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We calculate the Gaussian curvature modulus �k of a systematically coarse-

grained (CG) one-component lipid membrane by applying the method recently

proposed by Hu et al. [Biophys. J., 2012, 102, 1403] to the MARTINI

representation of 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC). We find

the value �k/k ¼ �1.04 � 0.03 for the elastic ratio between the Gaussian and the

mean curvature modulus and deduce �km/km z �0.98 � 0.09 for the monolayer

elastic ratio, where the latter is based on plausible assumptions for the distance z0
of the monolayer neutral surface from the bilayer midplane and the spontaneous

lipid curvature K0m. By also analyzing the lateral stress profile s0(z) of our

system, two other lipid types and pertinent data from the literature, we show that

determining K0m and �k through the first and second moment of s0(z) gives rise to

physically implausible values for these observables. This discrepancy, which we

previously observed for a much simpler CG model, suggests that the moment

conditions derived from simple continuum assumptions miss the effect of

physically important correlations in the lipid bilayer.
1 Introduction

Self-assembled from their lipid constituents, bilayer membranes provide a contin-
uous barrier to enclose living cells from their environment and form internal
compartments with various functionalities in eukaryotic cells.1 On length scales
that exceed their thickness by a very modest factor, the energetics of membranes
follow a curvature–elastic continuum theory, developed in its current standard
form 40 years ago by Wolfgang Helfrich.2 Representing a piece of lipid bilayer as
an idealized two-dimensional surface patch P with boundary vP, the theory states
that the (free) energy of that membrane can be written as an area integral over P
of an energy density that is at most quadratic in the local principal curvatures c1
and c2, plus a line integral over vP:2,3

E½P� ¼
ð
P

dA
1

2
kðK � K0Þ2þ kKG

� �
þ #

vP
dsg: (1)
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The two independent variables, K ¼ c1 + c2 and KG ¼ c1c2, are the total and
Gaussian curvature of the surface, respectively. Four empirical material parameters
suffice to describe the physics: the bending modulus k, the Gaussian curvature
modulus �k, the spontaneous membrane curvature K0, and the edge tension g.
Following a significant amount of work conducted since the early 1970s, k, K0 and

g are now fairly well understood and often known with good accuracy for common
experimental systems. For instance, the bending modulus k can be experimentally
measured by flicker spectroscopy,4–9 X-ray scattering,10–13 or micro-pipette aspira-
tion14–16 methods, or it may be determined by undulation mode analysis17–26 or
tensile force measurements of tethers27–29 in computer simulations. The edge tension
can be obtained by studying pores, both in experiments30–33 and in simulations.20–24

The spontaneous membrane curvature K0 vanishes for symmetric bilayers (a situa-
tion we will also restrict to in this work). However, due to the subtle nature of the
Gaussian curvature KG, whose surface integral remains constant if there is no
change in topology or boundary,34,35 it is difficult to obtain a signal which is sensitive
to the Gaussian curvature modulus �k, leaving the remaining one of the four material
parameters in the Helfrich theory less understood. While indeed its value does not
matter when neither topology nor boundary change, a number of important biolog-
ical processes depend on the Gaussian term, such as those occurring during
membrane remodelling, endo- and exo-cytosis, cell division and neurotransmission,
etc.1 Being able to determine the Gaussian curvature modulus would help us to
better understand these cases, including the question whether nature has chosen
to adjust the value of �k to tune the energetics of these events.
In a recent study,36 we proposed a novel method to determine the Gaussian curva-

ture modulus �k using molecular dynamic (MD) simulations. Through monitoring
the interplay between the curvature-elastic energy and the edge energy during the
closing-up process of open bilayer patches, �k could be extracted with a statistical
error of just a few percent. The theoretical background of this method will be briefly
reviewed in the following section. To demonstrate the applicability of our method,
we measured the value of �k for several bilayers that differ in bending rigidity k and
lipid spontaneous curvature K0m, using a generic top-down membrane model,23,24 in
which each lipid is represented by three linearly connected beads. The results are in
line with the sparsely available experimental measurements,37–43 as well as some
simulation studies.44,45 In addition, the required computing resources turned out
to be very modest, which suggested the possibility to apply this method to other
more chemically specific coarse-grained (CG) lipid models and obtain �k values for
common lipid systems, such as 1,2-dipalmitoyl-sn-glycero-3-phosphocholine
(DPPC) and 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC).
In the same study, we also questioned the applicability of an alternative way to

determine �k, namely through the moments of the lateral stress profile s0(z). With
the generic CG model we studied in ref. 36, the s0(z)-deduced lipid spontaneous
curvature K0m and the Gaussian curvature modulus �k were neither consistent with
the results from the patch-closure method, nor with some well-educated expecta-
tions.41 At first glance, the simplicity of the generic lipid model, the missing local
correlations and its unphysical stress profile may be blamed as the culprit. Yet, in
the absence of further tests, it remained unclear whether lipid models with a higher
resolution could indeed produce more physical results. This has important practical
implications, because, if one could obtain �k via the stress profile method, this would
be both straightforward and computationally (relatively) inexpensive. Besides, such
a test could potentially teach us how much chemical specificity would be needed to
yield stress profiles that quantitatively link to large scale bilayer elastic properties.
In the present paper, after a brief review of the pertinent theoretical background,

we will first apply the patch-closure method introduced in ref. 36 to the widely used
MARTINI21,46 lipid model. This model is not merely a generic representation of
amphiphilic entities that assemble into bilayers (like the Cooke model we used previ-
ously), but has instead been systematically and quantitatively constructed to

View Article 
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describe specific lipids. We chose to pick the case of DMPC and will therefore be
able to predict – by combining systematic coarse-graining with our patch-closure
measurement – the value of the Gaussian curvature rigidity �k and the elastic ratio
�k/k for an actual chemically specific lipid membrane. We will then test whether the
stress profile, which for MARTINI-DMPC is much closer to physical expectations
than for the Cooke model, constitutes a reliable predictor of the Gaussian modulus.
The MARTINI model is chosen for three different reasons:
1. It has proven to be a useful tool for a broad spectrum of biophysical problems,

e.g. the phase behavior of lipid mixtures,47 membrane fusion,48,49 membrane rafts
and domains50,51 and mechano-sensitive protein gates.52

2. Many relevant properties of the model, such as the bending modulus k and the
area per lipid AL have already been analyzed carefully,53 allowing us to use these
results when determining the Gaussian curvature modulus �k.
3. In contrast to the implicit-solvent Cooke model used in the original demonstra-

tion, the MARTINI model represents water explicitly (in a CG fashion). We will
show that this does not cause the basic strategy to fail.
Of course, the patch-closure method would also work for other lipid models

around the same resolution, even though it might still be a bit too ambitious to apply
it to an all-atom simulation.

2 Theory

In this section, we will briefly review the theoretical framework of both the patch-
closure and the stress profile method for determining the Gaussian curvature modulus.

2.1 Patch-closure method

Consider a circular membrane patch of areaA closing up into a vesicle in such a way that
its shape is always an axisymmetric cap of a sphere of curvature radius c�1. Using the
Hamiltonian from eqn (1), simple geometry shows that the energy can be expressed as36,54

DEðx; xÞ
4pð2kþ kÞ ¼ D ~Eðx; xÞ ¼ xþ x

h ffiffiffiffiffiffiffiffiffiffiffi
1� x

p
� 1

i
: (2)

Here, D ~E(x, x) is the energy difference between a curved patch and its flat counter-
part, scaled by the bending energy of a closed spherical vesicle, and

x ¼ ðRcÞ2; x ¼ gR

2kþ k
; and R ¼

ffiffiffiffiffiffi
A

4p

r
: (3)

The dimensionless ‘‘reaction coordinate’’ x changes between 0 (flat patch) and 1
(complete vesicle of radius R). All material parameters, k, �k, edge tension g, and
patch area A combine into a single parameter x, which fully determines the func-
tional form of the energy. When x < 1, the flat state is globally stable. Beyond x ¼
1 the vesicle state becomes more stable, yet is separated from the flat state by an
energy barrier of D ~E* ¼ (1 � x/2)2 situated at x* ¼ 1 � (x/2)2, as long as 1 < x <
2. For x > 2, a flat disk will immediately close into a vesicle without first having
to surmount a barrier.†
If we can determine the value of x in eqn (3), the Gaussian curvature modulus �k

can be extracted, because all the other parameters in the definition of x can be

View Article 
† Note that a two-dimensional equivalent of the Young–Laplace law demands that lipids in a
flat circular patch of radius r feel a compressive stress Sg ¼ g/r. This stress is on the order of a
few mN m�1 and thus not small. However, a patch that is buckled into the third dimension has
most of this stress relieved and it is these patches that are most relevant, as they are at the top of
the energy barrier.

This journal is ª The Royal Society of Chemistry 2013 Faraday Discuss., 2013, 161, 365–382 | 367
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determined by independent simulation methods. Hence, the parameter x uniquely
determines the form of the energy barrier D ~E(x, x), and the latter can be both
precisely and easily measured by the following sequence of steps:
1. Choose systems with moderate sizes such that 1 < x < 2; in other words, systems

for which an energy barrier exists. (This poses certain restrictions on the membrane’s
material parameters, as discussed in the supplementary information of ref. 36.)
2. Prepare lipid bilayers in pre-curved initial states with different x-values along

the barrier.
3. Measure the probability Pclose(x) of such patches closing up into the vesicle

state. This so-called splitting probability55 can be analytically predicted from
D ~E(x, x) and thus knowing P means knowing D ~E and thus x.
Two main concerns about this method are noteworthy. Firstly, the shape of the

membrane is required to remain in its spherical cap ground state, so that the undulation
contribution to the free energy can be neglected. The bilayer should therefore not be too
large (which limits the combination of (k, �k, g) for which the technique can profitably be
employed). Secondly, the existence of solvent will not affect the applicability of this
method. As shown by Noguchi and Gompper,56 hydrodynamic interactions speed up
the dynamics of vesiculation, but will not affect the probability of closure. Although
the hydrodynamics might become complex when a membrane is about to close up, it
is safe to terminate the simulation shortly before that complication steps in because
the gradient of D ~E(x,x) close to x ¼ 1 tends to be big enough such that the probability
of avoiding final closure is small. In addition, hydrodynamics makes the to-be vesicles
more spherical56 and thus helps them to closely follow the assumed pathway.
Recently, Shinoda et al.57 have proposed a related simulation protocol in which a

closed vesicle is pried open by pushing a cone into it. These authors wanted to deter-
mine the free energy needed to create a pore and open up the vesicle, and the model
just discussed is one way of analyzing their simulations. They found, however, that it
does not work in their case and proposed that the model neglects contributions to
the free energy, specifically the repartitioning of lipids between the leaflets. We
wish to emphasize that eqn (2) implicitly assumes a quasi-instantaneous equilibra-
tion of lipids between the inner and outer leaflet of the bilayer as it contains no
contribution due to area difference elasticity. While this might be questionable for
small pores of almost closed vesicles, the important ‘‘signal’’ in our simulation
protocol emerges from partially open vesicles, which are half-way between flat
and closed (in fact, x* z 0.5 in the case studied in this paper, as the inset of
Fig. 3 shows). We therefore believe that such complications will not matter in our
case and that the theoretical description provided above is appropriate (as we
have previously36 found for a different lipid model).

View Article 
2.2 Stress profile method

In this section, we briefly address two issues: first, we present a simple geometric
derivation of the conditions relating the elastic parameters to the moments of the
stress profile; and second, we show that thermal undulations of the bilayer, which
smear out the stress profile, nevertheless do not affect these moments.

2.2.1 The moment conditions. Various arguments have been put forward in the
literature to link the phenomenological elastic parameters in Helfrich theory
to properties of the lateral stress profile across a real membrane of finite thick-
ness.58–63 In its most basic version, such a relation follows from a mapping between
the energy of a deformed thin continuum elastic sheet to the effective Helfrich theory
of an infinitely thin curvature elastic surface. Let us briefly outline the argument.
A basic result in differential geometry states that when we displace a surface by a

fixed distance z along the local normal, the new ‘‘parallel surface’’ area element
dA0(z) and the total curvature K0(z) can be expressed in terms of the area element
dA and the total curvature K of the original surface as
368 | Faraday Discuss., 2013, 161, 365–382 This journal is ª The Royal Society of Chemistry 2013
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dA0(z) ¼ dA [1 + Kz + KGz
2 + O(z3)] , (4a)View Article 
K0(z) ¼ K [1 + (2KG/K � K)z + O(z2)] . (4b)

Furthermore, assuming a linear stress–strain relationship, the lateral stress profile
s(z) of a curved bilayer can plausibly be written as

s(z) ¼ s0(z) + 3(z)Y(z), (5)

where s0(z) is the stress profile of the uncurved patch, 3(z) is the curvature-induced
area strain and Y(z) is a local Young modulus (which we might not know, but which
turns out to be irrelevant for the present purpose). Here, positive lateral stress (i.e.
negative lateral pressure) means the surface is under tension. If one picks the refer-
ence position at the neutral surface z0 inside the material, where neither compression
nor stretching happens when the sheet is bent, then eqn (4a) and (5) together lead to

3(z) ¼ dA0(z)/dA � 1 ¼ K(z � z0) + KG(z � z0)
2 + O((z � z0)

3) . (6)

Integrating the stress across one monolayer allows the deformation energy per
area to be written as

em ¼
ðN
�z0

dz

ð3ðzÞ
0

d30sð30Þ: (7)

The total monolayer curvature energy Em equals the surface integral of em over
the neutral surface (henceforth, monolayer observables will be labeled with a
subscript ‘‘m’’). Thus, by matching the prefactors of the curvature terms (after shift-
ing the reference plane back to the mid-plane of the bilayer), one arrives at the rela-
tionship between the total bilayer surface tension S, the lipid curvature K0m, the
monolayer Gaussian curvature modulus �km and the stress profile s0(z):

1

2
S ¼

ðN
0

dz s0ðzÞ; (8a)

�kmK0m ¼
ðN

0

dz s0ðzÞðz� z0Þ; (8b)

km ¼
ðN
0

dz s0ðzÞðz� z0Þ2: (8c)

Note that, in the case of zero surface tension, S ¼
ð
dz s0ðzÞ ¼ 0, eqn (8b) is in

effect independent of z0.
It also straightforwardly follows that the Gaussian curvature modulus �k for the

bilayer can be simply obtained by extending the lower integration range in
eqn (8c) to minus infinity and setting z0 to zero:

k ¼
ðN
�N

dz s0ðzÞz2: (9)

Thus, �k is identified as the second moment of the lateral stress profile of a flat
membrane. Furthermore, as a natural consequence of eqn (8) and (9), the bilayer
and monolayer Gaussian moduli are related by
This journal is ª The Royal Society of Chemistry 2013 Faraday Discuss., 2013, 161, 365–382 | 369
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k ¼ 2

�
km � 2K0mz0km þ 1

2
z20S

�
; (10)

where the third term of course vanishes at zero surface tension.

2.2.2 Impact of bilayer undulations on stress profile moments.Due to the unavoid-
able bilayer undulations, the stress profile s0(z) is invariably smeared out. Let us
write its measured value as the convolution of some idealized perfectly flat
membrane stress profile, s*

0(z), with a function w(z) describing the probability density
of vertical bilayer displacements:

s0ðzÞ ¼
ðN
�N

dz0s�
0ðz 0Þw z� z 0ð Þ; (11)

and thus the nth moment of the actual stress profile can be expressed as

½zn�s0h
ðN
�N

dz zns0ðzÞ ¼
ðN
�N

dz0s�
0ðz0Þ

ðN
�N

dz ðzþ z0ÞnwðzÞ: (12)

Notice that as long as w(z) is normalized and symmetric around z ¼ 0 and the
bilayer is under zero tension, the zeroth, first and second moment are in fact indepen-
dent of w(z). Hence, while the actual profile s0(z) will look different for bigger
membranes which fluctuate more (it will have broader peaks of lower height), the
value of �k deduced from the second moment through eqn (9) is not affected. For
a symmetric bilayer the lowest moment that notices the fluctuations is the fourth

one:
�
z4
�
s0

¼ �
z4
�
s�
0

þ 6
	
z2


w

�
z2
�
s�
0

.

Unfortunately, the same independence of w(z) is not true for the monolayer
moments, since now the function w(z) will not end up being integrated over its entire
range. Instead, we find

½ðz� z0Þn�s0 ;m ¼
ðN
�N

dz0s�
0ðz0Þ

ðN
�z0

dz ðzþ z0 � z0ÞnwðzÞ: (13)

If, for simplicity, we assume that w(z) is a centered Gaussian with variance d2, then
we can, for instance, rewrite the first monolayer moment as

½z� z0�s0 ;m ¼
ðN
�N

dz0s�
0ðz0ÞWdðz0; z0Þ (14a)

with

Wdðz; z0Þ ¼ dffiffiffiffiffiffi
2p

p e�z2=2d2 þ z� z0

2

�
1þ erf

zffiffiffi
2

p
d

�
: (14b)

It is easy to check that in the limit d/z0 ! 0 the functionWd(z,z0) converges against

(z � z0)Q(z), where Q(z) is the Heaviside step function. Hence, if the membrane

undulations are small compared to the distance of the neutral surface from the

bilayer midplane, the fluctuation-smeared moments are approximately independent

of the smearing. This holds also for the second moment. For a square membrane at

zero tension, with a side length of L and bending modulus k, it is easy to see that d2 z
kBTL

2/16p3k, which in our case (k z 40kBT) leads to d z L/140. Hence, if we

demand d/z0 < 0.1 and take z0 ¼ 1.25nm, undulations will only matter once the

membrane side length L exceeds 17.5nm, which at an area per lipid of 0.6nm2

View Article 
370 | Faraday Discuss., 2013, 161, 365–382 This journal is ª The Royal Society of Chemistry 2013

http://dx.doi.org/10.1039/c2fd20087b


Pu
bl

is
he

d 
on

 2
9 

M
ay

 2
01

2.
 D

ow
nl

oa
de

d 
by

 U
ni

ve
rs

ity
 o

f 
G

ro
ni

ng
en

 o
n 

02
/0

7/
20

13
 1

1:
18

:5
7.

 

Online
corresponds to about 1000 lipids. This is bigger than the biggest membrane for

which we have calculated a stress profile in this work.

3 Methods

3.1 The MARTINI model

All simulations in the paper use version 2.0 of the MARTINI CG force field (FF).46

In this FF, every four heavy atoms in a molecule are mapped to one of the basic
building blocks, depending on their polarity, net charge and the ability to form
hydrogen bonds. These building blocks have been parameterized to reproduce
most of the thermodynamics correctly, especially the partitioning free energy
between different environments, such as between an aqueous solution and oil. Ac-
cording to their chemical structure, the building blocks are connected with standard
bonded interactions, i.e. harmonic, angular and dihedral potentials. The non-
bonded interactions consist of short-ranged shifted Lennard–Jones (LJ) potentials.
In addition, groups with explicit charges interact via shifted Coulomb interactions.
LJ and Coulomb potentials and forces approach zero smoothly at the cutoffs.
Details about the definition of the basic building blocks, the methods of parametri-
zation and the interaction parameters, can be found in the original papers.21,46 The
MARTINI FF is currently available for common lipids, peptides, sterols and other
systems. The DMPC lipids simulated in this study are composed of 10 beads: one
choline (+1 charge), one phosphate (�1 charge), two glycerol beads and three beads
for each of the two tails. Some important material properties of MARTINI DMPC,
such as the area per lipid and bending modulus k, were carefully determined in a
recent study.53

3.2 Simulation details

MD simulations were conducted with GROMACS 4.x simulation packages.64 The
leap-frog integration method65 was adopted with an integration time step of 20 fs
and the neighbor list (with a 1.2nm cutoff) was updated every 10 time steps. Stan-
dard cutoffs of 1.2 nm in the MARTINI FF for LJ and Coulomb interactions
were used. The relative dielectric constant was chosen as 3r ¼ 15. To set the temper-
ature, lipids and solvent molecules were separately coupled to a Berendsen thermo-
stat66 with a time constant sT ¼ 2 ps. Simulated systems were also coupled to a
Berendsen barostat66 with time constant sp ¼ 3ps and (isothermal) compressibility
kT ¼ 3 � 10�5 Pa�1. For the patch-closure simulations, isotropic pressure-coupling
was used, while in the stress profile simulations the box lengths in lateral (xy) direc-
tions were allowed to adjust independently (but isotropically) from the normal (z)
direction.

3.3 System setup

3.3.1 Patch-closure simulations. Curved membrane caps with 1200 DMPC lipids
were solvated and put into various spherical constraining potential fields for 10 ns.
During this time period, the patch was sandwiched (but not squeezed) by the field in
such a way that the membrane curvature was essentially held constant at a specific
chosen value, while the area per lipid and the open edge at the boundary could relax
because of lateral lipid diffusion. This constraining field was implemented using the
Mean Field Force Approximation boundary (MFFA) approach67 and only interacts
with the lipids, not the water. The radial distribution function of the terminal beads
in the lipid tails was calculated with respect to the center of the constraining field;
their peak position gives a more accurate indication of the membrane curvatures
to be used in the later analysis.
The systems with various curvatures are then put through a short energy minimi-

zation process before serving as the starting configurations for the closing/opening

View Article 
This journal is ª The Royal Society of Chemistry 2013 Faraday Discuss., 2013, 161, 365–382 | 371
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simulations. For each initial configuration, 60 independent simulations were run to
get the closing-up probabilities. A relative shape anisotropy index k2s, defined as a
combination of the eigenvalues of the gyration tensor,68 was used to monitor the
progress of each simulation. If k2s > 0.21, then a bilayer is labeled as flat, while
k2s < 0.008 means a closed vesicle is about to form.‡
In both cases, the simulation was stopped and the final state of each simulation was

recorded. The probability of membrane closure at each initial curvature (and thus
initial x) was calculated, the error of which was estimated from Binomial statistics.
Lastly, the parameter x was obtained from fitting the measured splitting proba-

bility to a corresponding analytical expression.55 To estimate the error bar of x,
Monte Carlo (MC) resampling over the original data set was repeated 1000 times.
Fitting results from the resampled sets provided the mean and standard deviation
of x. With g, A and k determined from independent simulations, �k was then calcu-
lated from eqn (3), with its error from the error propagation relations with other
parameters.

3.3.2 Stress profile simulations. Flat bilayers were simulated under zero lateral
mechanical tension. This is much more straightforward than the simulations using
the patch-closure method, but the analysis following the simulations is more subtle.
For a system of N DMPC lipids, exactly N/2 of them were put into each mono-

layer, making sure that the two monolayers are symmetric. After equilibration,
trajectories were first generated with the standard version of GROMACS 4.5 and
then fed into a customized version of GROMACS 4.0.269 for a ‘‘re-run’’ to calculate
the 3D pressure fields. In this package, the local pressure tensor contains a kinetic
and a virial contribution.69

pabV ¼ 1

V

X
i˛V

miv
a
i v

b
i þ

X
n

1

nV

X
hji

X
hk;li

�
Va

jk
Un � Va

jl
Un

� rbjl jk
N

�
XN
l¼0

fV

�
rjl þ

l

N
rjl jk

�
;

(15)

where pabV is the ab component of the average pressure tensor for the volume V; mi, vi
and ri denote the mass, velocity and position of particle i, respectively. hji means a
summation over all n clusters in the system; hk,li go over all pairs of particles within
a given cluster. The Irving–Kirkwood contour is discretized into the position-depen-
dent function fV (r) ¼ 1, if r ˛ V and zero otherwise. For the details and technical-
ities, see Ollila et al.69

The resulting 3D pressure field was averaged over all bins within the same slices,
which are parallel to the bilayer (xy) plane, giving the pressure tensor Pab(z) along
the normal direction. The standard error was also calculated during the averaging.
The stress profile is obtained as s0ðzÞ ¼ � 1

2
½PxxðzÞ þ PyyðzÞ� þ PzzðzÞ, with the same

sign convention as in eqn (5). Two different bin sizes of 0.05 and 0.10 nm were tested,
showing no difference in the results. The smaller bin size of 0.05 nm was used for all
of the results presented in this paper. For reasons of mechanical stability, Pzz(z) must
be constant, which is one further useful check.
Due to the big fluctuations of instantaneous pressure (normally on the order of

several hundred bar), all simulations have at least 2 ms equilibration time, followed
by a production run of 1 ms. The time intervals between two consecutive frames in a
trajectory were 10 ps. The error was determined from averaging within each z-slice.
The same type of error analysis was applied to all stress profile simulations described
in this paper. For the calculation of curvature-elastic properties via eqn (8) and (9),
the numerical integration was done as follows: each successive four data points were
fit to a cubic polynomial and integrated.70 Before that, the stress profiles were
symmetrized, but not smoothed.

View Article 
‡ For reference, k2s ¼ 0 indicates an ideal closed sphere, while k2s ¼ 1
4
holds for an infinitely thin,

flat and circular disk.
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4 Results

4.1 Patch-closure method

To obtain the probabilities of patch-closure, Pclose(x), six sets of simulations with
various initial curvatures were conducted. Each set contains 60 independent
repeats. The probabilities {Pclose(xi)}i ¼ 1–6 were then fit to get x, as illustrated in
the inset of Fig. 3. The results are listed in Table 1, together with all other param-
eters required to determine �k: the area per lipid AL ¼ 0.595 nm2 was measured with
a statistical error that is much less than 0.1%. This result is 2% smaller than the
experimental value of 0.606 � 0.005 nm2.71 The edge tension g ¼ 40.49 � 0.34
pN was measured by simulating bilayer ribbons with open edges,72–75 which is
consistent with the value of 50 � 10 pN previously measured with MARTINI-
DPPC lipids by studying pores21 and is compatible with the atomistic simulations
of DMPC by Jiang et al.,74 who find a value of g ¼ 10–30 pN by studying a ribbon.
Experimentally, the edge tension is a challenging quantity to determine, since it
involves studying pores under controlled conditions. For instance, Chernomordik
et al.76 found a value of 9 pN for natural lecithin and Zhelev and Needham31 found
9 pN for SOPC and 30 pN for SOPC with 50 mol% added cholesterol. These values
are of the same order of magnitude as our measured value for MARTINI-DMPC,
but somewhat smaller. This might be because DMPC is fully saturated, or because
MARTINI does not get the value of g completely right. In any case, the edge
tension is a highly subtle observable even experimentally, maybe best illustrated
by the fact that Karatekin et al.33 found a value of 9 pN or 21 pN for DOPC, de-
pending on whether the lipid had been supplied by Sigma or Avanti Polar Lipids,
respectively.
By applying the method of Brandt et al.,53 the bending modulus k was determined

through an analysis of the undulation spectrum of a bilayer under zero tension.
From a set of four independent 2 ms simulations of 8192 DMPC lipids, k ¼
(16.6� 0.5)� 10�20 J was measured. This value is about 10% larger than the original
published result53 of 15 � 10�20 J and also somewhat larger than the upper bound of
experimental results (5–15) � 10�20 J.63 However, comparable results of 13.4 � 10�20

J for DPPC77 and (7–20) � 10�20 J for DOPC29 have recently been reported using
area spectra analysis and tether pulling methods, respectively. How an uncertainty
in the bending rigidity affects our analysis will be revisited in Sec. 5. The reduced
parameter x in eqn (2) could be pinpointed with about 0.3% relative error to x ¼
1.359 � 0.004.
Inserting the measured values of A, g and x into the definition of x, one finds

2k + �k ¼ gR/x ¼ (15.9 � 0.1) � 10�20 J, with an error of less than 1%. Together
with the value k¼ (16.6 � 0.5)� 10�20 J this leads to a prediction for the elastic ratio
�k/k for DMPC of �1.04 � 0.03. Although the bilayer elastic ratio of DMPC is not
available from experiments, this result is in concordance with our previous simula-
tion study,36 in which �k/k � �1 for lipids with very slight positive curvatures.
The transition state has a curvature radius of 1=c� ¼ R=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�ðx=2Þ2

p
. With

R z 5.33nm and x z 1.359, we find 1/c* z 7.3nm, which is about twice the bilayer
thickness. This is indeed highly curved, but based on our experience with simpler

View Article 
Table 1 Measurements of the material properties of MARTINI-DMPC at T ¼ 300 Ka

AL [nm2] g [pN] x k [10�20 J] �k [10�20 J] �k/k

0.595 40.49 � 0.34 1.359 � 0.004 16.6 � 0.5 �17.3 � 1.0 �1.04 � 0.03

a AL is the area per lipid molecule, with an error much less than 0.1%; g is the excess free energy

per length of an open edge; x is the parameter in the free energy from eqn (2); k is the bending

modulus; �k is the Gaussian curvature modulus. The number of lipids in the system is 1200,

which gives a radius of R ¼ 5.33nm for the final vesicles.

This journal is ª The Royal Society of Chemistry 2013 Faraday Discuss., 2013, 161, 365–382 | 373

http://dx.doi.org/10.1039/c2fd20087b


Pu
bl

is
he

d 
on

 2
9 

M
ay

 2
01

2.
 D

ow
nl

oa
de

d 
by

 U
ni

ve
rs

ity
 o

f 
G

ro
ni

ng
en

 o
n 

02
/0

7/
20

13
 1

1:
18

:5
7.

 

Online
models36 we expect the anharmonic curvature corrections to still be small. Moreover,

the energy barrier is found to be 4pð2kþ kÞ 1� ð½ x=2Þ2�z50kBT , partially explaining
why the crossover curve for P(x) (see inset in Fig. 3) is so sharply defined and why we
need not worry about patch undulations. Both points show that the requirements
necessary for the patch-closure method to work indeed hold.
If one is willing to make some plausible assumptions about K0m and z0, the mono-

layer elastic ratio can be roughly estimated using eqn (10). Experimentally, K0m of
DMPC lipids is expected to be positive.78 Together with the fact that DMPC lipids
self-aggregate into a planar bilayer, K0m is likely to be in the range of (0.0.05) nm�1.
The value of z0, i.e. the position of the neutral surface, is debatable; however, it is
generally believed to be located around the hydrophilic/hydrophobic interface.41

The thickness of a DMPC bilayer is 3.53 nm,71 so for a rough estimate one may
take z0 � 1.25 nm, which is about 70% of the monolayer thickness away from the
bilayer center. Thus, 2K0mz0 is approximately 0–0.125. Inserting this into eqn (10)
leads us to estimate that �km/km z �0.92 to �1.04 � 0.03 or �0.98 � 0.09.

4.2 Stress profile method

Examples of the calculated stress profiles can be found in Fig. 1 and 2. They all share
the following general features: at the center of the bilayer the compressed hydrocarbon
chains repel and thus exhibit a negative stress. At the hydrophilic/hydrophobic interface
(e.g. around zx 1.25 nm in Fig. 1), a strong positive stress of several hundreds of bar is
measured. Then, the headgroup region becomes repulsive again, showing a negative
stress which gradually vanishes into the bulk of water. These features are qualitatively
in line with previously calculated profiles of MARTINI-DPPC46 (as shown in Fig. 2)
and other studies of membrane stress profiles.79–83

Our results for curvature–elastic properties deduced via the stress profile are
summarized in Table 2. All three types of studied lipids (DMPC, DPPC and
DOPC) show negative spontaneous curvatures, which follow the right order but
are too strong compared to expectations or experimental results (slightly positive
for DMPC,78 around 0 for DPPC46 and �0.05 to �0.07nm�1 for DOPC84). More
importantly, the bilayer elastic ratios of DPPC and DOPC calculated from the stress
profiles turn out to be positive. Although this is a natural result of the strongly

View Article 
Fig. 1 The lateral stress profiles of DMPC bilayers with 128 (solid, black), 256 (dashed, red)
and 512 (dotted, blue) lipids, placed such that z ¼ 0 is the bilayer center. The normal compo-
nent of the pressure tensor is also shown, which stays constant within the error bars. In order to
show the size of the error bars, only one out of three data points were plotted for the system
with 128 lipids.
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Fig. 2 The lateral stress profiles of DMPC (solid, black), DPPC (dashed, red) and DOPC
(dotted, blue) bilayers of 256 lipids (DMPC and DOPC at 300 K, DPPC at 323 K). The stress
profile by Marrink et al.46 (DPPC, 512 lipids, 323 K) is shown as the purple and dash–dotted
curve for comparison.
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negative K0m (eqn (10)), a positive value of �k means that the lamellar phase becomes
unstable,62 which contradicts the fact that both of these two PC lipids form perfectly
stable bilayers—both experimentally and in simulation.
Eqn (8c) implies that �km/km depends quadratically on z0:

km

km
¼ k

k
þ 2K0mz0 � S

k
z20; (16)

but using the actual values from Table 2 shows that the quadratic term is very small
compared to the other two for reasonable values of z0; hence the dependence is de
facto linear. For each system one can thus estimate the elastic monolayer ratio,
Table 2 Spontaneous curvatures and elastic ratios of some MARTINI membranes using the

stress profile methoda

# Lipid NL

4NW

NL
T [K] S

�
mN

m

�
K0m [nm�1] �k/k

1 DMPC 128|46 300 0.43 � 0.09 �0.077 � 0.001 �0.045 � 0.004

2 DMPC 256|46 300 0.09 � 0.08 �0.070 � 0.001 �0.053 � 0.003

3 DMPC 512|52 300 �0.17 � 0.05 �0.067 � 0.001 �0.061 � 0.003

4 DMPC 256|79 300 0.02 � 0.06 �0.063 � 0.001 �0.074 � 0.003

5 DPPC 256|42 300 0.08 � 0.08 �0.141 � 0.001 0.116 � 0.004

6 DPPC 256|42 323 0.12 � 0.08 �0.146 � 0.001 0.135 � 0.004

7 DOPC 256|41 300 0.14 � 0.08 �0.246 � 0.001 0.481 � 0.004

a NL is the number of lipids in the bilayer; NW is the number of CG water molecules, which is

equivalent to 4 real water molecules; T is the temperature; S is the zeroth moment of the bilayer

stress profile, which equals the surface tension; K0m is the lipid spontaneous curvature,

calculated using eqn (8a), with km ¼ 1
2
k ¼ 8:3� 10�20 J from Table 1; �k/k is the bilayer

elastic ratio. All error bars come from MC resampling of the original stress profiles, but

probably underestimate the correlation corrections between the frames. Note that: 1) the

same k from DMPC is assumed for DPPC and DOPC; 2) MARTINI-DPPC membranes

remain in the fluid phase at 300 K.47
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which unfortunately depends on somewhat arbitrary assumptions about z0 in the
absence of an independent measurement of the neutral surface. For instance, in
system 2, generously bracketing z0 between (0.5 and 2.0) nm gives �km/km in a range
of (�0.12 to �0.33). While this covers a range of a factor of 3, it is still far off
compared to our previously estimated and experimentally supported value �km/km
z �1. If we wanted to achieve the latter value, we would have to pick z0 z 7
nm, which is entirely implausible. In other words, no physically justifiable choice
for z0 can bring the stress-derived results for the elastic monolayer ratio in agreement
with our measurement from the patch-closure method in Section 4.1.
To further investigate what affects the stress profile, systems with various geom-

etries and simulation conditions were studied. First, to examine the size-dependence,
systems 1–3 with various numbers of lipids are compared in Fig. 1. The three profiles
qualitatively agree with each other, both in shape and in the positions of the
extrema. Yet, a clear trend of decreasing magnitudes of extrema was observed as
the system size was increased. This is most likely a consequence of the larger undu-
lations in bigger systems, as explained above. However, for the present analysis it is
the first and second moment of these profiles which matters and, as proved in Section
2.2.2, the undulation broadening does not affect the monolayer and bilayer moments
for the sizes we have studied. Remaining differences likely stem from differences in
hydration, a remaining tension in the 128 lipid system and possibly genuine finite size
effects beyond trivial broadening. We subsequently chose a system size of 256 lipids
to simultaneously remain efficient and reduce finite-size effects.
Second, a different hydration level was tested in system 4. The hydration ratio

4NW/NL was raised from 46 in system 2 to 79. Here, NW is the number of CG water
molecules, each representing 4 real water molecules in the MARTINI model. The
stress profile of this more hydrated system did not differ noticeably from that of
system 2, which indicates that the hydration level of system 2 suffices. While the first
moment, and thus the spontaneous lipid curvature, hardly changed, the second
moment and the elastic ratio differ by almost 50%, together with a greatly increased
error. This is likely to be due to the increasing uncertainty of the stress profile tails in
the bulk water region. The second moment is more sensitive to the value of s0(z) far
away from the reference plane because of its quadratic dependence on position z. To
avoid such complications with the stress noise in the water region, we only integrated
within |z| # 4.5 nm; however, then there is no need to have more than 41 to 45 (real)
water molecules per lipid and so we subsequently restricted to this value.
Third, the effects of chain length and saturation were evaluated by simulating

systems consisting of 256 DMPC, DPPC and DOPC lipids. Two changes are evident
as the chain length increases: first, the stress profile widens, since the bilayer thickness
increases (Fig. 2) and second, the hydrophobic regions of the stress profiles flatten;
hence the position of the neutral surface becomes a bit more uncertain and with it
the value of the monolayer elastic ratio also becomes uncertain. Note that the same
bending modulus k from the DMPC bilayer in Table 1 was assumed for the DPPC
and DOPC systems. Thus, we can compare different lipid systems only qualitatively.
Regardless of the exact values, the measured spontaneous curvatures K0m using

the stress profile method seem to exhibit a systematic trend towards more negative
values, as discussed at the beginning of this section. Although the same CG model is
used, it is at present unclear why the current results on K0m do not agree with previ-
ously reported46 ones from a simulation of 512 DPPC.x

View Article 
x In our experience, the measured stress depends sensitively on the details of the simulation,
which for many other observables do not greatly matter. For instance, we have observed a
slight dependence of the stress profile on the coupling constants of the barostat (e.g., sp ¼ 3
ps vs. sp ¼ 0.2 ps; results not shown). Such differences will be amplified when calculating the
moments. We have not followed up these observations in detail, but would like to point out
that any accurate and reproducible extraction of parameters from the stress profile would
ultimately have to address these issues.

376 | Faraday Discuss., 2013, 161, 365–382 This journal is ª The Royal Society of Chemistry 2013

http://dx.doi.org/10.1039/c2fd20087b


Pu
bl

is
he

d 
on

 2
9 

M
ay

 2
01

2.
 D

ow
nl

oa
de

d 
by

 U
ni

ve
rs

ity
 o

f 
G

ro
ni

ng
en

 o
n 

02
/0

7/
20

13
 1

1:
18

:5
7.

 

Online
As can be seen from Fig. 2, apart from the reduction in the magnitudes due to the
difference in the system size, there is also a minor variation in the profile shape
around the hydrophobic region. One possible reason is the different methods adop-
ted for the pressure tensor calculation. Instead of the 3-dimensional pressure field
calculation described in Section 2.2, a slice-based method by Lindahl and Edholm18

was used in the previous study.46 On the other hand, our current results are in good
agreement with another study by Ollila and Vattulainen,80 who used an all-atom
membrane model to investigate both K0m and the elastic ratio.

View Article 
5 Discussion

The curvature–elastic properties of a DMPC membrane were independently studied
using the membrane patch-closure method and the stress profile method. While the
results from the former semi-quantitatively follow expectations, the ones produced
by the latter appear unphysical.
For the patch-closure method, the major contribution to the statistical error of �k

stems from the uncertainty in the measurement of the bending modulus k, since all
other input parameters, such as the area per molecule and the edge tension, can be
measured with comparatively high accuracy. From our simulations, even though the
statistical error on k seems moderate, the systematic error is probably larger (�10%
if one compares the original result by Brandt et al.53 and our measurements) and
hard to quantify. Meanwhile, the values of k measured in experiments also span
over a fairly big range,63 reminding us that accurately determining k is still not quite
trivial—both in simulations and in experiments.
Both the absolute value of the Gaussian modulus �k and the elastic ratio �k/k, when

obtained by our patch-closure method, depend on the value of the bending modulus
k. To show this dependence, �k/k as a function of k is plotted in Fig. 3 (assuming
always the same value for x). The definition of x in eqn (3) gives
�k=k ¼ ðgR=xÞ=k� 2, which is shown as the solid curve. Assuming the relative error
of the bending modulus sk/k we measured also applies to other k values, the error on
�k/k can also be estimated from error propagation and is drawn as the grey region in
the figure. Notice that if we take k < 8 � 10�20 J, the elastic ratio becomes positive
and thus unphysical, and yet such a bending rigidity is within the range of what has
been measured experimentally, (5–15) � 10�20 J.63 Of course, this merely illustrates
how dangerous it is to mix values coming from very different sources. There is no
reason to expect that the actual bending rigidity of MARTINI-DMPC exactly
equals the experimental one and even a factor of only 2 (which is not bad given
the experimental uncertainties) will, in this case, make a big difference. Notice
that if we take the value of the bending rigidity as actually determined for
MARTINI-DMPC, i.e. if we remain internally consistent, the elastic ratio agrees
with the expectation.{
Notice that the patch-closure method is computationally remarkably inexpensive.

As can be read from Table 1, 60 runs for each initial configuration are sufficient to
produce a x value that is more than accurate enough compared to all other param-
eters. Each single simulation contains roughly 75000 particles and can (currently) be
simulated at about 200 ns per day using a cluster node with 8 CPUs. Although the
membrane vesiculation time varies from tens of nanoseconds to a few microseconds,
due to its probabilistic nature, on average 100 to 200 nanoseconds is enough to
decide whether a given simulation leads to flattening or closure. Thus, all 400 simu-
lations can be finished in a few months, given 6 to 8 cluster nodes. This estimated
time can be further shortened if more computation resources are available, since
{ One may then question the validity of the estimation previously made in section 4.1, which
connected the measured bilayer elastic ratio to its monolayer counterpart. Yet, this was an
estimation about the geometry of DMPC lipids, which the MARTINI model seems to
reproduce well.46
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Fig. 3 The dependence of the elastic ratio �k/k on the value of k, shown as the solid curve. Simu-
lation values of g, R and x from Table 1 were used. The dashed lines above and below the solid
line denote the error on �k/k, assuming the relative error sk/k is the same throughout the range of
k plotted. The inset shows the patch-closure probabilities Pclose measured from simulations, as
well as the fit to their analytical expression.
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the procedure trivially parallelizes. At such costs, it should become affordable to
exploit the versatility of the MARTINI model and examine more complex
membrane systems, such as lipid–cholesterol mixtures, e.g. to study a conceivable
tuning of the Gaussian curvature modules through the membrane composition.
Unfortunately, even though the stress profile method to calculate �k requires less

simulation effort, the results it generates appear questionable. By applying essen-
tially the same method, several attempts have been made in recent years to study
the curvature elastic properties of a variety of lipid membranes, using either
coarse-grained46,81–83 or all-atom79,80 lipid models. Some relevant results are collected
in Table 3. Including our current results, most of the reported monolayer elastic
ratios scatter within the range of 0 and �0.5. Despite the fact that such a range is
compatible with the general requirement of �1 < �km/km < 0,41 it is small in magni-
tude compared to the few available experimental measurements around �0.8 (see
the summary of the available experimental and simulation results in ref. 36), which
agree with our patch-closure method.
Two major possibilities can, in principle, lead to such a discrepancy: either the

stress profile method itself is faulty, or the MARTINI model is unable to reproduce
the correct curvature elasticity. In addition to the reasonable direct measurements of
the spontaneous curvatures of several types of MARTINI lipids, including DPPC
and DOPC,46 other indirect studies also suggest that the real spontaneous curvatures
of MARTINI lipids are not as strong as the stress profile method will make us
believe. In a recent study on the curvature-inducing effects of membrane fusion
peptides,49 under comparable hydration conditions, MARTINI-DOPC lipids have
been shown to prefer the lamellar phase to other lipids with high curvatures (e.g.
the inverse hexagonal phase and single or double diamond phases, etc.), while
DOPE will choose the opposite. Such observations agree well with the general exper-
imental picture and the expectations derived from it over many years. Thus, it is
likely that the MARTINI model is in fact able to provide realistic representations
of lipid curvatures, thereby suggesting that the trouble lies with eqn (8, 9).
A few further comments should be made on the stress profile method. First of all,

although most of the simulation models of biological membranes are able to repro-
duce the macroscopic membrane structure correctly, the stress profiles may be very
sensitive to minute details in the force fields for the reason that the virial contribu-
tion to the pressure tensor is directly determined by the local interactions defined in
the force field. Thus, one should not take the results from the stress profiles for
378 | Faraday Discuss., 2013, 161, 365–382 This journal is ª The Royal Society of Chemistry 2013
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Table 3 Spontaneous curvatures and elastic ratios of common membranes using the stress

profile methoda

Lipid Ref. k [10�20 J] K0m [nm�1] �km/km �k/k

DMPC CG81 9.0 � 0.7 �0.018 � 0.003 �0.49 � 0.04 �0.49

CG82 4.3 � 0.1 + 0.135 � 0.002 �1.33 � 0.04 �1.62

CG 16.6 � 0.5 �0.070 � 0.001 �0.26 � 0.07 �0.05

DPPC AA80 5 � 2 �0.22 � 0.14 �0.22 � 0.13

CG46 6...14 �0.02...�0.05

CG (16.6 � 0.5) �0.146 � 0.001 �0.36 � 0.15 +0.14

DOPC AA80 5 � 2 �0.32 � 0.22 �0.22 � 0.18

CG46 6...14 �0.07...�0.15

CG82 12.3 � 0.4 �0.087 � 0.003 �0.45 � 0.02 �0.23

CG83 8.5...11.8 �0.06...�0.09 �0.33...�0.42 �0.13...�0.15

CG (16.6 � 0.5) �0.246 � 0.001 �0.50 � 0.25 +0.48

a References indicate the original study from which the data is quoted, with ‘‘CG’’ and ‘‘AA’’

meaning coarse-grained and all-atommodels; k is the bilayer bending modulus used to calculate

the elastic properties, which is either from simulations (current study and ref. 81–83) or from

experiments (ref. 46 and 80); K0m is the lipid spontaneous curvature; �km/km is the reported

monolayer elastic ratio; �k/k is the bilayer elastic ratio, calculated via eqn (10) whenever the

position of the neutral surface z0 is given. No error is listed for �k/k due to the missing error

of z0. All values and corresponding error bars are either quoted or calculated based on the

available data from the original source. Ref. 83 contains results for three different system

sizes, thus the range is listed. Rows without references are from the current study, in which

the bending rigidity k of DMPC is used for all three lipid types and the error on the

monolayer elastic ratio is estimated by shifting z0 within a range of 0.5 nm around the

global maximum in the stress profile.
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granted even if the model has been proved useful when dealing with certain macro-
scopic problems. The greatly different elastic properties measured by Orsi et al.
between two versions81,82 of their CG models serve as a good example. With modi-
fications to the earlier model, some of the important properties of lipid membranes,
such as the dipole potential, were improved.82 Yet, qualitative changes were
observed in the measured spontaneous curvature and elastic ratio, which testify to
the mercurial nature of the pressure calculation.
Secondly, if one decides to adopt the stress profile method to quantitatively study

some membrane properties, one should note that systematic errors could potentially
dominate the final results: in addition to the corresponding profile moments, the
spontaneous curvature is affected by the value of the bending modulus, while the
monolayer elastic ratio is affected by the position of the neutral surface. Both
numbers are not trivially pinpointed, especially the latter. Also, despite the fact
that the calculation of the bilayer elastic ratio does not depend on k or z0, it is highly
sensitive to the water region in simulations as a result of the quadratic dependence
on the normal position. In other words, the bilayer elastic ratio is substantially influ-
enced by the profile tails.
Thirdly, our previously documented failure of the stress profile method to capture

the elastic ratio could have been attributed to the use of a very simple lipid model.36

Yet, using the more highly resolved MARTINI model does not lead to a better
prediction based on s0(z), even though, intriguingly, the error goes in the opposite
direction: while the predicted elastic ratio of the simple lipid model was �1.7, and
thus implausibly small, the values for MARTINI-DMPC, which hover around
�0.05, are implausibly large. As we pointed out earlier,36 it might not be the lack
of local correlations in the highly coarse-grained Cooke model that is to blame,
but the neglect of the local correlation inherent in the continuum theory that leads
This journal is ª The Royal Society of Chemistry 2013 Faraday Discuss., 2013, 161, 365–382 | 379
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to the stress profile formulas eqn (8, 9). Moreover, Oversteegen and Leermakers85

have pointed out that the relationship between the stress profile moments and the
elastic constants should contain additional thermodynamic derivatives, which the
standard derivations neglect.
Stress profile calculations have been successfully used in many interesting studies,

despite the caveats discussed by us. For instance, the effects of the incorporation of
sterols on membrane mechanical properties were shown to be more complex than
previously thought: sterols not only fluidize the gel phase and order the liquid phase,
but also redistribute the stress along the bilayer.86 Moreover, the free energy differ-
ence associated with the structural changes of the integral membrane proteins (e.g.
the mechanosensitive channel, MscL87) caused by the pressure–volume work against
the local bilayer stresses was studied in simulations.79,80,88 Nevertheless, our results
suggest that using the stress profile method to accurately determine the curvature
elastic properties of biomembranes remains a concern.

View Article 
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