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GAUSSIAN ELIMINATION TECHNIQUE FOR SOLVING THE 
DIFFUSION EQUATION FOR MOISTURE MOVEMENT 

IN UNSATURATED SOIL 

INTRODUCTION 

Importance of Problem 

Water movement in soil is one of the most important phenomenon 

that occurs in nature. It is the movement of water to plant roots 

and hence through the plant that enables the later to synthesize 

plant tissue which is the basic material for sustaining animal life. 

As a result of increased use of fertilizers, insecticides, 

herbicides, hormones, etc., soil moisture is rapidly becoming the 

limiting factor in crop production. In arid regions, agriculture 

has long depended upon the application of supplemental water through 

irrigation. The increased financial pressures placed upon agri- 

culture has caused a large increase in the use of supplemental 

irrigation in humid regions in order to realize optimum yields. 

In addition to irrigation of desert land, drainage of swamps 

has also added greatly to the areas available for food production 

and as sites for human habitation. In semi -arid regions where irri- 

gation water is not available, a system of dryland agriculture has 

been developed which relies on moisture stored in the soil to sustain 

plant growth during the year. In this type of agriculture, it is 

extremely important to reduce evaporation losses to a minimum. 

Understanding and controlling the movement of water through the soil 

to the evaporating surface is of extreme importance. 
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Each day many acres of good agriculture land are being used as 

building sites, for industrial development and in making new and 

larger highways. This increased competition for land is making it 

necessary to utilize areas which were formerly thought unprofitable 

for agricultural use. Developing these new areas for agricultural 

purposes will involve many water problems that must be solved. 

Increased competition for water among industrial, agricultural, 

recreational and culinary users is making it necessary to find ways 

of more efficiently utilizing water in the growing of crops. A 

knowledge of water movement is essential to solving this problem. 

In addition to its importance in agriculture, water movement 

in porous media is important in many other areas. Drainage is 

extremely important in highway and airport construction. Water 

movement in and out of clay layers underneath building foundations 

can cause their settlement. Water movement through porous building 

materials can cause damp walls in the case of basements; or it may 

allow excess moisture created within a building to move out through 

the porous walls making a more comfortable atmosphere. 

The living cells are surrounded by a cell wall made of porous 

material. The movement of water and water solutions into and out 

of these cells is a vital process. Fluid flow through porous media 

is also of great importance in removal of petroleum from underground 

deposits. These are but a few of the areas where there is interest 

in flow through porous material. 

Most of the studies of water movement in porous media has been 

1 
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concerned with flow in a saturated condition. These problems are 

much easier to solve but are not of as much agricultural importance 

as problems dealing with flow in unsaturated media. Some soil 

problems, such as leaching soil for reclamation purposes, involve 

saturated flow. But the great bulk of the significant agricultural 

problems, vis. drainage with a falling water table, application of 

irrigation water, evaporation from soil and movement to plant roots, 

are essentially unsaturated flow phenomena. 

Scope of Research 

One of the major reasons why flow in unsaturated soil has not 

been successfully studied is that there are many complications 

involved in applying the equations which deal with this type flow. 

Much work has been done using the diffusion theory, which seems to 

be a fairly good mathematical model of moisture movement in unsat- 

urated soil; however, the solutions which have been developed to 

date have involved certain assumptions in order to solve the 

equations. These assumptions have limited the application of the 

solution to problems with extremely limited boundary conditions 

which, in general, are not characteristic of actual problems that 

might be encountered in the field. 

However, the success achieved through using these solutions 

to predict moisture movement under these limited conditions has 

increased the interest in extending the diffusion equation to cover 

problems with more varied boundary conditions. It is the purpose 
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of this study to develop a numerical technique for solving the 

diffusion equation and to apply this technique to moisture movement 

conditions that more nearly represent those which are encountered 

in the field. Experimental results will also be compared with the 

computed results to determine whether the diffusion equation is an 

acceptable mathematical model for isothermal moisture movement in 

unsaturated soil under the more complicated boundary conditions. 
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REVIEW OF LITERATURE 

It is not necessary to treat fluid flow in saturated porous 

media since there are several good, recent reviews of this subject 

available (3, 9, 46). Although much work has been done on saturated 

flow, only limited attention has been given to fluid flow in unsat- 

urated porous media. In the Petroleum industry there is consider- 

able interest in immiscible, multiple phase flow systems; e.g. 

oil- brine, gas -oil, and oil- gas -brine. Short treatments of simul- 

taneous flow of immiscible fluids in porous material are given by 

Collins (9, p. 139 -169) and Scheidegger (46, p. 215 -255). These 

treatments are not broad enough to completely cover the problems of 

water flow in unsaturated soil. 

A short literature review of water movement in unsaturated 

porous solids has been written by Philip (33, p. 152 -155). Philip's 

review is general in nature and is rather condensed. Other short 

literature reviews are contained in articles written by Childs (4), 

Gardner (17), Klute (22), Klute et al. (23), Philip (34), and Wiegand 

and Taylor (50, r. 18 -20). Although all of these reviews are good 

they are all rather abbreviated. It is, therefore, necessary to fill 

in some additional background material on unsaturated moisture move- 

ment. 



Moisture Flow in Unsaturated Soil 

Early developments 
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Since most of the physical, chemical, and biological processes 

in soil are affected either directly or indirectly by soil moisture, 

numerous schemes have been developed for characterizing soil water. 

Of these schemes, the most significant is the potential concept 

which was first proposed by Buckingham (2) in 1907. One of the 

greatest contributions of the potential concept is in dealing with 

problems of moisture movement. Since all moisture flow is a conse- 

quence of potential gradients, the potential concept is the found- 

ation of moisture flow in unsaturated soil. 

The capillary potential y as defined by Buckingham is the 

specific work (work per unit mass) that must be done to pull an 

infinitesimal increment of water 89 from the soil. He also deter- 

mined the relationship between ' and Q over the range 0 - 105 

ergs /g for several soils. The * vs. Q relationship was determined 

using vertical soil columns in equilibrium with a water table at the 

lower end. Evaporation was prevented at the upper end of the column. 

Buckingham also defined capillary conductivity K(Q) by the 

equation 

or 

(1) 

a*a8 
v = K(Q)7(7, (2) 

< 

v = K(A áx 

y 
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where v is the volume flux, 8 is moisture content, and a'Y /ax is the 

capillary potential gradient in the x direction. Equation (1), 

which only applies when gravity can be neglected as a driving force, 

has the same form as Darcy's law for flow in saturated soil. 

Buckingham recognized, however, that capillary conductivity is not 

a constant but is a function of moisture content. 

Unfortunately, Buckingham was not able to measure capillary 

conductivity. He did, however, draw a curve relating K(8) and Q. 

This curve was based on theoretical reasoning, and he stated that 

the proportions of the curve were qualitative and might be far from 

right. Later studies (8, 27, 42, 43, 44) showed that although the 

proportions were not accurate, the general shape of his curve was 

correct. 

The work of Buckingham was advanced for the times, and few 

people in the field of soils recognized the contribution he had made. 

Gardner apparently recognized the significance of the potential 

concept and published several highly mathematical papers on moisture 

movement in unsaturated soil (13, 14, 15). Unfortunately, his 

investigations did not incorporate the full significance of Buck- 

ingham's work. Gardner assumed that capillary conductivity was con- 

stant rather than a function of moisture content. This assumption 

greatly decreased the value of his otherwise good work. 

In 1931, Richards (42) developed a general partial differential 

equation to describe moisture flow in unsaturated porous media under 

isothermal conditions. In this general equation Richards assumed 



capillary conductivity to be a function of moisture content. His 

equation, 

ae = -7K(9)7J) (3) 

at 

S 

where cD. is a potential function and t is time, forms the basis for 

the mathematical study of moisture flow in unsaturated soil. Al- 

though Richards developed a method for measuring capillary conduc- 

tivity as a function of moisture content, the utility of his work 

was limited by his choice of variables. Since 

(4) 

where qj is capillary potential and f, 
is gravitational potential, 

equation (3) contains two functionally related variables 
' 
and Q. 

Richards selected qt as his independent variable, although he recog- 

nized the possibility of an alternate formulation in terms of Q. 

It was later shown that the equation in 9 is much nicer to handle 

mathematically (5, 6, 28). 

In 1936 Childs suggested that moisture movement in porous 

material was a diffusion phenomenon, but he assumed moisture dif- 

fusivity to be a constant (5, 6, 28). Kirkham and Feng (20) later 

showed that the diffusion equation is not an acceptable mathematical 

model for the movement of water in unsaturated soil where diffusivity 

is considered constant for the calculations. 

In 1950 Childs and Collis- George (8) applied Darcy's law to 

isothermal, steady state flow in vertical or semivertical columns 

çp = V + 
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of unsaturated porous media. This equation, based on the diffusion 

model with the diffusion coefficient considered a function of mois- 

ture content, was developed from equation (1) written in a more 

general form to include gravity, 

v = K(A) . 

dz 

Combining equation (4) with equation (5) gives 

v = 
o 

a1 L z J' 

(5) 

(6) 

Since = gz where g is acceleration of gravity and z is vertical 

distance, equation (6) becomes 

v= K(A) 
aA ]. 

aA az 
(7) 

Equation (7) is the same as Buckingham's equation (2) except for 

the addition of a gravitational term. Childs and Collis -George 

combined K(A) and 4/ big to form a new function which they called 

a coefficient of diffusion D(A). Written with a coefficient of 

diffusion, equation (7) becomes 

v = D(A + K(A)g 
JX 

(8) 

They also suggested the existence of a general flow equation for 

unsaturated porous media. 

Emergence of a general diffusion equation 

In 1952, Klute (22) developed a general flow equation for 

+ 

' 

g + 
L 
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moisture movement in unsaturated soil. His development was similar 

to that of Richards (42) in that both equations were developed by 

combining Darcy's law with the equation of continuity; however, Klute 

chose Q as the independent variable. He then combined capillary 

conductivity with the slope of the ' vs. Q curve, as was done by 

Childs and Collis -George (8), to obtain a diffusion coefficient D(Q) 

which he called diffusivity. For one -dimensional, horizontal flow 

the non -linear diffusion equation developed by Klute is of the form 

d9 
D(e)er (9) 

at ax ax 

Crank and Henry (11, 12) were confronted with equation (9) in their 

work on the drying of extruded synthetic fibers and developed a 

means of integrating it numerically. This method was utilized by 

Klute (21) in solving equation (9) for water movement into unsat- 

urated soil. Philip (31) introduced a numerical method of solving 

equation (9) which is more rapidly convergent and quicker to cal- 

culate than the method of Crank and Henry. Later, he extended his 

numerical technique to include solutions when the gravitational 

term is present (32). 

Philip, Klute, and Crank and Henry all made use of the Boltz- 

mann transformation that introduces a new variable p which is a 

combination of two variables x and t combined in a definite way 

µ = xt-1/2. (10) 

This transformation converts the nonlinear partial differential 

_ á 



equation (9) into a nonlinear ordinary differential equation 

- 

dg d [D(Q)dg] - 
2 dµ dµ dµ 

Multiplying both sides of equation (11) by dµ/dg gives 

- = _ 
d [Dmdgi 

2 dg dµ 

(12) 
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which is the desired form of the transformed equation. 

The Boltzmann transformation also gives transformed boundary 

conditions which are as simple as the non -transformed boundary 

conditions. However, it can only be applied to semi -infinite uni- 

form media which have uniform initial moisture content. The studies 

of Kirkham and Feng (20) and Swartzendruber et al. (49) seem to 

justify use of the Boltzmann transform in soil moisture flow. They 

found that the rate of advance of a wetting front was proportional 

to t1 
/2. 

Applications of the diffusion equation 

Various problems of moisture movement in soil have been studied; 

but most of these studies have involved the Boltzmann transformation 

which puts serious limitations on boundary and initial conditions. 

Methods of solving the diffusion equation for concentration dependent 

diffusivity are discussed in detail by Crank (10); many of these 

are applicable to problems of moisture movement in homogeneous soils. 

By making a series of assumptions, Philip has simplified the 

diffusion equation for the case of water infiltration into a 

IIMMMII 

. (11) 
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homogeneous soil. His analysis of the infiltration problem has 

appeared in a series of papers (35, 36, 37, 38, 39, 40, 41). Youngs 

(52) has also applied the diffusion equation to similar infiltration 

problems. 

A complete solution of the flow equation for drying of soils 

has not been obtained; although Gardner (18) obtained solutions for 

some limited boundary conditions. 

A mathematical solution has not been obtained for the redistri- 

bution of moisture in soil after infiltration; Youngs (53), however, 

has given a good qualitative treatment of this subject from the stand- 

point of the diffusion equation. His experimental results (53, 54) 

agree qualitatively with his analysis. 

The present status of moisture flow in unsaturated soil can 

be summarized as follows: The diffusion equation appears to be the 

best mathematical model for describing isothermal moisture movement 

in unsaturated soil; however, this equation is a nonlinear partial 

differential equation which cannot be solved analytically at the 

present time. At least three different approaches have been utilized 

in order to obtain a solution of the diffusion equation. Each of 

these approaches has required certain assumptions which have seriously 

limited the application of the solutions. 

The first approach limits the solution to steady state flow --a 

condition which is almost never met in soil. The second approach is 

to assume a constant diffusivity --a model which does not even approx- 

imate moisture flow in soils. The third approach is to use the 
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Boltzmann transform --an approach which limits the solution to a 

uniform medium which is semi -infinite in extent and is at a uniform 

initial moisture content. 

There still remain problems with finite or layered media and 

with an arbitrary initial moisture content. Numerical approaches 

appear to provide the best methods of attack at the present time. 

The purpose of the investigation reported here was to develop and 

test a numerical method for solving the diffusion equation for 

moisture movement in unsaturated layered soils. 

Methods for Determining Moisture Diffusivity 

Before a mathematical solution can be checked against labor- 

atory experiment, a method of determining moisture diffusivity as 

a function of moisture content must be chosen. The methods avail- 

able can be divided into three groups; steady state, calculation, 

and transient techniques. 

Steady state methods 

In the steady state procedures, the capillary conductivity is 

determined at a given moisture content. This is then multiplied by 

the slope of the soil moisture -potential curve taken at the same 

moisture content. Since 

D(6) = kCe)áA 
, 

(13) 

the diffusivity is specified for the given moisture condition. By 
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repeating this procedure at various moisture contents, a curve of 

moisture diffusivity versus moisture content can be developed. 

Richards (42) used a steady state system to determine K(ß) 

over a limited range of moisture potential. His apparatus consisted 

of a chamber containing soil which was in contact with a porous 

ceramic plate on two opposite sides. Each ceramic plate was sealed 

to a water reservoir on which a suction could be applied. A dif- 

ferent suction was applied on the two water reservoirs creating a 

moisture potential gradient across the soil sample. Tensiometers 

were installed in the soil near the ceramic plates to measure the 

actual soil moisture potential gradient. The volume of water entering 

the soil was also recorded as a function of time. Knowing the volume 

flux v and the potential gradient Jç, the capillary conductivity 

could be determined by the equation 

K(8) =-v . (14) 

There are several disadvantages to this method. First, since 

there is a potential gradient across the soil, there must also be 

a moisture content gradient; this follows from the fact that i _ 

11(8). Therefore, the K(8) which is determined does not correspond 

to a given moisture content but to an average moisture content Á. 

The capillary conductivity thus determined is, therefore, an average 

value 777. Second, the relationships between the variables 4', 

and K(8) are not linear. In fact, for many soils an exponential 

relationship is a better approximation than a linear. Therefore, 

A 
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the gradient across the soil must be small since a linear relation- 

ship is assumed in calculating .. Third, the values of over which 

this apparatus will operate is limited to the range of tensiometer 

operation. 

Richards and Moore (44) modified the Richards apparatus to use 

pressure rather than vacuum control. The sample chamber along with 

the connected water reservoirs is placed inside a pressure cooker 

and air pressure is applied to desaturate the soil. This offers 

little improvement over the old apparatus except in ease of control. 

Nielsen and Biggar (29) described an apparatus similar in 

principle to that of Richards but somewhat easier to construct. 

The porous ceramic plates were replaced with fritted glass -bead 

plates, which greatly reduces the plate impedence. However, this 

apparatus is still limited to operation in the tensiometer range. 

A second steady state method was developed by Moore (27) in 

which a water table was kept at one end of a soil column and evapor- 

ation was allowed to occur at the other. The flux was measured at 

the inflow (water table) end of the column, and moisture potential 

was determined with tensiometers at 10 cm intervals. Using equation 

(14), an average conductivity could then be determined for each 

interval. With this apparatus it is difficult to keep a constant 

evaporation rate at the soil surface. Also the range of operation 

is again limited since potential is measured with tensiometers. 

In a third method, Childs (7) showed that if a water table is 

placed in contact with the lower end of a soil column and water is 

'' 
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added at the upper end at a rate which is constant but is less than 

the saturated flux, the moisture content is sensibly uniform over an 

appreciable length of the tube. The zone of variable moisture con- 

tent is limited at the lower end to the neighborhood of the water 

table in a way that depends on the pore size distribution and at the 

upper end to a zone in which is localized any intermittence of water 

application. Since 4' = '(8) there is no capillary potential gradient 

0 tk over the zone of uniform moisture content. The gradient form of 

equation (4) 

0:13. 0 +7cp (15) 

then becomes 

\70 =711p (16) 

Childs and Collis- George (8) utilized this principle to determine 

capillary conductivity. The moisture content of the constant mois- 

ture zone was determined by measuring the capacitance between two 

previously calibrated aluminum foil electrodes placed on opposite 

sides of the column; the volume flux was simply determined from the 

rate of water addition at the upper end of the column; and the 

gradient was determined from equation (16). Equation (14) was then 

used to calculate K(0) which in this case was an actual rather than 

average value. The moisture content of the column was changed by 

adjusting the rate at which water entered the flow column. This 

method is limited to rather moist soils since at low rates of 
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application it is difficult to control evaporation. This causes 

the calculated values of K(A) to become inaccurate at low moisture 

contents. 

After K(A) has been determined by one of the above techniques, 

it is also necessary to determine d j /aQ and apply equation (13) 

to obtain D(A). A relationship between i and A is fairly easily 

obtained for a drying soil by use of the pressure plate and the 

pressure membrane apparatus. However, kp is not a unique function 

of A; instead, there is hysteresis depending on whether the soil 

is being wetted or dryed. In drainage problems the slope obtained 

from the drying curve is adequate, but for irrigation studies, the 

slope should be obtained from a wetting curve. A curve of moisture 

content versus moisture potential is difficult to obtain for a 

wetting soil, however, which further limits the utility of steady 

state approaches. 

Calculation methods 

A method of calculating K(9) from the soil moisture- potential 

curve was developed by Childs and Collis -George (8). The values of 

K(A) are obtained using the equation 

p =R y= R 

K(9) = 
/ l Y2 f (p) f'r 

f(y) br (17) 

= 0 y = 0 

where f(ß) br is the area devoted to pores of radius t to ß + br 

and f(y) by is the area devoted to pores in the range y to y + br. 

. 

h1 

ß 
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The summation is stopped at the pore size R appropriate to the 

largest pore which remains full of water at moisture content A. 

The constant M is calculated by matching a single calculated value 

of K(Q) with an experimental value. The calculations in this method 

are very laborious, and it also requires an experimental value of 

K(0). 

A method was developed by Marshall (25) for calculating K(A) 

which does not require a matching constant. Values are obtained 

from the equation 

K(A) = 2.8 x 10-3 a2 n-2 
Ch12 

+ 3h22 + 5h-2 + 2(n-1) h-2 I (18) 
3 n 

where ) is fraction of total area occupied by water and h1, h2, 

hn represent the potentials in equal classes; h1, corresponding to 

mean radius r1, belongs to the class with the largest pores and 

hn, corresponding to rn, belongs to the class with the smallest 

pores. 

Nielsen et al. (30) calculated capillary conductivity using 

the above methods and compared the calculated values with experimental 

values for four profiles on each of four different soils. They found 

that the values of K(Q) obtained using the Marshall method were too 

high for all tour soils. For one soil the calculated values were 

about 50,000 times higher than the measured ones. Values calculated 

by the Childs and Collis- George technique were near the experimental 

values for two soils but deviated considerably on the other two 

soils, except at the point of matching. A number of assumptions are 

2 



made in developing equations (17) and (18). Evidently these 

assumptions are not met or, in some cases, met in only a limited 

way in soil. 

Transient methods 

19 

Capillary conductivity can be determined from successive 

measurements of the moisture profile using a method developed by 

Staple and Lehans (47). The net amount of water that moves from 

one layer into the next is estimated from moisture profiles plotted 

at different times after water is added. The area between the 

profiles at two successive times represents the water that moves. 

The conductivity at any depth is determined by dividing the amount 

of water that moves past each level by the water potential gradient 

at that level. The gradient can be determined either by measuring 

the potential using tensiometers or gypsum blocks or estimating the 

potential from the moisture content. This profile method can only 

give approximate results because of generalization and approximations 

inherent in the method. It may be satisfactory for field work, 

however, since natural field variations are quite large. 

Gardner (16) introduced a method for calculating K(Q) from 

pressure plate outflow data. In this method soil samples were 

placed in an ordinary pressure plate apparatus and allowed to come 

to equilibrium at a small pressure. The pressure was then increased 

by an increment and the outflow liquid was measured as a function of 

time. At equilibrium, the pressure was increased by another increment 
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and outflow data were again recorded. From these data, K(8) was 

calculated using an equation developed by Gardner. 

In developing the equation it was assumed: a) that the capil- 

lary conductivity is constant over a pressure increment, b) that the 

relationship between moisture content and pressure is linear over the 

pressure increment and c) that the plate offers negligible resistance 

to flow. Except at low pressures (high moisture contents) where k(9) 

is changing extremely rapidly with moisture content, assumptions a 

and b can be approximated if small increments of pressure are used. 

However, at lower moisture contents somewhat larger pressure incre- 

ments must be used to get measurable outflow. The study was extended 

to pressure membrane apparatus to obtain values of K(9) for smaller 

values of A. Under these conditions it was necessary to use large 

pressure increments to get a measurable outflow. Also, some experi- 

mental difficulties are encountered with this method. The main 

difficulty is in measuring the total water coming from the soil 

because of the indefinite time required to reach equalibrium. 

In the outflow method of determining K(8), Gardner (16) assumed 

that the flow impedence of the membrane is negligable, an assumption 

which is very difficult to meet. Miller and Elrick (26) added a 

correction term to the pressure plate outflow equation which extends 

the application of the equation to cases in which the impedence of 

the supporting plate or membrane must be taken into account. From 

their theoretical results they developed a practical method for 

employing all of the experimental data (not just the exponential 

, 
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tail as is done in the Gardner method) fer determining p.(A). However, 

assumptions a and b made by Gardner are also made in the Miller and 

E'_ricic equation. These assumptions limit the validity of data ob- 

tained by this technique. 

Bruce and Mute (1) developed a method of determining moisture 

diffusivity directly. They wrote the diffusion equation for one 

dimensional horizontal flow and applied the Boltzmann transform. 

The transformed equation was then solved for D(?) to give 

2a 

D ( A ) _ - 1 ¡ d r 
xdA (19) a 2t d.9 A. A. 

1. 

where the subscript a indicates the distance at which the upper 

limit of integration and the derivative are evaluated. Equation 

(19) was integrated numerically from data obtained using a horizontal 

column of soil at initial moisture content 0i. Water was allowed to 

enter the soil from a water source. At time t the source was removed 

and the moisture distribution of the soil column was determined 

gravimetrically. 

The authors point out that using this technique moisture 

diffusivity is calculated from the transformed diffusion equation; 

the calculated diffusivity is then put back into the transformed 

equation and used to calculate the moisture distribution. Comparing 

results obtained in this manner with experimental results appears to 

serve only as a check on the accuracy of the calculations. However, 

if the diffusivity function is computed using an experimentally 

determined moisture content distribution for time t1 and this 
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calculated diffusivity is in turn used to calculate a moisture distri- 

bution for a new time t2, then a comparison of the calculated and 

experimental values at t2 serves as a check on this method of 

calculating moisture diffusivity. 

The Bruce and Klute method is easy to run and it does not 

involve the drastic assumption, inherent in the other transient 

methods, that D(Q) is constant over a small pressure increment. 

It also gives values over the entire moisture range which is not 

true of the steady state methods. Therefore, the Bruce and Klute 

method was chosen for determining the moisture diffusivity function 

in this study. 

G 



THEORY 

The Diffusion Equation for Moisture Flow 
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Darcy's law has been used for many years to characterize one - 

dimensional water flow in saturated soil. This law can be stated 

mathematically as 

v = - i, 

dH 

dz 
(20) 

where v is the volume flux of moisture, K is a proportionality 

constant called the hydraulic conductivity, and di-/dz is the head 

gradient or driving force, 

In developing the diffusion equation for moisture flow, it 

is necessary to assume that a law similar to the Darcy equation 

holds for steady state flow in unsaturated soil. For unsaturated 

flow, the proportionality constant, hydraulic conductivity, of 

Darcy's law must be replaced by capillary conductivity which is a 

function of moisture content. Although several workers (8, 19, 52) 

have presented evidence indicating that this assumption is correct, 

it appears to the author that this is probably the weakest assump- 

tion in the derivation of the diffusion equation for moisture move- 

ment in unsaturated soil. 

If it is assumed that a "Darcy type" equation holds for unsat- 

urated, one -dimensional, steady state flow, it can be written as 

dc13 

v = - K(ß)dz (21) 
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where v is volume flux, A is moisture content, K(A) is capillary 

conductivity and ap/az is potential gradient. 

The potential 0 can be broken into two components 

(22) 

where tk is water potential and n is gravitational potential. Sub- 

stituting equation (22) into equation (21) results in 

v = - K(A) .22 + 2S2 (23) 
az az 

since 4, = tP(A), aw /az = (84//aQ)(OA /az) can be substituted in 

equation (23) to give 

y = - K(Q) 
aA dz - K(A)az 

(24) 

It is now possible to define a term called moisture diffusivity 

D(A) such that 

D(A) = K(A)aA 
. 

Also, the gravitational potential can be defined as 

= gz 

(25) 

(26) 

where g is the acceleration of gravity. Combining equations (24), 

(25) and (26) results in 

v = - D(A)áá - K(A)g . (27) 

Since there is no gravitational potential gradient in horizontal 

c =/+ cp 

. 



flow, equation (27) can be written as 

v = - D(8 
ax 

(28) 
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for flow in the x direction. 

Inspection of equation (28) reveals that moisture diffusivity 

is a physical property relating to the readiness with which unsat- 

urated soil transmits water. Since this definition could just as 

well apply to capillary conductivity, a distinction should be made 

between these two functions. Moisture diffusivity is the function 

relating volume flux (rate of flow) to the driving force when the 

driving force is expressed as a moisture concentration gradient; 

whereas, capillary conductivity is the function relating volume flux 

to the driving force when the driving force is expressed as a poten- 

tial gradient. 

Equations (20), (21), (23), (27) and (28) apply only to one - 

dimensional flow under steady state conditions, i.e. conditions where 

neither moisture content nor moisture potential are changing with 

time. 

For multi -dimensional flow, Laplace's equation is frequently 

used in problems involving unsaturated soil. This equation states 

that the divergence of the mass flux V is equal to zero 

div V = 0. (29) 

The physical interpretation of the above equation is that the 

quantity of moisture flowing into a unit volume of soil in unit time 



26 

is equal to the quantity flowing out of the same volume in unit time. 

Thus the moisture density is constant. Moisture flow of this type 

is referred to as steady state flow. 

In multi -dimensional flow in unsaturated soil, the equation of 

continuity is used to characterize the flow. The equation of con- 

tinuity states that the divergence of the mass flux is equal to the 

negative of the time rate of change of moisture density M 

div V = 
6M - 
t 

(30) 

In a physical sense, this equation expresses that the difference 

between the quantity of moisture flowing into a unit volume of soil 

in unit time and the quantity flowing out of the same volume in a 

unit time is equal to the quantity of moisture stored within the 

volume in the same unit time interval. Thus, the moisture density 

is changing with time. This type of moisture flow is referred to 

as transient flow. 

The moisture density is 

M (31) 

where Pb is the bulk density of the soil and Q' is moisture content 

expressed as dry- weight mass fraction. The mass flux V is related 

to the volume flux v by the equation 

V = pv (32) 

where p is the density of water. 

- 



A combination of equations (31) and (32) with equation (30) 

results in 

a 

at 
P_ (4') = - div pv. (33) 

If the density of water is assumed to be constant, p can be taken 

outside the divergence operator and equation (33) can he written 

But since 

\P e, I 
- div v. 

at P 

Pb QI _2 
P 

(34) 

(35) 
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where Q is moisture content expressed as volume fraction, equation 

(34) becomes 

aA 
div v. 

at 

The divergence of a vector is defined as 

div v = 

avx 
+ + av 

ax ay 77- 

(36) 

(37) 

where vx, v , and vz are the components of v in the x, y, and z 

directions respectively. The result of combining equations (36) 

and (37) is 

ae avX 3v y avZ 

at ax ay áz 
(38) 

The term vx is defined by equation (28); vy is defined by a 

similar equation in which x is replaced by y; and vz is defined 

- 

z 

Y 

= 
_ 

- = - 

- - - 

z 



by equation 

gives 

ae 
= 

at 

or 

ae a 

at dx 

The vector 

a 

D(8)- 

form 

(27). Putting 

ao [D(Q)1+ 
ax 

ae a 
+ 

ax ay 

of equation 

ae 

at 

equations 

a - D(o)._ 
ay 

ao D(o)- 
ay 

(40) 

7D(Q)7/0! 

ae 

ay 

+ 

is 

a 
+ -- 

az 

a 

áz 

+ g 

(27) 

D(o)- 

aK(a) 

and 

[D(0.22 

ao 

az 

(23) into 

+ K(Q)g] 
az 

aK(e) 
+ Pr- 
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equation (38) 

(39) 

(40) 

(41) 

az 

az 

Equation (40), or alternately equation (41), is called the 

diffusion equation for soil moisture. This name was given because of 

the similarity between equation (40) and the equation for diffusion 

of gases. The name is not meant to imply that the mechanism of water 

movement in unsaturated soil is due to random molecular motion as is 

the case in the diffusion of gases. Actually there are probably 

several mechanisms involved in moisture flow. 

The importance of the various mechanisms is not known but their 

relative importance probably changes with each change in moisture 

content. 

It is possible to write equation (40) in another alternate form. 

Since 

aK(o) a aK(o) ao 

az ae az 

a new function K'(ß) can be defined as 

K`(a) = 
aA 

aK(o) 

(42) 

( 43) 

_ 

= 

- 
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This allows equation (42) to be written as 

aK(A) 
K'(8)aA = 

. 

az az 
(44) 

If equation (44) is combined with equation (40), the result is 

38 a ID(8)81 + [D(A)áA + 
á 

L az] 
+ gk'(8)a8 

ax 1 ax JJ a a az azJ az (45) 

In equation (45) all space derivatives have 8 as the independent 

variable which is probably a more desirable form for machine 

computations than equation (40). 

This study is being limited to one -dimensional horizontal flow. 

For these conditions equation (40) becomes 

aA a 

CD(A)áAl at ax ax 

Difference Equations for One -Dimensional Flow 

in Homogeneous Soil 

(46) 

A numerical technique similar to that described by Richtmyer can 

(45, p. 89 -120) be used to solve the differential equation for 

moisture flow. The implicit difference analogues for equation (46) 

are 

/ An+l 1 

8n+1 Q. D(A+T2) 
Ax 

en+1 8n+1 

- D(An±1/2) J-1 

Ox (47) 

At Ax 

where j = 1, 2, 3, 4, k; and n = 0, 1, 2, 3, "*N. The super- 

scripts and subscripts denote time and space iterations respectively. 

at 

á 

= 

- 
- 

= 

1 

_ 
] 
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The notation is shown graphically in figure 1. Letting At/(Ax) 
2 

= r 

and rearranging (47) gives 

n+1/2 n+1 n+1/2 n+1/2 n+1 
- rD(A i_1/2)A + rl + rD(A~) + rD(A j+1/2), AJ 

- rD(A".+l/2)An+l 
1+ 1/ 2 j+ 1 j 

(48) 

Equations (48) together with the boundary and the initial conditions, 

An = Q, n > 0 where Q 
s s 

the moisture content at saturation 
0 s - 

80 = Q, j > 0 where A is the initial moisture content, 
j o o 

form a non- linear system of equations. 

n +1/2 
Equations (48) are non -linear since the values of D(Aj +1/2) 

i 

are dependent on the values of AJ and An 
+1 

for which solutions 
J_ 

n+i 2 
are being sought. However, ii Aj is approximated by A1+1/2, 

then D(Aj +1/2) can be computed and a system of linear equations 

n+1/2 which can be solved is obtained by replacing D(Ajtl /2) in equations 

(48) by D(A 
j +l/2) 

Making the indicated substitutions in equations (48) results 

in 

-rD(A )9 
j-1/2 

* 
+ Iii + rD(A 

* 
) + rD(A 

* 
)1 

An+l n+ l 

j- j-1/2 1+1/2 J 

* 
- rD(A 

j+1/2 +l 
)An en (49) 

The function 0.3+1/2 may be chosen with some freedom. In the 

computations presented in this paper the function used is Q* 
* 

_ 
j +1/2 

Cj 
+l/2 

+ a, where a is an arbitrarily chosen small constant and 

is 

J 

An = 

n 
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Figure 1. Small sections of two moisture distribution curves for a 

soil column at times t and t + At. The symbols used to 

show moisture content are; O, values of 9 which were cal- 

culated at the n time step; , values of 9 to be calcu- 

lated at the n+l time step; and , values of 0 which are 
estimated by 0 *'s and are used to calculate values for 

moisture diffusivity. 
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j +1/2 
is an average of two successive moisture contents at x and 

xtix. In current calculations a value of 0.001 has been used for 

a. If At and ¿x are small, good results can probably be obtained 

using Q. = n Aj , however, the function Q. = 8n + a 
át1 /2 Q. 

ßt1 /2 jt1 /2 

is a somewhat better approximation and gives very acceptable results. 

If more accuracy were desired, an iterative procedure might be used. 

The functional relationship between D(A) and A was determined 

using the method described by Bruce and Klute (1). This method will 

be discussed in a following section. 

The system of linear equations (49) is very convenient as the 

coefficient matrix is tri- diagonal. 

b c 
1 1 

a2 b2 c2 

a3 b3 c3 

am-1 bm-1 cm-1 

a b 
m m 

(50) 

* * * * 
+ rD(9i_1/2) + rD(6i+1/2)' c. = 

- 
rD(Bi+1/2) 

The terms al and cm are missing from matrix (50). The reason 

these terms do not appear explicitly in the matrix is that 9n +1 and 

wm + Ali are known, since +l = As and G,iti = Go. Therefore, 6Ó 
+1 

and 

em +1 can be combined with the known values on the right sides of the 

respective equations. 

+12 

ai = - rD(Ai-1/2), bi 

3 

= 1 
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A tri- diagonal system of equations can be solved very conven- 

iently by Gaussian elimination (51, p. 28 -32). In the Gaussian 

elimination scheme, the first pair of equations is used to eliminate 

the first variable from the second equation. The elimination con- 

tinues successively to the remaining variables until one equation 

in one unknown remains which can be solved. Working backwards, the 

solution of the last equation is substituted into the preceding 

equation to obtain the value of a second variable. This procedure 

is continued to obtain successively the values of the remaining 

variables. 

An example, using numbers chosen for convenience in illustrating 

the method, follows: 

Consider the set of equations 

301 + 282 = 4.5 

201 + 302 + Q 
3 

= 4.75 

Q 
2 

+ 2Q 
3 

+ Q 
4 

= 2.0 

Q 
3 

+ 284 
4 

= 1.0 

The coefficient matrix of the set of equations is obviously 

tri -diagonal. The steps in the solution by Gaussian elimination 

are: 

1. Divide the first equation by its leading coefficient. 

Save the result. 

2. Multiply the result of the first step by the leading 

coefficient of the second equation and subtract the result from 
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the second equation. This eliminates the first variable from the 

second equation. 

3. Repeat steps one and two using the equation from which the 

variable has been eliminated as the first equation and its successor 

as the second. 

At the end of this process the original set of equations is in 

the form 

Al + 302 = 1.5 

02 + 
3s3 

= 1.05 

0 -4.) 
4.75 

3 7 4 7 

yA = 2.25 

7 4 7 

The solution for 04 
4 

is now easily computed to be 0.25 and by 

substituting successively into the preceding equations, 03, 02, and 

81 are found to be 0.5, 0.75, and 1.0 respectively. 

This method of solving the given system (49) has several very 

nice features for machine computation. All of the numbers involved 

in the computation stay nicely in scale; that is, they are all of 

nearly the same magnitude. The elimination process need only re- 

ceed until the value of Q is at that of the initial moisture con- 

tent Q0. Then the values of Bh +1; k = j, j -1, ...2, 1; can be 

calculated. Thus, only meaningful points are calculated at any 

one time iteration, which appreciably reduces the computation time. 

The implicit difference formulation is unconditionally stable 

(45, p. 169 -170) for all values of At and Ax; however, it is 

+ = 
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desirable to keep these increments small in order to insure a 

reasonably small truncation error. In current calculations values 

used are: At - 2.5 sec. and AY "" 0.5 cm. 

Calculated moisture content curves which meet the Boltzmann 

boundary conditions can be expanded or contracted by simply changing 

At and Ax in such a manner that the ratio r = At/(Ax)2 is held 

constant. The values Q which are obtained at the n +l time step 

using the system of equations (48) depend only on: the values of 

Q at the n time step, the method of estimating D(Qn +1), and the 

value of r. Using a given set of values for On and a given method 

of estimating D(Qn 
+1), 

the values of Q11+1 will depend only on r. 

Now if r is held constant, the same moisture content will be obtained 

at each calculated point for the n +l time step regardless of the 

size of the time step At; that is, if At and Ax are varied in such 

a way that the ratio r is held constant, the moisture content cal- 

culated at each point for the n +l time step from a given set of 

data at the n time step will be the same for all values of At; but 

if At is varied, the spacing of the points will also vary. It should 

be realized, of course, that when a curve is expanded, any errors 

in the curve will be magnified in proportion to the expansion. 

Therefore, extreme expansion of curves computed for short times 

should be avoided. 



Difference Equations for One- Dimensional Flow 

in Multi -Region Soil 

The partial differential equation (46) 

d8 d [D(0.221 , 

at dx ax 

(46) 
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with proper boundary conditions may be applied to media in which 

there are regions with dissimilar flow properties;. The boundary 

conditions specify continuity of flow and continuity of potential. 

These conditions between two regions I and II are: 

(D(0=19) ll 

e¡¡ 

dx \DII(A)dxl + 
x=b xb 

(53) 

fib- gib+ (54) 

where DI(A) and DII(A) are the diffusivity functions for regions 

I and II respectively; b is the boundary between regions so that 

b is arbitrarily near the boundary in region I and b+ is arbitrarily 

near the boundary in region II; qfb- and ky + are the moisture 

potential functions relative to regions I and II. 

When finite difference equations are used to approximate the 

differential equation, boundary condition (53) must be modified 

since the boundary lies in an increment of finite thickness Ax. 

The notation used in developing the finite difference equations 

is shown graphically in figure 2. 

b 

m 

m 
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Figure 2. Two moisture content distribution curves at times t and 
t + At for the boundary section of a two region soil 
column. The broken line indicates the boundary between 
region I and region II. The symbols used to show mois- 
ture content are; O, values of Q which were calculated 
at the n time step; , values of Q to be calculated at 
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by Q 's and are used to calculate values for moisture 
diffusivity, 
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The modified boundary condition corresponding to equation (53) is 

Qs 

- D (A* ) 
) [n+1 An+11 

D 
(A* n+1 

n+,J I b-1 2 b b-1 II b+1/2 ) b 

38 

Ax Ax (55) 

where Qs is the difference between the flux into and the flux out of 

the increment Ax and therefore may be thought of in terms of the 

quantity of water stored at any time increment, Ab_1 
-1 /2 is an approxi- 

mation of (Ab ±1 0+1)/2 and A is an approximation of 
b -1 b- b+t /2 

(Ab +l + 011)+1) /2. The potential tpb_ and yb+ can be related experi- 

mentally to the moisture contents AID_ and Ab+ respectively. 

The quantity of water stored in the increment about the boundary 

Qs can be obtained by applying a difference equation to an increment 

Ax 
on each side of the boundary and adding the results 

2 

Qs 
L 2[(;:1 - Ab -) (Ab+ 1 

b 
)1 

Ax 

Equating equations (55) and (56) and letting At /(Ax)2 = r gives 

(56) 

r 
1- D / ) (A* 

(An+ l An+ J l D (A* ) (en+ 1 _ 
Ab+ill I b=1/2) b- b-1 II b+1/21 b+1 + 

L 

r 

+ 

+l 
- Anu_) (A+1 

J 

On rearrangement, equation (57) becomes 

(57) 

- rD A* (A* 
I h1/2 b-1 

))Q11+1 1 + * [rDI(Qbl/2) + 

1 

2 
n±1 
b 

rD (A* ) 

[ II b+l/2 
1 

2 

n+1 

b 

* 
- rD (A )An+l 1(An + 6n ) I I b+ 1/2 b+1 7 b- b+ 

(58) 

- A - 
b+1 

+ 

. 

- 

= 
(O 

1 

11 

+ - 

+ 
+ 

= 

= 
+ 

+ - 
J 

1 

2 b- b b+ 

b' 
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Equation (58) is one condition which must be satisfied on the boundary 

between regions. The second condition which must be met can he 

specified by equation (54). However, since all of the equations have 

been written using A as the independent variable, it is also necessary 

to write this boundary condition in terms of moisture contents A__ 

and 9+ which correspond to potentials Sy and 
fib+ respectively. 

Since the relationship between A and 14. , is known for the soil in 

each region, a relationship between 8b- and Ab+ can be obtained 

for the condition that * _ +. 

In order to use the Gaussian elimination technique for the 

solution of a multi -region problem, it is necessary to approximate 

the relationship between and Ab+ with a piece -wise linear func- 

tion; i.e., if Q + = f(Q ), then f(0 ) must be approximated by - - b b- b- 

line segments such that 

A + = a A + c 
b b- i 

_ 1, 2, 3, n (59) 

where there are n line segments in the approximating function. 

Equation (59) thus becomes the second condition that must be sat- 

isfied between the two regions. 

n+1 If equation (59) is substituted into equation (58) for Q.+ 

and 8b+, the result is 

- rD (A* )An+l + rD (a* ) + - + a (rD (A* ) + 1)1 An+l 
I b-1/2 b-1 I b-1/2 2 i b+1 2 2Jf b- 

* 

- rDII(Ab+1/2)Ab+l = 
2(1 

+ ai)9b±1 
_ c1 rDII(8b+1/2) (60) 

*b 

Ab- 

i 

i 

I 

II 

5 

_ - 
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Both boundary conditions are now incorporated into this one equation. 

Since equation (60) involves only three unknowns, it fits into the 

tridiagonal system of equations and the system can he solved by 

Gaussian elimination as described in the previous section. 

Thus, the system of equations which must be solved in a two 

region problem with boundary at j = b, and diffusivity functions 

DI and DII in regions I and II respectively is 

- rDI (8* )en+ 1 + ( 1 + rD (8* ) + rD (8* ) I 

8n+ 1 

j-1 j-1 \ I j-1/2 I j+1/2 // 

* n+1 r 
- rDI (8 j+1/2)2 j+1 - 

8 for j < b 

(61a) 

* n+1 * * 1 n+1 
- rDI + [rD (8 ) + - + a (rD (8 ) + -¡ i b-1/2 j_1 I b-12 2 i II 11+112 2). 

- rD (8* 
)8n+1 a 1(1 + a.)en - c rD (e* ) II j+1 2 1 ;- i II h+J¡2 

for j = b 

* 
n+1 - airDIl(81/2)B+i 

+ 
1+ rD (Ab ) 

+ 
rDII(8j+1/2)1 

gJ 

- rDII(8j+1/2) 
= 8 + cirDll(8b+1/2) for j = b + 1 

(61b) 

(61c) 

} 

j 

1 

e j- 

x 



- "7II(ai-1/2)0J+i + Li + rDII(0j-1/2) + rDII(6j+1/L)]eJ+1 

* n+1 n -DII`ej+1/2)9j+1 aj for j >b+ 1 

(61d) 
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The value of 8b +1 is not calculated in a normal pass through the 

program at any one time iteration but must be calculated separately 

from 

Bn+1 = a 8n+1 + c . 

b+ i b- 
(62) 

Theoretically, the values of Ab +l calculated from equation (62) 

should all lie in the interval 9oII < 0b +1 5' sII 
where 0oII and AsII 

are initial and saturated moisture content respectively. Since the 

evaluation of ai and ci involves some experimental error, a value of 

Ab 
+1 

occasionally falls outside this interval and the following 

adjustments must be made to prevent successive values of A from 

diverging from the true solution: if Ab +l < AoII, set 
b 

+l 

1 

= 
AoII' 

if Bn+1 +1 > A , set 9n +1 = A 
b sII b sII 

When a fine textured soil is followed by a coarse textured soil, 

water does not enter the coarse textured soil until ''has been reduced 

to a level 4 which depends on the pore size of the coarse textured 

soil. The potential 4 corresponds to a moisture content 0. In 

the computer program, flow across the boundary must be restricted 

until a barrier is reached, i.e., until Alf = A . 

p 

L 

= 
II j+1/2 j+ 1 j 

- - 

r 



MATERIALS AND METHODS 

Laboratory Techniques 

42 

The soils used in preparing flow columns were: Quincy loamy 

sand, Quincy fine sandy loam, Salkum clay loam, Olympic silty clay 

loam, and Chehalis loam. The mechanical analyses of these soils 

are given in table 1. 

Table 1. Mechanical composition of five soils as determined 
by pipette analysis. 

Soil Clay Silt Sand 
-2µ 2 to 50p .50p 

ro 

Quincy loamy sand 9.58 6.01 84.41 

Quincy fine sandy loam 11.58 31.16 57.26 

Salkum clay loam 37.35 41.07 21.58 

Olympic silty clay loam 32.53 55.23 12.24 

Chehalis loam 20.58 41.06 38.36 

The Quincy loamy sand was prepared by passing through a 1 nn 

sieve; the other four soils were crushed sufficient to pass through 

a 2 mm sieve. 

The apparatus used to determine the moisture content distri- 

bution curves was a modification of that used by Bruce and Klute (1). 

A diagram of the apparatus is shown in figure 3. The flow columns 

consisted of a number of 1.06 cm sections of plastic tubing which 
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C 

D 

Figure 3, Sketches showing assembly of flow columns: A, assembled 
flow column ready for filling with soil; B, filled flow 
column with excess soil removed and water source attached 
with .ellophane tape; C, end piece with hole for inserting 
vibrator; and D water source showing the brass screen end. 

B 
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had an inside diameter of 3.14 cm. To obtain more precision at the 

wetting front, six thin (0.24 cm) sections were placed in the flow 

column in the region where the wetting front would be at the time 

of soil sampling. The columns were held together with rubber bands 

placed around small plastic hooks which were cemented to the end 

sections. The flow column was made more rigid by placing two strips, 

cut from aluminum tubing, on opposite sides of the column. The 

aluminum strips were held in place with a rubber band. The assembled 

column was fitted with an end piece which had provisions for inserting 

a vibrator (figure 3C). 

The flow column was filled using a tremie which consisted of a 

plastic funnel attached to a 40 cm section of 1.3 cm inside diameter, 

plastic tubing. The tremie was rested on the end piece and filled 

by taking small samples from bulk soil which had been thoroughly 

mixed. The filled tremie was slowly raised while being continu- 

ously moved in a random pattern inside the flow column. The con- 

tinuous motion in the horizontal plane, as the tremie was raised, 

resulted in a very uniform layering of soil with very little size 

segregation of particles. 

'/ 
The filled column was set on the tip of a vibrator-, where it 

was held in place by a loose fitting clamp. The columns were vibrated 

five minutes for Chehalis, Olympic, Salkum, and Quincy fine sandy 

loam and eleven minutes for Quincy loamy sand. Also a slightly 

J A Burgess Vibro- graver was used in this study. 
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shorter vibrator stroke was used on the Quincy than on the other 

soils. It was found that vibration beyond these periods produced 

negligible additional packing. 

The bulk density was less in the upper 2 cm of the column; 

therefore, after packing, the upper 5 cm section of soil was dis- 

carded and a solid cap was placed over the end of the column. 

The column was then inverted, the 1.06 cm section of soil which 

had been at the bottom of the column was removed, and a water source 

was attached with cellophane tape (figure 3B). 

The water source consisted of a 2.5 cm section of tubing with 

a disk of plastic cemented over one end and a piece of brass screen 

attached to the other end (figure 3D). The brass screen was fused 

to the plastic with a hot soldering iron. Two short lengths of 

plastic tubing were cemented into holes on opposite sides of the 

water source to act as filling tubes. 

The completely assembled flow column was placed in a constant 

temperature room and allowed to reach equilibrium with the room which 

was kept at 20 ;C.6° C. 

The flow column was placed in a swivel clamp which allowed 

rotating the flow column from a vertical to a horizontal position. 

A rubber cap was placed over one filling tube of the water source 

and the other was connected to a Mariotte bottle which was adjusted 

to maintain zero head at the center of the horizontal flow column. 

The water source was filled by rotating the flow column into 

a vertical position and opening a pinch clamp on the tygon tubing 
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connecting the water source and the Mariotte bottle. Since the 

water source was about 5 cm lower when the column was rotated to 

the vertical than in the horizontal, it filled under approximately 

5 cm of head. The water level was carefully watched as it rose in 

the water source. The instant the water touched the screen the 

column was rotated to a horizontal position and simultaneously a 

stop watch was started. Using this procedure the flow column did 

not experience a positive head when flow was initiated. 

Flow was allowed to proceed until the wetting front was at 

the fifth thin section. The column was then quickly detached from 

the Mariotte bottle, the reservoir was emptied and the stop watch 

was stopped. The sections of the flow column were quickly cut apart 

with a spatula and the soil from each section was placed in separate 

moisture cans. Moisture content was determined gravimetrically. 

The sampling procedure required approximately 60 to 80 sec. 

It is possible that during this time some redistribution of mois- 

ture took place. However, the samples near the wetting front were 

removed first and, as indicated by the moisture content distribution 

curves, the moisture gradient was small behind the wetting front. 

It is therefore believed that the moisture redistribution was neg- 

ligible except possibly in the section immediately next to the 

water source. 

Flow columns for two region problems consisted of two short 

columns filled and packed as above. A strip of paper was placed 

on top of one column and was held in place with a spatula. This 
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column was inverted and placed on top of the second column, and the 

two columns were secured together with rubber bands. The spatula 

was carefully removed; followed by careful removal of the paper. 

The completely assembled column was vibrated for 3 seconds to insure 

good contact between the two soils. The remaining steps in handling 

the layered -soil flow columns were the same as those described for 

the single -soil columns. 

Computer Techniques 

The moisture content distribution obtained from the flow columns 

was used to compute moisture diffusivity from equation (19) 

r Aa 
D(a) _ 

1 
(( 

dx 
¡¡ 

D(a) 2t \ d8 1 ei 

xd8 (19) 

where(.--) 
d9 /9 

indicates the value of the derivative at Q = Ba. 
a 

The first problem attacked was to write a computer program 

that takes the raw data from moisture distribution measurements 

and calculates the diffusivity from these data using equation (19). 

A functional relationship can then be determined between moisture 

diffusivity and moisture content for use in solving the diffusion 

equation. 

Because of the derivative which appears in equation (19), it 

was considered necessary to include data smoothing techniques in 

the program. It is well established that the differentiation pro- 

cess tends to magnify experimental error just as integration tends 

to smooth out this type of error. The technique used was to 

9 
a 

a 
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combine the point x1, which is to be smoothed, with the two neigh- 

boring points to the right and the two neighboring points to the 

left; and through these five points a parabola of second order was 

fitted by the method of least squares. The new, corrected value of 

xk is taken as the value of the central point on the parabola. This 

process is then repeated on each successive point, xk xk +2, 

xk_2. There is a special formulation to handle the smoothing of the 

two points at each end of the data. At the conclusion of this pro- 

cess one has a new set of data which has been smoothed once. 

The smoothed data are now subjected to a similar process with the 

derivative being calculated at the center point of the second order 

parabola at each step. In this way the data is smoothed twice in 

the calculation of each derivative. In cases where the experimental 

datum contains a value xk < xk the derivative at x will be 
k+1 

positive. This gives a negative diffusivity which is meaningless. 

It was, therefore, necessary to use a French curve to smooth any 

points xk +l where xi` > x. before applying the machine smoothing 

techniques. 

It should be noted that since the techniques used require equally 

spaced data and the given data are equally spaced in x, the derivative 

(rig) was computed and the reciprocal, 1 (dx was 
dx / Aa (dA ) \ dd as I 

\dx /Aa 

taken. The integral was calculated using Simpson's Formula. In 

this calculation use was made of the relation 

a 
A xdA = (Ea - Ai)a - 

a f Ada 
1 

(63) 

- 

- 

a 
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where x = a at A Ç aa, and x = xi at A = 6i. This allows the inte- 

gration to be taken along the x -axis where the data are equally 

spaced. A graphical representation of equation (63) is shown in 

figure 4. 

In the system of equations (49) or (61), the function D(Q) 

enters as a factor in the various coefficients of the 9's. In 

order to solve either system, the function D(Q) or a reasonable 

approximation thereof must be available. Since there is no known 

analytic expression for D(9) an approximation must be used. Using 

equation (19) values of D(b) were calculated from experimental data 

as described above. The approximating function was then fitted to 

this set of data. 

Several approximating functions were tried before one was 

found that fitted the data reasonably well. The first function 

tried was an exponential function of the form 

D(Q) = e P(Q) 

where P(Q) is a polynomial in Q, P(Q) = al + a2x + a x2 + 
3 

an+ 1xn. 
The best fitting polynomials up to degree 3 were 

(64) 

obtained by the method of least squares. However, none of these 

exponentials gave reasonable fits. 

Another function which was tried was of the form 

D(Q) c(8 
d)n 

D(Q) = c(2 - d - 4)n 

for 8 , b < 1 

(65) 
for 1 - d 

= + 

- <g 
s 
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where 1 - d = peak and 
c = D(8peak)' the term 

peak 
being the value 

of 8 at which D(8) reaches a maximum. The value of n was varied to 

obtain the best approximation. This function is like xn for 8 < x < 1, 

which, for large n, is small for all values of x except those near 1. 

The fit with this function was relatively good near the peak; but 

it did not fit well for values of 9 near Ao, the fitted values of 

D(9) being too low at low moisture contents. 

Since the calculated values of D(A) showed a narrow, sharp, 

rising peak, almost a discontinuity, it was decided that a better 

fit might be obtained by multiplying the D(A) values by a factor 

(9 - a)2, where a is the value of A at the peak, and fitting a 

function to the resulting data. This operation gave a set of data 

which was easily fitted by a piece -wise linear function. The 

resulting function can then be divided by (A - a)2 to obtain the 

approximating function for D(8), i.e., if D(A) is the symbol used 

for the approximating function (as well as the symbol of the theo- 

retical function) then 

D(9) = f(A) 

(9 - a)2 

(66) 

where f(A) is now the function that must be fitted. For the type 

of data obtained for moisture diffusivity, the function f(8) can 

be fitted piece -wise with linear exponentials, 

f(8) = e al9 + (67) 

The fit was obtained by the method of least squares. Combining 

equations (66) and (67) gives the final form of the equation used 
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to obtain the approximating function D(0), 

aiA + bi 

D(A) = 
e 

(68) 

(A - a)2 

It should be noted that with this technique a value slightly 

different from a must be used in the factor (A - a)2 for the 

segment in which A = a. In solving for f(A), two different values 

of a, a + E , were used in obtaining values for (A - a)2D(A). 

Thus, (A - (a + E))2D(A) was used for values of A <_ a and 

(A - (a - e))2D(A) for all values of A > a. 

With the diffusivity function approximated by equation (68), 

the system of equations (49) and (61) can be used to calculate the 

moisture content distribution in a horizontal flow column with 

uniform and layered soil respectively. A computer program was 

written to handle the calculations involved in the solution of 

these systems of equations. 

2/ The calculations were performed on an IBM 709 computer at the 

Western Data Processing Center at the University of California, 

Los Angeles. 
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Comparison of Gaussian Elimination and 

Boltzmann Transform Techniques 
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In order to evaluate the Gaussian elimination technique for 

solving the difference analogues (49) of the diffusion equation 

(46), it was thought desirable to determine whether solutions ob- 

tained by Gaussian elimination predict experimental values as well 

or better than solutions obtained by the Boltzmann transform 

technique. 

Diffusivity data reported by Gardner and Mayhugh (19) were used 

to calculate the moisture content distribution for several soils 

using the Gaussian elimination scheme. Figures 5 and 6 show the 

moisture content distributions of four soils calculated using 

Gaussian elimination; in addition, the moisture content distri- 

butions calculated by Gardner and Mayhugh using the Boltzmann 

transform are shown. Experimentally determined moisture contents 

are also included in these figures. The two methods of calculation 

gave very similar moisture distribution; in fact, the curves for 

Chino are almost superimposed. Yolo, Traver and Pachappa show 

slight differences between the curves obtained by the two methods 

of calculation. For these three soils, the curves calculated by 

the Boltzmann transform fit the experimentally determined points 

somewhat better than the curves calculated by Gaussian elimination. 

However, this does not necessarily mean that the Boltzmann technique 
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Figure 5. Moisture content distribution for the movement of water into several soils. The solid 
curves are solutions of the diffusion equation by a Gaussian elimination technique and 
the broken curves are solutions obtained by the Boltzmann transform technique using the 
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(19). 

50 

114"41401ftr + . 

, I I 

' - 

, 



P
E
R
C
E
N
T
 
M
O
I
S
T
U
R
E
 
B
Y
 
W
E
I
G
H
T
 

40 

35 
C 

30 

25 

(24 

20 

i--4 

15 

H 

10 
W 

x 
5 

a 

0 5 10 15 20 25 30 35 40 

DISTANCE FROM SOURCE - CM 

45 50 

Figure 6. Moisture content distribution at three times for Pachappa soil. The solid curves represent 
solutions of the diffusion equation by a Gaussian elimination technique. The solid curve 
for 38 minutes also represents the contraction of the 144 -minute curve, and the solid 
curve for 343 minutes represents the expansion of the 144- minute curve. The broken curves, 
which represent solutions obtained by the Boltzmann transform, and the data points were 
taken from Gardner and Mayhugh (19). 

D(00) e 3 X 10-2 CM2/MIN 

DCes)/D(00) 
400 

E- 

x 

x 
E-1 

z 



56 

is preferable to Gaussian elimination. 

Figure 6 shows moisture content distribution curves at three 

different times for Pachappa soil. In order to evaluate expansion 

and contractions of moisture content distribution curves, the curve 

for 144 minutes was contracted to 38 minutes and was also expanded 

to 343 minutes. Both the expanded and the contracted curves were 

essentially identical with the curves calculated for the same times 

by Gaussian elimination. 

Calculation of Moisture Diffusivity Functions 

From each experimentally determined moisture content distri- 

bution, moisture diffusivity was determined at various moisture 

contents using previously described methods. Examples of moisture 

content versus moisture diffusivity are shown in figures 7 and 8. 

Since moisture diffusivity determined by the method of Bruce 

and Klute (1) should be independent of the length of the run, mois- 

ture diffusivity curves for several times of sampling were deter- 

mined. Figure 7 shows moisture content- diffusivity curves of Che- 

halis loam for runs of 85.1, 24.5 and 14.4 minutes. Variation among 

runs is not extreme; nevertheless, there is some variation. 

Figure 8 shows the moisture content -diffusivity curve for 

Quincy loamy sand. The length of the runs shown are 5.5, 2.9 and 

1.1 minutes. There is considerably more variation among the curves 

for Quincy than among the curves for Chehalis. In fact, the Quincy 

loamy sand showed greater variation than any of the other soils. 
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Figure 7. Moisture diffusivity as a function of moisture content for 
Chehalis loam. Moisture diffusivity was calculated from 
data collected in three separate runs, each run being 
sampled at a different time. The times for the runs were: 
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The variation may have resulted from the high rate of water trans- 

mission in this soil. The wetting front moves into the Quincy loamy 

sand so rapidly that the percentage error in measuring time is much 

greater than for soils in which the wetting front does not move so 

rapidly. The high water transmission also causes a greater redistri- 

bution of moisture during sampling. 

Since there was some variation among runs for various times, 

it was decided that the diffusivity approximating function should 

be fitted to a diffusivity curve which was an average of three runs 

with different sampling times. Figure 9 shows average diffusivity 

curves for the five soils. Each curve is an average of three runs. 

As all curves are plotted on the same figure, it is possible to 

compare diffusivity functions for the various soils. At low mois- 

ture contents the Quincy loamy sand has a diffusivity value approxi- 

mately ten times as large as the Chehalis loam, and the maximum 

value is also approximately ten times larger. The curves are also 

of approximately the same shape, but the peak on Quincy occurs at 

a lower moisture content than the peak for Chehalis. 

An approximating diffusivity function, equation (68), was 

fitted to the values used in plotting figure 9. Figure 10 shows 

values of (0 - a)2D(0) versus moisture ratio for Quincy fine sandy 

loam. The piece -wise exponential fit is shown as three straight 

line segments on the semilog plot used in this figure. Values of 

moisture diffusivity computed from equation (68) for Quincy loamy 

sand are shown in figure 11. Average diffusivity values calculated 

from experimental data are also shown. These average values are the 
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Figure 9. Average curves of moisture diffusivity versus moisture 
content for five soils. Each curve is an average of three 

runs for three different sampling times. 
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same as those used to plot the curve for Quincy loamy sand in figure 

9; and they are also the values which were used to determine the 

parameters for equation (68). As can be seen from figure 11, the 

approximating diffusivity function gives a very good fit to the 

actual data. In fact, there is very much less scatter between 

experimental values and approximating values than among the experi- 

mental values for the various runs shown in figure 8. The fits on 

the other soils were equally as good. 

Moisture content distributions were computed using the system 

of equations (49). Figure 12 shows the moisture content distri- 

bution for Chehalis loam at two different times. The calculated 

curves fit the experimental data rather well except at the wetting 

front. It was felt that the poor fit at the wetting front may have 

resulted from averaging the diffusivity functions calculated from 

three separate runs rather than from curve fitting errors. To check 

this, a moisture content distribution curve was calculated for an 

85.0 minute run using diffusivity data which was also calculated 

from an 85.0 minute run. The comparison is shown in figure 13. 

This procedure gives a good fit to the experimental data. 

If the diffusion equation is to be of value as a mathematical 

model for moisture movement in soil, the diffusivity function must 

be a property of the soil which is independent of the time at which 

the diffusivity function was determined. Therefore, curves for the 

other soils, which are shown in figure 14, were calculated using an 

approximating diffusivity function fitted to data which were averaged 
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for three runs. The fit on all of these soils is poorest at the 

wetting front. 

Quincy loamy sand showed a particularly poor fit. For this 

soil, even the shape of the curve was not correct. The experimental 

points indicate a very abrupt change in moisture content at the 

wetting front. The calculated curve shows a much more gradual 

change in moisture content near the wetting front. The variation 

in moisture diffusivity curves for different times was greatest for 

Quincy loamy sand. Since curves for three different times were 

averaged to determine the diffusivity function, it is not surprising 

that the calculated moisture content distribution for this soil 

should give the poorest fit to the experimental data. 

Calculation of Moisture Distribution 

in a Layered Soil 

For calculation of moisture distribution in layered soil, 

Chehalis loam and Quincy loamy sand were chosen. These two soils 

are quite different in their flow properties and should give a 

good test of the diffusion equation as a model of moisture move- 

ment in layered soils. 

In order to satisfy the second boundary condition which must 

be met at the junction between the two soils, it is necessary to 

have a piece -wise linear function relating moisture contents of the 

two soils at equal water potentials. A curve relating moisture 

content for Quincy loamy sand and Chehalis loam is shown in figure 15. 
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A piece -wise linear fit is also shown. 

Using the system of equations (61) and the diffusivity func- 

tions as previously calculated, the moisture content distribution 

was determined for combinations of Quincy loamy sand and Chehalis 

loam. Figure 16 shows the results of placing Quincy first followed 

by Chehalis. In general the curves are of about the same shape. 

However, the calculated moisture content was higher in the Quincy 

than the experimental values, and the calculated wetting front had 

not progressed as far in the Chehalis as the experimental wetting 

front. The moisture content distribution for Chehalis loam fol- 

lowed by Quincy loamy sand is shown in figure 17. The curve for 

the Chehalis portion of the soil column fits the experimental data 

fairly well, but for the Quincy portion the shape of the curve is 

quite different from the experimental values. Here, as in one -region 

flow, the calculated moisture distribution for Quincy loamy sand does 

not change as abruptly at the wetting front as the experimentally 

determined distribution. 

The results obtained on layered soils indicate that the system 

of equations (61) solved by Gaussian elimination can be used to 

predict moisture content distribution for layered soil. Although 

the calculated distribution is not a good fit for the experimental 

data over the entire moisture range, there are several encouraging 

features about the fit. First, there is a sharp moisture discon- 

tinuity across the boundary between the two soils. Second, in agree- 

ment with experimental results, the calculated moisture jump across 
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Figure 17. Moisture content distribution for Chehalis loam -Quincy loamy sand layered 
soil. The curves represent a solution of the diffusion equation and the 
points indicate experimental values. Both the solution and the experi- 
mental values were for a 34.0 minute run. 
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the boundary is much greater for the Chehalis- Quincy than for the 

Quincy -Chehalis combination. Third, the fit for the Chehalis por- 

tion of the column is much better than for the Quincy portion. This 

latter is to be expected since for one -region flow, the fit of Che- 

halis is much better than the fit of Quincy. 
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SUMMARY AND CONCLUSIONS 

The diffusion equation has been successfully used by several 

investigators to describe moisture movement in soil. Their success 

depends largely upon the Boltzmann transformation which can only be 

used for semi -infinite, uniform regions. 

A numerical technique is developed for solving the implicit 

difference analogues of the diffusion equation. This method involves 

1) devising suitable difference analogues for the differential equa- 

tion, 2) developing a method for choosing diffusivity to convert 

the non -linear difference analogues into linear equations, and 3) 

solving the system of linear equations by Gaussian elimination. 

Boundary conditions for the junction between two media with 

dissimilar flow properties were also incorporated into the finite 

difference equations to give a special equation that can be used 

for horizontal movement in layered soil. 

Solutions obtained by the Gaussian elimination technique were 

compared with solutions obtained by the Boltzmann transform technique. 

The results indicate that both methods of obtaining solutions give 

similar results for horizontal flow in semi- infinite, uniform media. 

A data smoothing technique is described which greatly aids in 

calculating moisture diffusivity. An equation is also proposed for 

representing the diffusivity function and a method is given for 

determining the parameters in the equation. 

A comparison of experimental results with solutions obtained 

by Gaussian elimination indicates that a solution obtained using 
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a diffusivity function evaluated for a particular length of run is 

very similar to the experimental data used in evaluating the dif- 

fusivity function. However, a solution obtained using a diffusivity 

function that is an average for several lengths of run does not fit 

the experimental data as well. 

Solutions were also obtained for layered soils. These solutions 

fit the experimental data almost as well as the solutions for uniform 

soil. 

From this study it can be concluded that: 

1) The diffusion equation seems to be a satisfactory model 

for isothermal moisture movement in unsaturated soil. 

2) For moisture movement in soil, the accuracy of the solution 

is either limited by experimental difficulties in determining mois- 

ture diffusivity or assumptions made in the derivation of the dif- 

fusion equation are not met for unsaturated soil moisture flow. 

3) Numerical techniques can be used to extend solutions of 

the diffusion equation with concentration dependent diffusivity 

to multi -region problems. 

4) Studies should be initiated to further check the diffusion 

equation as a mathematical model of moisture movement in unsaturated 

soil for an arbitrary initial moisture content distribution, for flow 

in the vertical direction, and for two- and three -dimensional flow. 
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