
Gaussian-beam profile shaping

by acousto-optic Bragg diffraction

Mark D. McNeill and Ting-Chung Poon

We study how Gaussian laser-beam profiles can be modified into a desired form using acousto-optic Bragg
diffraction. By exploiting the angular dependence of Bragg diffraction of plane waves by acoustic
gratings, we demonstrate that the conversion from a Gaussian-profile beam into either a near-field or a
far-field flattop profile is possible.

Introduction

Optical techniques used to convert the spatial inten-
sity distribution of a Gaussian laser beam into a
desirable flattop-type profile are important to many
applications. These include laser fusion, laser print-
ing, heat treatment of material surfaces, optical
memory systems, laser radars with detector arrays,
and optical data processing. Many methods have
been proposed to generate flattop-type profiles either
in the far-field or the near-field region.'-' 2 Using the
acousto-optic effect, Ohtsuka et al.1

2 have been able
to produce a uniform far-field distribution with the
sound cell operating in the Raman-Nath regime.'3

Most recently, Tervonen et al. have improved the
acousto-optic approach by utilizing the methods of
synthetic diffractive optics.12 In this paper we em-
ploy a multiple-plane-wave theory for strong acousto-
optic interaction 3" 4 together with a newly developed
transfer-function formalism 5"6 to investigate how
Gaussian intensity profiles can be transformed into
either near-field or far-field flattop profiles by use of
Bragg diffraction. Section 2 presents the multiple-
plane-wave theory in terms of a set of infinite coupled
differential equations and reviews the transfer-
function formalism. Section 3 summarizes a gen-
eral formalism for determining the output spatial
profile from an arbitrary input field. Section 4 em-
ploys the transfer-function approach to explain the
beam-distortion phenomen and shows that, under
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certain conditions, distortion can be eliminated by an
increase in the strength of the sound field. Sections
5 and 6 identify the system parameters needed to
convert the input Gaussian intensity profile into a
flattop distribution in the near-field and far-field
regions, respectively. Finally, Section 7 summarizes
the findings and identifies the areas in which further
research is needed.

2. Korpel-Poon Multiple-Plane-Wave Scattering

Theory and Transfer-Function Formalism

There are many possible theoretical approaches to
the acousto-optic interaction problem. We have
adopted the Korpel-Poon multiple-scattering the-
ory13"4 for the present investigation. The theory
starts from the two-dimensional generalized Raman-
Nath equations' 3 and represents the light and sound
fields as plane-wave decompositions together with a
multiple scattering for the interaction. The general
formalism is applicable not only to hologram-type
configurations but also to physically realistic sound
fields subject to diffraction. For a typical rectangu-
lar sound column with plane-wave incidence, as shown
in Fig. 1, the general multiple-scattering theory can
be reduced to the following infinite coupled equations:

d -i exp( - QQ[ I)B + (2n - 1)]}En

-i 2 exp Q in + (2n + 1)] En+, (1)

with the boundary condition En = incbnO at z < 0,
where 8nO is the Kronecker delta and En is the complex
amplitude of the nth-order plane wave of light in the
direction (,, = ()ine + 2nB. inc is the incident angle
of the plane wave, Einc, and ()B is the Bragg angle,
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Fig. 1. Sound-light interaction configuration.

defined as CAB = /2A, where and A denote the
wavelenghts of light and sound inside the acoustic
medium, respectively. The other parameters in Eq.
(1) are defined as follows: a = CkSL/2 is the peak
phase delay through the medium, where C represents
the strain-optic coefficient of the medium, k is the
propagation constant of the light in the medium, S is
the amplitude of the sound field, and L is the width of
the sound column. Q = 2ITLX/A2 is the Klein Cook
parameter.' 7 Lastly, e = L/z is the normalized
distance inside the sound cell. = 0 signifies when a
plane wave of light enters into the acousto-optic cell,
and = 1 denotes when a plane wave of light exists
from the cell.

Equation (1) is similar to the well-known Raman-
Nath equations.1 8 In fact, it can be shown13 to be
identical to the approximate [i.e., retaining no terms
higher than (A) 2] Raman-Nath equations. It is
physically obvious that Eq. (1) identifies the plane-
wave contributions to En from neighboring orders,
with the phase terms indicating the degree of phase
mismatch. It is a special case of the general multiple-
scattering theory13"14 valid for any sound field, not
just a sound column. Note that Eq. (1) is valid only
for small diffraction angles (i.e., paraxial approxima-
tion). For a given value of a and Q the solution to
Eq. (1) represents the contributions to the nth-order
plane wave of light, En, owing to the plane wave tine
incident at (in. Note that the sign convention for
(inc is counterclockwise positive; that is (4n, = -6

signifies upshifted Bragg diffraction.
Choosing (4in = -(1 + O)4B, where 8 represents the

deviation of the incident plane wave away from the
Bragg angle, as illustrated in Fig. 2, and limiting
ourselves to E0 and El, we have the following set of
coupled differential equations:

dE0 a

cig = -i 2 exp(-jQ8/2)E,, (2a)

dEl ab
= -J 2 exp(jQt/2)Eo. (2b)

Fig. 2. Diffraction geometry for upshifted Bragg operation.

Equations (2a) and (2b) can be solved analytically, and
the solutions are given by the well-known Phariseau
formula'9:

Eo(0 = Eine exp( j8Qt/4){cos[(BQ/4)2 + (/2)2]1/2t

Q sin[(BQ/4)2 + (at/2)2]/2

+J4 [(8Q/4) + (ot/2)]/ '

21(e) = tinc exp(j8Qi/4)

J -j a sin[(BQ/4)2 + (/2)2]1/2i

2 [(8Q/4)2 + (a/2)2]1/2 J

(3a)

(3b)

Equations (3a) and (3b) are similar to the standard
two-wave solutions found by Aggarwal20 and adapted
by Kogelnik2l to holography. More recently, it has
been rederived with the Feynman diagram tech-
nique.'4 Equations (3a) and (3b) represent the plane-
wave solutions that are due to oblique incidence, and
by letting 8 0 we can reduce them to the following
set of well-known expressions for ideal Bragg diffrac-
tion:

- oc~~~a

Eo =Einc s ) ( .

kl= - An sin(O' ).

(4a)

(4b)

Equation (3) motivated Poon and Chatterjee' 5" 6 to
define the so-called plane-wave transfer function of
the Bragg cell on which a light beam with an arbitrary
profile is incident. The transfer functions of the
zeroth-order and the first-order light are defined,
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respectively, as follows:

Ho()= - ' (5a)
Einc

-18= E ' (5b)

where E0(g) and E,(g) are, in general, the results from
Eq. (1) evaluated at the exit of the Bragg cell. For
relatively low sound pressures, analytical results
from Eqs. (3a) and (3b) can be used to expedite
computer calculations. This definition of the trans-
fer function permits us to relate the input angular
spectrum, Ein(8), to the output spectrum, Eout(8), as

&.J() = Ekn(8)H(6). (6)

For a specific diffracted order of light we need only
replace H(8) in Eq. (6) by the appropriate transfer
function, for example, Ho(8)or H1(6), and then permit
Eout(b) to become E0(8) or E1(b), respectively. Note
that this transfer-function approach has recently
been extended to include the propagational diffrac-
tion effect22 and the case of large Bragg angles.23

3. General Formalism for Arbitrary Incident

Light Fields

This section serves to summarize the techniques' 5"16

used to calculate the spatial profile of any diffracted
order using strong acousto-optic interaction. To find
the input angular spectrum, we refer to the coordi-
nate system introduced in Fig. 2, which illustrates
how an arbitrary incident field propagates through a
Bragg cell operating in the upshifted mode. The
incident field is decomposed into multiple plane waves
with different amplitudes propagating in directions
defined by 4)' = &kB. We relate the angular spec-
trum E(4'), under paraxial approximation, to the
spatial distribution E(r) as follows:

E(r) = F- [E(4)')] = i E(4')exp( -j A c'r d( )

(7a)

E(4') = F[E(r)] = f E(r)exp( 4)'r)dr, (7b)

where (r, 4)'/X) represent the transform variables.
Equations (6)-(7b) may be combined to develop a

general formalism for computing the profiles of any
scattered light field in the spatial domain from any
arbitrary input field. For the zeroth-order light,

EO(r) = J| H~ henHo(j)exP( -2 -r d - (8a)

and for the first-order light,

El(r') = I Ein(8)Hj(8)exp(J21r 2 r d (8b)

where we substitute 84)B for 4)' in the case of the
zeroth-order light and -8 

4
B for 4)" in the case of the

first-order light when Eqs. (7a) and (7b) are used.
This is consistent with the diffraction geometry de-
fined in Fig. 2. In writing the final form of Eqs. (8a)
and (8b) we also used X/2A for 4)

B. It is important to
note that we chose H0(8) and Hj(b) as special cases.
For any diffracted order we may find Hn(8) first by
solving Eq. (1) for that particular value of n, using the
definition of Eqs. (5a) and (5b), and then by substitut-
ing that solution into Eqs. (8a) and (8b). Hence, Eqs.
(1), (8a), and (8b) form a complete set of analytical
tools for determining the profile of any output scat-
tered field from any arbitrary input field in the
presence of a strong acoustic field. This technique is
reminiscent of the Fourier decomposition method
developed independently by Magdich and Molchanov.24

The technique has been reviewed by Benlarbi et al.,
2 5

in their study only two scattered beams are consid-
ered and hence may not be accurate for high values of
the sound field. Returning to the beam-shaping
problem, we see in Eqs. (8a) and (8b) that the transfer
function can modify the output profile by variation of
a and Q. Indeed, by properly choosing a and Q, we
shall demonstrate that an input Gaussian-beam pro-
file can be converted into a desirable flattop-type
profile. Because this formalism involves the Fourier
transform, a fast-Fourier-transform algorithm is used
to calculate the output field distribution correspond-
ing to a variety of arbitrary incident field profiles.

4. Transfer Functions and Beam Distortion

In this section we investigate the behavior of H1(8),
and on the basis of these results we explain the
beam-distortion phenomena.'5 "626 2 Equation (1)
provides the starting point for our general theory.
Although Eq. (1) involves a set of infinite coupled
differential equations, the effect of including more
than two diffracted orders is diminished significantly
as the value of Q increases. For example, we calcu-
lated the transfer functions and compared the solu-
tions for ten orders (i.e., -4 < n < 5) to well-known
ideal solutions for two orders [see Eqs. (3a) and (3b)]
and found that when Q > 40, the solutions were
nearly identical in < 0.5 for a values of up to 4r.
For Q = 20, Figs. 3(a) and 3(b) show the magnitude of
H1(8) produced by solving Eq. (1) with two orders and
ten orders, respectively. We employed a fifth-order
Runge-Kutta numerical method to find the solution
to Eq. (1). Note that the two plots have nearly the
same shape along the 8 axis for small values of a.
For large values of a the plot with a higher number of
diffracted orders tend to expand more along the a axis
as well as distort some features along &. This sug-
gests that higher diffracted orders are necessary to
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Fig. 3. Numerical plots of Hj(8) as a function of the peak phase
delay, a, for Q = 20: (a) solution involving two diffracted orders,
(b) solution involving ten diffracted orders.

calculate the appropriate transfer functions for appli-
cations involving large values of a. Similar behav-
iors are observed for Q = 40, as shown in Fig.
4. Results indicate that when Q > 40 for the range
of a investigated, solutions involving two and ten
diffracted orders are indiscernible. Hence, when
computing the magnitude of H1 (8) for Q > 40 at small
values of a, we solved Eq. (1) numerically while
limiting it to only two orders to accelerate the com-
puter calculations.

Figure 5 shows how larger value of Q modify the
spectrum of the transfer function. Notice how the
zeros of the transfer function move inward as the
value of Q is increased. The location of these zeros,
particularly the first zeros, determines how severely
the system distorts the profile of the input field. As
an example, we inspect one of the plots for a large
value of Q, say Fig. 5(b), for the case when Q = 160.
Because of the Fourier-transform relationship, a
narrower beam in the spatial domain leads to a wider
spread in the angular spectrum domain. If this
spread is large enough to cover some of the zeros in
H1(8), distortion in the spatial domain of the Bragg-

(b)

Fig. 4. Numerical plots of H1(8)I as a function of a for Q =
40: (a) solution involving two diffracted orders, (b) solution
involving ten diffracted orders.

scattered light profile is expected. Specifically, let us
assume that the incident Gaussian light field Ein(r) is
given by

E E(r) = (2r)/ 2 exp(- r 2/2(o2), (9)

where r is the radial coordinate shown in Fig. 2. Its
angular spectrum, according to Eq. (7b) with 4)' =
OB = 8X/2A, becomes

Ein(8) = E1in exp[- ( A ) 2 (10)

For u1/A = 5 the 1/e point of the angular spectrum is
given by 81/e = V/2A/rorj = 0.09. Now, when operat-
ing with Bragg cells, one would like to work with
maximum diffraction into the first order. This point
of operation occurs when the value of a is an odd
multiple of Tr for cells with a large Q value. Looking
at Fig. 5(b), we can see that the angular spread of the
incident beam spans beyond the first zero of H1(8) I
for a = r. Physically, it means that some plane
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Fig. 5. Numerical plots of I H1(b) I as a function of a for (a) Q = 80,

(b) Q = 160.

waves of the beam are not scattered at all. There-
fore reconstruction of the beam at the exit of the
Bragg cell may show distortion. To avoid this distor-
tion, one may work with at = 3r instead of a = 'r

because the transfer function in Fig. 5(b) indicates
that the first zero of the transfer function has moved
beyond 81/e at a = 3 Tr. Before verifying this point, it
is instructive to develop an explicit expression that
represents the diffracted field. This is done by sub-
stitution of Eq. (10) into Eq. (8b) and the use of Eq.
(5b) to obtain the following expression for El(r'):

El(r') = I Eincexp[ ( ) ( A 82 2) xp(jiQ/4)

x sinc[(8Q/4)2 + (a/2)2]1/2J

x exp 2x 2A r d 2A (11)

where (-r', 8/2A) may be identified as the Fourier-
transform variables. Figure 6 plots the normalized
intensity profile of the Bragg-scattered beam, I1(r') =
I E1(r')]2. The input Gaussian has also been plotted
at the center of the two output beams as a reference.
Notice that the output profile is distorted more at a =
'r than it is at a = 3ir. That is, the profile still has
somewhat of a Gaussian shape at a = 3'r; in fact, it
has a low-pass version of the input Gaussian beam.

Fig. 6. Beam distortion of input Gaussian beam profile and its
disappearance: Distortion occurs at a = ir but disappears at the
stronger sound pressure, a = 3'r. ari/A = 4.5, Q = 160.

The discussion above illustrates beam distortion in
the Bragg-scattered beam when either a thick holo-
gram or an acousto-optic Bragg cell is illuminated by
a narrow laser beam.2632 Thus, by inspecting the
transfer function for a specific Q of the Bragg cell and
the size of the incident beam al, one can predict this
distortion phenomena intuitively without recourse to
complicated mathematics.

5. Flattop Profile Shaping in the Near Field

This section deals with the selection of Q, a, and a1/A
necessary to achieve a flattop beam profile in the near
field for the Bragg-scattered beam when the incident
beam is assumed to be Gaussian. To achieve this
desired shape, Eq. (6) should become approximately a
sinc(8)-type distribution; that is, we want

r =
F''[j()Hreq(6)] = rect -), (12)

where uo denotes the width of the output flattop
beam. Taking the Fourier transform of both sides
leads to the required transfer function, Hreq(S). This
equation along with H1(8) represents the design equa-
tions

Hreq(8) = ince(O 2A)exp[(I A 8)

Hj(8) = sinc[(BQ/4) 2 + (ao/2)2]1/2,

(13a)

(13b)

where sinc(x) = sin(x)/x. Note that in writing Eq.
(13b), we neglect the constant and the phase factor in
front of the sinc function [see Eqs. (3b) and (5b)].
The phase factor in Eq. 3(b) merely introduces a
spatial shift of the diffracted beam, as is evident from
the results in Fig. 6, in which the center of the
scattered beam is shifted to the negative region of r'
(see Fig. 2). In design problems one would like to
find H1(8) such that it matches Hrq(b) as best as
possible. By inspecting the general behavior of H1(8)
and Hreq(b) as a function of a for a specific value of Q,
one can choose the tuning parameters such that these
expressions are approximately equal. A criterion

4512 APPLIED OPTICS / Vol. 33, No. 20 / 10 July 1994

0,

-08

1 .0

0.9

0.8

0.7

0.6

0.5

- 0.4

0.3

0.2

0.1

0.0

i



that seems to work well is to choose the first zeros of
Eqs. (13a) and (13b) to coincide with the 1/e point of
the input Gaussian spectrum, l/e. This permits
enough energy into the sidelobes of the sinc function
for H1(6) to achieve a flattop distribution. The 1/e
point of the input Gaussian spectrum and the first
zeros of Hreq(b) and H1 (a), respectively, are

1le =-s_2

2A
8req -

81 = 4 [(nMr)
2

- (/2)2]1/2

(14a)

(14b)

(14c)

Note, n is an integer in Eq. (14c). It reflects the fact
that when a is sufficiently large, the first zero of H1(8)
in Eq. (13b) becomes a multiple of'ir. This is evident
from Fig. 5. Because a1/e is known for a given input
beam, Q and a, according to Eqs. (14b) and (14c),
assume the following expressions:

Q = 7r [(nMr)2- (a/2)2]1/2, (15a)

1 QA 2] 1/2
a = 4 (nr)2- -I (15b)

[' 8 \-Tcr1J

Since req = 81/e is required in the criterion, this
stipulates that the output flattop beam profile has an
effective width uo = (2/v'_)'rro. Figure 7 shows the
effect of using the criterion for a = Fr and (a 1/A) = 10.
Although it is ideal for EinN()H(6) to resemble a
sinc(x)-type distribution, it is shown here that the
Gaussian curve actually suppresses the sidelobes of
H1(8). Figure 8(a) shows a flattop Bragg-scattered
beam profile. The value of Q is calculated to be 242.
Figure 8(b) shows that as the input Gaussian becomes
narrower (i.e., uj/A is reduced to 4), the value of Q
needed to make a flattop decreases to 97. This
flatness of the output profile can be improved by a

1 .0

0.8

0.6

0.4

0.2

0.0

-0.2

I

_~~~~~~~ Rquird H
- - st O,de, H

I / X GrzuossicG Fuctio
- - - - G. -(l sst .d,

I I\ 

SerH)

-0.4 . . . . . . . . . . . .
-0.20-0.16-0.12-0.08-0.04 0.00 0.04 0.08 0.12 0.16 0.20

a

Fig. 7. Design curves showingthe l/e pointoftheinput Gaussian
spectrum coincide with the first zeros of Hrq(8) and H1 (b). Q =
242, ao/A = 10, a = rr.
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Fig. 8. Near-field fattop for (a) al/A = 10, Q = 242, and (b)
crl/A = 4, Q = 97, illustrating that a thinner Gaussian input beam
requires a smaller Q value to achieve a flattop output. In both (a)
and (b), ai = r.

change in a with the sound pressure or of Q with the
sound frequency. Figure 9 shows the effect of fine
tuning a or Q to achieve a better flattop but with a
sacrifice in the beam intensity.

6. Flattop Beam Profile in the Far Field

In order to achieve a flattop profile in the far field, one
must approximate Ein(8)Hreq(8) by a rectangular func-
tion at the exist of the Bragg cell. That is, if we can
find a flattop in the domain, it will appear as a
flattop spatial profile in the far field. The relation-

0.40
0=242, alpho=Pi

0.36 0=252, olph=Pi0.36 - 0=242 o ph-=3.6

0.32

0.28

'0.1620 

0.1 2 i

0.08,;\

0.04 

0.00
-6.0 -5.2 -4.4 -3.6 -2.8 -2.0 -1.2 -0.4 0.4 1.2 2.0

R'/co

Fig. 9. More uniform flattop outputs obtained by the fine tuning
of Q or a for the case shown in Fig. 8(a).
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Fig. 10. Far-field flattop generation for an output beam profile
obtained by a depression in the transfer function to offset the
Gaussian peak. ori/A = 10, Q = 225, a = 7.4.

ship that must be achieved is given by the following
equation:

Ein()Hreq(b) = rect(-f-) (16)

Therefore one must find Hreq(8) by inspecting H1(8) so
that Eq. (16) is approximately satisfied. Because the
Gaussian wave has a maximum at the center, there is
a need to find a point in H1(8) at which a depression
occurs such that it nullifies this amplitude increase.
Although it is difficult to find an expression to predict
this event, it is possible to view plots of H1(8) for
different values of Q in order to select a curve that
may approximately satisfy Eq. (16). For example, by
inspection of the transfer function when Q = 160 [see
Fig. 5(b)], it is apparent that a u-shaped distribution
forms when a is between 27r and 3'rr. Thus we may
search for a value of a within these limits to find the
correct u shape to offset the Gaussian peak. Figure
10 shows the results of this approach at Q = 225 and
a = 7.4; the output angular spectrum has a flattop
distribution at the exit of the Bragg cell.

7. Conclusion

Using a multiple-plane-wave scattering formalism for
operation in the Bragg regime, we have developed a
general technique to predict the spatial profile of a
diffracted beam. This technique is based on the
Fourier-transform theory and the plane-wave trans-
fer function. For the specific case of a Gaussian
incident light beam, simulation results show that a
flattop profile could be produced by variation of either
the pressure (a) or the frequency (Q) of the sound
signal. The theory presented shows that it is pos-
sible to design systems by use of acousto-optic Bragg
cells to satisfy both the near-field and the far-field
requirements. Further research in this area shall
involve experimental results to verify the approach.
Also, there is a need to extend applications beyond
those converting Gaussian input profiles to flattop
profiles. That is, more attention should be concen-
trated on how arbitrary input profiles can be shaped

into any desired output profiles, not limited to flattops.
This has immediate applications in developing pro-
grammable spatial light modulators for image process-
ing and pattern recognition. The transfer-function
approach presented here serves to provide an intui-
tive insight into the problem.

A NASA graduate fellowship (Marshall Space Flight
Center, Alabama) awarded to M. McNeill is appreci-
ated.
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