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We study a one-dimensional system subjected to a linearly varying imaginary vector potential,
which is described by the single-particle continuous Schrödinger equation and is analytically solved.
The eigenenergy spectrum is found to be real under open boundary condition (OBC) but forms a
parabola in the complex energy plane under periodic boundary condition (PBC). The eigenstates
always exhibit a modulated Gaussian distribution and are all pinned on the same position, which
is determined by the imaginary vector potential and boundary conditions. These behaviors are in
sharp contrast to the non-Hermitian skin effect (NHSE) in systems with constant imaginary vector
potential, where the eigenstates are exponentially distributed under OBC but become extended
under PBC. We further demonstrate that even though the spectrum under PBC is an open curve,
the Gaussian type of NHSE still has a topological origin and is characterized by a nonvanishing
winding number in the PBC spectrum. The energies interior to the parabola can support localized
edge states under semi-infinite boundary condition. The corresponding tight-binding lattice models
also show similar properties, except that the PBC spectrum forms closed loops. Our work opens a
door for the study of quantum systems with spatially varying imaginary vector potentials.

I. INTRODUCTION

Over the past few decades, a significant amount of
research has been devoted to non-Hermitian Hamiltoni-
ans [1–5], which can effectively describe open systems
in both classical [6–16] and quantum regimes [17–26].
Non-Hermitian systems exhibit various exotic properties
that cannot be found in Hermitian systems. For in-
stance, the energy spectra of non-Hermitian Hamiltoni-
ans are normally complex, but it can be real when PT
symmetry [27–29] or pseudo-Hermiticity [30–35] is im-
posed. On the other hand, one of the most extraordi-
nary phenomena in non-Hermitian systems is the non-
Hermitian skin effect (NHSE), where a large number of
eigenstates are accumulated at the boundary of the sys-
tem [36, 37]. The existence of NHSE can modify the
system’s properties substantially and has attracted in-
tensive attention in recent years [38–52]. In topological
systems, it has been shown that the band topology can
be altered in a significant way and the conventional prin-
ciple of bulk-boundary correspondence breaks down due
to the NHSE [36, 37, 53–61]. Furthermore, the NHSE
has a significant impact on the Anderson localization
phenomenon, where mobility edges can be induced and
the eigenenergies of the localized and extended states are
found to exhibit different topological structures [62–67].
The spectra of such systems are also sensitive to changes
in boundary conditions [68] and can be applied in design-
ing quantum sensors [69, 70].

The origin of NHSE under open boundary condition
(OBC) is closely connected with the point gap in the
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energy spectrum of the non-Hermitian system under pe-
rioidc boundary condition (PBC) [71, 72]. Further in-
vestigation of the NHSE has revealed that by varying
the strength and range of the asymmetric hopping, more
exotic features can emerge. For example, by extending
the range of asymmetric hopping beyond the nearest-
neighboring sites, the NHSE edge will emerge [73]. How-
ever, most studies so far mainly focus on the NHSE in
systems with constant asymmetric hopping, which corre-
sponds to a constant imaginary vector potential or gauge
field. If the imaginary vector potential becomes spa-
tially varied, what will happen to the properties of non-
Hermitian systems remains elusive. Moreover, previous
research work on non-Hermitian physics mainly relies on
tight-binding models, which are suitable for narrow-band
systems but fails to describe wide-band states. So, it will
also be interesting to investigate the non-Hermitian con-
tinuous systems and check whether the energy spectrum
and NHSE will behave differently.

In this work, we answer the above questions by study-
ing the one-dimensional (1D) system subjected to a lin-
early varying imaginary vector potential, which is de-
scribed by the continuous Schrödinger equation. By an-
alytically solving the equation, we find that the eigenen-
ergy spectrum of the system is always real under OBC
but forms a parabola in the complex energy plane un-
der PBC. All the eigenstates exhibit a modulated Gaus-
sian distribution and are pinned on the same position,
which is determined by the imaginary vector potential
and boundary conditions. These behaviors are in sharp
contrast to the NHSE in systems with constant imaginary
vector potential, where the eigenstates are exponentially
localized at the boundaries under OBC or become ex-
tended under PBC. When the zero point of imaginary
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vector potential is localized at the boundaries, the eigen-
states are pinned on the left or right end of the 1D sys-
tem, forming a Gaussian type of NHSE under OBC. Even
though the energy spectrum under PBC forms an open
curve, the Gaussian NHSE still has a topological origin
and is characterized by a nonzero winding number in the
PBC spectrum. The energies interior to the parabolic
curve are shown to sustain localized edge states un-
der semi-infinite boundary condition. The corresponding
tight-binding lattice model with linearly varying asym-
metric hopping between the nearest-neighboring sites is
also investigated, revealing similar properties except that
the PBC spectrum form closed loops instead of open
curves. Our work sheds light on the exotic properties of
non-Hermitian systems with spatially varying imaginary
vector potentials.

The remaining sections of this paper are organized as
follows. In Sec. II, we introduce the 1D system sub-
jected to a linearly varying imaginary vector potential
and analytically solve the continuous Schrödinger equa-
tion. In Sec. III, we discuss the system under semi-
infinite boundary conditions and examine the Gaussian
NHSE under OBC. We then investigate the correspond-
ing tight-binding lattice model in Sec. IV. Finally, we
conclude with a summary in Sec. V.

II. CONTINUOUS MODEL

We consider the particle moving in a 1D space de-
scribed by the following Hamiltonian

H =
1

2m
[p+ iγ(x− x0)]

2
, (1)

where p = −iℏ∂/∂x is the momentum operator and
iγ(x−x0) is a linearly varying imaginary vector potential
or gauge field. Here, γ is a real number that characterizes
the rate of change of the vector potential and x0 repre-
sents the zero point of the potential. The continuous
systems with constant imaginary vector potentials have
been studied before in several different situations [74–76].
The model studied here, however, has a linearly varying
vector potential A = iγ(x − x0). For simplicity, we set
ℏ = 2m ≡ 1. Then the scaled form of the Schrödinger
equation becomes

−
[
∂

∂x
+ γ(x− x0)

]2
ψ(x) = Eψ(x), (2)

with E being the eigenenergy and ψ(x) the corresponding
wave function. Suppose that the particle is confined in
the region 0 ≤ x ≤ L, then we have open boundary
condition as

ψ(0) = ψ(L) = 0, (3)

or periodic boundary condition as

ψ(0) = ψ(L). (4)

To solve the continuous Schrödinger equation in
Eq. (30), we take the following imaginary gauge trans-
formation

ψ(x) = φ(x) exp

[
−1

2
γ(x− x0)

2

]
, (5)

then the equation reduces to

− ∂2

∂x2
φ(x) = Eφ(x) (6)

with φ(0) = φ(L) = 0 under OBC. Notice that the
imaginary gauge transformation method introduced here
can be generalized to systems subject to imaginary vec-
tor potentials of the type Am = iγ(x − x0)

m with
m = 0, 1, 2, · · · (see the Appendix for details). Them = 0
case corresponds to the system with a constant imaginary
vector potential. Here we mainly focus on the linearly
varying case with m = 1, which corresponds to a con-
stant imaginary magnetic field under the Landau gauge:
B = ▽×A with A = [iγ(x− x0), 0, 0]. The imaginary
magnetic fields have been utilized to explore the Lee-
Yang zeros [77] and PT -symmetry breaking [78] in spin
systems. Here we will check the influences of imaginary
magnetic field on the energy spectra and eigenstates of
single particle systems.
After the transformation, we can see that Eq. (6) is the

equation of a free particle confined in 0 ≤ x ≤ L, which
can be easily solved to obtain

φOBC
n (x) =

√
2

L
sin

(nπx
L

)
, EOBC

n =
n2π2

L2
(7)

with n = 1, 2, · · · . So, the corresponding wave function
for the original Schrödinger equation Eq. (30) is

ψOBC
n (x) = C1 exp

[
−1

2
γ(x− x0)

2

]
sin

(nπx
L

)
, (8)

where C1 is for normalization. From this expression, we
can see that all the wave functions exhibit a modulated
Gaussian distribution and they are all pinned on x = x0
when γ > 0. If γ < 0, then the states will be shifted
to either the left or the right end depending on whether
x0 > L/2 or not, see the distribution of eigenstates shown
in Fig. 1(b) and 1(e) for the systems with x0 = 0 and 60,
respectively. If x0 = L/2, then the states will mainly
distribute at the two ends. This is different with the
system subjects to constant imaginary vector potential,
where NHSE emerges under OBC and the states are ex-
ponentially distributed in the system. In addition, the
eigenenergies are given by EOBC

n , which means that the
energy spectrum is real under OBC and is independent of
the value of γ, as indicated by the blue dots in Fig. 1(a)
and 1(d).
Under PBC, on the other hand, the solution of Eq. (6)

should satisfy the condition φ(0) = φ(L), which leads to
the following eigenstate

φPBC
n (x) =

1√
L
exp

(
i
2πnx

L

)
. (9)
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FIG. 1. (Color online) (a) Eigenenergy of the non-Hermitian
Hamiltonian in Eq. (1) with γ = ±0.005 under OBC (blue
solid dots) and PBC (red empty dots). (b) and (c) shows the
distribution of eigenstates corresponding to En with n = 13
for the system with γ = 0.005 (dot-dashed line) and −0.005
(solid line) under OBC and PBC, respectively (The complex
energies are sorted according to their real parts). Here we set
0 ≤ x ≤ 100 and x0 = 0. (d)-(f) are the same as (a)-(c) but
with γ = ±0.05 and x0 = 60.

and eigenenergy

EPBC
n =

[
2nπ

L
+ iγ

(
x0 −

L

2

)]2
(10)

with n = 0,±1,±2, · · · . This is also the eigenenergies
of Hamiltonian H under PBC, which is complex except
for x0 = L/2. The corresponding eigenstate for Eq. (30)
under PBC is

ψPBC
n (x) = C2 exp

[
−1

2
γ

(
x− L

2

)2

+ i
2πnx

L

]
. (11)

So the eigenstates are also of Gaussian form and will al-
ways be pinned on the central position x = L/2 under
PBC when γ > 0, no matter where the zero point of
the imaginary vector potential is. If γ < 0, however,
the states will be shifted to the position with x = 0(L)
[see Figs. 1(c) and 1(f)]. This is very different from the
case under OBC, where the pinning position of the eigen-
states is determined by the zero point and the sign of
the imaginary vector potential. The behavior also differs
significantly from the states in the system with constant
imaginary vector potential, where the states are extended
states that distribute over the whole system under PBC.

Let us further check the energy spectrum under differ-
ent boundary conditions. From Eqs. (10) and (7), we find
that the OBC spectrum is real while the PBC spectrum
forms a parabola in the complex energy plane, as shown
by the blue solid dots and the red empty dots in Figs. 1(a)
and (d). Notice that the OBC spectrum is always lo-
cated at the internal region of the open curve formed
by the PBC spectrum with the same system parameters.
The spectral properties are quite different from those of

tight-binding lattice models, where the PBC spectra al-
ways form closed loops in the complex energy plane. The
parabolic PBC spectrum has also been reported recently
in continuous models with constant imaginary vector po-
tential [76].

III. EDGE MODES IN SEMI-INFINITE SYSTEM

Next we consider the continuous model under the semi-
infinite boundary condition (SIBC). To simplify the dis-
cussion, we will take x0 = 0 in the following. From the
above section, we know that under OBC, the eigenstates
always exhibit a modulated Gaussian distribution and
are localized at the left boundary when γ > 0 but shifted
to the right boundary when γ < 0. Similar to the NHSE
in systems with constant imaginary vector potential, here
we can also explain the Gaussian type of NHSE as the
edge modes of the system under SIBC and connect it
with the nonzero winding number of the PBC spectrum.
To prove this, here we focus on the case with γ > 0 and
set the SIBC as

ψ(0) = 0, lim
x→+∞

ψ(x) = 0. (12)

Suppose we choose 0 < γ1 < γ2, and f(x) as the
eigenstate given in Eq. (11) satisfying the following
Schrödinger equation under PBC

Hγ1
f(x) = −

[
∂

∂x
+ γ1x

]2
f(x) = EBf(x), (13)

with EB being the corresponding eigenenergy. From
EPBC

n in Eq. (10), we know that the PBC spectrum cor-
responding to Hγ1

is interior to that of Hγ2
, as shown in

Fig. 2(a).
Now we can prove that all the energies interior to the

PBC spectrum of Hγ2
are also eigenenergies of it under

SIBC. To do so we can construct a wave function as

ψ1(x) = f(x)e−
1
2 (γ2−γ1)x

2

(14)

such that ψ1(x) satisfies the Schrödinger equation

Hγ2
ψ1(x) = −

[
∂

∂x
+ γ2x

]2
ψ1(x) = EBψ1(x). (15)

This means that EB is also an eigenenergy of Hamilto-
nian Hγ2

. And the wave function ψ1(x) decays to zero
as x → +∞. The other solution to the above second-
order differential equation can be obtained by using the
Liouville’s formula, which gives

ψ2(x) = ψ1(x)

∫
dx
e−γ1(x−x0)

2

ψ2
1(x)

= ψxe
−(γ1L+i 4πn

L )x.

(16)
ψ2(x) also decays to zero as x → +∞. So the general
solution to the differential equation in Eq. (15) is

ψ(x) = Aψ1(x) +Bψ2(x), (17)
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FIG. 2. (Color online) (a) PBC spectrum for the system with
γ = 0.02 (red empty dots) and γ = 0.005 (red solid dots).
(b) Winding number as a function of the imaginary part of
EB indicated by the blue dot-dashed line in (a). Here we set
0 ≤ x ≤ 100 and x0 = 0.

where A and B are arbitrary constants. To satisfy the
condition ψ(0) = 0, we can set A = −B = C and get

ψ(x) = C [ψ1(x)− ψ2(x)] . (18)

Apparently, the above ψ(x) satisfies the condition
limx→+∞ψ(x) = 0. Thus the wave function ψ(x) is the
eigenstate of Hγ2 with the eigenergy EB . For any en-
ergy interior to the parabola corresponding to Hγ2 under
PBC, they are also the eigenenergies of Hγ2

under SIBC
and the corresponding wave functions are the edge states
localized at the left end of the semi-infinite system. For
γ < 0, we can also obtain a similar conclusion with the
wave function localized at the right end instead.

Similar to the topological origin of NHSE in systems
with constant imaginary vector potential, we can also de-
fine a winding number for EB interior to the PBC spec-
trum of Hγ as

w =
1

2πi

∫ π

−π

dk
d

dk
log

[
Epbc

γ (k)− EB

]
(19)

with Epbc
γ (k) given in Eq. (10) and k = 2nπ/L. EB

is the base energy. When γ > 0 and EB is interior to
the parabola corresponding to the PBC spectrum, we
have w = 1; while if γ < 0, we have w = −1, as shown
in Fig. 2(b). For the base energy EB indicated by the
blue dot-dashed line in Fig. 2(a), the winding number is
close to ±1 when EB is interior to the PBC spectrum
of γ = ±0.005. However, when EB moves out of the
internal regime, the winding number drops sharply to
almost 0. So even though the PBC spectrum forms a
parabola, which is an open curve, the winding number
can still be nonzero and quantized. This can be explained
from Eq. (10), where we can find that as |n| increases,
the imaginary part grows slower than the real part, so
we have

lim
|n|→+∞

Im(EPBC
n )

Re(EPBC
n )

= 0. (20)

Thus the PBC spectrum can be taken as a closed loop
and we can obtain a quantized winding number. The

skin modes are the edge modes corresponding to the
nonzero winding number under PBC. So similar to the
non-Hermitian systems with constant imaginary vector
potential, the Gaussian NHSE here can also be taken as
the edge states of the system under SIBC and is tightly
connected to the point gap in the PBC spectrum.

IV. TIGHT-BINDING MODEL

The continuous model discussed above can be trans-
ferred into a lattice model under the tight-binding ap-
proximation, which leads to the following model Hamil-
tonian

H =
∑
j

[
teγ(j−j0+

1
2 )c†jcj+1 + te−γ(j−j0+

1
2 )c†j+1cj

]
.

(21)

Here we set the lattice constant to be 1. cj (c
†
j) is the an-

nihilation (creation) operator at the jth site. teγ(j−j0+
1
2 )

and te−γ(j−j0+
1
2 ) are the backward and forward hopping

between the nearest-neighboring sites, respectively. j0 is
the referring site where the asymmetric hopping is zero.
The total lattice number of the lattice is N . By di-
agonalizing the Hamiltonian, which can be represented
as an N × N matrix, we can get the energy spectrum
under OBC and PBC, as shown by the solid dots in
Fig. 3(a). The eigenstates of the tight-binding Hamil-
tonian can be obtained by rewriting the wave functions
ψOBC
n and ψPBC

n shown in Eqs. (8) and (11) in the con-
tinuous model and construct the eigenstate as follows

ψOBC
n,j = exp

[
−1

2
γ(j − j0)

2 + iπj

]
sin

(
nπj

N + 1

)
; (22)

ψPBC
n,j = exp

[
−1

2
γ

(
j − ⌈N + 1

2
⌉
)2

+ i
2πnj

N

]
. (23)

Here x ≤ ⌈x⌉ ≤ (x + 1) is the ceiling function. Then
the wave function of lattice can be written as ΨOBC

n =∑
j ψ

OBC
n,j and ΨPBC

n =
∑

j ψ
PBC
n,j , respectively. The

wave function satisfies the discrete Schrödinger equation

Et
nψn,j = te−γ(j−j0+

1
2 )ψn,j−1+ teγ(j−j0+

1
2 )ψn,j+1. (24)

Solving the equation gives us the following eigenenergy
spectrum

Et−OBC
n = 2t cos

nπ

N + 1
, (25)

Et−PBC
n = 2t cos

[
2πn

N
+ iγ

(
j0 −

N + 1

2

)]
, (26)

where n = 1, 2, · · · , N . So the spectrum under OBC
is always real; while the spectrum under PBC is simi-
lar to the regular spectrum of the 1D tight-binding lat-
tice but replaces the momentum k by a complex one
k → k + iγ

(
j0 − N+1

2

)
with k = 2πn/N . The energy

spectrum using the above analytical expressions is totally
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FIG. 3. (Color online) (a) OBC (blue solid dots) and PBC
(red empty dots) spectrum for the 1D tight-binding lattice
with γ = ±0.005. (b) and (c) show the distribution of eigen-
states under OBC and PBC. The lines represents the numeric
results from diagonalization while the ”+” signs represent the
eigenstates obtained from the analytical expression. Here we
set N = 100 and j0 = 0.

consistent with the numerical results in Fig. 3(a). Differ-
ent from the continuous model where the spectrum under
PBC forms a parabola, here the PBC spectrum of the
tight-binding lattice forms a closed loop, which encloses
the spectrum under OBC. For the tight-binding Hamil-
tonian matrix under OBC, we can similarly transform it
into an Hermitian matrix through a similarity transfor-
mation as h = SHS−1, where S is a diagonal matrix
S = diag(eγs(1), eγs(2), · · · , eγs(N)) with s(1) = 1−j0+ 1

2

and s(j) = s(j − 1) + (j − 1)− j0 +
1
2 . The transformed

matrix corresponds to the tight-binding lattice with con-
stant hopping t:

h =
∑
j

tc†jcj+1 + tc†j+1cj . (27)

So the OBC spectrum of the lattice is always real.
In Figs. 3(b) and (c) we gives the numerical results of

the distributions of wave functions of the system under
OBC and PBC in the lattice with x0 = 0. They can
be fully fitted by our analytical expressions ψOBC

n,j and

ψPBC
n,j . When under OBC, we can see that the eigenstates

are localized at the left (right) end of the 1D lattice if
γ > 0 (γ < 0). This is the Gaussian NHSE, and its
origin roots in the point gap in the PBC spectrum as
shown in Fig. 3(a). These features are the same as the
continuous model, except that the PBC spectrum forms
closed loops instead of open curves.

V. SUMMARY

In this work, we study the one-dimensional systems
with a linearly varying imaginary vector potential de-
scribed by the single-particle continuous Schrödinger
equation, which is analytically solved. Our findings show
that the eigenenergies are real under OBC but form a
parabola in the complex energy plane under PBC. Ad-
ditionally, we discover that all the eigenstates exhibit a
modulated Gaussian distribution and are pinned at the
same position, which is determined by the imaginary vec-
tor potential and boundary conditions. This behavior is

in stark contrast to systems with constant vector poten-
tial. We further demonstrate that the Gaussian type of
NHSE under OBC is associated with the nonzero wind-
ing number in the PBC spectrum. Finally, we extend our
study to a tight-binding lattice model, where similar phe-
nomena are found except that the PBC spectrum forms
closed loops instead of open curves. Overall, our work
expands the understanding of non-Hermitian physics and
opens new avenues for studying quantum systems with
spatially varying imaginary vector potentials.

APPENDIX

In this Appendix, we give the gauge transformation for
solving the Schrödinger equation with a general imagi-
nary vector potential of the type

Am = iγ(x− x0)
m, m = 0, 1, 2, · · · (28)

Notice that the m = 0 and m = 1 case corresponds to
the system with constant or linearly varying imaginary
vector potential, respectively. For the general cases, the
Hamiltonian of the system is

H =
1

2m
[p+ iγ(x− x0)

m]
2
. (29)

After setting ℏ = 2m ≡ 1, we can obtain the following
Schrödinger equation as

−
[
∂

∂x
+ γ(x− x0)

]2
ψ(x) = Eψ(x), (30)

where E is the eigenenergy and ψ(x) is the corresponding
wave function. To solve this equation, we can take the
following gauge transformation

ψ(x) = φ(x) exp

[
− 1

m+ 1
γ(x− x0)

m

]
. (31)

Then the equation will be reduced to

− ∂2

∂x2
φ(x) = Eφ(x), (32)

which is the Schrödinger equation for a free particle
and can be solved easily combining with the appropriate
boundary conditions. The imaginary gauge transforma-
tion introduced here can be used to solve this type of
Schrödinger equation.
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