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Abstract—In the framework of texture image retrieval, a new family of stochastic multivariate modeling is proposed based on 

Gaussian Copula and wavelet decompositions. We take advantage of the copula paradigm which makes it possible to separate 

dependency structure from marginal behavior. We introduce two new multivariate models using respectively generalized Gaussian 

and Weibull densities. These models capture both the subband marginal distributions and the correlation between wavelet coefficients. 

We derive, as a similarity measure, a closed form expression of the Jeffrey divergence between Gaussian Copula-based multivariate 

models. Experimental results on well-known databases show significant improvements in retrieval rates using the proposed method 

compared to the best known state-of-the-art approaches. 

 

Index Terms—Texture, Gaussian Copula, Multivariate generalized Gaussian, Multivariate Weibull, Jeffrey Divergence, Wavelet 

transforms. 

I. INTRODUCTION 

Characterizing textures is fundamental for various image processing applications ranging from image retrieval to segmentation 

or compression. In the framework of texture retrieval, the challenge is to provide baseline algorithms making a system able to 

retrieve, from a textured image databases, the relevant candidates similar to a given query according to the texture cue. A typical 
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retrieval scheme consists of two major tasks. The first one is devoted to feature extraction, where signatures are estimated from 

each image in the database and from the query. The second task evaluates a similarity measure, based on previous features, to 

decide which images of the database are close to the query. Thus, one important issue of texture browsing or searching systems 

is to provide a tractable mathematical description of natural textures. The question of determining textural features with a 

selective similarity measure has been addressed extensively during the last three decades. The literature on the topic has pointed 

out that probabilistic approaches are well-founded in terms of retrieval performance [1], [2]. If initially some approaches made 

use of descriptive statistics such as co-occurrence matrices [3]-[5], recent works have proposed to use explicit parametric random 

field modeling [1], [2], [6]-[9]. 

In fact, standard random field modeling consists in providing a parametric probability density functions (PDF) which enables 

us to fit the empirical histograms of specific visual cues [1], [2], [6]-[9]. The reason is, on the one hand, stochastic model-based 

approaches are theoretically justifiable since information divergences such as the Kullback-Leibler divergence (KLD) are 

asymptotic limits of likelihood functions that can be used to measure the similarity between data drawn from different 

distribution families; the stochastic framework has proven to be asymptotically optimal in terms of the retrieval rate when the 

KLD between PDF models is used [1], [2]. On the other hand, the parametric models achieve reasonable computational cost for a 

nearest similar sample search. 

In practice, the question of describing a visual content in terms of PDF modeling has been already addressed. Most popular 

methods show the interest of working with wavelet transforms to project the visual information in a multiscale and 

multiorientation domain by using filter banks or wavelet transforms [10]-[13]. These approaches are based on studies of human 

and mammalian vision systems which support that multiscale analysis maximizes simultaneous localization in both spatial and 

frequency domains [14]-[17]. However, whatever the choice of decomposition, authors pointed out the non-Gaussian behavior of 

subband coefficients in the wavelet domain [2], [6]-[9]. Many studies propose the generalized Gaussian density (GG) to 

successfully characterize the marginal distribution of subband coefficients in the wavelet domain [18], [19], [2]. The GG model, 

jointly used with closed form KLD, leads to significant improvement in retrieval rate over traditional methods based on basic 

statistics [2]. Srivastava et al. [6] proposed to characterize filter bank outputs by using the Bessel K forms (BKF). In [7], it was 

conjectured that magnitudes of wavelet coefficients of some classes of textured images have Gamma distribution (Gam). Recent 

works of Kwitt and Uhl propose to model the detail subband coefficient magnitudes by Weibull distribution (Wbl) [8], [9]. Their 

approach achieves higher retrieval rates than those using GG or Gam distributions. 

All these univariate models lead to a simple and tractable approach. Nevertheless, univariate modeling does not provide a 

complete statistical description of subband coefficients. While it implies low complexity retrieval systems, it neglects one of the 

important statistical aspects characterizing a textured image which is the spatial dependency of wavelet coefficients across the 
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same subband. For this reason, some authors have started to study the joint statistics of wavelet coefficients via multivariate 

modeling. Tzagkarakis et al. [20] proposed a computationally complex Gaussianization procedure of filter bank outputs in order 

to model wavelet coefficients by the multivariate Gaussian distribution. Powerful statistical algorithms have been developed for 

image denoising using a Multivariate generalized Gaussian distribution (MGGD) [21] or Elliptically Contoured Distribution 

(ECD) [22], but no closed expression exists for the KLD between these joint distributions to measure similarity in a retrieval or 

classification context. The responses of filter banks exhibit non-Gaussian joint statistical behavior and the dependency between 

local coefficients can be captured using Gaussian Scale Mixture (GSM) [23]-[25]. Boubchir et al. [25] recently used the GSM 

model to define the Multivariate Bessel K Form distribution (MBKF) which is an extension of the univariate model BKF 

introduced by Srivastava et al. in [6]. The multivariate Gaussian mixture (MGmix) was introduced to model wavelet coefficients 

or DCT coefficients obtained from overlapping sliding windows [26]-[28]. Since there is no closed form for KLD between two 

MGmix PDFs, Goldberger et al. used an approximation of KLD to achieve good retrieval rates [27]. For the same reason, in 

[28], the likelihood was employed for similarity measurement leading to competitive results. More recently, MGmix was used 

for texture classification and segmentation [29], [30] and other approximations for KLD between MGmix models were proposed 

[31]. Recently, Verdoolaege and Scheunders introduced the Multivariate Power Exponential (MPE) distribution, also called the 

Multivariate generalized Gaussian distribution (MGG), as an adequate model for the wavelet statistics of color texture images 

[32]. Because a closed form of KLD was difficult to find –except the bivariate case– they have considered the Rao geodesic 

distance on the manifold of MGG distributions as a similarity measure. 

Latterly, researchers started to study the multivariate wavelet modeling using copulas [33]-[37]. The wavelet coefficients of 

multichannel images have been modeled by a copula-based PDF and the normalized Euclidean distance has been employed as 

similarity measure in a retrieval context [33]. Because of the lack of a closed form expression, the KLD between copula-based 

models has been approximated by an empirical estimate using a Monte-Carlo (MC) approach [34], [35]. This MC procedure is 

computationally expensive and thus the KLD closed form, when it exists, is to be preferred [9]. Independently of our work, Kwitt 

et al. recently took a similar approach where they introduced several copula-based models to characterize the association 

between subband coefficients from color channels at the same decomposition scale, in the context of color texture retrieval [36]. 

They claim that no closed form expression of KLD exists in the case of copula-based models; hence they employed likelihood 

similarity as an alternative strategy to measure similarity between models. 

Considering the case of multivariate stochastic modeling in the wavelet domain, the proposed method consists in providing a 

flexible non-Gaussian model based on Gaussian Copula and the corresponding closed form of KLD for texture classification. As 

briefly presented in our previous work [37], the main interest of copulas is to allow constructing multivariate distributions to 

jointly model wavelet coefficients while keeping a good usability for fitting various kinds of marginal distributions. According to 
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earlier works on marginal distribution modeling, in this paper, our contribution can be summarized as follows: 

• Two multivariate distributions are presented to model spatial dependency of intraband wavelet coefficients; namely, the 

Gaussian Copula-based Multivariate generalized Gaussian distribution (GC-MGG) and the Gaussian Copula-based 

Multivariate Weibull distribution (GC-MWbl). Using these two models, we show the ability of the copula approach to easily 

provide various models suitable for different application domains. Under the assumption that the cumulative distribution 

function of the marginal is continuous and invertible, any family of marginal distribution can be used to form a multivariate 

distribution with Gaussian Copula. 

• The KLD and its symmetrized version called the Jeffrey divergence (JD) are derived for Gaussian Copula-based multivariate 

distributions. To our knowledge, this is the first time that the closed form of the KLD is proposed for such multivariate 

models. This derivation shows that the KLD associated with Gaussian Copula-based models corresponds simply to the 

contribution of two orthogonal parts. The first part is devoted to evaluating the divergence along the Gaussian manifold due 

to the Gaussian Copula choice. The second part corresponds to the KLD component resulting from evaluating the 

divergence along the product of marginal manifold. 

The outline of the paper is as follows. In section II, we summarize briefly the statistical retrieval framework and then motivate 

our choice to model intraband wavelet coefficients using multivariate modeling. In section III, we present the Gaussian Copula-

based multivariate modeling and provide an overview of GC-MGG and GC-MWbl models. Hyperparameters estimation is 

investigated and closed form expressions for the KLD between the models presented are derived in section IV. Experimental 

results in section V show the improvement in retrieval rate by using the new approach. Section VI concludes with a discussion 

and an outlook on future works. 

II. MULTIVARIATE STATISTICAL RETRIEVAL 

Vasconcelos and Lippman [1], [26] have defined the statistical retrieval framework and shown that the KLD is the asymptotic 

limit of the maximum likelihood similarity criteria. In the context of this framework, authors consider wavelet subbands as 

realizations of scalar random variables and their histograms are defined as univariate probability distribution functions [2], [6]-

[9]. In our approach, multivariate modeling is used to describe wavelet subbands. A natural extension of wavelet subband 

univariate modeling for texture retrieval is to consider the joint density of a vector of neighboring wavelet coefficients. 

A. Multivariate stochastic retrieval framework 

We consider an image database with � images �� , � = 1, … ,� . The goal is to retrieve from a database the top 	 images 

(		 ≪ �) similar to a given query image ��. For multivariate modeling purposes, each image ��  is represented by a data set 

� = �����, ����, … , ����� where ���� , � = 1, … , � are vectors with elements obtained after a transformation step such as wavelet 
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decomposition; � is the number of vector samples considered. Furthermore, each data set � is assumed to be an independent 

identically distributed (i.i.d) realization from a multivariate PDF �����; ��� where �� contains the hyperparameters of the model. 

We associate an image index indicator variable � ∈ �1,…�� to the images in the database. 

The optimum rule (in terms of error probability) for retrieving the 	 relevant images similar to the query image ��, selects those 

which obey 

 !� = "�#$ %& ≥  !� = "�#$ %& ≥ ⋯ ≥  !� = ")#$ %& 
"* ∈ �1, … , ��, + = 1, … , 	 and "* ≠ "-if + ≠ 0 (1)

From the Bayes’ formula  !� = "*#$ %& = 1!$|3456 %&1�3456�1!$& , + = 1, … , 	, if the images are a priori equally likely, this optimum 

rule becomes the ML selection rule [28] 

 !$|� = "� %& ≥  !$|� = "� %& ≥ ⋯ ≥  !$|� = ") %& 
"* ∈ �1, … , ��, + = 1, … , 	 and "* ≠ "-if + ≠ 0 (2)

where  !$|� = "* %& = ∏ �56!����; �56&��4�  

This likelihood selection rule is equivalent to retrieving images �56 , + ∈ �1, … , 	� which maximize  !$|� = "* %& and then 

ordering the 	 relevant images close to the query ��. 

Vasconcelos and Lippman have shown [1] that in typical asymptotic condition (� ⟶ ∞), the ML decision rule of (2) is 

equivalent to  

:�;!��!��; ��&<�5=!��; �5=&%& ≤ :�;!��!��; ��&<�5?!��; �5?&%& ≤ ⋯ ≤ :�;!��!��; ��&<�5@ !��; �5@&%&  
"* ∈ �1, … , ��, + = 1, … , 	 and "* ≠ "-if + ≠ 0 (3)

Hence, the optimal ML decision rule to select the 	 top matches to the query image �� is asymptotically equivalent to compute 

the :�;!��!��; ��&<�56!��; �56&%&, + = 1, … , � , and then use the decision rule (3) to sort the 	 top similar images 

A�5= , �5? , … , �5@B. 

Moreover, taking into account the fact that KLD is asymmetric the symmetrized version JD is more suitable for image retrieval 

or classification [38]. Thereafter, for evaluating retrieval performance we will use the JD which is defined by 

C; D��!��; ��&, �����; ���E = :�;!��!��; ��&‖�����; ���%& + :�;!�����; ���<��!��; ��&%& (4)

The two steps of retrieval applications (feature extraction and similarity measurement) must also meet the timing constraint 

and are required to have low computational cost. This requirement remains true for certain parametric approaches which are a 

computationally efficient implementation [9]. First, finding consistent estimators to ensure convergence of the model’s 

hyperparameter �H� to the true one �� is addressed. For instance, the Maximum Likelihood (ML) estimator is defined by 
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�H� = arg maxN O log �!����; �&�
�4�  (5)

Second, similarities are computed using the estimated hyperparameters θHS and θH T. This step must be done in a timely manner, so 

a closed form expression is required because it is more efficient compared to employing a Monte-Carlo method to estimate KLD 

and therefore JD. Even if probabilistic approaches can lead to a significant gain in retrieval accuracy, the drawback is its 

computationally expensive complexity. The optimum selection rule (2) could be high computationally expensive and a reduction 

of data size � is required to decrease this complexity [26], [36]. However, this comes at the expense of the retrieval accuracy. For 

these reasons, the closed form of the KLD/JD, when it exists, is more computationally efficient than the use of likelihood 

similarity. 

B. Selecting a multivariate model 

Several authors have studied the dependency between multiscale oriented subband coefficients. Po and Do [39] measured the 

level of dependency based on mutual information in intraband and interband coefficients. In the framework of image denoising 

in the wavelet domain, Tan et al. [22] and Portilla et al. [24] proposed various structures for wavelet coefficient neighborhood. 

All these works point out that the predominant dependency corresponds to the spatial one, i.e. the intraband neighborhood 

structure. To illustrate the importance of the intraband dependency compared to interorientation and interscale ones, Chi-plot 

graphs [40] can be used to observe the different types of dependency. Fig. 1 shows a set of Chi-plots for a selection of wavelet 

coefficient pairs. The Chi-plot can be considered as an extension of the scatterplot. We have used a common setting as it is noted 

in [40] to define the tolerance band which is shown as a gray-shaded region. A deviation from the tolerance band indicates a 

dependence structure. We observe that the deviation from tolerance band is more prominent for the intraband dependence than 

the interorientation or interscale cases. The measures are located inside or closely around the tolerance band for interorientation 

and interscale wavelet coefficient pairs. Although we cannot categorically claim interorientation and interscale independency, the 

dependencies across subbands are less important than those within them. We opted for modeling only the intraband dependence 

even though information can be disregarded for some texture classes. 

Note that assuming statistical independency between subbands enables us to use the chain rule [41] for the overall JD derivation 

between two images. Thus, the whole JD is simply the sum of JDs across subbands. 
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Indeed, taking into account the interorientation and interscale independencies, we considered in this paper a wavelet subband 

U5 , " � 1,… , : as a realization of a random vector V�WX  resulting from overlapping sliding windows (or another neighborhood 

geometry). The wavelet coefficient set is a realization of the overall random vector V� � 	 YV�W=; … ; V�WZ[. In this case, assuming all 

subbands are pairwise independent, the total JD between two joint distributions is the sum of the JD between the corresponding 

wavelet subbands PDFs 

C;!�����; ���, �����; ���& � OC; D��!��WX; �5���&, ��!��WX ; �5���&E
\

54�
 (6)

where �� � ]�5���^�,…,\ and �� � ]�5���^�,…,\ are the hyperparameters of the two PDFs �� and �� respectively. 

In the following, since this does not lead to confusion, each random vector V�WX , " � 1, … , : will be noted V� without 

specifying the subband index. 

III. GAUSSIAN COPULA BASED MULTIVARIATE MODELS 

In this section we establish stochastic multivariate modeling. Two families of Gaussian copula-based multivariate PDFs are 

considered, incorporating the intrasubband dependency while keeping a good fit to marginal distributions. As mentioned above, 

independency between subbands in orientations and scales is assumed while intrasubband dependences are exploited. The 

proposed approach characterizes statistical interactions within local neighborhoods. 

After image decomposition into subbands at multiple scales and orientations, neighbors around a reference coefficient are 

Dependence between a wavelet coefficient and its 

neighbor 

Dependence between a wavelet coefficient and its 

cousin  

Dependence between a wavelet coefficient and its 

parent 

  

 

   
Fig. 1. Chi-plots to illustrate the different degrees of dependence between, intraband, interorientation and interscale, wavelet coefficient pairs. 

 
X1 

X
2
 

 X
V
 X

D
 

 

_�̀a� 

_�̀b� 
chi-plot for (X

1
,X

2
)

λ

χ

-1 -0.5 0 0.5
-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

chi-plot for (X
V
,X

D
)

λ

χ

-1 -0.5 0 0.5 1
-0.06

-0.04

-0.02

0

0.02

0.04

0.06
chi-plot for (X

H
(1),X

H
(2))

λ

χ

-1 -0.5 0 0.5 1
-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 

 

8

gathered into a d-dimensional column vector V� = ���, … , �c�d where e is the neighborhood size. Under the spatial homogeneity 

assumption of each subband, multiple observations of the vector V� are obtained by moving a window across a subband and the 

samples of the e-dimensional vector V� are noted ��f � !��,f , … , �c,f&d , g � 1,… , � where � is the size of a wavelet subband. 

As shown in Fig. 2 , the data set to be modeled is then reorganized into the observation matrix 

 � h���, … , ��f , … , ���i (7)

A. A brief review of copulas 

Copulas have become a popular multivariate modeling tool in many fields such as finance, biomedical studies or hydrological 

modeling, where multivariate dependence is of interest [42]-[44]. The concept of copula relies on the desirable property of 

separating the study of marginal distributions from that of dependence. Indeed, the dependence between components is entirely 

embedded in the copula, so it provides a simple description of the dependence structure independently of the marginals. 

This section recalls a few basic definitions that will be useful for the remainder of the paper. For a rigorous mathematical 

presentation of the concept of copulas, see [45]. A copula j is a joint cumulative distribution function (CDF) defined on the d-

dimensional unit cube h0,1il such that every marginal is uniform on h0,1i. The fact that the copula can be very useful for 

representing multivariate distributions with arbitrary marginals comes from the following result. Sklar’s theorem [46] states that 

given a d-dimensional random vector Xnn� � ���, … , �l�o with continuous marginal CDFs F�, … , Fl, there exists a unique copula j 

such that 

q���, … , �c� � j!q�����, … , qc��c�&	∀	� � ���, … , �c� ∈ sc 

Conversely, if j is a copula and q�, … , qc  are CDFs then the function defined by j!q�����, … , qc��c�& is a joint CDF with 

marginals q� , … , qc. Moreover if the function j is continuous and differentiable, then the copula density is given by 

t�u�, … , uc� � vc j�u�, … , uc�vu�…vuc  (8)

In this case, the joint probability density function of V� can be written as 

w���, … , �c� � t!q�����,… , qc��c�&xw�����
c

�4�
 (9)

 
Fig. 2.  Intraband multivariate modeling schema 

��g � y�1,g⋮�e,g{ 

Observation matrix (data set) 

 � y�1,1 … �1,g … �1,�⋮ … ⋮ … ⋮�e,1 … �e,g … �e,�{ 
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where w�	, � = 1, … , e are the marginal PDFs. Thus, a joint multivariate PDF is uniquely defined given marginal PDFs and copula 

density. 

Several copula families were previously proposed such as elliptic copulas, Student t copula or Archimedean copulas which 

differ in their dependence representation. For texture modeling, previous works have highlighted the key role played by the 

linear dependence, i.e. the correlation. Thus, in our work, among elliptic sub-family of copulas, we consider the Gaussian Copula 

[47] for three reasons: 

• Gaussian Copula-based multivariate PDFs are a good fit to the statistics of wavelet coefficient subbands. They accurately 

capture both the marginal and joint distributions of wavelet subband coefficients. 

• Related hyperparameters can be easily estimated using ML-based estimator (see sub-sections C and D). 

• The existence of a closed form of KLD and consequently of JD between Gaussian Copula-based multivariate PDFs (see sub-

section E).  

The Gaussian Copula is of practical interest since it can be easily implemented and its dependence structure is intuitive, based 

on correlation coefficients. The Gaussian Copula density is expressed by re-writing the multivariate normal density in the form 

given by equation (9) as follows 

t�u�, … , uc� = 1|Σ|� �⁄ exp −��d�Σ�� − ����2  (10)

where ��d = ���, … , �c� stands for the transpose of vector �� which is a vector of normal scores such that �� = ����u��, and � for 

the CDF of the normalized Gaussian distribution 	�0,1�. The matrix � is the d-dimensional identity matrix and Σ is the 

covariance matrix with ones in the diagonal. 

B. Gaussian Copula-based multivariate modeling estimation 

Let � = 	 ���, … , �c� be the set of marginal parameters. The hyperparameters of the Gaussian Copula-based multivariate model 

to be estimated are � = ��, Σ� where Σ is the covariance matrix of a Gaussian distribution. 

The ML estimator of the hyperparameters associated to the joint PDF w���; �� is given by 

�H = A�̂, ΣHB = arg max�,� log x w���f; ���
f4�  

It has been shown in [48] that the marginal parameters �̂ = ��̂�, … , �̂c� could be estimated separately from the covariance matrix 

Σ. This leads to a simple procedure to estimate the full set of unknown hyperparameters: 

1. ���, … , �c� are estimated by using the ML estimator of marginals independently: 

�̂� 	 � argmax�� logxw�!��,f; ��&�
f4�  
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2. Each observation ��f = !��,f , … , �c,f&d  from the observation matrix  (7) is transformed to ��f � !��,f , … , �c,f&d by ��,f �
��� Dq!��,f; ��&E, g � 1,… , � and	 � � 1,… , e. The transformed data set is then reorganized into a matrix � � h���, … , ���i 
containing realizations of a Gaussian vector �� � ���, … , �c�d. This transformation is a Gaussianization procedure of the 

subband. The Gaussianized subband is considered as a realization of a Gaussian vector �n�. An example of subband 

Gaussianization is illustrated in Fig. 3; each neighborhood ��f  in the initial subband (a) is transformed to ��f which is an 

observation of a random Gaussian vector �n�. Hence, the subband resulted (b) is a realization of this Gaussian vector and said 

to be Gaussianized. 

Finally, the ML estimate for Σ is the sample covariance matrix of Gaussian observations ���, … , ���: 

ΣH � 	1L	O��f��fd
�

�4�
�	1L ��d  

Since generalized Gaussian and Weibull distributions were successfully used to represent marginal distributions of wavelet 

coefficients and their magnitudes respectively [2], [9], we propose the Gaussian Copula-based Multivariate generalized Gaussian 

(GC-MGG) and the Gaussian Copula-based Multivariate Weibull (GC-MWbl) distributions for modeling the joint PDF of 

subband coefficients or their magnitude. 

C. Gaussian Copula-based Multivariate generalized Gaussian distribution GC-MGG 

Using Gaussian Copula density, we define the GC-MGG probability density function by 

w���������; �� � 1|Σ|� �⁄ exp���d�Σ�� � ����
2 � � �

2�Γ�1 �⁄ ��
c exp�O�|��|� �

�
	

c

�4�
 

∀�� = 	 ���, … , �c� ∈ sc 

(11)

where � � ��, �, Σ� denotes the hyperparameters set, � � 0	, � � 0 are the scale and the shape parameter respectively, Σ is the 

covariance matrix of the Gaussian vector �� defined by �� � ���!q���; �, ��&. 
� is the CDF of the normal distribution 	�0,1� and q��; �, �� � �0.5 D1 G �!�� �⁄ �� , 1 �⁄ &E 	� ' 0

1 � q����	�   0	 % is the generalized Gaussian CDF, 

where Γ�¡� � ¢ £�d�¤��¥¦ e� is the Gamma function and ���, ¡� � �
§�¤� ¢ £�d�¤��e�¦̈  is the incomplete Gamma function [49]. 

 
Fig. 3.  The transformed subband (b) is obtained from the initial one (a) by Gaussianization in order to estimate Gaussian Copula covariance matrix 

 

Initial subband Gaussianized subband 

(a) (b) 
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Note that the definition of GC-MGG (11) includes the particular case of the multivariate Gaussian density for � = 2 and of the 

generalized Gaussian density when e = 1. 

The ML estimate of marginal parameters can be found for example in [2] or [50]. By construction, due to the use of a sliding 

overlapping window to construct the observation matrix  (7), all the marginals have the same parameters ��, ��. Hence, we can 

use any observation �� = !��,�, … , ��,�& which contains all the coefficients of a wavelet subband to estimate ��, ��. 

Fig. 4 and Fig. 5 show examples of bivariate and trivariate empirical PDFs of intraband wavelet coefficients compared to the 

estimated GC-MGG densities. When empirical joint densities exhibit a striking non-Gaussian behavior, the fitted GC-MGG 

densities can characterize this behavior. The fits are quite good and support the use of Gaussian Copula-based densities for 

modeling wavelet coefficients. The third column (Fig. 4) corresponds to a special case. The two coefficients are Gaussian and 

decorrelated as shown by the empirical PDF (dotted contours are nearly circular); this behavior is confirmed by the 

hyperparameters of the fitted GC-MGG: the shape parameter is near 2 which characterizes a Gaussian marginal and the 

covariance matrix is close to the identity matrix which implies independence. 

D. Gaussian Copula-based Multivariate Weibull distribution GC-MWbl 

We generalize the novel univariate model introduced by Kwitt and Uhl in [8], [9] by defining the GC-MWbl to model the joint 

statistics of wavelet coefficients’ magnitude. The GC-MWbl probability density function is given by 

w����©ª*���; �� = 1|Σ|� �⁄ exp −un�d�Σ�� − ��un�2 × D«¬Ec ∏ ����c�4�¬c���� exp − O D��¬ E	c

�4�
 

∀�� = 	 ���, … , �c� ∈ �ℝ®�c 

(12)

where � = �«, ¬, Σ� denotes the hyperparameters set, « > 0	, ¬ � 0 are the shape and scale parameter respectively, Σ is the 

covariance matrix of the Gaussian vector un� vector defined by u� = ���!q���; «, ¬�&. � is the CDF of the normal distribution 

	�0,1� and q��; «, ¬� = 1 − £��d ª⁄ �¯	∀	� ' 0. 

The ML estimator of �«, ¬� can be found in [8] or [50] and Σ is estimated as indicated in part B. 
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E. Similarity Measurement between Gaussian Copula Based Multivariate Models 

In this work, the similarity between two images is measured by comparing the sets of texture features extracted from wavelet 

decomposition. We use Gaussian Copula-based multivariate models (GC-MGG and GC-MWbl) to represent multidimensional 

histograms of subband coefficients or their magnitudes. 

Given two Gaussian Copula-based multivariate models � w���; ��� = t!q�����, … , qc��c�& ∏ w�����c�4�¸���; ��� = t!¹�����, … , ¹c��c�& ∏ ¸�����c�4� %  
we note �� = ]D�����, … , �c���E , Σ�^ and �� = ]D�����, … , �c���E , Σ�^ the hyperparameters of w and ¸ respectively. 

We measure the similarity using JD which is the symmetrized version of KLD. In order to compute C;�w���; ���‖¸���; ���%� we 

first derive the general formula for KLD between two Gaussian Copula-based multivariate models given as (for more details, 

please see the Appendix) 

:�;�w���; ���‖¸���; ���%� = º … º w���; ��� log w���; ���¸���; ��� e�� 

= 	O:�; Dw� D�� ; �����E »¸� D��; �����E%Ec
�4� + 0.5 ��g�Σ���Σ�� + log |Σ�||Σ�| − e� (13)

Hence, the closed form of JD is 

C;�w���; ���‖¸���; ���%� = :�;�w���; ���‖¸���; ���%� + :�;�¸���; ���‖w���; ���%� 

= 	OC; Dw� D�� ; �����E »¸� D��; �����E%Ec
�4� + 0.5D�g�Σ���Σ�� + �g�Σ���Σ��E − e (14)

Finally, if we denote �5���
 and �5���

, " = 1, … , : the wavelet subband hyperparameters estimated from two images �� and �� 

respectively, then the overall similarity measure is the sum of JD across all subbands: 

;���, ��� = O C;\
54� Dw D��; �5���E »¸ D��; �5���E%E 

In the case of the two proposed multivariate models GC-MGG and GC-MWbl, the JDs between two joint PDFs are 

C;�w���������; ��, ��, Σ��‖¸���������; ��, ��, Σ��%�
= d ½�α�α��¿? Γ �β� + 1β� �Γ D1 β�Á E − 1β� + �α�α��¿= Γ �β� + 1β� �Γ D1 β�Á E − 1β�Â + 0.5D�g�Σ���Σ�� + �g�Σ���Σ��E − e 

(15)

and 

C;�w����©ª*���; «�, ¬�, Σ��‖¸����©ª*���; «�, ¬�, Σ��%� = d �Γ �a�a� + 1� �b�b��Ä? + Γ �a�a� + 1� �b�b��Ä=

+ �a� − a�� ln �b�b�� + γ �a�a� + a�a� − 2� − 2� + 	0.5D�g�Σ���Σ�� + �g�Σ���Σ��E − e	 (16)

where � � �Ç�1� ≃ 0.57721 denotes Euler-Mascheroni constant. 



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 

 

14 

IV. EXPERIMENTAL RESULTS 

A. Experimental Setting 

In this section experiments are conducted to evaluate the performance of multivariate modeling in a retrieval framework using 

wavelet transforms. A comparison is made between the proposed Gaussian Copula-based models (GC-MGG and GC-MWbl), 

and previous works including the univariate models presented in [2], [9] (GG and Wbl) and, Mixture Gaussian model (MGMix) 

of [27]-[29], multivariate Gaussian (MG) model used by [20] and the Multivariate generalized Gaussian (MGG) model 

introduced in [32]. 

In our simulations, three experimental benchmarks are considered to evaluate the retrieval performance: 

• EB1: 40 grayscale texture classes from the MIT Vision Texture Database (VisTex) [51] are addressed. This experimental 

setup is conventional and thus is largely used in the literature devoted to texture image retrieval issue [2], [9], [35]. From 

each of these texture images of size 512x512 pixels, 16 non-overlapping subimages (128x128 pixels) are created in order to 

form 16 samples of each texture class. A test database of 640 texture images is then obtained. 

• EB2: from the entire Brodatz texture album [52], 	 texture classes are randomly selected, with increasing values of  �	 =
10,15,20,25,30,35,40�. For each value of 	, we take 25 random subsets of 	 texture classes from the album. In a random 

subset, each of the 	 texture images of size 640x640 pixels is then divided into sixteen 160x160 non-overlapping subimages 

creating a test database of 	 × 16 texture samples. In summary, the second benchmark is composed of 25 × 7 = 175 

random test databases of different sizes 	d = 	 × 16		�	 � 10,15,20,25,30,35,40� while the classic one is composed from 

one test database of 640 samples. 

• EB3: 250 texture classes from Amsterdam Library of Textures (ALOT) [53], and 476 texture classes from the novel texture 

image database Salzburg Textures (STex) [54] are considered. In the case of ALOT database, we select the grayscale version 

under the C1L1 capture condition. The STex database consists of true color texture images, hence we transform all images 

to grayscale ones. As for EB1 and EB2, Each image class is split into 16 non-overlapping subimages and two large test 

databases of 4000 and 7616 images are created. 

We employed the orthogonal wavelet transform (OWT) with Daubechies’ filters (db4 and db5) [55] and the Kinkgsbury’s Q-

Shift (14,14)-tap filters in combination with (13,19)-tap near-orthogonal filters for Dual Tree Complex Wavelet Transform (DT-

CWT) [56]. We consider a square neighborhood of size 2x2 to construct observation matrices of intraband coefficients. Although 

we could consider a bigger neighborhood, it does not make relevant differences in accuracy retrieval as we will show at the sub-

section F of this part. A maximum of three scales of decomposition is chosen. Our experiments agree with [2] in that the size of 

the smallest subband resulting from a transform should be more than 16x16 to ensure the consistency of PDF hyperparameter 
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estimation. 

For similarity measurement, JD is used which is the symmetrized version of KLD. The closed form of KLDs for GG and Wbl 

are derived in [2] and [8] respectively. In the case of MGmix no closed form expression of KLD exists, so the variational method 

introduced in [31] as an analytic approximation to KLD for MGmix models is considered. 

In each retrieval experiment a query image is any one from the test database of size 	d. The relevant images for each query are 

the other 15 subimages obtained from the same image class. The number of correctly retrieved images (relevant images for a 

query image) is determined among the : retrieved ones, in this case : represents the size of the query. In our experiments, 

	É = 15 is the number of relevant subimages in each class. For a query image, let Ê��:� be the number of correctly retrieved 

images among the : retrieved ones. The quantitative evaluation consists in computing the three measures [57]: 

• The retrieval recall with respect to a query Ë, is the ratio of the number of relevant images retrieved over the total number of 

relevant images in the database for the respective query. The average retrieval recall is then given for 	: � 1 … 	d by 

Ì�:� = 0£«Ê �Êu0¬£g	Íw	g£+£Î«Ê�	�0«¸£Ï	g£�g�£Î£e	Êu0¬£g	Íw	g£+£Î«Ê�	�0«¸£Ï �	

� ∑ Ê��:�)Ñ�4�	d × 	É  

• The retrieval precision with respect to a query Ë, is the ratio of the number of relevant images retrieved over the number of 

total retrieved images. The average retrieval precision is then given for	: � 1 … 	d by 

 �:� = 0£«Ê �Êu0¬£g	Íw	g£+£Î«Ê�	�0«¸£Ï	g£�g�£Î£eÊu0¬£g	Íw	g£�g�£Î£e	�0«¸£Ï �	

� ∑ Ê��:�)Ñ�4�	d × :  

 

• The average retrieval rate (ARR) 

ÒÌÌ � ∑ Ê��	É�)Ñ�4�	d × 	É  

In information retrieval literature, the recall/precision curve is commonly used to evaluate the performance of retrieval systems 

[58]. A method with recall/precision curve which will be on above of another is considered better and more suitable. The ARR is 

the average retrieval precision  �	É� after retrieving a number of images equal to the number of relevant images. High values of 

ARR denote a high retrieval rate. 

B. Retrieval Performance with EB1: univariate models vs Gaussian Copula-based multivariate models 

Table I summarizes the ARRs obtained by using GC-MGG and GC-MWbl over the corresponding univariate models GG and 

Wbl respectively. We can observe from the Table I that: 
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1) Using Gaussian Copula-based models leads to improvement in retrieval accuracy. GC-MGG and GC-MWbl perform better 

than GG and Wbl by around 6% and 4% respectively. Even though GG and Wbl give equivalent performances, GC-MGG is 

slightly more efficient and improves retrieval performance by about 2% compared to GC-MWbl. This may be explained by 

the fact that GC-MGG modeling fits well the subband multidimensional histograms and especially in first decomposition 

level. 

2)  The improvement from one to two scales is more important for univariate models GG and Wbl (around 6%) than for 

multivariate models GC-MGG and GC-MWbl (around 3%). As reported in [2] and [9], increasing decomposition level does 

not provide further improvement. In addition, using four decomposition scales in our case leads to wavelet subbands of size 

TABLE I 

AVERAGE RETRIEVAL RATES (%) IN THE TOP 16 MATCHES USING ORTHOGONAL WAVELET TRANSFORM WITH DAUBECHIES’ FILTER db4 AND DUAL TREE COMPLEX 

WAVELET TRANSFORM ON EB1 (VISTEX) 

 

Type of Transform 
Models 

GG Wbl GC-MGG GC-MWbl 

1 scale 

OWT, db4 

DT-CWT 

 

70.52 

72.89 

 

69.37 

73.17 

 

79.78 

81.66 

 

75.81 

77.59 

2 scales 

OWT, db4 

DT-CWT 

 

76.42 

78.74 

 

75.92 

79.63 

 

81.94 

83.70 

 

79.61 

82.36 

3 scales 

OWT, db4 

DT-CWT 

 

78.78 

80.36 

 

78.27 

82.05 

 

83.19 

84.33 

 

81.55 

84.41 

 
Fig. 6.  Recall-Precision curves on EB1 using DT-CWT with 1 decomposition level for GG, Wbl, GC-MGG and GC-MWbl. 

 
Fig. 7.  Retrieval effectiveness according to the number of samples retrieved on EB1 using DT-CWT with 1 decomposition level for GG, Wbl, GC-MGG and 

GC-MWbl. 
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8x8 for EB1 and EB3 or 10x10 for EB2 so the estimate of covariance matrices becomes inaccurate. 

3) There is a slight improvement using DT-CWT beside OWT (around 2%). This observation is coherent with the results 

obtained in [8], [9]. This can be explained by the fact that six oriented subbands are provided by DT-CWT for each scale 

while the OWT provides only three. Hence, the size of signatures for DT-CWT is twofold compared to OWT. However it is 

interesting to observe that the two univariate models GG and Wbl are almost equivalent when one uses the same wavelet 

transform for both of them to extract signatures. In [8], [9] Kwitt and Uhl suggest the use of Wbl as an alternative to GG and 

they employ Wbl with DT-CWT while they use GG with OWT. We emphasize the fact that models must be used with the 

same transform tools to have a fair comparison of performance. 

Fig. 6 depicts the recall/precision curves for the four different models. These results support the remarks mentioned above: the 

two univariate models, i.e. GG and Wbl, are equivalent while the use of Gaussian Copula-based models GC-MGG and GC-

MWbl improves significantly the retrieval accuracy. Fig. 7 compares the ARRs as a function of a query size :. This plot leads to 

a receiver operating characteristic (ROC) curves for each model. We can observe that when : = 42 GC-MGG approach 

retrieves 90% of relevant texture samples from EB1 while : = 48, 64, 66 are required in order to retrieve the same percentage 

using GC-MWbl, GG and Wbl respectively. Using GC-MGG and GC-MWbl models, 95% of relevant samples can be obtained 

when we retrieve 100 ones while the ARR still not reach this level of percentage for the two univariate models, i.e. GG and Wbl. 

C. Retrieval Performance with EB2: univariate models vs Gaussian Copula-based multivariate models 

The benchmark EB2 is random and thus more objective than the conventional EB1 for providing additional justification to use 

Gaussian Copula-based models. Table II summarizes the ARRs using different numbers of classes for the four compared models. 

We can observe an important improvement in retrieval rates for all the numbers of classes randomly selected when Gaussian 

Copula-based models are used. The improvement is around 6% for GG versus GC-MGG and about 4% from Wbl to GC-MWbl. 

Thus, we can conclude that univariate models GG and Wbl are almost equivalent while using Gaussian Copula-based models 

GC-MGG and GC-MWbl increase significantly the retrieval rates. 

D. Retrieval Performance with EB3: univariate models vs Gaussian Copula-based multivariate models on large databases 

In Table III we summarize the ARR for the two large databases STex and ALOT. The GC-MGG and GC-MWbl models show 

again higher retrieval rates than GG and Wbl models. Nevertheless, the ARRs obtained on STex or ALOT (57.24% and 43.25% 

respectively) are unsatisfactory. These results are not really surprising; especially for STex database for which the color features 

appear very discriminant as shown in the work of Kwitt et al. [32]. We point out that we can improve retrieval rates for these 

databases if we take into account color information in addition to spatial dependency as it was shown in [59], but this is beyond 

the scope of our work where we are interested only in texture content of grayscale images. 
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E. Retrieval Performance with EB1: other multivariate models vs Gaussian Copula-based multivariate models 

Here, the performance of the proposed Gaussian Copula-based models and three others multivariate models are compared: 

multivariate Gaussian (MG), Multivariate generalized Gaussian (MGG) and multivariate Gaussian mixture (MGmix). We use the 

Gaussianization method described in [20] to obtain Gaussianized wavelet subbands and hence we can model wavelet 

coefficients with MG model. The KLD and as a consequence the JD between MG models are widely used in literature, they can 

be found for instance in [60]. Approximated Rao geodesic distance is used as similarity measure between MGG distributions 

[32]. The MGmix model is fitted with 2, 3 and 4 components using the conventional Expectation maximization (EM) algorithm. 

Initial component parameters are randomly chosen and the EM algorithm is stopped after convergence or after 100 iterations. A 

small regularization number Ó = 10�Ô is added to the diagonal of covariance matrices to make them positive-definite. There is 

no closed form for KLD and JD between MGmix models but we can use an analytic approximation as mentioned in [27]. We 

have chosen the variational method to compute JD between MGmix models, because among all methods introduced in [31] it is 

the one which leads to the best retrieval rates. 

Table IV summarizes the ARRs resulting from the use of the compared multivariate models on the conventional EB1 with 

OWT combined to Daubechies’ filter db5 and DT-CWT. As we can see, on the one hand, the proposed GC-MGG and GC-MWbl 

TABLE II 

AVERAGE RETRIEVAL RATES (%) ACCORDING TO THE NUMBER OF CLASSES CONSIDERED USING TWO LEVELS ORTHOGONAL WAVELET TRANSFORM WITH DAUBECHIES’ 

FILTER db4 AND DUAL TREE COMPLEX WAVELET TRANSFORM ON EB2. 
Number of classes GG GC-MGG Improve Wbl GC-MWbl Improve 

OWT, db4 

40 

35 

30 

25 

20 

15 

10 

 

71.39 

72.75 

73.62 

74.82 

77.51 

81.60 

81.83 

 

79.16 

80.64 

81.29 

81.88 

84.23 

87.41 

86.91 

 

7.77 

7.89 

7.67 

7.06 

6.72 

5.81 

5.08 

Mean=6.86 

 

71.49 

72.86 

73.74 

74.91 

77.60 

81.60 

81.85 

 

77.29 

79.00 

79.41 

80.62 

82.80 

86.04 

85.50 

 

5.80 

6.14 

5.68 

5.71 

5.21 

4.44 

3.65 

Mean=5.23 

DT-CWT 

40 

35 

30 

25 

20 

15 

10 

 

72.51 

73.94 

74.59 

75.77 

78.23 

82.48 

82.16 

 

79.69 

81.24 

81.84 

82.46 

84.50 

87.63 

86.99 

 

7.18 

7.3 

7.25 

6.69 

6.27 

5.15 

4.83 

Mean=6.38 

 

72.62 

74.05 

74.90 

76.22 

78.40 

82.86 

82.40 

 

77.95 

79.89 

80.15 

81.29 

83.39 

86.67 

85.80 

 

5.33 

5.84 

5.25 

5.07 

4.99 

3.81 

3.40 

Mean=4.81 

 

TABLE III 

AVERAGE RETRIEVAL RATES (%) IN THE TOP 16 MATCHES USING ORTHOGONAL WAVELET TRANSFORM WITH DAUBECHIES’ FILTER db4 ON LARGE DATABASES OF EB3  

 
STex ALOT 

GG GC-MGG Wbl GC-MWbl GG GC-MGG Wbl GC-MWbl 

1 scale 

OWT,db4 

DT-CWT 

 

31.64 

34.82 

 

43.91 

46.42 

 

31.05 

34.18 

 

37.60 

40.44 

 

23.68 

23.86 

 

30.02 

30.58 

 

23.42 

23.28 

 

27.01 

27.69 

2 scales 

OWT,db4 

DT-CWT 

 

40.70 

44.97 

 

50.11 

53.34 

 

40.18 

45.38 

 

44.70 

49.78 

 

31.99 

33.38 

 

36.44 

38.20 

 

31.55 

33.56 

 

34.52 

37.68 

3 scales 

OWT,db4 

DT-CWT 

 

45.89 

50.75 

 

53.81 

57.24 

 

45.69 

51.87 

 

50.11 

55.35 

 

37.86 

39.33 

 

41.86 

43.06 

 

37.39 

40.01 

 

40.14 

43.25 
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in most cases outperform MG, MGG and MGmix models. We remark that as for the previous experiments, there is an 

improvement in retrieval accuracy for all models when additional scales are used for wavelet decomposition. On the other hand, 

the best results are always obtained with DT-CWT compared to OWT. We note that adding mixture components for MGmix 

model does not improve significantly retrieval rates while it reduces the computation efficiency especially for similarity measure. 

For this reason, taking 2 or 3 components is a good trade-off for MGmix model to achieve competitive performance while 

respecting the constraint of computing time. We note that, although using computationally complex Gaussianization procedure 

of [20] to obtain Gaussian subbands in order to exploit MG model, the retrieval performance of MG model is less than these of 

univariate models. We point out that even if MGG model has achieved good performance when it was used with color texture 

images [32], its discrimination power decreases when it is employed to model only the spatial dependency of wavelet 

coefficients from grayscale texture images. 

The same conclusions can be obtained from recall/precision curves (Fig. 8). Finally, ROC curves provide an additional 

justification of the improvement in retrieval framework using Gaussian Copula-based models (Fig. 9). For example, for GC-

MGG we need to use queries of size 28 to reach 90% of relevant samples while we must retrieve 30, 36 and 60 images to reach 

the same percentage with MGmix, GC-MWbl, and MGG models respectively. 

F. Dimensionality trade-off 

We studied the effect of the neighborhood size and the number of decomposition levels on retrieval accuracy. We compared 

  
Fig. 8.  Recall-Precision curves on EB1 using OWT, db5 with 3 decomposition 

levels for multivariate models. 

Fig. 9.  Retrieval effectiveness according to the number of samples retrieved on 

EB1 using OWT, db5 with 3 decomposition levels for multivariate models. 

 

TABLE IV 

AVERAGE RETRIEVAL RATES (%) FOR MULTIVARIATE MODELS IN THE TOP 16 MATCHES USING ORTHOGONAL WAVELET TRANSFORM WITH DAUBECHIES FILTER db5 AND 

DUAL TREE COMPLEX WAVELET TRANSFORM WITH EB1. 

Type of Transform MG 
MGmix 

MGG GC-MGG GC-MWbl 
nc=2 nc=3 nc=4 

1 scale 

OWT, db5 

DT-CWT 

 

62.38 

65.71 

 

71.79 

78.19 

 

73.12 

79.90 

 

75.18 

80.05 

 

64.16 

71.51 

 

79.57 

81.66 

 

75.18 

77.59 

2 scales 

OWT, db5 

DT-CWT 

 

70.17 

71.27 

 

78.30 

81.77 

 

79.53 

83.41 

 

79.97 

83.24 

 

71.56 

75.25 

 

82.05 

83.70 

 

80.08 

82.36 

3 scales 

OWT, db5 

DT-CWT 

 

73.74 

74.59 

 

81.06 

83.82 

 

81.41 

84.04 

 

80.07 

83.07 

 

75.06 

78.08 

 

83.31 
84.33 

 

81.75 

84.41 
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the ARRs using GC-MGG and MGmix models. The results are reported in Table V. We observe that the performance decreases 

for both models when using 4 scales. This substantiates the claim of Do and Vetterli [2] to use subbands with sufficient sizes to 

estimate model parameters. For instance, on EB1 considering 128x128 images, the use of 4 scales leads to subbands with a 

smallest size 8x8 which is insufficient to estimate parameters regardless of the model used. With neighborhood of dimension 4x4 

it is obvious that the estimation of covariance matrices of 16x16 size using data set of length 256 from a subband of size 16x16 

will be inconsistent. Hence, the ARRs decrease when passing from 2 to 3 scales with neighborhood size bigger than 3x3. 

Unfortunately it is difficult to provide analytic relationship between neighborhood size (noted e in Fig. 2) and the data set length 

(noted � in Fig. 2) to have effective estimation neither for Gaussian Copula-based models nor for MGmix. However, data set 

must be large enough (� ≫ e) to properly estimate the model hyperparameters. We further observe that the expansion of 

neighborhood size does not significantly improve retrieval performance while this increases the JD computational complexity 

which depends on the dimension e as it will be seen at the end of next part (Eq 17). 

G. Computational Complexity 

These experiments have been implemented in a Matlab R2011b environment on a Core 2 Duo (2.66 Ghz) PC with 3 GB of 

memory for tests on EB1 and EB2 and on a Core i7 (2.93 Ghz) with 8 GB for tests on EB3. The comparative computational 

runtime is summarized in Table VI. To extract a signature of a 128x128 image, the runtime is less than 1s for all compared 

models except for MGmix with more than 3 components and for MGG. Almost twofold time is required to compute GC-MGG 

signature compared to GG signature or GC-MWbl compared to Wbl, while 3 components MGmix and MGG require a 

computation time multiplied by 6 compared to GC-MGG. For example, the computational time to index EB1 is about 96 seconds 

when GC-MGG is used whereas it is about 9 minutes for MGmix with 3 components. In a retrieval system the complexity of 

similarity measurement is crucial. The use of Gaussian Copula-based models needs 14 times more runtime to measure similarity 

than the use of univariate models, but it stays applicable even in case of large databases. For example, using GC-MGG or GC-

MWbl requires only 2.5 seconds to measure similarity between a 128x128 image and all the candidate images in test database of 

size 640 which is a reasonable runtime for a database of this size. We further observe that the use of ML similarity between 

Gaussian Copula-based models has a high computational complexity compared to the use of JD. If we use GC-MGG with ML 

and 1/8 subsampling to reduce data set, 19 seconds is needed to compute likelihood similarity between a query image and the 

640 candidate images, while only 2.5 seconds are required if we use JD as similarity measure. According to the results of 

computational time, we note a relevant increase in retrieval accuracy using GC-MGG or GC-MWbl while keeping the use of 

these models tractable as in the case of univariate models GG and Wbl, and this is not the case when the same models are used 

with ML similarity measure. 
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We propose to analyze the computational cost corresponding to the use of JD compared to the use of ML as similarity measure 

to retrieve images indexed using GC-MGG model. We consider a wavelet subband of a query image �� presented by observation 

matrix  = h���, … , ���i where ��f = !��,f , … , �c,f&d , g = 1, … , � and e = � × Ë is the dimension of the considering 

neighborhood. The computational complexity of the similarity measurement between the query image and the 	d candidate 

images is only function of 	d, � and e. The computation of functions involved (product, summation, ln	�∙�, £���∙�, Γ�∙�, ×�∙�, 

���, ��. , . �, etc.) depends on the implementation (Matlab, C/C++, etc.) and on machine configuration (processor, memory, etc.). 

We propose to analyze the computational complexity as a function of 	d, � and e, so all involved numerical functions have 

complexity Ο�1� (they do not depend on 	d, � and e). We tried to perform the same optimization described in [36] consisting of 

precomputing of matrix inversions or determinants when image database is indexing. 

Using JD between the query image �� and the 	d candidate images which are indexed using GC-MGG model, requires first the 

estimation of hyperparameters to model the observation matrix of ��. The estimate of marginal parameters ��, �� using ML 

estimator has a complexity of Ο���; it does not depend neither on 	d nor on e. Then, we transform the observation matrix  into 

Gaussian realizations � = h���, … , ���i (as described in section III-B). This Gaussianization procedure has the complexity 

Ο�e × ��. Finally, the estimate of Σ using Gaussian realizations ¹ has a complexity Ο�e� × ��, and Ο�eÙ� is the complexity of 

calculating Σ�� using Gaussian-Jordan elimination. The whole complexity to estimate the hyperparameters of the query image is 

Ο!�e� + e + 1� × � + eÙ&. The next step is to use the closed form of JD in equation (15) to compute similarity. This closed 

form does not depend on �, unlike ML similarity, it is independent from the observation matrix . The complexity of the JD 

depends only on	e because the covariance matrices of candidate images and their inverse are already precomputed. So, its 

complexity is the complexity of two matrix multiplications and two trace functions which is Ο!2�eÙ + e�&. Then, the 

complexity of the use of JD closed form to measure similarity between �� and the 	d  candidate images of the database has 

TABLE V 

AVERAGE RETRIEVAL RATES (%) USING DIFFERENT NEIGHBORHOOD SIZES AT DIFFERENT DECOMPOSITION LEVELS WITH DAUBECHIES’ FILTER db4 ON EB1 

 1 scale 2 scales 3 scales 4 scales 

Smallest subband size 64x64 32x32 16x16 8x8 

neighborhood size MGmix, nc=3 GC-MGG MGmix, nc=3 GC-MGG MGmix, nc=3 GC-MGG MGmix, nc=3 GC-MGG 

2x2 76.18 79.78 80.58 81.94 81.63 83.19 76.75 80.43 

2x3 76.39 81.77 80.65 83.46 81.10 83.83 76.62 79.99 

3x2 76.15 81.58 80.14 83.29 80.66 83.87 77.28 80.10 

3x3 77.19 82.66 80.66 84.31 81.21 83.72 76.28 78.29 

4x4 75.98 82.46 78.54 84.29 78.68 82.45 68.63 73.07 

5x5 74.69 81.50 76.95 83.48 76.63 80.49  

 

TABLE VI 

COMPUTATIONAL COST (IN SECONDS) OF SIGNATURE EXTRACTION (OF AN 128X128 IMAGE) AND SIMILARITY MEASUREMENT (OF A QUERY IMAGE TO 640 

CANDIDATES IN EB1) USING 3 LEVELS OWT WITH DAUBECHIES’ FILTER db5 

Models GG Wbl GC-MGG GC-MWbl 
MGmix 

MGG 
nc=2 nc=3 nc=4 

Signature runtime 0.06 0.03 0.15 0.06 0.44 0.9 1.7 1.1 

Similarity runtime 0.15 0.17 
JD ML JD ML 

4.9 9.1 15.5 8.7 
2.5 19 2.5 12.8 
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complexity Ο�2�eÙ + e� × 	d�.  

Finally, the overall complexity including estimation of the hyperparameters of the query and the use of JD closed form to 

measure similarity to image database is 

Ο�2�eÙ + e� × 	d + �e� + e + 1� × � + eÙ� (17) 

ML similarity measurement requires evaluating the log-likelihood of all vector samples ���, … , ���  under all 	d candidate 

models in the database. Considering the expression of the GC-MGG PDF in equation (11), the computational complexity of ML 

measurement for each candidate model consists of: 

• Ο�e × �� for the Gaussianization procedure to obtain the transformed vectors ���, … , ��� using the marginal parameters of the 

candidate model. 

• Ο!�e� + e� × �& for calculating −���d�Σ�� − ����� , � = 1, … , �. 

• Ο�e × �� for calculating − ∑ �#Ú�Û#Ü �� 	 , � = 1, … , �c�4� . 

The overall computational complexity of ML measurement between the query image and all 	d candidate models in the database 

is then 

Ο!�3e + e�� × � × 	d& (18) 

We remark that ML measurement is more computationally demanding than the use of the JD closed form. For example, with a 

neighborhood of size e = 2 × 2 = 4, and a subband of size � = 64 × 64 = 4096, to measure a similarity of a query image to 

	d = 1000 candidates, we need 114688000 operations using ML, while only 222080 operations is required when using JD 

closed form. Even if the number of coefficients �	 can be reduced by a factor of 1 Ê⁄  using uniform subsampling as mentioned in 

[36], the ML measurement still has a considerable computational complexity Ο!�3e + e�� × � Ê⁄ × 	d&. 

We repeated experiments on EB1 using different subsampling factors (1 4⁄ , 1 8⁄  and 1 16⁄ ) to compare the computational time 

of using JD or ML as similarity measure in Matlab environment. We observe that the use of JD is by far more lightweight than 

the use of ML. We further observe that the use of JD outperforms the use of ML similarity in term of ARR even if all data set is 

used without subsampling (Table VII). 

TABLE VII 

AVERAGE RETRIEVAL RATES (%) AND COMPUTATIONAL COST TO MEASURE SIMILARITIES BETWEEN EACH IMAGE IN EB1 AND THE CANDIDATE IMAGES, USING 

DAUBECHIES’ FILTER db4 AND GC-MGG MODEL WITH JD OR ML AS SIMILARITY MEASURE 

 
GC-MGG with JD 

GC-MGG with ML, 

without subsampling 

GC-MGG with ML, 

subsampling factor=1/4 

GC-MGG with ML, 

subsampling factor=1/8 

GC-MGG with ML, 

subsampling factor=1/16 

ARR Time ARR Time ARR Time ARR Time ARR Time 

1 scale 79.78 ~284s 73.82 ~11h14m 73.90 ~3h36m 73.57 ~1h56m 70.96 50m 

2 scales 81.94 ~560 s 76.15 ~14h38m 76.44 ~4h40m 76.26 ~2h42m 73.63 ~1h35m 

3 scales 83.19 ~835 s 77.27 ~15h40m 77.68 ~5h14m 77.43 ~3h10m 75.14 ~2h2m 
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V. CONCLUSIONS 

In this paper, a multivariate stochastic modeling approach for wavelet subbands using Gaussian copula has been presented. 

Extending previous works, we provide two sub-models depending on the marginal density definition: Generalized Gaussian or 

Weibull. The advantage of using Gaussian Copula-based models over the existing univariate cases is that they enable to 

incorporate correlations between wavelet coefficients while keeping a good fit to the marginal distributions. The Gaussian 

Copula framework exhibits flexibility for modeling a wide variety of multidimensional data. Furthermore, for such multivariate 

models, we have derived the closed forms of Kullback-Leibler and Jeffrey divergences in order to derive efficient similarity 

measures for indexing or classification applications. In the retrieval context, experimental results performed on distinct databases 

show that the proposed models GC-MGG and GC-MWbl provide significant improvement of performance compared to state-of-

the-art methods. 

We conclude that the combined use of Gaussian Copula-based modeling and Jeffrey divergence as a similarity measure, 

improves retrieval performance compared to univariate modeling or the multivariate models MGmix and MGG. We can extend 

the proposed approach for texture segmentation and future research includes derivation of Bayesian wavelet estimator for image 

denoising using Gaussian Copula-based models. 
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APPENDIX 

The KLD between two Gaussian Copula-based multivariate densities w���; ��� and ¸���; ��� is given by (14). 

We have 

w���; ��� = 1|Ý�|� �⁄ £�� −un�d!Ý��� − �&un�2 x w� D��; �����Ec
�4�  

where �� = ]D�����, … , �c���E , Ý�^ and un�d = �u�, … , uc�, u� = ��� �q� D�� ; �����E� , � = 1, … , e. 
¸���; ��� = 1|Ý�|� �⁄ £�� −Î�d!Ý��� − �&Î�2 x ¸� D��; �����Ec

�4�  
where �� = ]D�����, … , �c���E , Ý�^ and Î�d = �Î�, … , Îc�, Î� = ��� �¹� D�� ; �����E� , � = 1, … , e. 

Hence, 
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:�;�w���; ���‖¸���; ���%� = º … º w���; ��� +Í¸ w���; ���¸���; ��� e��
= º … º w���; ��� +Í¸ |Ý�|� �⁄|Ý�|� �⁄ e�� − º … º un�d!Ý��� − �&un�2 w���; ��� e�� + º … º Î�d!Ý��� − �&Î�2 w���; ��� e��
+ º … º w���; ��� +Í¸ ∏ w� D��; �����Ec�4�∏ ¸� D��; �����Ec�4� e�� 

On another hand we have 

a)  

º … º w���; ��� +Í¸ |Ý�|� �⁄|Ý�|� �⁄ e�� = +Í¸ |Ý�|� �⁄|Ý�|� �⁄ × º … º w���; ��� e�� = +Í¸ |Ý�|� �⁄|Ý�|� �⁄  (19) 

b)  

º … º un�d!Ý��� − �&un�2 w���; ��� e�� = �g«t£ �º … º un�d!Ý��� − �&un�2 w���; ��� e��� 

= 0.5 º … º �g«t£ Dun�d!Ý��� − �&un�w���; ���E e�� 
= 0.5 �g«t£ �º … º w���; ���!Ý��� − �&un�un�d e��� 
= 0.5 �g«t£ �!Ý��� − �& º … º w���; ���un�un�d e��� 

(20)

 

While ¢ … ¢ w���; ���un�un�d e�� = ¢ … ¢ 	�un�; 0, Ý��un�un�d eun� = Ý�, where 	�un�; 0, Ý�� denotes a multivariate Gaussian distribution, (20) becomes  

º … º un�d!Ý��� − �&un�2 w���; ��� e�� = 0.5�g«t£ D!Ý��� − �&Ý�E 
= 0 (21) 

c) In the same manner of b) we have 

º … º Î�d!Ý��� − �&Î�2 w���; ��� e��
= 0.5 �g«t£ �!Ý��� − �& º … º w���; ���Î�Î�d e��� 
= 0.5 �g«t£ D!Ý��� − �&Ý�E = 0.5 !�g«t£!Ý���Ý�& − e& (22) 

d)  

º … º w���; ��� +Í¸ ∏ w� D��; �����Ec�4�∏ ¸� D��; �����Ec�4� e�� = O º … º w���; ��� +Í¸ w� D�� ; �����E¸� D��; �����E e��c
�4�  (23)

Since 
º … º w���; ��� +Í¸ w� D��; �����E

�̧ D�� ; �����E e�� = º w� D��; �����E +Í¸ w� D��; �����E¸� D��; �����E e��� 
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Then (23) becomes  

º … º w���; ��� +Í¸ ∏ w� D��; �����Ec�4�∏ ¸� D��; �����Ec�4� e�� = O :�; Dw� D��; �����E »¸� D�� ; �����E%Ec
�4�  (24)

Finally, we sum up (19), (21), (22) and (24) to obtain 

:�;�w���; ���‖¸���; ���%� = 	O:�; Dw� D��; �����E » �̧ D��; �����E%Ec
�4� + 0.5 ��g�Ý���Ý�� + +Í¸ |Ý�||Ý�| − e� 
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