβ =
��1 log p. Construct Y1, . . . , Yn independent of X1, . . . , Xn. By Lemma 4.1,
the conclusion follows if we can prove that for every Borel subset A of R,

P(Z 2 A)  P( eZ⇤ 2 A2eβ+3δ) +
"+ C���1{B1 + �(B2 +B3)}

1� "
,

where eZ⇤ := max1jp
Pn

i=1 Yij . Let Sn =
Pn

i=1Xi and Tn =
Pn

i=1 Yi. Fix
any Borel subset A of R. We divide the proof into several steps.

Step 1: We approximate the non-smooth map x 7! 1A(max1jp xj) by a
smooth function. The first step is to approximate the map x 7! max1jp xj
by a smooth function. Consider the function Fβ : Rp ! R defined by Fβ(x) =
��1 log(

Pp
j=1 e

βxj ), which gives a smooth approximation of max1jp xj .
Indeed, an elementary calculation gives the following inequality: for every
x = (x1, . . . , xp)

T 2 R
p,

(17) max
1jp

xj  Fβ(x)  max
1jp

xj + ��1 log p.

See [6]. Hence we have

P(Z 2 A)  P(Fβ(Sn) 2 Aeβ ) = E[1Aeβ (Fβ(Sn))].
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Step 2: The next step is to approximate the indicator function t 7! 1A(t)
by a smooth function. This step is rather standard.

Lemma 4.2. Let � > 0 and � > 1/�. For every Borel subset A of R,
there exists a smooth function g : R ! R such that kg0k1  ��1, kg00k1 
C���1, kg000k1  C�2��1, and

(1� ")1A(t)  g(t)  "+ (1� ")1A3δ(t), 8t 2 R,

where " = "β,δ is given by (14).

Proof of Lemma 4.2. The proof is due to [49], Lemma 10.18 (p. 248).
Let ⇢(·, ·) denote the Euclidean distance on R. Then consider the function
h(t) = (1� ⇢(t, Aδ)/�)+. Note that h is Lipschitz continuous with Lipschitz
constant  ��1. Construct a smooth approximation of h(t) by

g(t) =
�p
2⇡

Z

R

h(s)e�
1

2
β2(s�t)2ds =

1p
2⇡

Z

R

h(t+ ��1z)e�
1

2
z2dz.

Then the map t 7! g(t) is infinitely differentiable, and

kg0k1  ��1, kg00k1  C���1, kg000k1  C�2��1.

The rest of the proof is the same as [49], Lemma 10.18 and omitted. ⌅

Apply Lemma 4.2 to A = Aeβ to construct a suitable function g. Then

E[1Aeβ (Fβ(Sn))]  (1� ")�1
E[g � Fβ(Sn)].

Step 3: The next step uses Stein’s method to compare E[g � Fβ(Sn)]
and E[g � Fβ(Tn)]. The following argument is inspired by [7], Theorem 7.
We first make some complimentary computations. Here for a smooth func-
tion f : Rp ! R, we use the notation @jf(x) = @f(x)/@xj , @j@kf(x) =
@2f(x)/@xj@xk, and so on.

Lemma 4.3. Let � > 0. For every g 2 C3(R),

pX

j,k=1

|@j@k(g � Fβ)(x)|  kg00k1 + 2kg0k1�,(18)

pX

j,k,l=1

|@j@k@l(g � Fβ)(x)|  kg000k1 + 6kg00k1� + 6kg0k1�2.(19)
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Moreover, let Ujkl(x) := sup{|@j@k@l(g �Fβ)(x+ y)| : y 2 R
p, |yj |  ��1, 1 

8j  p}. Then

(20)

pX

j,k,l=1

Ujkl(x)  C(kg000k1 + kg00k1� + kg0k1�2).

Proof of Lemma 4.3. Let �jk = 1(j = k). A direct calculation gives

@jFβ(x) = ⇡j(z), @j@kFβ(x) = �wjk(x), @j@k@lFβ(x) = �2qjkl(x),

where

⇡j(x) = eβxj/
Pp

k=1e
βxk , wjk(x) = (⇡j�jk � ⇡j⇡k)(x),

qjkl(x) = (⇡j�jl�jk � ⇡j⇡l�jk � ⇡j⇡k(�jl + �kl) + 2⇡j⇡k⇡l)(x).

By these expressions, we have

⇡j(x) � 0,

pX

j=1

⇡j(x) = 1,

pX

j,k=1

|wjk(x)|  2,

pX

j,k,l=1

|qjkl(x)|  6.

Inequalities (18) and (19) follow from these relations and the following com-
putation.

@j(g � Fβ)(x) = (g0 � Fβ)(x)⇡j(x),

@j@k(g � Fβ)(x) = (g00 � Fβ)(x)⇡j(x)⇡k(x) + (g0 � Fβ)(x)�wjk(x),

@j@k@l(g � Fβ)(x) = (g000 � Fβ)(x)⇡j(x)⇡k(x)⇡l(x)

+ (g00 � Fβ)(x)�(wjk(x)⇡l(x) + wjl(x)⇡k(x) + wkl(x)⇡j(x))

+ (g0 � Fβ)(x)�
2qjkl(x).

For the last inequality (20), it is standard to see that whenever |yj | 
��1, 1  8j  p, we have ⇡j(x + y)  e2⇡j(x), from which the desired
inequality follows. ⌅

For i = 1, . . . , n, let X 0
i be an independent copy of Xi. Let I be a uniform

random variable on {1, . . . , n} independent of all the other variables. Define

S0
n = Sn �XI +X 0

I .

For � 2 R
p,

E[e
p
�1λTS

0

n ] =
1

n

nX

i=1

E[e
p
�1λT (Sn�Xi)]E[e

p
�1λTX0

i ]

=
1

n

nX

i=1

Y

j 6=i

E[e
p
�1λTXj ]E[e

p
�1λTXi ] =

nY

i=1

E[e
p
�1λTXi ] = E[e

p
�1λTSn ].
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Hence S0
n

d
= Sn. Also with Xn

1 = {X1, . . . , Xn},

(21) E[S0
n � Sn | Xn

1 ] = E[X 0
I �XI | Xn

1 ] = �n�1Sn,

and

E[(S0
n � Sn)(S

0
n � Sn)

T | Xn
1 ] = E[(X 0

I �XI)(X
0
I �XI)

T | Xn
1 ]

=
1

n

nX

i=1

E[(X 0
i �Xi)(X

0
i �Xi)

T | Xn
1 ] =

1

n

nX

i=1

(E[XiX
T
i ] +XiX

T
i )

=
2

n

nX

i=1

E[XiX
T
i ] +

1

n

nX

i=1

(XiX
T
i � E[XiX

T
i ])

=
2

n

nX

i=1

E[XiX
T
i ] + n�1V,(22)

where V is the p ⇥ p matrix defined by V = (Vjk)1j,kp =
Pn

i=1(XiX
T
i �

E[XiX
T
i ]).

For the notational convenience, write f = g � Fβ . Consider

h(x) =

Z 1

0

1

2t
E[f(

p
tx+

p
1� tTn)� f(Tn)]dt.

Then Lemma 1 of [44] implies

pX

j=1

xj@jh(x)�
pX

j,k=1

nX

i=1

E[XijXik]@j@kh(x) = f(x)� E[f(Tn)],

and especially

E[f(Sn)]� E[f(Tn)] = E

2
4

pX

j=1

nX

i=1

Xij@jh(Sn)

3
5

� E

2
4

pX

j,k=1

nX

i=1

E[XijXik]@j@kh(Sn)

3
5 .(23)

Denote by rh(x) and Hessh(x) the gradient vector and the Hessian ma-
trix of h(x), respectively. Let

R = h(S0
n)� h(Sn)� (S0

n � Sn)
Trh(Sn)

� 2�1(S0
n � Sn)

T (Hessh(Sn))(S
0
n � Sn).
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Then one has

0 = nE[h(S0
n)� h(Sn)] (as S0

n
d
= Sn)

= nE[(S0
n � Sn)

Trh(Sn) + 2�1(S0
n � Sn)

T (Hessh(Sn))(S
0
n � Sn) +R]

= nE
h
E[(S0

n � Sn)
T | Xn

1 ]rh(Sn)

+ 2�1Tr
⇣
(Hessh(Sn))E[(S

0
n � Sn)(S

0
n � Sn)

T | Xn
1 ]
⌘
+R

i

= E

2
4�

pX

j=1

nX

i=1

Xij@jh(Sn) +

pX

j,k=1

nX

i=1

E[XijXik]@j@kh(Sn)

3
5

+ E

2
41

2

pX

j,k=1

Vjk@j@kh(Sn) + nR

3
5 (by (21) and (22))

= �E[f(Sn)] + E[f(Tn)] + E

2
41

2

pX

j,k=1

Vjk@j@kh(Sn) + nR

3
5 , (by (23))

that is,

E[f(Sn)]� E[f(Tn)] = E

2
41

2

pX

j,k=1

Vjk@j@kh(Sn) + nR

3
5 .

Using Lemma 4.3, one has

|

pX

j,k=1

Vjk@j@kh(Sn)|  max
1j,kp

|Vjk|

pX

j,k=1

|@j@kh(Sn)|  C���1 max
1j,kp

|Vjk|,

and with ∆i := (∆i1, . . . ,∆ip)
T := X 0

i �Xi,

|E[nR]| =

������
E

2
41

2

nX

i=1

pX

j,k,l=1

∆ij∆ik∆il(1� ✓)2@j@k@lh(Sn + ✓∆i)

3
5
������

(✓ ⇠ U(0, 1) independent of all the other variables)

 1

2
E

2
4

nX

i=1

pX

j,k,l=1

|∆ij∆ik∆il| · |@j@k@lh(Sn + ✓∆i)|

3
5 .(24)

Let �i = 1(max1jp |∆ij |  ��1) and �c
i := 1� �i. Then

(24) =
1

2
E

"
nX

i=1

�i⇤
#
+

1

2
E

"
nX

i=1

�c
i⇤
#
=:

1

2
[(A) + (B)] .
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Observe that

(A)  E

2
4

pX

j,k,l=1

max
1in

(�i · |@j@k@lh(Sn + ✓∆i)|)⇥ max
1j,k,lp

nX

i=1

|∆ij∆ik∆il|

3
5

 C�2��1
E

"
max

1j,k,lp

nX

i=1

|∆ij∆ik∆il|

#
(by (20))

 C�2��1
E

"
max
1jp

nX

i=1

|∆ij |
3

#
 C�2��1

E

"
max
1jp

nX

i=1

|Xij |
3

#
= C�2��1B2,

and

(B)  C�2��1
nX

i=1

E


�c
i max
1jp

|∆ij |
3

�
(by (19))

 C�2��1
nX

i=1

E


�c
i max
1jp

|Xij |
3

�
. (by symmetry)

As �c
i  1(max1jp |Xij | > ��1/2) + 1(max1jp |X

0
ij | > ��1/2), we have

E


�c
i max
1jp

|Xij |
3

�
 E


max
1jp

|Xij |
3 · 1

✓
max
1jp

|Xij | > ��1/2

◆�

+ E


max
1jp

|Xij |
3

�
· P

✓
max
1jp

|Xij | > ��1/2

◆
.(25)

We here recall Chebyshev’s association inequalities stated in the following
lemma. For a proof, see, for example, Theorem 2.14 in [3].

Lemma 4.4 (Chebyshev’s association inequalities). Let ' and  be func-
tions defined on an interval I in R, and let ⇠ be a random variable such that
P(⇠ 2 I) = 1. Suppose that E[|'(⇠)|] < 1,E[| (⇠)|] < 1 and E[|'(⇠) (⇠)|] <
1. Then Cov('(⇠), (⇠)) � 0 if ' and  are monotone in the same direc-
tion, and Cov('(⇠), (⇠))  0 if ' and  are monotone in the opposite
direction.

Since the maps t 7! t3 and t 7! 1(t > ��1/2) are non-decreasing on [0,1),
the second term on the right side of (25) is not larger than the first term.
Hence

(B)  C�2��1
nX

i=1

E


max
1jp

|Xij |
3 · 1

✓
max
1jp

|Xij | > ��1/2

◆�
= C�2��1B3.
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Therefore, we conclude that

|E[f(Sn)]� E[f(Tn)]|  C���1{B1 + �(B2 +B3)}.

Step 4: Combining Steps 1-3, one has

P(Z 2 A)  (1� ")�1
E[g � Fβ(Tn)] +

C���1{B1 + �(B2 +B3)}

1� "

 P(Fβ(Tn) 2 Aeβ+3δ) +
"+ C���1{B1 + �(B2 +B3)}

1� "

(by construction of g)

 P( eZ⇤ 2 A2eβ+3δ) +
"+ C���1{B1 + �(B2 +B3)}

1� "
. (by (17))

This completes the proof. ⌅

5. Inequalities for empirical processes. In this section, we shall
present some inequalities for empirical processes that will be used in the
proofs of Theorem 2.1 and Lemma 2.2. These inequalities are of interest
in their own rights. Consider the same setup as in Section 2, that is, let
X1, . . . , Xn be i.i.d. random variables taking values in a measurable space
(S,S) with common distribution P . Let F be a pointwise measurable class
of functions S ! R, to which a measurable envelope F is attached. In this
section, however, we do not assume that F is P -centered. Consider the em-
pirical process Gnf = n�1/2

Pn
i=1(f(Xi)� Pf). Let �2 > 0 be any positive

constant such that supf2F Pf2  �2  kFk2P,2. Let M = max1in F (Xi).

Theorem 5.1 (A useful deviation inequality for suprema of empirical
processes). Suppose that F 2 Lq(P ) for some q � 2. Then for every t � 1,
with probability > 1� t�q/2,

kGnkF  (1 + ↵)E[kGnkF ] +K(q)
h
(� + n�1/2kMkq)

p
t

+ ↵�1n�1/2kMk2t
i
, 8↵ > 0,

where K(q) > 0 is a constant depending only on q.

Proof of Theorem 5.1. The theorem essentially follows from [4], The-
orem 12, which states that

k(kGnkF � E[kGnkF ])+kq .
p
q(Σ+ �) + qn�1/2(kMkq + �),
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where Σ2 = E[kn�1
Pn

i=1(f(Xi)�Pf)2kF ]. By Lemma 7 of the same paper,

Σ
2  �2 + 64n�1/2kMk2E[kGnkF ] + 32n�1kMk22.

Hence, using the simple inequality 2
p
ab  �a+ ��1b, 8� > 0, one has

k(kGnkF � E[kGnkF ])+kq .
p
q�E[kGnkF ] +

p
q(1 + ��1)n�1/2kMk2

+
p
q� + qn�1/2(kMkq + �).

Therefore, by Markov’s inequality, for every t � 1, with probability > 1�t�q,

kGnkF  E[kGnkF ] + (kGnkF � E[kGnkF ])+
 (1 + C

p
q�t)E[kGnkF ] + C

p
q(1 + ��1)n�1/2kMk2t

+ C
p
q�t+ Cqn�1/2(kMkq + �)t, 8� > 0.

The final conclusion follows from taking � = C�1q�1/2t�1↵. ⌅

The proof of Lemma 2.2 relies on the following moment inequality for
suprema of empirical processes, which is an extension of [59], Theorem 2.1,
to possibly unbounded classes of functions (Theorem 3.1 of [59] derives a
moment inequality applicable to the case where the envelope F has q > 4
moments, but the form of the inequality in Theorem 5.2 is more convenient
in our applications; note that Theorem 5.2 only requires F 2 L2(P ), as
opposed to F 2 Lq(P ) with q > 4 in Theorem 3.1 of [59], and Theorem 5.2
is not covered by [59]). Recall the uniform entropy integral J(�,F , F ).

Theorem 5.2 (A useful maximal inequality). Suppose that F 2 L2(P ).
Let � = �/kFkP,2. Then

E[kGnkF ] . J(�,F , F )kFkP,2 +
kMk2J2(�,F , F )

�2
p
n

.

In the Supplemental Material [13], we give a full proof of Theorem 5.2
for the sake of completeness, although the proof is essentially similar to the
proof of Theorem 2.1 in [59].

The bound in Theorem 5.2 will be explicit as soon as a suitable bound
on the covering number is available. For example, the following corollary is
an extension of [25], Proposition 2.1. For its proof, see Appendix A.5.
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Corollary 5.1 (Maximal inequality specialized to VC type classes).
Consider the same setup as in Theorem 5.2. Suppose that there exist con-
stants A � e and v � 1 such that supQN(F , eQ, "kFkQ,2)  (A/")v, 0 <
8"  1. Then

E[kGnkF ] .
s

v�2 log

✓
AkFkP,2

�

◆
+

vkMk2p
n

log

✓
AkFkP,2

�

◆
.

6. Proof of Theorem 2.1. We make use of Lemma 4.1 to prove the
theorem. Construct a tight Gaussian random variable GP in `1(F) given in
assumption (A3), independent of X1, . . . , Xn. We note that one can extend
GP to the linear hull of F in such a way that GP has linear sample paths [see
19, Theorem 3.1.1]. Let {f1, . . . , fN} be a minimal "kFkP,2-net of (F , eP )
with N = N(F , eP , "kFkP,2). Then for every f 2 F , there exists a function
fj , 1  j  N such that eP (f, fj) < "kFkP,2. Recall Fε = {f � g : f, g 2
F , eP (f, g) < "kFkP,2} and define

Zε = max
1jN

Gnfj , eZ⇤ = sup
f2F

GP f, eZ⇤ε = max
1jN

GP fj .

Observe that |Z � Zε|  kGnkFε and | eZ⇤ε � eZ⇤|  kGP kFε .
We shall apply Corollary 4.1 to Zε. Recall that log(N _n) = Hn("). Then

for every Borel subset A of R and � > 0,

P(Zε 2 A)�P( eZ⇤ε 2 A16δ) . ��2{B1+�
�1(B2+B4)Hn(")}Hn(")+n�1 log n,

where

B1 = n�1
E

"
max

1j,kN
|

nX

i=1

(fj(Xi)fk(Xi)� P (fjfk))|

#
,

B2 = n�3/2
E

"
max

1jN

nX

i=1

|fj(Xi)|
3

#
,

B4 = n�1/2
E


max

1jN
|fj(X1)|

3 · 1

✓
max

1jN
|fj(X1)| > �

p
nHn(")

�1

◆�
.

Clearly B1  n�1/2
E[kGnkF·F ], B2  n�1/23, and B4  n�1/2P [F 31(F >

�
p
nHn(")

�1)]. Hence choosing � > 0 in such a way that

C��2n�1/2
E[kGnkF·F ]Hn(") 

�

4
, C��3n�1/23H2

n(") 
�

4
,

that is,

� � Cmax
n
��1/2n�1/4(E[kGnkF·F ])

1/2H1/2
n ("), ��1/3n�1/6H2/3

n (")
o
,
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we have

P(Zε 2 A)  P( eZ⇤ε 2 A16δ)+
�

2
+
�

4
�3P [F 31(F > �

p
nHn(")

�1)]+
C log n

n
.

Note that � � c��1/3n�1/6H
2/3
n ("), so that

P [F 31(F > �
p
nHn(")

�1)]  P [F 31(F/ > c��1/3n1/3Hn(")
�1/3)].

Hence

P(Zε 2 A)  P( eZ⇤ε 2 A16δ) +
�

2

+
�

4
P [(F/)31(F/ > c��1/3n1/3Hn(")

�1/3)] +
C log n

n

=: P( eZ⇤ε 2 A16δ) +
�

2
+ error.(26)

By Theorem 5.1, with probability > 1� �/4,

(27) kGnkFε  K(q)
�
�n(") + ("kFkP,2 + n�1/2kMkq)��1/q

+ n�1/2kMk2��2/q
 
=: a,

where K(q) is a constant that depends only on q. Moreover, by the Borell-
Sudakov-Tsirel’son inequality [58, Proposition A.1], with probability > 1�
�/4, we have

(28) kGP kFε  �n(") + "kFkP,2
p

2 log(4/�) =: b.

Therefore, for every Borel subset A of R,

P(Z 2 A)  P(Zε 2 Aa) +
�

4
(by (27))

 P( eZ⇤ε 2 Aa+16δ) +
3

4
� + error (by (26))

 P( eZ⇤ 2 Aa+b+16δ) + � + error. (by (28))

The conclusion follows from Lemma 4.1. ⌅
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APPENDIX A: ADDITIONAL PROOFS

A.1. Proof of Lemma 2.1. We first note that by approximation [see
13, Problem 2.5.1], assumption (A4) implies that

Z

1

0

q

logN(F , eP , εkFkP,2)dε < 1.

Let GP be a centered Gaussian process indexed by F with covariance func-
tion E[GP (f)GP (g)] = P (fg). Recall that F is P -centered, and by Example
1.3.10 in [13], F is P -pre-Gaussian if and only if (F , eP ) is totally bounded
and GP has a version that has sample paths almost surely uniformly eP -
continuous. Dudley’s criterion for sample continuity of Gaussian processes
states that when

(1)

Z

∞

0

p

logN(F , eP , ε)dε < 1,

there exists a version of GP that has sample paths uniformly eP -continuous
[13, p.100-101] (note that (1) implies that N(F , eP , ε) is finite for every
ε > 0, that is, F is totally bounded for eP ). The lemma readily follows from
these observations. ⌅

A.2. Proofs of Lemmas 2.3 and 2.4.

Proof of Lemma 2.3. The proof of Lemma 2.3 depends on the follow-
ing lemma on anti-concentration of suprema of Gaussian processes.

∗First arXiv version: December 31, 2012. Revised: August 24, 2016. V. Chernozhukov
and D. Chetverikov are supported by a National Science Foundation grant. K. Kato is
supported by the Grant-in-Aid for Young Scientists (B) (25780152), the Japan Society for
the Promotion of Science.
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Lemma A.1 (An anti-concentration inequality). Let (S,S, P ) be a prob-

ability space, and let F ⊂ L2(P ) be a P -pre-Gaussian class of functions.

Denote by GP a tight Gaussian random variable in `∞(F) with mean zero

and covariance function E[GP (f)GP (g)] = CovP (f, g) for all f, g ∈ F where

CovP (·, ·) denotes the covariance under P . Suppose that there exist constants

�, �̄ > 0 such that �2 ≤ VarP (f) ≤ �̄2 for all f ∈ F . Then for every ✏ > 0,

sup
x∈R

P

(�����supf∈F

GP f − x

����� ≤ ✏

)
≤ Cσ✏

(
E

"
sup
f∈F

GP f

#
+
p

1 ∨ log(�/✏)

)
,

where Cσ is a constant depending only on � and �̄.

Proof of Lemma A.1. The proof of this lemma is the same as that of
Theorem 2.1 in [4] with the exception that we now apply Theorem 3, part
(ii) instead of Theorem 3, part (i) from [3]. ⌅

Going back to the proof of Lemma 2.3, for every t ∈ R, we have

P(Z ≤ t) = P({Z ≤ t} ∩ {|Z − eZ| ≤ r1}) + P({Z ≤ t} ∩ {|Z − eZ| > r1})

≤ P( eZ ≤ t+ r1) + r2

≤ P( eZ ≤ t) + Cσr1{E[ eZ] +
p
1 ∨ log(�/r1)}+ r2,

where we have used Lemma A.1 to deduce the last inequality. A similar
argument leads to the reverse inequality. This completes the proof. ⌅

Proof of Lemma 2.4. Take �n → ∞ sufficiently slowly such that �nrn(1∨
E[ eZn]) = o(1). Then since P(|Zn − eZn| > �nrn) = o(1), by Lemma 2.3, we
have

sup
t∈R

|P(Zn ≤ t)− P( eZn ≤ t)| = O{rn(E[ eZn] + | log(�nrn)|)}+ o(1) = o(1).

This completes the proof. ⌅

A.3. Proof of Lemma 4.1. The “only if” part is trivial, and hence we
prove the “if” part. By Strassen’s theorem [see 12, Section 10.3], there are
random variables V ∗ and W ∗ with distributions µ and ⌫ such that P(|V ∗ −

W ∗| > �) ≤ ". V ∗ may be different from V . Let F (w | v) be a regular
conditional distribution function of W ∗ given V ∗ = v. Denote by F−1(⌧ | v)
the quantile function of F (w | v), that is, F−1(⌧ | v) = inf{w : F (w |
v) ≥ ⌧}. Generate a uniform random variable U on (0, 1) independent of
V and take W (!) = F−1(U(!) | V (!)). Then it is routine to verify that

(V,W )
d
= (V ∗,W ∗). ⌅
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A.4. Proof of Theorem 5.2. We first prove the following technical
lemma.

Lemma A.2. Write J(δ) for J(δ,F , F ) and suppose that J(1) is finite
(and hence J(δ) is finite for all δ). Then (i) the map δ 7! J(δ) is concave;
(ii) J(cδ)  cJ(δ), 8c � 1; (iii) the map δ 7! J(δ)/δ is non-increasing; (iv)
the map [0,1)⇥ (0,1) 3 (x, y) 7! J(

p

x/y)
p
y is concave.

Proof. Let λ(ε) = supQ
p

1 + logN(F , eQ, εkFkQ,2). Part (i) follows
from the fact that the map ε 7! λ(ε) is non-increasing. Part (ii) follows from
the inequality

Z cδ

0

λ(ε)dε = c

Z

δ

0

λ(cε)dε  c

Z

δ

0

λ(ε)dε.

Part (iii) follows from the identity

J(δ)

δ
=

Z

1

0

λ(δε)dε.

The proof of part (iv) uses some facts in convex analysis. Proofs of the
following lemmas can be found in, for example, [2], Section 3.2.

Lemma A.3. Let D be a convex subset of Rn, and let f : D ! R be a
concave function. Then the perspective (x, t) 7! tf(x/t), {(x, t) 2 R

n+1 :
x/t 2 D, t > 0} ! R, is also concave.

Lemma A.4. Let D1 be a convex subset of R
n, and let gi : D1 !

R, 1  i  k be concave functions. Let D2 denote the convex hull of the
set {(g1(x), . . . , gk(x)) : x 2 D1}. Let h : D2 ! R be concave and nonde-
creasing in each coordinate. Then f(x) = h(g1(x), . . . , gk(x)), D1 ! R, is
concave.

Let h(s, t) = J(s/t)t, g1(x, y) =
p
x and g2(x, y) =

p
y. Then h is concave

and nondecreasing in each coordinate, and gi, i = 1, 2 are concave. Hence
J(

p

x/y)
p
y = h(g1(x, y), g(x, y)) is concave. ⌅

We will use a version of the contraction principle for Rademacher averages.
Recall that a Rademacher random variable is a random variables taking ±1
with equal probability.
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Lemma A.5 (A contraction principle, [9]). Let ε1, . . . , εn be i.i.d. Rademacher

random variables independent of X1, . . . , Xn. Then

E

"�

�

�

�

�

n
X

i=1

εif
2(Xi)

�

�

�

�

�

F

#

 4E

"

M

�

�

�

�

�

n
X

i=1

εif(Xi)

�

�

�

�

�

F

#

.

Proof. See [9], Theorem 4.12, and the discussion following the theorem.
⌅

We will also use the following form of the Hoffmann-Jørgensen inequality.

Theorem A.1 (A Hoffmann-Jørgensen-type inequality, [9]). Let ε1, . . . , εn
be i.i.d. Rademacher random variables independent of X1, . . . , Xn. Then for

every 1 < q < 1,

 

E

"�

�

�

�

�

n
X

i=1

εif(Xi)

�

�

�

�

�

q

F

#!1/q

 K(q)

"

E

"�

�

�

�

�

n
X

i=1

εif(Xi)

�

�

�

�

�

F

#

+ kMkq
#

,

where K(q) is a constant depending only on q.

Proof. See, for example, [9], Theorem 6.20. ⌅

We are now in position to prove Theorem 5.2.

Proof of Theorem 5.2. We may assume that J(1) is finite since oth-
erwise J(δ) is infinite and there is nothing to prove. Moreover, without
loss of generality, we may assume that F is everywhere positive. Let Pn

denote the empirical distribution that assigns probability n�1 to each Xi.
Let σ2

n = supf2F n�1
Pn

i=1
f2(Xi). For i.i.d. Rademacher random variables

ε1, . . . , εn independent of X1, . . . , Xn, the symmetrization inequality gives

E[kGnkF ]  2E

"�

�

�

�

�

1p
n

n
X

i=1

εif(Xi)

�

�

�

�

�

F

#

.

Here the standard entropy integral inequality gives

E

"�

�

�

�

�

1p
n

n
X

i=1

εif(Xi)

�

�

�

�

�

F

| X1, . . . , Xn

#

 C

Z

σn

0

p

1 + logN(F , ePn
, ε)dε

 CkFkPn,2

Z

σn/kFkPn,2

0

q

1 + logN(F , ePn
, εkFkPn,2)dε

 CkFkPn,2J(σn/kFkPn,2).
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Hence by Lemma A.2 (iv) and Jensen’s inequality,

Z := E

"�

�

�

�

�

1p
n

n
X

i=1

εif(Xi)

�

�

�

�

�

F

#

 CkFkP,2J(
p

E[σ2
n]/kFkP,2).

By the symmetrization inequality, the contraction principle (Lemma A.5)
and the Cauchy-Schwarz inequality,

E[σ2

n]  σ
2 + E

⇥
�

�En[(f
2(Xi)� Pf2)]

�

�

F

⇤

 σ
2 + 2E

⇥
�

�En[εif
2(Xi)]

�

�

F

⇤

 σ
2 + 8E [M kEn[εif(Xi)]kF ]  σ

2 + 8kMk2
⇣

E

h

kEn[εif(Xi)]k2F
i⌘

1/2
.

Here by the Hoffmann-Jørgensen inequality (Theorem A.1),

⇣

E

h

kEn[εif(Xi)]k2F
i⌘

1/2
. E [kEn[εif(Xi)]kF ] + n−1kMk2,

so that,
p

E[σ2
n]  CkFkP,2(∆ _

p
DZ),

where∆2 := max{σ2, n−1kMk2
2
}/kFk2P,2 � δ2 andD := kMk2/(

p
nkFk2P,2).

Therefore, using Lemma A.2 (ii), we have

Z  CkFkP,2J(∆ _
p
DZ)

We consider the following two cases:
(i)

p
DZ  ∆. In this case, J(∆_

p
DZ)  J(∆), so that Z  CkFkP,2J(∆).

Since the map δ 7! J(δ)/δ is non-increasing (Lemma A.2 (iii)),

J(∆) = ∆
J(∆)

∆
 ∆

J(δ)

δ
= max

⇢

J(δ),
kMk2J(δ)p
nδkFkP,2

�

.

Since J(δ)/δ � J(1) � 1, the last expression is bounded by

max

⇢

J(δ),
kMk2J2(δ)p
nδ2kFkP,2

�

.

(ii)
p
DZ � ∆. In this case, J(∆_

p
DZ)  J(

p
DZ), and since the map

δ 7! J(δ)/δ is non-increasing (Lemma A.2 (iii)),

J(
p
DZ) =

p
DZ

J(
p
DZ)p
DZ


p
DZ

J(∆)

∆


p
DZ

J(δ)

δ
.

Therefore,

Z  CkFkP,2
p
DZ

J(δ)

δ
,
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that is

Z  CkFk2P,2D
J2(δ)

δ2
=

CkMk2J2(δ)p
nδ2

.

This completes the proof. ⌅

A.5. Proof of Corollary 5.1. Observe that

J(δ) 
Z

δ

0

p

1 + v log(A/ε)dε  A
p
v

Z

∞

A/δ

p
1 + log ε

ε2
dε.

An integration by parts gives

Z

∞

c

p
1 + log ε

ε2
dε =



�
p
1 + log ε

ε

�

∞

c

+
1

2

Z

∞

c

1

ε2
p
1 + log ε

dε


p
1 + log c

c
+

1

2

Z

∞

c

p
1 + log ε

ε2
dε, if c � e.

by which we have

Z

∞

c

p
1 + log ε

ε2
dε  2

p
1 + log c

c
 2

p
2
p
log c

c
, if c � e,

Since A/δ � A � e, we have

J(δ)  2
p
2vδ

p

log(A/δ).

Applying Theorem 5.2, we obtain the desired conclusion. ⌅

A.6. Proof of Lemma 2.2. Before proving Lemma 2.2, we shall recall
the following lemma on uniform entropy numbers.

Lemma A.6. Let F1, . . . ,Fk be classes of measurable functions S ! R

to which measurable envelopes F1, . . . , Fk are attached, respectively, and let

φ : Rk ! R be a map that is Lipschitz in the sense that

|φ � f(x)� φ � g(x)|2 
k

X

j=1

L2

j (x)|fj(x)� gj(x)|
2,

for every f = (f1, . . . , fk), g = (g1, . . . , gk) 2 F1⇥· · ·⇥Fk =: F and every x 2
S, where L1, . . . , Lk are non-negative measurable functions on S. Consider
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the class of functions φ(F) := {φ � f : f 2 F}. Denote (
Pk

j=1
L2

jF
2

j )
1/2 by

L · F . Then we have

sup
Q

N(φ(F), eQ, εkL · FkQ,2) 
kY

j=1

sup
Rj

N(Fj , eRj
, εkFjkRj ,2),

for every 0 < ε  1, where the suprema are taken over all finitely discrete
probability measures on (S,S).

Proof of Lemma A.6. The proof is implicit in [13], p.199, and hence
omitted. ⌅

We will use the following corollary to the above lemma.

Corollary A.1. (i) Let F and G be classes of measurable functions
S ! R, to which measurable envelopes F and G are attached, respectively.
Denote by F · G the pointwise product of F and G. Then

sup
Q

N(F · G, eQ,
p
2εkFGkQ,2)

 sup
Q

N(F , eQ, εkFkQ,2) sup
Q

N(G, eQ, εkGkQ,2),

for every 0 < ε  1, where the suprema are taken over all finitely discrete
probability measures Q on (S,S).

(ii) Let F be a class of measurable functions S ! R, to which a measurable
envelope F is attached. For every q � 1, let F(q) = {|f |q : f 2 F}. Then

sup
Q

N(F(q), eQ, qεkF qkQ,2)  sup
Q

N(F , eQ, εkFkQ,2),

for every 0 < ε  1, where the suprema are taken over all finitely discrete
probability measures Q on (S,S).

Proof of Corollary A.1. (i) Take k = 2,F1 = F , F1 = F,F2 =
G, F2 = G, and φ : R2 ! R as φ(s, t) = st. Then we can take L1 = F,L2 = G,
and the desired conclusion directly follows from Lemma A.6.

(ii) This follows from application of Lemma A.6 with k = 1 and φ(s) =
|s|q. ⌅

Proof of Lemma 2.2. For the first inequality, noting that J(δ,Fε, 2F ) .
J(δ,F , F ) = J(δ), by Theorem 5.2, we have

E[kGnkFε
] . J(ε)kFkP,2 + n−1/2ε−2J2(ε)kMk2.
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Moreover, by Dudley’s inequality [13, Corollary 2.2.8], E[kGP kFε
] . J(ε)kFkP,2.

Note that by approximation [see 13, Problem 2.5.1], we have

Z

δ

0

q

1 + logN(F , eP , τkFkP,2)dτ . J(δ).

Hence the first inequality is proved.
The third inequality is deduced from Theorem 5.2 together with the cov-

ering number estimate,

sup
Q

N(F · F , eQ,
p
2εkF 2kQ,2)  sup

Q
N2(F , eQ, εkFkQ,2),

which follows from Corollary A.1 (i). Hence we shall prove the second in-
equality. We first observe that

En[|f(Xi)|
3] = P |f |3 + n−1/2

Gn(|f |
3),

by which we have

E
⇥

kEn[|f(Xi)|
3]kF

⇤

 sup
f∈F

P |f |3 + n−1/2
E[kGn(|f |

3)kF ].

Let ε1, . . . , εn be i.i.d. Rademacher random variables independent ofX1, . . . , Xn.
By the symmetrization inequality,

E[kGn(|f |
3)kF ]  2E

"�

�

�

�

�

1p
n

n
X

i=1

εi|f(Xi)|
3

�

�

�

�

�

F

#

.

By the contraction principle together with the Cauchy-Schwarz inequality,

E

"�

�

�

�

�

n
X

i=1

εi|f(Xi)|
3

�

�

�

�

�

F

#

. E

"

M3/2

�

�

�

�

�

n
X

i=1

εi|f(Xi)|
3/2

�

�

�

�

�

F

#

 kMk3/2
3

0

@E

2

4

�

�

�

�

�

n
X

i=1

εi|f(Xi)|
3/2

�

�

�

�

�

2

F

3

5

1

A

1/2

.

Moreover, by the Hoffmann-Jørgensen inequality,

0

@E

2

4

�

�

�

�

�

n
X

i=1

εi|f(Xi)|
3/2

�

�

�

�

�

2

F

3

5

1

A

1/2

. E

"�

�

�

�

�

n
X

i=1

εi|f(Xi)|
3/2

�

�

�

�

�

F

#

+ kMk3/2
3

.
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By Theorem 5.2 together with Corollary A.1 (ii), we have

E

"�

�

�

�

�

1p
n

n
X

i=1

εi|f(Xi)|
3/2

�

�

�

�

�

F

#

. J(δ
3/2
3 ,F , F )kF 3/2kP,2

+
kM3/2k2J2(δ

3/2
3 ,F , F )p

nδ33
,

by which we have

E
⇥

kEn[|f(Xi)|
3]kF

⇤

� sup
f∈F

P |f |3 . n−1kMk33

+ n−1/2kMk3/23

"

J(δ
3/2
3 ,F , F )kFk3/2P,3 +

kMk3/23 J2(δ
3/2
3 ,F , F )p

nδ33

#

.

A further simplification is possible. By Lemma A.2 (iii), the map δ 7!
J(δ,F , F )/δ is non-increasing, so that J2(δ

3/2
3 ,F , F )/δ33 � J2(1,F , F ) � 1.

Hence the first term on the right side is not larger than

kMk33J2(δ
3/2
3 ,F , F )/(nδ33).

This completes the proof. ⌅

A.7. Proof of Corollary 2.2. The proof consists of applying Theorem
2.1. Standard calculations show that for any δ 2 (0, 1),

J(δ) :=

Z

δ

0
sup
Q

q

1 + logN(F , L2(Q), εkFkQ,2)dε . δ
p

v log(A/δ).

Further, for some sufficiently large C, let κn := C(bσ2 + b3Knn
−1+3/q)1/3.

Also note that for k = 2, 3, 4, kMkk  kMkq  n1/qb. Therefore, Lemma 2.2
implies

E
⇥

kEn[|f(Xi)|
3]kF

⇤

� sup
f∈F

P |f |3

. n−1/2+3/(2q)b3/2

 

b3/2J(δ
3/2
3 ) +

b3/2J2(δ
3/2
3 )

n1/2−3/(2q)δ33

!

,

for any δ3 � supf∈F kfkP,3/kFkP,3. Setting δ3 = b1/3σ2/3/b = (σ/b)2/3 gives

E
⇥

kEn[|f(Xi)|
3]kF

⇤

� bσ2

. n−1/2+3/(2q)b3/2
⇣

b3/2−1
σK1/2

n + b3/2Knn
−1/2+3/(2q)

⌘

,
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so that using the elementary inequality 2xy  x2 + y2, we obtain

E
⇥
kEn[|f(Xi)|

3]kF
⇤
 C(bσ2 + b3Knn

−1+3/q)  κ3n.

Further, let εn = σ/(bn1/2). Then

Hn(εn) = log(N(F , eP , εnkFkP,2) _ n) . Kn

and J(εn)  CσK
1/2
n /(bn1/2).

Also, for q 2 [4,1), we have by the Markov inequality that

δn(εn, γ) =
1

4
P{(F/κn)

31(F/κn > cγ−1/3n1/3Hn(εn)
−1/3)}

. (b/κn)
q(γ1/3Hn(εn)

1/3n−1/3)q−3

. (K−1/3
n n−1/q+1/3)q(γ1/3Hn(εn)

1/3n−1/3)q−3

 γq/3−1/Kn  1

for any γ 2 (0, 1). For q = 1, note that since C in the definition of κn
is sufficiently large, b/κn < n1/3Hn(εn)

−1/3, and so δn(εn, γ) = 0 for any
γ 2 (0, 1).

Now, Theorem 2.1 combined with Lemma 2.2 shows that for any γ 2 (0, 1)
and δ4 � supf∈F kfkP,4/kFkP,4, one can construct a random variable eZ such

that eZ d
= supf∈F GP f and

P

⇣
|Z � eZ| > K(q)∆n(εn, γ)

⌘
 γ(1 + δ(εn, γ)) + C(log n)/n(2)

. γ + (log n)/n,

where K(q) is a constant that depends only on q, and

∆n(εn, γ) := φn(εn) + γ−1/qεnb+ γ−1/qbn−1/2+1/q + γ−2/qbn−1/2+1/q

+ γ−1/2E1/2
n H1/2

n (εn)n
−1/4 + γ−1/3κnH

2/3
n (εn)n

−1/6,

φn(εn) . bJ(εn) + ε−2
n bJ2(εn)n

−1/2+1/q,

En := E[kGnkF·F ] . b2J(δ24) + δ−4
4

b2J2(δ24)n
−1/2+2/q.

Using the bound derived above, we have

φn(εn) . σK1/2
n n−1/2 + bKnn

−1/2+1/q . bKnn
−1/2+1/q,

and setting δ4 = (b2σ2)1/4/b = (σ/b)1/2,

En . bσK1/2
n + b2Knn

−1/2+2/q.
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Also, setting c � 1 in the definition of Kn, so that Kn = cv(log n _
log(Ab/�)) � 1, and using � < 1 gives

�−1/q"nb+ �−1/qbn−1/2+1/q + �−2/qbn−1/2+1/q . �−1/2bKnn
−1/2+1/q,

�−1/2E1/2
n H1/2

n ("n)n
−1/4 . �−1/2(b�)1/2K3/4

n n−1/4 + �−1/2bKnn
−1/2+1/q,

�−1/3nH
2/3
n ("n)n

−1/6 . �−1/3b1/3�2/3K2/3
n n−1/6 + �−1/3bKnn

−1/2+1/q.

Substituting these bounds into (2) and using the definition of ∆n("n, �n),
we obtain the asserted claim. ⌅

A.8. Proofs of Propositions 3.1-3.3.

Proof of Proposition 3.1. For given x 2 I, g 2 G and h > 0, define

fx,g,h(y, t) = cn(x, g)g(y)k(h
−1(t� x)), (y, t) 2 Y ⇥ R

d.

Consider the class of functions Fn = {fx,g,hn
� E[fx,g,hn

(Y1, X1)] : (x, g) 2
I⇥G}. We shall apply Corollary 2.2 to Fn. Let Zn = supf∈Fn

Gnf . We first
note that |fx,g,h(y, t)|  CI×Gbkkk∞ so that |fx,g,h(y, t)�E[fx,g,h(Y1, X1)]| 
2CI×Gbkkk∞ ⌘ F . It is not difficult to see that Fn is pointwise measurable.
Using Corollary A.1 (i), we can prove that there are constants A, v > 0 such
that

(3) sup
Q

N(Fn, eQ, 2"CI×Gbkkk∞)  (A/")v, 0 < 8"  1, 8n � 1.

Hence for every n � 1, Fn is pre-Gaussian and there exists a tight Gaussian
random variable Gn in `∞(Fn) with mean zero and covariance function

E[Gn(f)Gn(f̌)] = Cov(f(Y1, X1), f̌(Y1, X1)), f, f̌ 2 Fn.

To apply Corollary 2.2, note that

E[|fx,g,hn
(Y1, X1)� E[fx,g,hn

(Y1, X1)]|
3] . E[|fx,g,hn

(Y1, X1)|
3]

= |cn(x, g)|
3

Z
Rd

E[|g(Y1)|
3 | X1 = t]|k(h−1

n (t� x))|3p(t)dt

= |cn(x, g)|
3hdn

Z
Rd

E[|g(Y1)|
3 | X1 = x+ hnt]|k(t)|

3p(x+ hnt)dt

 C3
I×Gb

3kpk∞hdn

Z
Rd

|k(t)|3dt,
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and

E[|fx,g,hn
(Y1, X1)� E[fx,g,hn

(Y1, X1)]|
4] . E[|fx,g,hn

(Y1, X1)|
4]

= |cn(x, g)|
4hdn

Z

Rd

E[|g(Y1)|
4 | X1 = x+ hnt]|k(t)|

4p(x+ hnt)dt

 C4
I×Gb

4kpk∞hdn

Z

Rd

|k(t)|4dt.

Thus, applying Corollary 2.2 with parameters γ, b,σ in the corollary satis-

fying γ = γn = (log n)−1, b = O(1) and σ = σn = h
d/2
n shows that there

exists a sequence eZn of random variables such that eZn
d
= supf∈Fn

Gnf and
as n ! 1,

|Zn � eZn| = OP(n
−1/6hd/3n log n+ n−1/4hd/4n log5/4 n+ n−1/2 log3/2 n).

This implies the conclusion of the theorem. In fact, let

Bn(x, g) = h−d/2
n Gn(fx,g,hn

), (x, g) 2 I ⇥ G,

and fWn = h
−d/2
n

eZn. Then Bn is the desired Gaussian process, and as Wn =

h
−d/2
n Zn, we have fWn

d
= sup(x,g)∈I×G Bn(x, g) and

|Wn � fWn| = h−d/2
n |Zn � eZn|

= OP{(nh
d
n)

−1/6 log n+ (nhdn)
−1/4 log5/4 n+ n−1/2h−d/2

n log3/2 n}.

This completes the proof. ⌅

Proof of Proposition 3.2. We shall follow the notation used in the
proof of Proposition 3.1. Take F (y, x) = CI×Gkkk∞(G(y) +E[G(Y1)]) as an
envelope of Fn. A version of inequality (3) continues to hold with 2CI×Gbkkk∞
replaced by kFkQ,2. Let D = supx∈Rd E[G4(Y1) | X1 = x]. Then we have

E[|fx,g,hn
(Y1, X1)� E[fx,g,hn

(Y1, X1)]|
3] . E[|fx,g,hn

(Y1, X1)|
3]

 (1 +D)C3
I×Gkpk∞hdn

Z

Rd

|k(t)|3dt,

and

E[|fx,g,hn
(Y1, X1)� E[fx,g,hn

(Y1, X1)]|
4] . E[|fx,g,hn

(Y1, X1)|
4]

 DC4
I×Gkpk∞hdn

Z

Rd

|k(t)|4dt.
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Thus, applying Corollary 2.2 with parameters �, b,� in the corollary satis-

fying � = �n = (log n)�1, b = O(1), and � = �n = h
d/2
n shows that there

exists a sequence eZn of random variables such that eZn
d
= supf2Fn

Gnf and
as n ! 1,

|Zn � eZn| = OP(n
�1/6hd/3n log n+ n�1/4hd/4n log5/4 n+ n�1/2+1/q log3/2 n).

The rest of the proof is the same as in the previous one. ⌅

Proof of Proposition 3.3. We only deal with case (ii). The proof for
case (i) is similar. Observe first that by condition (C2),

|↵n(x, g)| 
C1| 

Kn(x)|

c1| Kn(x)|
 C3,

where C3 = C1/c1. For given n � 1, x 2 I and g 2 G, define

fn,x,g(⌘, t) = g(⌘)↵n(x, g)
T Kn(t), (⌘, t) 2 E ⇥ [0, 1]d.

Consider the class of functions Fn = {fn,x,g : (x, g) 2 I ⇥ G}. We shall
apply Corollary 2.2 to Fn. Note that Wn = supf2Fn

Gnf . First, we have
|fn,x,g(⌘, t)|  C3⇠n|G(⌘)| =: Fn(⌘, t). Second, observe that Fn = H1 · H2n,
where H1 = {(⌘, t) 7! g(⌘) : g 2 G} and H2n = {(⌘, t) 7! ↵n(x, g)

T Kn(t) :
(x, g) 2 I ⇥ G}. By condition (C3),

|↵n(x, g)
T Kn(t)�↵n(x̌, ǧ)

T Kn(t)|  Ln⇠n{|x�x̌|+(E[(g(⌘1)�ǧ(⌘1))
2)1/2},

so that, using the fact that G is VC type, we deduce that there are constants
A, v > 0 such that

sup
Q

N(H2n, eQ, "C3⇠n)  (ALn/")
v, 0 < 8"  1, 8n � 1.

Using again the fact that G is VC type and Corollary A.1 (i), we deduce
that there are constants A0, v0 > 0 such that

(4) sup
Q

N(Fn, eQ, "kFnkQ,2)  (A0Ln/")
v0 , 0 < 8"  1, 8n � 1.

Hence for every n � 1, there exists a tight Gaussian random variable Gn in
`1(Fn) with mean zero and covariance function

E[Gn(f)Gn(f̌)] = Cov(f(⌘1, X1), f̌(⌘1, X1)), f, f̌ 2 Fn.
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Let Bn(x, g) = Gn(fn,x,g), (x, g) ∈ I × G. Then Bn is the desired Gaussian
process.

To apply Corollary 2.2, we make some complimentary calculations. Let
D = supx∈[0,1]d E[G

4(η1) | X1 = x]. Then for n ≥ 1,

E[|g(η1)αn(x, g)
TψKn(X1)|

3]

≤ E[E[G3(η1) | X1]|αn(x, g)
TψKn(X1)|

3]

≤ C3(1 +D)ξnE[|αn(x, g)
TψKn(X1)|

2]

= C3(1 +D)ξnαn(x, g)
T
E[ψKn(X1)ψ

Kn(X1)
T ]αn(x, g)

≤ C3
3C2(1 +D)ξn,

and

E[|g(η1)αn(x, g)
TψKn(X1)|

4] ≤ C4
3C2Dξ2n.

Thus, applying Corollary 2.2 with parameters γ, b,σ in the corollary satis-
fying γ = γn = (log n)−1, b = bn = O(ξn), and σ = O(1) shows that there

exists a sequence fWn of random variables such that fWn
d
= supf∈Fn

Gnf =
sup(x,g)∈I×G Bn(x, g) and as n → ∞,

|Wn−
fWn| = OP(n

−1/6ξ1/3n log n+n−1/4ξ1/2n log5/4 n+n−1/2+1/qξn log
3/2 n).

This completes the proof. ⌅
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APPENDIX B: MOTIVATING EXAMPLES FOR SERIES EMPIRICAL
PROCESSES IN SECTION 3.2

Example B.1 (Forms of Sn(x, g) arising in nonparametric mean regres-
sion). Here we explain which forms of Sn(x, g) arise in the nonparametric
series or sieve mean regression. Consider a (generally heteroscedastic) non-
parametric regression model

Yi = m(Xi) + ηi, E[ηi | Xi] = 0, E[η2i | Xi = x] = σ2(x), 1 ≤ i ≤ n,

where Yi is a scalar response variable, Xi is a d-vector of covariates of which
the support = [0, 1]d, and ηi is a scalar unobservable error term. We assume
that the data (Y1, X1), . . . , (Yn, Xn) are i.i.d. The parameter of interest is
the conditional mean function m(x) = E[Y1 | X1 = x].

Consider series estimation of m(x). The idea of series estimation is to
approximate m(x) by

PKn

j=1
θKn,jψKn,j(x) with Kn → ∞ as n → ∞ and to

estimate the vector θKn = (θKn,1, . . . , θKn,Kn
)T by the least squares method:

bθKn = arg min
θKn∈RKn

nX

i=1

�
Yi − ψKn(Xi)

T θKn

�2
.

The resulting estimate of m(x) is given by bm(x) = ψKn(x)T bθKn .
The asymptotic properties of the series estimate have been thoroughly

investigated in the literature. Importantly, under suitable regularity con-
ditions, the rescaled and recentered estimator admits an asymptotic linear
form:

S̃n(x) =

√
n(bm(x)−m(x))

|A2nψKn(x)|
≈

ψKn(x)TA1n

|A2nψKn(x)|

"
1
√
n

nX

i=1

ηiψ
Kn(Xi)

#
=: Sn(x),

where A1n = (E[ψKn(X1)ψ
Kn(X1)

T ])−1 and

A2n = (E[σ2(X1)ψ
Kn(X1)ψ

Kn(X1)
T ])1/2A1n.

See, for example, [11]. Here S̃n(x) ≈ Sn(x) means that S̃n(x) = Sn(x) +
oP(log

−1/2 n) uniformly in x ∈ I (the remainder term could be faster, but
oP(log

−1/2 n) is fast enough to make the remainder term negligible in ap-
proximating (in the Kolmogorov distance) the distribution of supx∈I S̃n(x)
by that of the Gaussian analogue of supx∈I Sn(x) as the expectation of the
latter is typically O(

√
log n); see Remark 2.5 and Lemma A.1). Hence, for

the purpose of making uniform inference on m(x) over a Borel subset I of
[0, 1]d, it is desirable to have a (tractable) distributional approximation of
the quantity Wn = supx∈I Sn(x). ⌅
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Example B.2 (Forms of Sn(x, g) arising in nonparametric quantile regres-
sion). Here we explain which forms of Sn(x, g) arise in the nonparametric
series or sieve quantile regression. Let (Y1, X1), . . . , (Yn, Xn) be i.i.d. random
variables taking values in R×R

d where the support of X1 = [0, 1]d. Suppose
that the parameter of interest is the conditional quantile function:

Q(τ, x) = inf{y : FY |X(y | x) ≥ τ}, x ∈ [0, 1]d, τ ∈ (0, 1),

where FY |X(y | x) = P(Y1 ≤ y | X1 = x) is the conditional distribution
function. Consider series estimation of Q(τ, x). A standard way is to solve
the following minimization problem:

bθKn(τ) = arg min
θKn∈RKn

nX

i=1

ρτ
�
Yi − ψKn(Xi)

T θKn

�
,

where ρτ (y) = {τ − 1(y ≤ 0)}y is called the check function [8], and where
Kn → ∞ as n → ∞. A series estimate of Q(τ, x) is obtained by bQ(τ, x) =
ψKn(x)T bθKn(τ). Let T be an arbitrary closed interval in (0, 1). Suppose that
the conditional distribution function FY |X(y | x) has a Lebesgue density
fY |X(y | x). Then, subject to some regularity conditions, the rescaled and
recentered estimator admits an asymptotically linear form:

S̃n(x, τ) =

√
n( bQ(τ, x)−Q(τ, x))p

τ(1− τ)|A2n(τ)ψKn(x)|

≈
ψKn(x)TA1n(τ)p

τ(1− τ)|A2n(τ)ψKn(x)|

"
1
√
n

nX

i=1

{τ − 1(Yi ≤ Q(τ, Xi))}ψ
Kn(Xi)

#

=: Sn(x, τ),

whereA1n(τ) = Jn(τ)
−1, Jn(τ) = E[fY |X(Q(τ, X1) | X1)ψ

Kn(X1)ψ
Kn(X1)

T ],

A2n(τ) = (E[ψKn(X1)ψ
Kn(X1)

T ])1/2Jn(τ)
−1 (note that τ(1−τ) comes from

the conditional variance of 1(Yi ≤ Q(τ, Xi)) given Xi). Here too S̃n(x, τ) ≈
Sn(x, τ) means that S̃n(x, τ) = Sn(x, τ)+oP(log

−1/2 n) uniformly in (x, τ) ∈
I × T ; see [7] and Belloni et al. [1, Theorem 2]. Note that

Yi ≤ Q(τ, Xi) ⇔ ηi ≤ τ, with ηi = FY |X(Yi | Xi),

and ηi are uniform random variables on (0, 1), independent of X1, . . . , Xn.
So letting gτ (η) = τ − 1(η ≤ τ), we have the expression

Sn(x, τ) =
ψKn(x)TA1n(τ)p

τ(1− τ)|A2n(τ)ψKn(x)|

"
1
√
n

nX

i=1

gτ (ηi)ψ
Kn(Xi)

#
.



GAUSSIAN APPROXIMATION OF SUPREMA 17

For the purpose of making uniform inference on Q(τ, x) over (τ, x) ∈ T ×I, it
is desirable to have a (tractable) distributional approximation of the quantity
Wn = sup(x,τ)∈I×T Sn(x, τ). ⌅
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APPENDIX C: OBTAINING ALMOST SURE BOUNDS FROM
THEOREM 2.1

The purpose of this section is to derive almost sure bounds from The-
orem 2.1. We use the same notation as that in Section 2. Consider an
infinite sequence X1, X2, . . . of i.i.d. random variables taking values in a
measurable space (S,S). Let F be some class of functions defined on S. In
this section, the function class F is independent of n. For each n, denote
Zn = supf∈F Gnf where

Gnf =
1p
n

nX

i=1

(f(Xi)� E[f(Xi)]), f 2 F .

We look for conditions under which there exists a sequence of random vari-
ables eZn such that ���Zn � eZn

��� = Oa.s.(rn)

where rn ! 0 as n ! 1 is a sequence of constants and for each n,

(5) eZn
d
= sup

f∈F
GP f.

To this end, we have the following theorem:

Theorem C.1 (Almost sure bounds). Let α and β be some constants
satisfying α > 1 and β > q/(q � 2). Denote γn = n−1/β(log n)−α. Suppose
that assumptions (A1), (A2) with q � 3, and (A4) of Section 2 are satisfied.
In addition, suppose that κ = κn and ε = εn are chosen so that κ3n �
E[kEn[|f(Xi)|

3]kF ] and δn(εn, γn) = O(1). Then there exists a sequence eZn

of random variables satisfying (5) and

���Zn � eZn

���  Oa.s.

 
∆n(εn, γn) +

(log n)α/q

n1/(2β)−1/(qβ)

!

Remark C.1. One interesting feature of this theorem is that it gives a
dimension-free result, that is, the bound does not explicitly depend on the
dimensionality d when S ⇢ R

d.

Proof. The proof consists of two steps. In the first step, we construct
random variables eZn along the subsequence n = nm = mβ , m � 1 so that
the conclusion of the theorem holds for this subsequence. In the second
step, we show that the conclusion of the theorem holds for all n if we define
eZn = eZnm

for all nm  n < nm+1.
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Step 1: Note that by Lemma 2.1, assumption (A3) is satisfied, and so we
can apply Theorem 2.1 for all n. In particular, we can construct eZn for all
n = nm, m � 1, such that

P

n
|Zn � eZn| > K(q)∆n(εn, γn)

o
 γn {1 + δn(εn, γn)}+

C log n

n

for these n. Further, δn(εn, γn) = O(1), α > 1, and β > q/(q � 2) > 1 imply
that

∞X

m=1


γnm

{1 + δnm
(εnm

, γnm
)}+

C log nm

nm

�
< 1,

so that it follows from the Borel-Cantelli lemma that

(6)
���Znm

� eZnm

���  Oa.s. (∆nm
(εnm

, γnm
)) as m ! 1.

This completes Step 1.
Step 2: Let sm, m � 1, be some sequence of constants to be chosen later.

We will use the Montgomery-Smith maximal inequality [see 10, 5]:

(7) P

⇢
max
1≤k≤n

k
p
kGkkF > 30s

�
 9P

�
k
p
nGnkF > s

 
for all s > 0.

Using (7) and setting ∆nm = nm+1 � nm, we obtain for all m � 1,

P

8
<
: max

nm<n<nm+1

�����

nX

i=nm+1

(f(Xi)� E[f(Xi)])

�����
F

> 30sm

9
=
;

 P

⇢
max

1≤k≤∆nm

k
p
kGkkF > 30sm

�

 9P
n
k(∆nm)1/2G∆nm

kF > sm

o
(8)

Further, setting tm = (m(logm)α)2/q and

sm = (∆nm)1/2
n
(1 + α)E[kG∆nm

kF ] +K(q)
h
(kFkP,2+

(∆nm)−1/2+1/qkFkP,q)
p
tm + α−1(∆nm)−1/2+1/qkFkP,qtm

io

where K(q) is a sufficiently large constant, we obtain from Theorem 5.1

that the probability in (8) is bounded from above by t
−q/2
m . Our choice of

tm ensures that
∞X

m=1

t−q/2
m < 1,
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so that applying the Borel-Cantelli lemma one more time, we obtain

(9) max
nm<n<nm+1

�����

nX

i=nm+1

(f(Xi)� E[f(Xi)])

�����
F

= Oa.s.(sm) as m ! 1.

Note also that ∆nm  βmβ�1, and Theorem 5.2 implies that E[kG∆nm
kF ] =

O(1), so that
sm = O((∆nm)1/2

p
tm)

since β > q/(q � 2), which we assume. Substituting ∆nm and tm gives

(10) sm = O(m(β�1)/2+1/q(logm)α/q) as m ! 1

Combining (6), (9), and (10) together with defining en := enn := nm for all

nm  n < nm+1 and eZn := eZen
d
= supf2F GP f for all nm < n < nm+1, we

have

(11)
���Zn � (en/n)1/2 eZn

���  Oa.s.

 
∆n(εn, γn) +

(log n)α/q

n1/(2β)�1/(qβ)

!
.

It remains to bound |(en/n)1/2 eZn � eZn|. To this end, note that eZn is the
supremum of a zero-mean Gaussian process, whose distribution is indepen-
dent of n. Moreover, eZn is finite almost surely. Therefore, it follows from
Proposition A.2.3 in [13] that there exists a constant K 0 such that

E[exp{K 0( eZn)
2}] = O(1).

Therefore, eZn = Oa.s.(
p
log n). Since (en/n)1/2 � 1 = O(n�1/β), we conclude

that

(12)
���(en/n)1/2 eZn � eZn

��� = Oa.s.

✓p
log n

n1/β

◆
.

Combining (11) and (12) completes the proof. ⌅
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