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Gaussian Arbitrarily Varying Channels 

BRIAN HUGHES, MEMBER, IEEE, AND PRAKASH NARAYAN, MEMBER, IEEE 

Abstract-The arbitrarily varying channel (AVC) can be interpreted as 

a model of a channel jammed by an intelligent and unpredictable adver- 

sary. We investigate the asymptotic reliability of optimal random block 

codes on Gaussian arbitrarily varying channels (GAVC’s). A GAVC is a 

discrete-time memoryless Gaussian channel with input power constraint PT 

and noise power N,, which is further corrupted by an additive “jamming 

signal.” The statistics of this signal are unknown and may be arbitrary, 

except that they are subject to a power constraint PJ. We distinguish 

between two types of power constraints: peak and average. For peak 

constraints on the input power and the jamming power we show that the 

GAVC has a random coding capacity. For the remaining cases in which 

either the transmitter or the jammer or both are subject to average power 

constraints, no capacities exist and only X-capacities are found. The 

asymptotic error probability suffered by optimal random codes in these 

cases is determined. Our results suggest that if the jammer is subject only 

to an average power constraint, reliable communication is impossible at 

any positive code rate. 

I. INTRODUCTION 

C 
ONSIDER the following communications channel 
(cf., Fig. 1) which we call a Gaussian arbitrarily uary- 

ing channel (GAVC). Once each second the transmitter 
chooses for transmission to the receiver an arbitrary real- 
valued random variable, say up at time i, such that the 
sequence {UT } satisfies a power constraint P, (to be 
specified later). In transmission this number is corrupted 
in such a way that it is received as UT + q,*, + si*. The 
elements of the sequence { 7:;) are independent zero-mean 
Gaussian random variables, each having variance N,. The 
transmitter and the receiver have no knowledge of the 
random sequence { si* } other than that it satisfies a certain 
power constraint, say PJ (also to be specified later). The 
sequence { si* } may have arbitrary time-varying possibly 
non-Gaussian statistics. The goal of the transmitter and 
receiver is to construct a coding system to reliably convey 
discrete source data over this channel, knowing only N,, 
P,, and PJ. 

Manuscript received September 17, 1985; revised June 2, 1986. This 
work was supported in part by the Naval Research Laboratory and the 
Office of Naval Research under Grants N00014-83-G-0192 and N00014- 
84-G-0101, the National Science Foundation under Grant ECS-82-0444-9, 
and the Minta Martin Fund for Aerospace Research from the University 
of Maryland. This paper was presented in part at the 19th Annual 
Conference on Information Sciences and Systems, The Johns Hopkins 
University, March 27-29, 1985. 

B. Hughes was with the Electrical Engineering Department of the 
University of Maryland, College Park, MD 20742. He is now with the 
Department of Electrical Engineering and Computer Science of The 
Johns Hopkins University, Baltimore, MD 21218, USA. 

P. Narayan is with the Electrical Engineering Department of the 
University of Maryland, College Park, MD 20742, USA. 

IEEE Log Number 8610798. 

The discrete memoryless arbitrarily varying channel 
(AVC) was introduced in a remarkable paper by Blackwell 
et al. [lo] (see also Wolfowitz [21] and Csiszar and Korner 
[12]). We make no attempt to summarize the substantial 
body of literature on the discrete AVC; for this the reader 
is referred to [12, ch. 61. 

By comparison, GAVC’s have received considerably less 
attention. Blachman [7], [S] has obtained upper and lower 
bounds on the capacity of a GAVC (using the maximum 
probability of error concept) when the sequence {SF } is 
allowed to be chosen with foreknowledge of the trans- 
mitter’s codeword. Ahlswede [l] has determined the capac- 
ity of the GAVC when { si* } consists of independent 
Gaussian random variables where the variance changes 
arbitrarily from one symbol to the next, within some 
positive range of values. Bagar and Wu [4] have investi- 
gated the use of essentially the same channel for a differ- 
ent source transmission problem in which the source is a 
discrete-time memoryless Gaussian source and reliability is 
measured by mean-square distortion. Dobrushin [13] and 
later McEliece and Stark [17] have studied what might be 
called a Gaussian compound channel (cf. [12], [21]) that is 
similar to the GAVC except that { si* } is constrained to be 
a sequence of independent identically distributed (i.i.d.) 
random variables. 

The practical significance of the GAVC is seen as fol- 
lows. One may view the sequence { si* } as selected by an 
intelligent and unpredictable adversary, namely the 
jammer, whose intent is to disrupt the transmission of the 
sequence { u: } as much as possible. The jammer, like the 
transmitter, is subject to the natural constraint of finite 
power but is otherwise free to generate any signal he 
chooses. 

In this paper we study four GAVC’s corresponding to 
two different types of power constraints (peak and aver- 
age) on the transmitted codeword and on the jamming 
sequence. Our main results are coding theorems, one for 
each pair of constraints, characterizing the asymptotic reli- 

ability that can be achieved by optimal random codes on 
these channels. We say asymptotic reliability rather than 
capacity because, as we shall find, these channels generally 
have no capacity per se. 

The remainder of this paper is organized as follows. In 
Section II we introduce the terminology and summarize 
our results. These results are proved in Section III. Finally, 
in Section IV we discuss the implications of our results 
and, in particular, their application to certain jamming 
problems. 
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Fig. 1. Gaussian arbitrarily varying channel. 

II. DEFINITIONS AND RESULTS 

A codeword of length n for the GAVC is a sequence of n 
real numbers selected by the transmitter, say u = 

(up * . * 2 u,,). Similarly, a jamming sequence of length n, 

denoted by s = (si;.., sn) is a sequence of n real num- 
bers selected by the jammer. These sequences may be 
thought of geometrically as points in, n-dimensional 
Euclidean space (R”). With this interpretation the output 
of the GAVC corresponding to the codeword u and the 
jamming sequence s is 

y*=u+q:+s o-1) 

where TJ~ denotes an n-vector of i.i.d. N(0, N,) random 
variables.’ 

An (n, M) block code C,, is a system2 

G = {h, 4); * -7 ($49 44)) (24 

where { I+}:~ are codewords of length n and { Di}El are 
disjoint (Borel) subsets of R” called decoding sets. 

We are interested in the problem of transmitting the 
output of a given information source generating R bits per 
second over the GAVC with minimum error probability 
(to be defined). The goal of the transmitter is to construct 
a block-coding system of length n that suffers an error 
probability no greater than this minimum, regardless of 
the jamming sequence s. The goal of the jammer is to 
inflict the largest possible error probability on any code 
chosen by the transmitter by an appropriate choice of s. 
For the transmitter a strategy to accomplish this goal 
consists of an (n, 2nR) code; a strategy for the jammer is a 
jamming sequence of length n. 

We allow both the transmitter and the jammer the 
additional flexibility of being able to choose their respec- 

‘Throughout this paper, except where otherwise indicated, asterisks are 
used as superscripts to denote random variables, bold lower-case letters 
indicate vectors (or vector-valued mappings) in R”, and N(p, a2) de- 
notes a Gaussian distribution with mean /.t and variance u2. 

2We extend this,definition to nonintegral M as follows: by an (n, M) 
code we mean an (n, M’) code where M’ is the smallest integer greater 
than or equal to M. 

tive strategies randomly. Accordingly, we define an (n, 44) 

random (block) code 

C,* = {(u:, &+%--tb~> D,G)} (2.3) 

to be an (n, M) code-valued random variable which satis- 
fies the obvious measurability requirements. A (random) 

jamming sequence of length n, with the obvious definition, 
will be denoted by s*. 

Clearly, if no further restrictions are imposed on the 
random codes and jamming sequences, the problem has an 
uninteresting solution. The error probability of any fixed 
positive-rate random code can be made arbitrarily close to 
1 - l/M by letting s* be memoryless zero-mean Gauss- 
ian noise of arbitrarily large variance (or power). In prac- 
tice, however, other restrictions will exist that prevent such 
trivial solutions. An interesting and natural restriction to 
investigate is that of placing some kind of power constraint 
on the codewords and the jamming sequences. In this 
paper we consider two types of power constraints: peak 
and average. We say that C,* satisfies a peak input power 
constraint (PI) if each codeword lies on or within an 
n-dimensional sphere (n-sphere) of radius fi almost 
surely (a.s.), i.e., if for each 1 I i 5 h4 the codeword 
U* = (u$; . ., 24:) satisfies I 

i $ z.Qj2 5 P, a.s. (2-4 
J-1 

This code satisfies an average input power constraint (AI) if 
the power averaged over all codewords has an expectation 
of at most P,, i.e., if 

E (2.5) 

where E{ *} denotes mathematical expectation. We also 
define two similar power constraints on the random jam- 
ming sequence s *. We say that s * satisfies a peak jam- 
ming power constraint (PJ) if 

(2.6) 
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and an average jamming power constraint (AJ) if 

I PJ. 

Two input power constraints (PI or AI) and two jam- 
ming power constraints (PJ or AJ) exist, and so a total of 
four possible combinations of transmitter and jammer 
power constraints can be considered. We adopt a simple 
binary nomenclature to describe each case. In the sequel, 
when we speak of the GAVC A]B, we mean the GAVC 
with input power constraint A (= PI or AI), and jamming 
power constraint B (= PJ or AJ). 

We now specify what is meant by the “error probability” 
of the code C,*. Given a code C,,* on the GAVC Al B and 
the jamming sequence s *, we can in principle calculate the 
(maximum) probability of error: 

AK,*, s*) = max Pr {UT + q,* + s* E ?$*} (2.8) 
l<i<M 

where oi* denotes R” - Di*. However, the distribution of 
s * is not known in advance to the transmitter and may 
change from one block to the next in an unpredictable and 
arbitrary way, subject only to the power constraint B. The 
smallest error probability guaranteed to be achievable by 
the code C,,* is the supremum of (2.8) over all s * that 
satisfy power constraint B. Therefore, we define the error 
probability of the code C,* by 

x”(q) = sup X(C,*, s*) 
S* 

(2.9) 

where the supremum is performed over all B-admissi- 
ble s *. 

For a given source rate R and constraint pair AIB, we 
ask what is the smallest error probability XB(C,*) that can 
be achieved by any (n, M) random code C,,* that satisfies 
constraint A and conveys R bits per second when n is 
large? Clearly, this error probability depends on both the 
rate R and the constraints Al B. We say that a pair (R, X) 
where R 2 0 and 0 I X < 1 is achievable for the case AIB 
(achieuable AJB) if for all e > 0 and for all n sufficiently 
large an (n, M) random code C,* exists satisfying con- 
straint A such that 

and 

log, M 2 n(R - 6) (2.10a) 

P(q) I x + cz. (2.10b) 

Let K4,B denote the set of all achievable pairs (R, X) for 
the GAVC AIB. 

Note that if a certain pair (R, X) is achievable AJ B, then 
all pairs (R’, A’) such that R’ I R and X’ 2 X are also 
achievable AIB. Consequently, R,,, must be of the form 

R A,B = {(R, X)10 I R I C,,,(X), 0 I X < I} (2.11) 

where C,,,(A) is a monotone increasing right-continuous 
function of A. Thus to characterize R,,, it suffices to 
determine C,,,(X). 

The function C,,,(X) is called the h-capacity of the 
channel [12], [21]. It can be interpreted as the largest rate 

of transmission that can be achieved by a random code 
that suffers an error probability no greater than A for large 
n. If C,,,(X) is equal to a constant on 0 I h < 1, say CAIB, 
the latter is called the capacity of the channel; otherwise, if 
C,,,(X) is not constant, we say that no capacity exists.3 
Most simple channel models that arise in information 
theory have a capacity. We will show for certain constraint 
pairs AIB that GAVC’s have no capacity; i.e., C,,,(X) is 
not constant. This interesting and somewhat surprising fact 
distinguishes GAVC’s from discrete AVC’s: Blackwell 
et al. [lo] have shown that the latter always possess a 
(random coding) capacity. 

Recall that our objective is to determine the minimum 
error probability suffered by large block-length random 
codes of rate R when used on the GAVC AIB. Define this 
error probability by 

(2.12) 

where the infimum is over all A-admissible (n, M) ran- 
dom codes such that M 2 2 n(R-c). It is easy to show that 
the relationship between XAIB(R) and C,,,(X) is 

A”‘“(R) = min { 0 I X I l]C,,,( X) 2 R or X = l} . 

(2.13) 

Although it clearly provides the same information about 
R A,B as C,,,(A) does, FIB(R) is often easier to interpret. 

We now present four theorems that characterize C,,,(X) 
for each pair of constraints AIB, the proofs of which are 
provided in the next section. We first consider the case in 
which both the transmitter and jammer are constrained in 
peak power: GAVC PIIPJ. This channel actually has a 
capacity that is given by the following familiar formula. 

Theorem I: For the GAVC PI]PJ a (random coding) 
capacity exists and is given by 

for all 0 I X < 1, where 

n 

CPI,PJ - 2 =~log2(1+&-). (2.14) 

Remark: Blachman [8, p. 53, eq. lo] states (without 
proof) a similar result. 

It is interesting to note that C,,,,, is identical to the 
capacity formula of the memoryless Gaussian channel that 
would be formed if the jammer transmitted a sequence of 
i.i.d. N(0, PJ) random variables (cf. Wolfowitz [21, the- 
orem 9.2.11) 4*5 We conclude for the GAVC PI]PJ that an 
intelligent jammer can do no more harm (in the sense of 

3An alternative (e.g., Csiszk and Kiimer [12]) definition of capacity 
(which always exists) is C,,, = lim,, ,,+ 
Wolfowitz [21]. 

C’,,(h). Our definition is that of 

41t is also the formula obtained by Dobrushin [13] for the capacity of 
the Gaussian compound channel. 

‘Note that this Gaussian jamming sequence does not satisfy PJ. It is 
possible, however, to construct a jamming sequence that does satisfy PJ 
and that yields nearly the same capacity (cf. proof of Theorem 2). 
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reducing the achievable region) than Gaussian noise of the 
same power, regardless of how he distributes his power. 

We now change the jamming power constraint from PJ 
to AJ (i.e., GAVC PIfiJ) and ask whether the foregoing 
conclusion is still valid. Since bounds on average power are 
weaker than those on peak power, it is obvious that 

RPI,AJ = RPI,PP However, as the next theorem demon- 
strates, this inclusion is strict. In fact, we find for this and 
all remaining cases in which either the transmitter or the 
jammer or both are subject to average power constraints 
that no capacity exists, i.e., only X-capacities are found. 

Theorem 2: For the GAVC PI]AJ the (random coding) 
X-capacity is 

G,,,,(A) = ~PI,AJ(X) 

for all 0 < A < 1, where 

(2.15) 

Remark: c^,,,(a) is interpreted ,as 0. 
Observe that the expression for C,,,,,(h) is identical to 

that of Cr.r,, except that the jamming power appears 
boosted by a factor that is the reciprocal of the tolerable 
error probability A. Some insight into this formula can be 
gained by stating the result in terms of the error probabil- 
ity suffered by codes of rate R. Theorem 2 states that for 
increasing n, optimal (n, 2nR) random codes satisfying PI 
suffer an error probability that approaches 

/\PWJ( R) = ~WJ( R) 

I (4R - l)P, 

Et P, - (4R - l)N,’ R s ~PI,AJ(l) 

I 1, R ’ ‘PI,AJ(l) 

(2.16) 

against an AJ-constrained jammer. 
The right side of (2.16) is increasing positive whenever R 

is positive and for small R becomes asymptotic to 
2 In 2 RPJ/P,. The region Rp,IAJ is sketched in Fig. 2. It is 
apparent that a PI-admissible random code can achieve 
high reliability (i.e., X*‘(C,*) = 0) only in the limit as R or 
PJ/PT becomes vanishingly small. Evidently, reliable com- 
munication is impossible at any positive source rate. 

We now sketch the basic idea behind (2.16) (or equiv- 
alently, Theorem 2); a detailed proof follows in Section 
III. Let C,,* be any PI-admissible random code of rate R. 
Suppose the jammer transmits only jamming sequences 
that have the following structure. First, a jamming power 
P * is selected where P * is a nonnegative random variable 
that satisfies EP* 2 PJ. Conditioned on the value of P * 
the jamming sequence s * is an i.i.d. N(0, P*) sequence of 
length n. (Clearly, this restriction can only increase the 
achievable region.) It is easily verified that s * satisfies AJ. 
With this restriction the channel “seen” by the transmitter 
during any block transmission is a discrete-time Gaussian 
channel with (unknown) noise power N, + P *. According 

0 
CPrlPJ 

R- 

Fig. 2. Achievable regions for GAVC PI/PJ and PI/AJ. 

to the coding theorem and strong converse for this channel 
(cf. Wolfowitz [21, theorems 9.2.1-2]), if 

R+og, l+ 
( N.:P*) 

and n is large, then X*‘(C,*) = 0 is possible; however, if 

R+og, l+ 
( Ne:P*)’ 

then XAJ( C,* ) = 1 is certain. The jammer must, therefore, 
choose 

to be guaranteed an appreciable error probability, and this 
power is sufficient to yield an error probability near unity. 
Therefore, the best codes have an error probability that 
approximates the probability of this event: 

P* 2 (4RpT 1) - N, 

Finally, the foregoing right-hand exp<ession takes on a 
maximum value which is equal to the AP”*‘(R) when P* 
is chosen in the following way: 

(4RPi 1) 
=1-Pr{P*=O} 

It follows that hAJ(C,*) is not appreciably less than 
iprIAJ( R) for large n. 

Although we have allowed the jammer foreknowledge of 
the statistics of the transmitter’s random code when select- 
ing a jamming sequence (cf. (2.9)), it turns out that this’ 
knowledge is unnecessary. Remarkably, the aforemen- 
tioned jamming sequence does not depend on the detailed 
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structure of the code but only on the blocklength n, the 
source rate R, and the parameters P,, P,, and N,. It is 
also interesting that this jamming sequence is essentially a 
pulsed strategy (i.e., either “off” or “on” with high peak 
power). Memoryless pulsed jamming strategies have been 
shown to maximize the error probability of certain un- 
coded modulation systems such as binary phase-shift key- 
ing (BPSK) (cf. Simon et al. [20]). Theorem 2 shows that 
pulsed jamming sequences with memory play a similar role 
for random block codes on the GAVC. 

We have seen from Theorem 2 that an average-power- 
limited jammer has a tremendous advantage against a 
peak-power-limited transmitter; in fact, reliable communi- 
cation is impossible in this case. It is interesting to ask 
whether the transmitter might similarly gain by varying 
codeword power against a peak-power-limited jammer as 
in the case AIIPJ. The next theorem shows that little 
advantage will be gained. 

Theorem 3: For the GAVC with constraints AI]PJ the 
(random coding) X-capacity is 

cAI,PJ(x) = eAI,PJ(h) 

for all 0 I X < 1, where 

PTA1 - A) 

. N, + PJ 
(2.17) 

The corresponding achievable region is sketched in Fig. 
3. We see that if a high error probability can be tolerated, 
the allowable coding rate is much improved; however, at 
low errar probabilities C,,,,(h) approaches CpIIpJ, and the 
improvements are negligible. As in the other cases, we can 
state the result in terms of error probabilities: optimal 
AI-admissible (n, 2nR) random codes suffer an error prob- 

ability that, for large n, approaches 

A*““(R) 

i 0, R s eAI/PJ(“) 

= l- 

i 

PT 

(4R - l)(N, + P,) ’ 
R > eAI,pJ(0) ’ (2’18) 

Thus the rates at which reliable communication can occur 
are the same as in the case PI]PJ. Clearly, codeword power 
variation offers little improvement to the transmitter. 

We now consider the GAVC AIJAJ. As Theorem 3 
shows, the additional flexibility offered by the power con- 
straint AI is relatively useless against a peak-power-limited 
jammer. We now ask if the transmitter might at least 
reduce the gain of the average-power-limited jammer com- 
pared with the GAVC PIIAJ. The next theorem shows that 
some limited improvement is made. 

Theorem 4: For the GAVC with constraints AI(AJ the 
(random coding) A-capacity is given by 

CAI,AJ(A) = 2AI,AJ(X) 

for all 0 I X < 1, where 

&AI,AJ@) 

(1. 

= 

;1og, 1+ 
i 

(2.19a) 

XC’h<1 
i 

21og, 1 + 
i 

pl- 

i 

^ . . 

N,+ P,/2X ’ 
O~hlh, 

X,r g 

e 

for N, > 0, and 

‘AI,, = 

R- 

Fig. 3. Achievable region for GAVC AI/PJ. 

(2.19b) 

for N, = 0. 

Remark: The function (2.19a) tends continuously to 
(2.19b) as N, + 0. 

The corresponding achievable region is sketched in Fig. 

4, with CpIpJ, C,,,,,(X), and C,,,,(X) included for com- 
parison. Optimal (n, 2nR) random codes satisfying AI must 
then, as n grows large, suffer an error probability that 
approaches A*‘,*‘(R) = AA’,*‘, R) where 

jp*J(~) 

PJ(4R - 1) 

2(PT - (4R - we) ’ 
R 5 2AI,AJ(Xc) 

= I P,(l - 2h,) 
(2.20a) 

’ - (4R - l)N, ’ R ’ eAI/AJ(hc) 
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‘I RAI\AJ 

1’ 1 

0 CPllPJ 

R- 

Fig. 4. Achievable region for GAVC AI/AJ (with all other X-capacities 
included for comparison). 

when N, > 0, and 

P”“(R) 

P,(4R - 1) 

2P, ’ 
= 

l- 
PT 

2(4R - 1) PJ ’ 

when N, = 0. 
For R < CArlA, observe that the error probability is 

half that of GAVC PIlAJ; however, when R > C,,,,,(A,), 
the probability of being correct (= 1 - X”(C,*)) is 
(1 - 2A,)(P, + N,)/N, times that in the AIlPJ case. 
C *rIAJ(h) is, therefore, a compromise between C,,,,,(,A) 
and C,,,,(X). As in the PIlAJ case the error probability 
can be made small only by making R or P,/P, small. 

An intuitive justification for (2.2Oa) follows (a rigorous 
proof is provided in Section III). Suppose as before that 
the jammer transmits only sequences that have the follow- 
ing structure. Conditioned on the value of Pz*, s* is an 
i.i.d. sequence of N(0, P2*) random variables, where P2* is 
a nonnegative random variable that satisfies EP,* I PJ. 
The transmitter constructs a random code-C,* in the 
following way. He first selects a random code C,* of rate R 
whose average power is no greater than unity, i.e., 

E 
i 

and then to form C,*, he multiplies each codeword in Cn* 
by \Ip1*, where PI* is an independent nonnegative random 
variable satisfying EP: I P,. The performance of this 
code against s* is a function of the signal-to-noise power 
ratio P1*/( Pz* + N,). As in the earlier argument following 

Theorem 2, if 

P? 
P$ + N, 

> (4R - l), 

then X (C,* , s *) can be small; however, if 

PP 

P2* + N, 
< (4R - l), 

then it is certainly true that X(C,*, s*) = 
the best choice of c,* we have for large n 

1. Therefore, for 

A(C,*, s*) = Pr { P: < (4R - l)(P,* + N,)}. (2.21) 

The optimum error probability thus depends only on the 
power distribution of the transmitter and jammer. Natu- 
rally, the transmitter wants to minimize (2.21) with an 
appropriate choice of PI*, and the jammer wants to maxi- 
mize it by an effective choice of P2*. Therefore, an optimal 
code suffers the error probability 

A”“( c,* ) 

z max min 
Pi” : EP,* 5 PT Pi* : EP,* 2 PJ 

Pr {P: < (4R - 1)[p;* + N,)}. 

It can be shown (cf. proof of Theorem 4) that the right side 
of this equation is equal to the right side of (2.2Oa). 

Finally, we consider the coding problems that result 
from the imposition of multiple constraints. Suppose our 
code must satisfy some constraint, say A, for some con- 
stant P, and another constraint A’ for some constant 
P& # P,. Denote this joint constraint by AA’. Similarly, 
one may define a double constraint BB’ on jamming 
sequences. It is easily checked that the h-capacities for 
these more complex coding problems can be constructed 
from the X-capacities defined by Theorems l-4 according 
to the following simple rules: 6 

III. PROOFS OF THEOREMS: l-4 

We now present some definitions and results that we use 
in the following proofs. By the standard (n, M) random 
code we mean a random code 

c;* = {(I$, A: ),***,(&A;)} (3.19 

constructed in the following way. 
1) The M random codewords { VT, * . . , v$ } are a collec- 

tion of mutually independent random n-vectors, each of 
which is uniformly distributed on the n-sphere of radius 
Jyf; i.e., the probability that 0: lies within a certain region 
on the surface of this n-sphere is proportional to the 
surface are (or, equivalently, solid angle) of this region. 

61t is unknown whether C,,,,,,,(X) can similarly be decomposed. 
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2) The random decoding sets {A: } fli are defined by a 
strict minimum Euclidean distance rule, viz., 

AT = {y E R”lly - VT/ < Iy - $1, 

for all k # i, 1 I k 4 M} (3.2) 

where ] . ] denotes the usual Euclidean norm on R”. If a tie 
occurs, the receiver draws no conclusion about the trans- 
mitted message (and hence an error occurs). 

We make several observations about the random code 
C,S*. First, the codewords of C,S* are clearly PI-admissible 
for P, = 1; in fact, (2.4) is satisfied with equality (a.s.). 
Second, since all codewords have equal length (or power), 
each decoding set in (3.2) is a “flat-sided” cone with vertex 
at the origin. It follows that the sets {AT },“=, are also 
minimum distance decoding sets for every codeword set 
of the form {@UT;. ., fi~$} where P > 0. Third, 
Shannon [19] has considered the use of this random code 
on the discrete-time additive Gaussian noise channel and 
has obtained the following result: there exist functions, say 
K(R, P) and E(R, P), both positive so long as 

R = ; log, M < ; log, (1 + P), (3.3) 

such that7 

I K(R, P) exp { -nE(R, P)} (3.4) 

holds for all 1 I i I M and n 2 1, where VJ* denotes an 
n-vector of i.i.d. N(O,l) random variables. Furthermore, 
K(R, P) and E(R, P) can be selected so that 

and 

K(., P), -E(., P) areincreasing (3.5a) 

K(R, e), -E(R, .) aredecreasing (3.5b) 

for all R and P satisfying (3.3). 
We also require an Arimoto-style strong converse [3] for 

the discrete-time additive Gaussian noise channel with 
peak input power constraint and the average probability of 
error concept. The proof of the following result is very 
similar to the argument leading to [19, eq. 511 (carried out 
for R > C) and is, therefore, omitted. Let 

be any PI-admissible (n, M) random code with P, = P. 
Functions exist, say K’(R, P) and E’(R, P), which are 
both positive whenever 

R = ; log, M > flog, (I + P) (3 4 

‘We have presented Shannon’s result in a form that is different from 
the original statement in [19] but which is convenient for the proofs of the 
preseni section. Our form can be obtained from Shannon’s “firm” upper 
bound in [19] by making the substitution indicated in the footnote to 
Gallager [14, p. 161 and simplifying the resulting bound. 

such that 

2 1 - K’(R, P)exp { -n~‘(~, P)} (3.7) 

holds for all n 2 1. (Note that any lower bound on the 
average error probability is a fortiori a lower bound on the 
maximum probability of error.) Furthermore, K’(R, P) 
and E’(R, P) can be selected so that 

K’(., P), -E’(., P) areincreasing (3.8a) 

and 

K’(R, s), -E’(R, .) aredecreasing (3.8b) 

for all R and P that satisfy (3.6). 
We now present a lemma that forms the kernel of the 

converses to Theorems 3 and 4. This lemma is of indepen- 
dent interest because it gives a tight lower bound on the 
average error probability of any code when used on a 
Gaussian channel in terms of the code’s power distribu- 
tion. 

Define for any u = (ui; . ., un) E R” the quantity 

(3.9) 

For any random code C,,* let U *(C,,* ) be the random 
variable that is uniformly distributed on the set 

{ u1*,. . .> u$} of codewords of C,*; i.e., let k* be uni- 
formly distributed on the set (1,. . . , M} and independent 
of c,*, and define 

u*(q) = uk**. (3.10) 

Lemma 1: Let C,,* be any (n, M) random code and J * 

be any nonnegative random variable. Then for all 0 < c < 
R = (l/n) log, M the following holds: 

2 Pr{ P(U*(C,*)) < (4R-’ - l)(N, + J*)} 

44 (3.11) 

where 

y,(c) = K’(R - ~/2,4~-‘- 1) 

eexp { -nE’( R - ~/2,4~-’ - l)} + 2-“‘12. (3.12) 

Remarks: Note that we do not assume that C,,* and J * 
are independent. The function y,(e) depends only on n, E, 
and R and is independent of the random code and the 
jamming power. In addition, for all e > 0, y,(e) + 0 ex- 
ponentially. 

Proof of Lemma I: Let 0 < E < R. Suppose first that 

cn* and J* are deterministic, say C * = C,, = 
{(ul, 4); . *, (uA4, D,)} and J* = J. Define he set 

S,(C,, J) = (1 I i I MIP(ui) < (4R-’ - l)(N, + J)}, 

(3.13) 
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and let N,(C,, J) denote its cardinality. It is immediate 
that 

Pr { P(U*(C,)) -c (4R-r - l)(N, + J)} = 
N,(Cw J> 

. M 

(3.14) 

Consider the subcode of C, that consists of those code- 
words and decoding sets with indices in S,( C,,, J). ,The 
average error probability of this subcode when J* = J can 
be bounded below by the following strong converse (cf. 
(3.7)) for the Gaussian channel’ 

1 
C Pr{ui+$+tin*EDi} 

Nc(cny J, iGS,(C,, J) 

2 1 - K’(Rn,4R-c - 1) 

vexp { -nE’(R,,4R-’ - 1)) (3.15) 

provided that 

R, = 
log2 owtf~ JN > R _ ~ 

n 
(3.16) 

Therefore, the following holds for all C,, J, L, and R: 9 

1 
C 

N,(G J) iES,(C”,J) 
Pr{ui+qe* + \lJq* EDi} 

2 (1 - K’(R,,4R-’ - 1) 

. exP { --E’(R,Y4R-’ - 1)})1[R-c,2,+m,(Rn) 

2 (l - yn(d + 2-nc’2)1[R-r,2, +oo)tRn) 

21 [R-c,~,+~(~TI) - %z(‘> + 2-nr’2 (3.17) 

where y,(e) is as defined in (3.12). Step a) is a consequence 
of (3.8a). We now derive a lower bound to the average 
error probability of C, when J* = J: 

1 
2- c 

M iES(C 

Pr{ui+ne*+Oq*EDi} 
?I, 

a) N,(c,: J> 

J) 

. l,~:e,z,+,,(R,) - ?‘n(d + 2-nr’2) ( 

N,wrz9 J> 2 M - 
y,(c) + 2-nr’2 

- N,(cn, J> 1 
M (-oo,R-~,2)(~n) 

N,wn~ J> 2 
M 

- YJ4 

ZPr { P(U*(C,,)) < (4R-r - l)(N, + J)} - y,(c) 

(3.18) 

8We interpret the left-hand expression in (3.15) as zero if N(C,, J) = 0. 

XEA 

x E A-’ 

where a) follows from (3.17) and b) from (3.14). Thus the 
lemma holds for all deterministic C, and J. To prove 
(3.11) for random C: and J*, average (3.18) over the joint 
distribution of C,,* and J*. This completes the proof of 
Lemma 1. 

Proof of Theorem 1; 

a) cPI,PJ(x) 2 cPI,PJ: Let R nonnegative be given 
and set M, = [2”R]. lo Define a sequence of (n, M,,) ran- 
dom codes, say { C,,* }Sp= i, in the following way: 

C,* = {b:, A:),~-~,(~~n,A~n)) (3.19) 

where u: = fi2)i* and {(v:, A:);..,(u&, Aa )} is the 
standard (n, M,) random code defined in (3.1). Ii is easily 
verified that C,,* satisfies PI for each n 2 1. We claim that 
if 

R < CIPI,PJ, (3.20) 

then a positive sequence { y,,}F=i exists such that 

A’“( c,* ) I y, (3.21) 

and y, + 0 as n -+ + cc, thereby proving a). 
To establish this claim, suppose that (3.20) holds. Let o* 

be an independent random variable that is uniformly 
distributed on the unit &sphere and define 

u,(l) = Pr {UT + q,* + Zw* E AT } (3.22) 

for any real number I 2 0. (Clearly, a,( .) does not depend 
on i.) Let s* be any jamming sequence that satisfies PJ. 
The error probability incurred by s* when message i is 
sent can be bounded in the following way: 

Pr {u: + 7): + s* E 3} zEo,(ls*l) 20,(e). 

(3.23) 

The justification of these steps is as follows. To prove a), 
let s be any vector in R”, let w be any unit vector in R”, 
and let T be any orthogonal transformation on R” that 
maps s to IsJw, i.e., 

Ts = Is/o. 

Since minimum distance decoding is used (and distances 
are preserved by T), the following holds: 

Pr{uP+n:+sE@} 

= Pr {TUT + Tq,* + (slo E TX: }. 

The sets {TAT }E i remain minimum distance decoding 
sets for the codewords { Tu~}~~, and the distributions of 
{u,?‘}fl-i and q: are spherically symmetric and so are 
unchanged by T. We conclude that 

Pr{uP+q~+sEA~} =Pr{u:+n~+lsltiEA~} 

for all o in the ensemble of o* from which a) immediately 
follows. To prove b), it suffices to show that a,( .) is, 
increasing, since PI implies Is*] I @ (a.s.). Let I and I 
be nonnegative numbers so that 0 I 1 I 1. Let the random 
variable rnj+ be defined by 

m;E = 1~: + Zo*l, 

“1 x ] denotes the integer n such that x - 1 < n 5 x 
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and let E;;(m) be its distribution function. It is easy to Since u,(Z) is monotonically increasing, it follows that 
verify that, conditioned on the occurrence rnt = m, the 
random variable v,* + Zw* is uniformly distributed on the 
n-sphere of radius m; hence its conditional distribution % 

/-nt~)f(~) dl 

does not depend on 1. Therefore, define the quantity 

y(m) = Pr {UC + VI,* + Zw* E @lrnF = m} (3.24) 

and note that 

Since A: is a set formed by the minimum distance rule, if 
m < &. then 

implies 

and, consequently, y( .) is monotone increasing. If for each 
m, F,(m) is monotone decreasing as a function of I, then 
using integration by parts and the monotonicity of y( .), 
we obtain 

as desired. It, therefore, only remains to show that 

F,(m) I Fi(m). (3.25) 

We have, in fact, a stronger result that implies (3.25): 

Pr {I$! + Zw*12 I m2jw* = co} 

for all w. The latter inequality is an immediate conse- 
quence of the fact that the distribution of 1): decreases 
monotonically and symmetrically with distance from the 
origin. This completes the proof of (3.23). 

Taking the supremum of (3.23) over all 1 I i I A4 and 
s* satisfying PJ, we obtain the bound 

A’“(C,*) 5 un(+q. (3.26) 

It only remains to estimate the right-hand expression in 
(3.26); this is easily done by relating it to the error prob- 
ability for the ordinary Gaussian channel. Let fin* de- 
note a vector of i.i.d. N(0, P’) random variables, and let 
f( .) denote the probability density function of the random 
variable m* = @l~J*l. It is easy to show that 

I 
Pr(u: +q,* + &q* E*) 

Pr{lq*I2 l} ’ 
(3.28) 

We now invoke (3.4) (compare (3.20) to (3.3)) to bound the 
numerator of (3.28) by 

K(R, pl) exp { -nE(R, PA} (3.29) 

where 

for all b > 0. For large n the denominator of (3.28) 
approaches 0.5 by the central limit theorem. Thus a posi- 
tive constant, say cO, exists such that 

Pr { Iv*1 2 l} 2 l/c, > 0 (3.31) 

for all n 2 1. (In fact, c0 = 4 will suffice.) Combining 
(3.26), (3.28), (3.29), and (3.31), we conclude that 

A’“(C,*) I c&(R, P,)exp { -nE(R, Pi)} (3.32) 

for all n 2 1. The right side tends to zero as n + + cc, as 
desired. This completes the proof of the forward part of 
Theorem 1. 

b) C,,,,,(X) 5 c^,,,,,: Suppose that 

R ’ c^PI,PJ. (3.33) 

We claim that a positive sequence { y, }r=i exists such that 

A’“( c,* ) 2 1 - y, (3.34) 

is satisfied for all PI-admissible (n, M) random codes C,*, 
where R = (l/n) log, A4 and y,, + 0 as n + + cc. Clearly, 
b) follows from (3.34). 

To prove the claim, take e > 0 small enough so that 

PT 

Ne + Ml + 4 

-=z R, (3.35) 

and let C,,* = {(UT, DT);..,(u& D$)} be any (n, M) 
random code satisfying PI. If the jamming sequence were 
s * = /p,/(1+q*, then by (3.7) we know that 

max 
1SilM 

Pr ( ui* + q,* + \lp,/(1+()11* E Di* ) 

2 1 - K’(R, P,+,)exp { -nE’(R, PltE)} (3.36) 

where P( .) is as defined in (3.30). Unfortunately, 
d-v* does not satisfy PJ; therefore, we define a 
truncated noise process q,*(c) as follows: 

Iv*1 5 $m-3- 

h*l 2 \inm 
(3.37) 

Pr (u: + v,* + fi,* E @] = i”un(Z)f(Z) dl. (3.27) 
so that q,*(e) is clearly admissible under PJ. We can bound 
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the error incurred by q:(z) below as follows: 

IPr{u~+~:+ql*(e)EDi*} 

+Pr ()7I*] > /m>. (3.38) 

Taking the maximum of (3.38) over all i and substituting 
(3.36), we conclude that 

2 1 - K’(R, P,+,> exp { -nE’(R, P1+,)} 

-Pr(]q*]> {m]. (3.39) 

Using the weak law of large numbers, the right side of 
(3.39) tends to unity as n increases uniformly over all codes 
of rate R, which is the desired result. This completes the 
proof of the strong converse to Theorem 1. 

Proof of Theorem 2; 

4 GIIAJOd 2 CpIIAJ( A ). . We retain the notation and 
results of part a) of the proof of Theorem 1. Let R 
nonnegative be given. Set M, = 12”R j, and let { C,*}F=r 
be the sequence of PI-admissible (n, M,) random codes 
introduced in (3.19). We claim that if 

R < c^PI,dx)~ 
(3.40) 

then a positive sequence { y,}T=i exists such that 

x”“(q) I x + yn (3.41) 

and y,, + 0; this implies a). 
To prove (3.41), let X be such that 0 < X < 1. Suppose 

that (3.40) holds, and let s* be any jamming sequence that 
satisfies AJ. As demonstrated in part a) of the proof of 
Theorem 1 (cf. (3.32)), for each 1 I i I M,, 

where P(a) 
Chebyshev’s 

In i=l I 

I c&(R, P,)exp { -nE(R, PA)} (3.42) 

is defined in (3.30). Since s* satisfies AJ, 
inequality (cf. [6]) yields 

Pr 1i:s:2>PJ/h 
i i 

IA. 
n i=l 

(3.43) 

Using (3.42) and (3.43), we can bound the error probabil- 
ity incurred by any s* satisfying AJ above in the following 

way: 

Pr{u*+q,*+s*EAi*} 

.Pr t,$~~~<P/h 
i I-1 1 

+Pr uj++q:+~*EA;*~ 
i 

n g ST2 ’ PA 
r-l I 

. Pr k ,$ sF2 > P,/A 
i I-1 I 

I X + c,K(R, P,)exp { -nE(R, PA)}. (3.44) 

Taking the supremum over i and AJ-admissible s *, we 
have 

A”(C,*) I A + c,K(R, P,)exp { -nE(R, PA)}. (3.45) 

The right side of (3.45) decreases to X as n tends to 
infinity, thereby proving (3.41) and a). This concludes the 
proof of the forwardApart of Theorem 2. 

b) C,,,,(A) I C,,,,,(X): We now prove that if 

R ’ ~PI,Am~ (3.46) 

then a positive sequence { y, }r=i exists so that y,, -+ 0 as 
n + cc and 

P(c,*) 2 X(1 - y,) (3.47) 

is satisfied for all PI-admissible (n, M) random codes, 
where R = (l/n) log, M, b) follows from (3.47). 

First, let A be such that 0 < X < 1. Suppose that a 
pulsed jamming sequence, say sz, is defined to be 

sx* = \Ip,/xz,*q* (3.48) 

where q* is an n-vector of i.i.d N(O,l) random variables 
and Z,* is a Bernoulli random variable that is independent 
of q* and distributed as follows: 

Pr{Z,*=l} =l-Pr{Z,*=O} =X. (3.49) 

It is easy to verify that s? satisfies AJ for all 0 < A 5 1 
and all n 2 1. 

Since X satisfies (3.46) the error probability of Cn* can 
be bounded below in the following way: 

P(C,*) 2 max Pr{ui* + qe* + sx* E Oi*} 
1lilM 

2 max Pr{u*+q~+s,*EDi*IZX*=l} 
1silM 

. Pr{Z,* = 1) 

b)X(l~~~Pr(uf+g,*+~rl*E~~]) 

?A(1 - K’(R, P,)exp { -nE’(R, PA)}) 

(3.50) 
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where P( .) is defined in (3.30). These steps are justified in 
the following way: a) is an immediate consequence of the 
definition of AA’(.), b) follows from (3.48) and (3.49) and 
c) is a consequence of (3.46) and (3.7). 

If (3.46) holds, then 

K’(R, P,)exp { -nE’(R, PA)} + 0, 

thus completing the proof of the converse to Theorem 2. 

Proof of Theorem $ 
a) C,,,,,(X) 2 C,,,,,(A): Let a nonnegative R be given, 

and set M, = [2”R]. For any 0 I X < 1 define a sequence 
of (n, M,) random codes, say { C,*( X)}$i, in the follow- 
ing way: 

u;(X) = @giqh)Z;C_,tq. (3.52) 

Z,*-, is a Bernoulli random variable independent of VT 
such that 

Pr { Z;C-, = l} = 1 - Pr { ZiY, = 0} = 1 - X, (3.53) 

and C;* = {(UT, A:);..,(& A)*;, )} is the standard 
(n, M,) random code as in (3.1). 1t”is easy to verify that 
C,,*(X) satisfies AI for all 0 I X < 1 and all n. We claim 
that if 

R < ‘Al,PJ@b (3.54) 

then a positive sequence { y,};=i exists such that 

AP”(C,*(X)) s A + y, (3.55) 

and y, + 0; this implies a). 
The proof of this claim is in the same spirit as earlier 

proofs, so we will be brief. Let s * be any PJ-admissible 
jamming signal, and suppose X is such that (3.54) holds. 
We can then bound the error probability above as follows: 

Pr{ui*(X)+q:+s*EAi*} 

= Pr {u:(h) + q: + s* E Ai*IZ,*_, = 0} 

.Pr{Z,*_,=O} 

+ Pr {U:(X) + qle* + s* E Ai*IZ,*_, = l} 

.Pr{Z,*_,=l} 

ZA + c,K(R, P’)exp { -nE(R, w> (3.56) 

for all i and PJ-admissible s *, where 

p” ~ PA1 - A) 

N, + PJ . 
(3.57) 

The justification of these steps is as follows: a) results 
when (3.53) is substituted into the preceding equation, and 
the first conditional probability is bounded above by one; 
b) follows from (3.54), (3.32), and the fact that s * satisfies 
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PJ. Equation (3.56) implies (3.55), thus completing the 
forward part of Theorem 3. 

b) C,,,,(X) s eAI,pr(h): We now prove that a posi- 
tive sequence { y, };=i exists such that yn + 0, and if 

R ’ eAI,PJ(x)> (3.58) 

then 

A’“(C,*) 2 x - yn (3.59) 

is satisfied for all AI-admissible (n, M) random codes, 
where R = (l/n) log, M; this implies b). 

To prove this, let 

C,* = {(I& Di” 1,. . .> bzf, G)} 

be any AI-admissible (n, M) random code. Take E > 0 
small enough so that 

R+og, l+ 
i 

PTA1 - A) 
N, + ?A1 + 4 

+ ’ > ‘AI,PJ@)r 

(3.60) 

and let q:(e) be the PJ-admissible jamming sequence 
introduced in (3.37). As in part b) of the proof of Theorem 
1, it is easy to show that 

APJ( c,* ) 

-Pr(l7I*l> /me)). (3.61) 

We now use Lemma 1 to obtain a lower bound for the 
first expression on the right side of (3.61): 

max Pr(u:+~,*+/~q*EDi) 
l<i<M 

2 i,c Pr(ur+q,*+JPJ/(lft)P*EDi*] 
I-1 

2 Pr { P(U*(C,*)) -c (4R-r - l)(N, + P,/(l + E))} 

-YnG) (3.62) 

where U *( .) is defined by (3.10) and y,(e) is as defined in 
(3.12). If C,,* satisfies AI, we can bound the first summand 
below as follows: 

Pr { P(U*(C,*)) < (4R-’ - I)(N, + Pj/(l + e))} 

5 
” - (4R--r - l)(N, + P,/(l + c)) 

3. (3.63) 

The justification of these steps is as follows: a) follows by 
applying Chebyshev’s inequality using EP( U *(C,* )) 2 P,, 
which is equivalent to AI; b) follows by observing that the 
right side of a) is an increasing function of R and using 
(3.60). Equations (3.61)-(3.63) imply (3.59) thereby com- 
pleting the proof of the converse to Theorem 3. 
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Proof of Theorem 4; 

a) C,,,,,(A) 2 C,,,,,(X): For any nonnegative R set 
M,, = [2”R]. Fix e > 0, and define a sequence of AI- 
admissible (n, M,,) random codes, say 

C,*(E) = ((u~*(c),A:),...,(~~~(E),A~“)) (3.64) 

where 

u;(c) = \/PO*ov;. (3.65) 

PO*(e) is a nonnegative random variable independent of 
{ v1*,- . *> v; } that satisfies EP,,* ( E) I P, and whose distri- 
bution will follow. ei* = {(VT, AT)}2i is the standard 
(n, A4,) random code. It is easy to verify that C,,*(E) 
satisfies AI for all e > 0 and all n. We claim that if 

R 2 &&) - c, (3.66) 

then a positive sequence { y,,}F=i exists such that 

A”J(C,*(E)) I A + y, (3.67) 

and y, -+ 0; this implies a). 
In proving this claim we assume that N, > 0; the proof 

if N, = 0 is similar. We refer the reader to Theorem 5 of 
the Appendix and adopt the notation used there. A conse- 
quence of this theorem (cf. (A.3)) is that if X,, is a 
nonnegative random variable with distribution (A.26b) 
and u0 is as defined in (A.26a), then 

Pr{X,2 Y+c} 2u, (3.68) 

holds for all independent nonnegative random variables Y 
that satisfy EY I b. 

Now make the following substitutions: 

a = t4R+?- 1) b = PJ c=N e, 

and define PO*(c) in (3.65) by 

P,*(c) = (4R+c - 1)x,. 

With these substitutions it is easy to verify that 

u,, = 1 - iA1lAJ( R + c) 

2 1 - j;,,lAJ( ?A,,A, (h)) - 

=1-x (3.69) 

where a) follows from (3.66) and the fact that iAIIAJ(R) is 
strictly increasing. From (3.68) and (3.69) it follows that if 
J * is any nonnegative random variable that satisfies EJ * 
5 P,, then 

Pr { P,*(c) < (4R+c - l)(N, + J*)} I 1 - u0 I A. 

(3.70) 

Let s * be any AJ-admissible jamming sequence, define 
.J* = Is*12/n (so that EJ* I P,), and set $* = s*/fl 
when J * > 0 and s^* = 0 otherwise (so that I$* I s n a.s.). 
In the proof of Theorem 1 (cf. (3.32)) we showed that if 

Is^* I I n a.s. and P and J are positive constants, then 

Pr (/mu* + qe* 

+pS* E *lP,*(r) = P, J* = J) 

I c,K(R, P’)exp { -nE(R, P’)} (3.71) 

for all n 2 1 provided that 

p’= P 
N, + J 

> (4R - 1). 

In particular, if 

P 

N, + J 
2 (4R+E - l), (3.72) 

then using (3.5b) we can further upper-bound the right 
side of (3.71) by 

B,(R,c) = c&(R,~~+’ - 1)exp { -nE(R,4R+’ - l)}. 

(3.73) 

Note that B,,(R, e) + 0 for all E > 0. Now define 

P 2 (qR+’ - l)(N, + J) 

otherwise 
(3.74) 

so that h,(P, J) is an upper bound for the left-hand 
quantity in (3.71) for all P, J, and n. Averaging this 
bound over the distributions of C,*(E) and J *, we find 
that 

= Pr (/moi* + q,* + fl$* E Ai*) 

I Eh,(P&), J*) 

= B,(R,c) + (1 - B,(R,c)) 

.Pr { P,*(z) -c (4R+r - l)(N, + J*)} 

I &(R,r) + h (3.75) 

where the last inequality follows from (3.70). Taking the 
supremum of (3.75) over all i and AJ-admissible s*, we 
obtain the bound 

hAJ(C;(c)) 5 B,(R, E) + A (3.76) 

for all e > 0 satisfying (3.66) and n 2 1. This completes 
the proof of the forward part of Theorem 4. 

b) C,,,,(X) I C,,,,,(X): We now prove that for each 
e > 0 and R 2 0 a positive sequence { y,, }F=i exists so that 
y, + 0 and 

P(c,*) 2 x - y, (3.77) 

holds for any AI-admissible (n, M) random code C,* 
where R = (l/n)log, M is such that 

this implies b). 

R > &J(x) + 6; (3.78) 

As in part a) of the proof of Theorem 4, we invoke 
Theorem 5 of the Appendix. This theorem implies that if 



HUGHES AND NARAYAN: GAUSSIAN ARBITRARILY VARYING CHANNELS 219 

Y, has the distribution (A.26~) and u0 is as defined in 
(A.26a), then 

IV. DISCUSSION 

Pr(X2 YO+c} Iu, (3.79) 

holds for all independent nonnegative random variables X 
that satisfy EX I a. Making the substitution 

Our results show that the asymptotic behavior of 
GAVC’s is qualitatively different from that of discrete 
AVC’s: whereas the latter always have a random coding 
capacity (cf. Blackwell et al. [lo]), the former generally 
have no capacity (except in the case PIIPJ). This is a direct 
consequence of the imposition of power constraints of the 
average type; in particular, it is not due to the fact that the 
GAVC has real input and output alphabets. In fact, a 
discrete AVC with an average cost structure will also 
generally fail to have a capacity [16]. 

a = (,R-?.-I) b = PJ c = N, 

and defining 

JO*(c) = Y, 

we obtain 

P* 5 (4R-r - 1)x, 

u. = 1 - iA*IAj(R - c> < 1 - X 

where we have used (3.78) and the fact that iAIIAJ( a) is 
strictly increasing. Therefore, 

Pr {P* < (4R-c - l)(N, + J;(c))} 2 1 - u0 2 X 
(3.80) 

holds for all P * satisfying 

EP* I P,. (3.81) 

Note that \IJO*oq * is AI-admissible for all e > 0. 
Let C,,* be any (n, M) random code. We may bound the 

error probability of this code from below as follows: 

It remains to determine the corresponding h-capacities, 
if they exist, for the GAVC when the transmitter is re- 
stricted to deterministic codes (i.e., those of the form (2.2)). 
However, we an make an interesting observation: Blach- 
man [7], [8] has investigated the use of the GAVC PI(PJ 
(our terminology) when the transmitter uses deterministic 
codes and the maximum probability of error concept. Here 
the transmitter’s signal (which is deterministic) is con- 
strained by 

and the jammer may transmit any deterministic sequence 
{ si} that satisfies 

2 +-,g Pr(u*+q:+/mq*EDi*) 
z=l 

2 Pr { P(U*(C,*)) < (4R-’ - l)(N, + J,*(z))} -Y,(c) 

2x - y,(z) (3.82) 

where Y,(E) is as defined in (3.12). The justification of 
these steps is as follows: a) results by applying Lemma 1; 

Blachman obtained the following bound on the capacity of 

b) follows from (3.80) and the fact that EP(U *(C,*)) s 
this channel: if the CAVC PIIPJ has a deterministic capac- 

P,. This completes the proof of the converse of Theo- 
ity, say CgI,p,, then 

rem 4. 
D&,P, s ‘b (4.0 

where 

PTPJ ’ (4 + NJ2 

PJ” < PTPJ I ( PJ + N,)2. 
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Comparing (2.14) with the upper bound in (4.1) we find 
that 

cb < cPI,PJ 

for all (positive) values of N,, P,, and PJ. We conclude 
that, as has previously been shown for discrete AVC’s, the 
class of random codes outperforms the class of determinis- 
tic codes for the GAVC PIIPJ. For the discrete AVC the 
deterministic coding capacities are known in many special 
cases. Ahlswede [2], using the average probability of error 
concept, has shown that the capacity of the discrete AVC 
is either equal to the random coding capacity, or else it is 
zero. This method apparently fails for the GAVC, owing to 
the presence of a cost structure on the allowable channels 
and encoders. 

The coding problems of Section II may be case in an 
alternative game theoretic formulation. Corresponding to 
each GAVC, say AIR, a family of two-player zero-sum 
games exist (cf. Blackwell and Girshick [9]) defined as 
follows. Fix the block length n and the source rate R. The 
transmitter’s (resp. jammer’s) allowable strategies consist 
of all (n, 2nR) random codes C,* (resp. R”-valued random 
vectors s *) that satisfy the power constraint A (resp. B). 
The payoff, when the jammer plays s * and the transmitter 

plays Ce*, is the error probability X(C,*, s *) defined in 
(2.8). The jammer wants to maximize this probability; the 
transmitter wants to minimize it. Therefore, they seek 
strategies that attain the outer extrema in the following 
programs: 

transmitter’s program: V, = in! sup h( C,*, s * ) (4.2a) 
s* 

jammer’s program: v, = sup in! X(C,h, s *) (4.2b) 
s* 

where the extrema are taken over all allowable s * and C,*. 
An optimal strategy for the transmitter (resp. jammer), if it 
exists, is one that attains the outer extrema in the trans- 
mitter’s (resp. jammer’s) program. For any E > 0, e-optimal 
strategies Cn: and sJC are allowable strategies for which 

sup h(C$ s*) 5 v, + e (4.3) 
s * 

inf X(C,*, s,*) 2 v, - c 
c,: 

(4.4 

where the extrema are taken over all allowable s * and C,U. 
It is always true that V~ I V,,; if v, = V,,, then the game is 
said to have a value v,, = v, = V,,. 

Equation (4.2a) defined a sequence (in n) of communi- 
cation games. Bagar and Wu [4] have considered games of 
this type (for the constraints AIIAJ) for a memoryless 
Gaussian source and for a different cost function, viz., 
mean-square distortion. For each n they obtain the value 
of the game and characterize saddle-point strategies for 
each player. In contrast, we can say little about each game 
in the sequence; we can, however, sky a great deal about 
the asymptotic behavior of the sequence. 

Implicit in the proofs of Theorems l-4 is the following 
result. The sequences {v, }r= i and { sn };=I converge and 

lim v, = lim V,, = i’;“‘“(R) (4.5) ?T++CC ?I++@2 

holds for every R and every pair of constraints AIR. Thus 
the sequence of games has an “asymptotic value” equal to 
iAIB(R). Furthermore, for all e > 0, there exist for all 
sufficiently large n, c-optimal strategies for both the trans- 
mitter and the jammer. (Such strategies for the transmitter 
are explicitly constructed in the forward parts of the 
proofs in Section III; jamming strategies are constructed in 
the converse parts.) 

Some authors further constrain the jammer to signals of 
the form 

s* = zl*ql*; * *, ( %hn*) (4.6) 

where { 117 } y= i is i.i.d. N(0, 1) and { zi* } := i is a sequence 
of nonnegative random variables independent of { nf } := i 
and subject only to the average power constraint 

I PJ. 

We call this constraint AJG and use the notation GAVC 
AIAJG to refer to the channel with input constraint A and 
jamming power constraint AJG. Since AJG is more restric- 
tive than AJ, we must have R,,,,,I RAIAJ. However, the 
jamming strategies constructed in the converses to Theo- 
rems 2 and 4 are all of the form (4.6), so that we must have 
R AlAJG = R,,,, and, consequently, 

A”‘“““(R) = AAIAJ( R) . (4.7) 

Thus our results remain valid in the special case of Gauss- 
ian jammers. 

It is especially interesting that the achievable regions of 
Theorem 2-4 are not determined solely by a simple opti- 
mization program involving mutual information as is usu- 
ally the case in information theory. McEliece and Stark 
[17] have modeled the conflict between transmitter and 
jammer when coding is used by a two-player zero-sum 
game with mutual information as the pay-off function (see 
also [ll]). As an example, they considered the channel that 
we have called the GAVC AI]AJ (for the special case 
N, = 0) and obtained the following results. Optimal 
transmission strategies for both players are i.i.d. Gaussian 
sequences of maximum power and of length n, and the 
value (or optimal payoff) is 

If the value of the game considered by McEliece-Stark is 
actually the capacity of the channel (the authors do not 
assert that it is), then it carries the following interpreta- 
tion: when n is large and 

L \ =J I 
then hAJ(C,*) = 0 is possible. In contrast, however, note 
that the c-optimal strategies for the game AI]AJ in (4.2a) 
(cf. proof of Theorem 4) are not memory-less, and the 
error probability of any positive rate code is bounded 
away from zero. It is of considerable interest that these 
two apparently related games lead to such different results. 
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An explanation of this disparity between the predictions 
of these two games lies in the fact that mutual information 
takes on operational significance only when the block 
length is large compared to the memory of the channel. 
The error probability formulation (cf. (4.2a)) allows the 
jamming memory to equal the block length, whereas the 
mutual information formulation always assumes that the 
block length of the code is large compared to the jamming 
memory. Therefore, the game involving mutual informa- 
tion gives an apriori advantage to the transmitter, and it is 
not surprising that this approach leads to much more 
optimistic results for the transmitter. We conclude that, at 
least for GAVC’s, one cannot in general attribute a coding 
significance to games having mutual information as a 
payoff function. 

From a practical viewpoint the results of this paper may 
be difficult to achieve or may lack meaning for a real 

jammer. Like the pulse-jamming signals considered by 
Houston [15] our c-optimal strategies demand high peak 
power when R is small; unlike Houston’s, however, this 
peak power must be sustained over the block length of the 
code. When n is large, the average power constraints 
(AI, AJ) may fail to reflect all the physical constraints that 
would limit a practical system. As an extreme example let 
n + + cc. Then the optimal jamming strategy for the case 
PIJAJ is of the form sj* - N(0, P,/p) for all time with 
probability p, and SF = 0 for all time with probability 
1 - p. One may approach a more realistic situation by 
considering multiple constraints on the jammer (as dis- 
cussed in Section II). 
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APPENDIX 

In this Appendix we study the following two-player zero-sum 
game (cf. Blackwell and Girshick [9]). Let a, b, and c be real 
numbers such that a, b > 0 and c 2 0. Player I’s (respectively, 
player II’s) allowable strategies consist of all nonnegative 
real-valued random variables X (resp. Y) satisfying EX I a 

(resp. EY I b).” The payoff to player I, when I plays X and II 

“In this Appendix we abandon the convention used earlier in the 
paper that distinguishes random variables with asterisks, 

plays Y is 

Pr(X2 Y+c}. (A.1) 

Player I wishes to maximize (A.l); player II wants to minimize it. 
Therefore, players I and II seek independent strategies that attain 
the outer extrema in the following programs: 

program I: v = sup inf Pr{X> Yt c} (A.2a) 
x: EX<~ Y: EYsb 

program II: 3 = inf sup 
Y: EYsb ,y: EXsu 

Pr { X 2 Y + c}. (A.2b) 

If a strategy exists that attains the outer extrema for program I 
(resp. II), it is called an optimal strategy for player I (resp. II). It 
is always true that V 2 v; if Y = v, then the game is said to have 
a value v0 = Y = v. A saddle-point solution to this game (if it 
exists) is a pair of allowable strategies, say (X0, Y,), such that 

Pr(X2 q + c} 2 Pr{XO 2 Y0 + c} 

(Pr{X,2 Y+c} (A.31 

is satisfied for all allowable (X, Y). The existence of a saddle 
point is a sufficient condition for a value to exist; in this case we 
have 

v,=?=v=Pr{X,> Y,+c}, (A4 

and thus X0 (resp. Y,) is an optimal strategy for player I (resp. 
player II). 

In this appendix we derive a unique saddle-point solution 
(A.2a). The special case a = b = 1, c = 0 has been studied by 
Bell and Cover [5] in connection with competitive investment and 
the special case c = 0 by McEliece and Rodemich [18] as part of 
a study of optimal jamming of uncoded multiple frequency shift 
keying (MFSK). We construct the general solution of (A.2a) from 
the known solution in the special case c = 0. Without many of 
the complications that arise in the MFSK problem studied in 
[18], this special case admits a proof that is much simpler than 
that given in [18]; we present this as follows. 

Lemma 2 (Bell- Cover- McEliece- Rodemich): Consider the 
two-player zero-sum game given by (A.2a) when c = 0. This 
game has a value v,, and unique saddle-point strategies X0 - F, 
and Y, - Go. These are given in the case a 2 b by12 

(A.5a) 

(A.5b) 

and if a < h, 

U 

vg = - 
2b 

(A.5d) 

F,(x) = ( 3(II0,2hl (x) + (1 - x) A,(x) (A.5e) 

Go(x) = $,,z&)~ (A.5f) 

Remurk: The proof given here is a generalization of Bell and 
Cover’s [5]. 

‘*Throughout this Appendix we use the following notation: X - F 
means that the real-valued random variable X has distribution function 
F. We denote by L’lU, h1(~) the distribution function of a random variable 
that is uniformly distributed on the interval [a, h] and denote by A,(x) 
the distribution function of the trivial random variable X = c. 
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Proof Let X - F and Y - G be any allowable strategies. 
Observe that 

Pr{Xk Y} = iaG(X) dF(x) = 1 - dmF(x -) dG(x). 

(A.61 

First consider the case a 2 b. Let us show that (X0, YO) satisfies 
(A.3) when c = 0. Using the obvious inequality UC,, dI (x) I x/d 

when x 2 0, we then obtain 

Pr{Xk Y,} = imGO(x) dF(x) 

b 
I1 - - =v,. 

2a 

In much the same way, using the right-most equality in (A.6), we 
can show 

Pr{Xs 2 Y} 2 vs. (A4 

Since Pr {X0 2 Y, } = v,, we conclude that (X0, Ye) is a saddle 
point and v0 is the value of the game. 

To complete the proof in the case a 2 b, it only remains to 
show the uniqueness of F, and Go. First consider Go. Let 

rd - Cd be any other random variable such that EY,’ I b and 

Pr{Xr Yd} 5 va (A.9) 

for all admissible X. Substitution of 

1) x- qO,2&X 

2) x- (A) A,-,(x) + (+) Aa+p(x) 

for all 0 4 OL, /3 < a into (A.9) yields, respectively, 

1’) G,5(2a) = 1 

2’) 
for all 0 < (Y, /3 5 a. 

We claim that 2’) implies that a line exists, say I(x), that 
passes through the point (a, vo) and is such that 

G;(x) I l(x) (A.lO) 

for all x 2 0. To prove this claim, definei 

pz max 
Gh(a + P) - vi< +oo 

P 
, 

05plCC2 
(A.ll) 

and let p attain the maximum. Let I(x) be the line through 
(a, vo) having slope p. We know that GA(a) 4 v, = Z(a) (proof: 
take (Y = B = 0 in (2’)). By construction Z(x) s_atisfies (A,10) 
when x 2 a and passes through the point (a + fi, Gi( a + j?)). 
Now if 

G;(a - CY) > Z(a - CY) (A.12) 

13The “max” in (A.ll) is justified because (G,$(a + /3) - vO)/fi is 
upper semicontinuous, and the right-hand inequality is justified because 
this function is bounded by ~,,/a (to prove: take a = a in (2’)).. 

for some 0 I a! I a, then Q and p violate 2’). Therefore, to 
avoid a contradiction, I(x) must satisfy (A.lO) for 0 I x I a as 
well, proving the claim. 

We now show that (A.lO) implies that G,$ = Go. For any 
measurable function, say f( x), let V, denote the Lebesgue volume 
of the region in R2 comprismg the points R, = ((x, y)lO I x I 
2a, f(x) I y I l)}. By an elementary fact of probability theory 
and 1’) we know that 

vGi, = EY,’ I b. (A.13) 

Equation (A.lO) implies that vob 2 v, and hence 

v, I b. (A.14) 

Since I(O) 2 GA(O) 2 0, 1(2u) 2 Gd(2a) = 1, and l(a) = vo, R, 

is a triangular region and f(0) must be such that 0 I I(O) I 2v, 
- 1. By elementary geometry we can show that 

(A.15) 

for all 0 < I(0) I 2v, - 1. It is easy to show that (A.15) is a 
strictly decreasing function of I(O) that attains a minimum value 
of v, = b when I(0) = 2v, - 1. Therefore, the only line I(x) that 
passes through (a, vo) and that does not contradict (A.14) satis- 
fies I(0) = 2vo - 1, and hence 

I(x) = 2 + l- b . 
( 1 a 

Comparing (A.16) with (A.~c), we see that 1 equals Go for all x 
such that 0 I x I 2a and 0 I I(x) I 1. It follows from (A.lO), 
the nonnegativity of Yd and Yo, and (1) that 

G;(x) s Go(x) 

for all real x. This implies that Gh + Go, since if GA(x) < G,(x) 
for some 0 < x I 2a, then 

EY,’ = vcb > vcb = b, 

a contradiction. We conclude that in the case a 2 b, Go is 
unique. The proof that F, is unique, and the proofs for the case 
a < b are similar. This completes the proof of Lemma 2. 

We now consider the game (A.2a) when c > 0 and show that 
the solution in this case can be constructed from the known 
solution for the case c = 0. To see this, note that any nonnega- 
tive X - F can be decomposed in the following way: 

x= 
i 

c + z, with probability p 

w, with probability 1 - p 
(A.17) 

where p = 1 - F(c - ) and W - L and Z - H are independent 
nonnegative real-valued random variables. The distribution func- 
tions L and H we given by 

i 

F(x) 
L(x) = F(c -) ’ 

-@3<xxc 

IL x2c 
if F(c - ) > 0; otherwise L(x) = A,(x), and 

%(x+e) -F(c-) - 
co<x<o 

l-F(c-) ’ 
x,0 

if F( c - ) < 1; otherwise H(x) = Ao(x). 
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In terms of the new variables p, Z, and W the cost function 
(A.l) becomes 

Pr(X2 Y+c} =pPr{Z+c> Y+c} 

+(l -p)Pr{W2 Y+c} 

=pPr{Z2 Y}. (A.18) 

Clearly, W has no effect on the cost function Pr { X 2 Y + c}; 
only our choice of p and 2 influence it. The latter choice is 
constrained by 

or 

EX=(l-p)EW+p(c+EZ)<a 

EZ _< 
a - (1 -p)EW 

-c 
P 

so that the widest choice of Z is permitted when W = 0 and 

EZI; -c=;(p). 

Using this decomposition, we can reformulate (A.2a) in the 
following way: 

program I: Y = sup inf 
cp, z): EZ<B(~) Y: EYsb 

p Pr { Z 2 Y} (A.19a) 

program II: V = inf sup 
Y: EYlb (p, z): EZ<ri(p) 

pPr(Z2 Y}. 

(A.19b) 

Games (A.2a) and (A.19a) are equivalent in the following 
sense: if X0, po, and Z, are related as in (A.17), then 
{( po, Z,), Y, } is a saddle point for (A.19a) if and only if (X0, Yo) 
is a saddle point for (A.2a); of course, the resulting values of 
both games are the same. Therefore, solving (A.19a) is entirely 
equivalent to solving (A.2a). 

Using (A.l9a), we can derive the only candidate saddle point 
for (A.2a) in the following way. Suppose that {( po, Z,), &} is a 
saddle point so that 

p Pr { Z 2 I$ } I p. Pr { Z, 2 Y. } 

IpePr{Z, 2 Y} (A.20) 

for all admissible {( p, Z), Y}. Then, in particular, we have 

p. Pr { Z 2 I$ } I p. Pr { Z, r Y. } 

IpoPr{Zo r Y} (A.21) 

for all (Z, Y) such that ((p,, Z), Y} is allowable. Ignoring 
momentarily the trivial possibility that p. = 0, (A.21) implies 
that (Z,, Y,) must be a saddle point of (A.2a) with constants 

a’ = ri(p,) = ; - c b’ = b c’ = 0 . (A.22) 

Since (A.5a) gives the unique solution to (A.2a) when c = 0, we 
conclude that (Z,, Y,) must have the distributions F, and Go 
obtained when the constants (A.22) are substituted into (A.5a). 
The corresponding value of this game as a function of p. is 

Vo(Po) = 

ixP0) 2b (A,23) 

q PO) < b. 

We now show that (A.20) fixes a value for p. as well. If 
{(po, Z,), Yo} is a saddle point for (A.19a) and v, is the corre- 
sponding value, then the left bound in (A.20) implies that 

vo = oFpyl vo( PI. 

Using this, we may explicitly find the only possible saddle point. 
The following facts will be useful. 

1) The maximum of vo( p) over the range 0 5 p I 1 is at- 
tained uniquely by 

PO = 

a 
- 
c 

(A.24) 

Note that p. I a/c when c > 0. 
2) Define g(p) on the interval 0 I p I a/c by 

b bc 
g(p) = 1 - - - ~ 

i(P) 2q p) . 

Then g(p,) = 0 if 0 I p. < 1, and g(po) 2 0 if p. = 1. 
3) a( po) 2 b for all a, b > 0 and c > 0, where p. is as 

defined in (A.24). 
Therefore, based on facts (1) and (3), Lemma 2, and the 

foregoing comments, the only possible saddle point for the game 
(A.19a) is po, Z, - Ho, and Y, - Go, where p. is given in (A.24) 
and 

Ho(x) = qo,2b(po)]b) (A.25a) 

Go(x) = 

(A.25b) 

Remark: Note that a > 0 implies that a( po) = (a/PO) - c > 
0, so that (A.25b) is always well defined. 

Ho and Go are obtained by substituting p. into (A.22), sub- 
stituting the resulting constants into (A.5a), and taking Ho = Fo. 

The corresponding value of the game is 

v e t[l+:(l--Jr,p)]. asc+~[l+/~] 

0- 

I 

b 

‘-2(a-c)’ 
a>c+;[l+JrG]. 

We have shown that {( po, Z,), Y. } is the only candidate for a 
saddle point for the game (A.19a); let us now verify that this is 
indeed a saddle point. Let {(p, Z), Y } be any admissible triple, 
and suppose that Z - H and Y - G. Then 

pPr(Z2 Ye} 

= pimGo(x) dH(x) 

=p( 1 - &) + &~~Uto,26,,,,1(x) dH(x) 

ba 
=Pg(Po) + ___ 

2Z2( PO) 
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From fact 2) it follows that pg( po) I pog( PO), and therefore, PI 

ba 
pPr{Z> 61 sP0dP0) + ~ 

2fi2( PO) 

=Po[l- &] =vo. 
141 

151 
The proof of 

poPr{Zok Y} 2vo 
161 
[71 

for all allowable Y is similar to the proof of Lemma 2 and so is 

omitted. 
We conclude that {( po, Z,), Y, } is the unique saddle-point for 

(A.19a) and that v. is the corresponding value. Recalling the 191 

equivalence between the games (A.19a) and (A.2a) when p, Z, 

and X are related by (A.17) (cf. remarks following (A.l9a)), we PO1 
have, therefore, proved the following theorem. 

Theorem 5: Consider the two-player zero sum game given by illI 

(A.2a). This game has a value v. and unique saddle-point strate- 

gies X0 - F, and Y. - Go. These are given in Lemma 2 for the WI 
case c = 0 and for the case c > 0 by 
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q[I+q(l-/T)], a<c+t[l+/q] 

b 

l-2(4’ 

(A.26a) 

F,(x) = Poqo.28(p0)] (x - c> + (1 - ~o)Ao(x) (A.26b) 1131 

[I41 

where ri( p) = a/p - c and 

1, a>c+ q[l+ /G]’ [17] 

Remark: Note that some of the foregoing quantities are inde- 
terminant when c = 0. Nevertheless, the saddle-point strategies WI 

and the value in (A.26a) tend continuously to those of Lemma 2 

as c + 0. [I91 
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