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Abstract 

 
A new criterion based on Gaussian fields is introduced 

and applied to the task of automatic rigid registration of 
point-sets. The method defines a simple energy function, 
which is always differentiable and convex in a large 
neighborhood of the alignment parameters; allowing for 
the use of powerful standard optimization techniques. We 
show that the size of the region of convergence can be 
extended so that no close initialization is needed, thus 
overcoming local convergence problems of Iterative 
Closest Point algorithms. Furthermore, the Gaussian 
energy function can be evaluated with linear complexity 
using the Fast Gauss Transform, which permits efficient 
implementation of the registration algorithm. Analysis 
through several experimental results on real world 
datasets shows the practicality and points out the limits of 
the approach. 
 
 
1. Introduction 
 

The task of automatically registering 3D free-form 
surfaces is critical in many computer vision applications, 
such as scene modeling from multiple range views and 
object recognition.   In the case of volumetric datasets, 
several similarity measures were employed to align multi-
modal and single-modality datasets, which are mostly 
based on correlating intensity values. In this paper we 
focus on the problem of rigid registration at the point 
level. In real applications, surface samples are provided 
by a variety of imaging sensors, such as laser scanning 
devices or stereovision systems. 

The registration of 3D datasets consists of the recovery 
of transformations that align the partial views. In the case 
of rigid registration, the rotation and translation 
parameters could be computed in a closed form solution if 
point correspondences are available [7]. Recovering those 
matches automatically is the first task in many modeling 
systems. This step, however, results usually in a rough 
registration that needs to be refined using Iterative Closest 
Point (ICP) algorithms [1][8].  

To establish point correspondences in 3D datasets, 
several invariant feature extraction techniques were 
proposed. Methods surveyed by Campbell and Flynn [2] 

are mostly surface-based and use differential properties to 
build their representations. Most invariant feature methods 
assume that the partial surfaces were accurately 
reconstructed from the range maps.  In real applications, 
however these surfaces are affected by noise, reducing the 
accuracy of invariant features registration, hence the need 
for further refinement using point-based techniques. The 
ICP algorithm is a locally convergent scheme that requires 
parameter initialization close to the aligned position. It 
operates at the point level, minimizing the mean squared 
distance between the datasets. Despite its popularity, ICP 
has several shortcomings, including the need for sufficient 
overlap between the datasets and local convergence.  

The main contribution of this work is the design of a 
point-sets registration criterion which is differentiable and 
convex in a large neighborhood of the aligned position. 
The underlying motivation is to overcome the problems of 
standard registration techniques, and in particular ICP. 
One of the main reasons behind these limitations is the 
non-differentiable cost function associated with ICP that 
impose local convergence, so that in real applications the 
preliminary point-feature extraction and matching step is 
necessary before proceeding to what is considered a 
refinement step. Some work was done recently on the 
design of approximations to non-differentiable matching 
and similarity measures including the work by Charpiat et 
al [3] on approximating Hausdorff distances by a 
differentiable metric on shape space. In our case we will 
use a straightforward sum of Gaussian distances that is 
defined for point-sets with associated attributes. These 
attributes are local moments computed from the datasets. 
We show that this criterion can be used for accurate 
registration, while at the same time extending the region 
of convergence so that we do not need any close 
initialization.   

Our energy function is convex in the neighborhood of 
the solution and always differentiable allowing for the use 
of a wide range of well proven optimization techniques. 
More importantly, the criterion can be evaluated, with 
linear complexity, using the recent numerical technique 
known as the Fast Gauss Transform [4], making it 
computationally less expensive than current registration 
algorithms. In the following sections we first present the 
Gaussian energy function, describe the local attributes 
used, present an overview of the fast evaluation method, 
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and finally show an analysis of our approach based on 
several experimental results. 

 
2. Gaussian fields and the energy function 
 

Our basic idea is to use a Gaussian field to measure 
both the spatial proximity and visual similarity of two 
points belonging to the two datasets. Consider first the 
two point-sets { }
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vectors. Those vectors can include curvature for smooth 
surfaces and curves, invariant descriptors, as well as color 
attributes when available. The Gaussian measure of 
proximity and similarity between two points is given by: 
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with ),( ji QPd being the Euclidean distance between the 
points. The expression can be seen as a force field whose 
sources are located at one point and are decaying with 
distance in Euclidean and attribute space. The 
parameterσ controls the decay with distance while Σ , a 
diagonal matrix with small components, punishes the 
difference in attributes. We can now define an energy 
function that measures the registration of M and D as:  

∑
=
=

− −Σ−−−=

D
M

Nj
Ni

ji
T

ji
ji QTrSPSQTrSPS

QTrPd
TrE

...1
...1

1
2

2

)))))(()(()))(()((
))(,(

exp()(
σ

 (2) 

 
where Tr  is the transformation that registers the two 
point-sets. In this paper we will focus mainly on the rigid 
case: tRQQTr jj +=)( . More general cases can be 
handled as well. We also use as visual attributes moments 
which are invariant to rigid transformations [9] which are 
de-correlated and combined using the same approach 
adopted by Sharp et al [10]. If we choose the decay 
parameters to be very small the energy function E  will 
just ‘count’ the number of points that overlap at a given 
pose. This is due to the exponential being very small 
except for )( tRQP ji += and )()( ji QSPS = . In particular, 
if M is a subset of D  we will have at the registered 
position ),( ** tR : 

MNtRE =
→Σ
→

),(lim **

0
0σ

. Thus, for this case 

we meet a rigorous definition of registration as 
maximization of both overlap and local shape similarity 
between the datasets. 

The Gaussian energy function is convex around the 
registered position and is always differentiable, allowing 
for the design of efficient registration algorithms. Several 
powerful optimization techniques can be used for this task 
such as the quasi-Newton and conjugate gradient 

algorithms. The parameter σ  controls the size of the 
convex safe region of convergence. Therefore we are 
interested in increasing σ  as much as possible. This will 
be mostly limited by the decrease in the localization 
accuracy of our criterion, hence the tradeoff between large 
region of convergence and precision. Studying the cost 
function, we found that the region of convergence can be 
extended considerably in the case of complex datasets and 
when using as many independent local descriptors as 
possible. This can be illustrated with the behavior of the 
matching criteria with and without attributes as illustrated 
in Fig. 1. The profile of the criterion was plotted for 
relative displacement of the two point sets of Fig. 1(a). 
Several plots are shown with increasing σ . For the non-
attributed case (Fig. 1(b)) we notice that as  σ  increases, 
the width of the Gaussian bell increases too, but the 
maximum starts to drift away from the correct position. 
When we use the Gaussian criterion with moment 
invariants, as attributes associated with the points, the 
maximum is stable for the same values of σ  (Fig. 1(c)). In 
the analysis section we use additional real datasets to 
study the localization error as a function of σ . 

 
(a) 

 
(b)                                      (c) 

 
Figure 1. Profiles of the Gaussian energy function for a 
displacement around the registered position of the 
datasets shown in (a). In (b) the profiles are plotted in the 
case without attributes for 150,90,70,50,30=σ  (from 

narrowest to widest). Plots with moment invariants as 
attributes for the same values of σ  are shown in (c). The 
scale of the datasets is about 200200× . (For (b) 
magnitudes were rescaled for comparison).   
 
3. The Fast Gauss Transform 
 

The registration criterion is essentially a mixture 
of DN Gaussians evaluated at MN  points then summed 
together. The cost of direct evaluation will be 

)( DM NNO × , which for large datasets is computationally 
expensive. Similar limitations are encountered in other 
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computer vision tasks, especially for Gaussian kernel 
density estimation. A new numerical method, called the 
Fast Gauss Transform, was recently employed in color 
modeling and tracking applications [4] in order to reduce 
the computational complexity of Gaussian Mixture 
evaluation to )( DM NNO + . The method, which belongs to 
a new class of fast evaluation algorithms known as “fast 
multipole” methods, was first introduced by Greengard 
and Strain [5][6] and applied to potential fields 
computations. The basic idea is to exploit the fact that all 
calculations are required only up to a certain accuracy. In 
this framework, the sources and targets of potential fields 
were clustered using suitable data structures, and the sums 
were replaced by smaller summations that are equivalent 
to a given level of precision.     

 
To evaluate sums of the form: 
 

∑
=

−
−=

N

j

ij
ji

ts
ftS

1

2 ))(exp()(
σ

, Mi ,...,1=                 (3) 

 
where { }
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are the centers of the Gaussians known as 

sources and { } Miit ,...,1=
the targets. The following shifting 

identity and expansion in terms of Hermite series are used: 
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where nH  are the Hermite polynomials. Given that these 
series converge rapidly, and that only few terms are 
needed for a given precision, this expression can be used 
to replace several sources by 0s with a linear cost at the 
desired precision. These clustered sources can then be 
evaluated at the targets. For a large number of targets the 
Taylor series (5) can similarly be used to group targets 
together at a cluster center 0t , further reducing the number 
of computations. 
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where the Hermite functions )(thn  are defined by 
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The method was shown to converge asymptotically to a 
linear behavior as the number of sources and targets 

increases. Implementation details and analysis can be 
found in [4] [6]. 
 

 
4. Analysis 
 

Two critical issues for registration techniques are 
parameter estimation accuracy, and initialization for 
iterative methods. The complexity of the datasets is 
another important factor.   In our case the parameter that 
controls the range of convergence is σ . Any two datasets 
that we want to register are supposed to have a certain 
amount of overlap. Hence, the two point-sets can be 
initialized at least in an arbitrarily overlapped position. 
The parameter σ  determines the reach of the Gaussian 
field for each source point. If σ  can be increased to 
ensure interaction between all the points without losing 
too much accuracy, that will allow fully automatic 
registration that is not sensitive to initialization.  

For our experiments we use the two real datasets 
shown in Fig. 2. For both test datasets we have ground 
truth registration obtained by accurate position and 
orientation instruments. In our implementation of the 
Gaussian criterion, we used the three 3D moment 
invariants as attributes in addition to curvature, when 
surfaces were extracted. For optimization, a quasi-Newton 
algorithm was employed and convergence was obtained in 
few iterations. The speed of the algorithm was enhanced 
by employing the Fast Gauss Transform method.  On 
these datasets, we studied the effect of increasing σ  on 
the registration accuracy.  The results of this experiment, 
performed on both the ‘Van’ and ‘Parts’ datasets, are 
shown in Fig. 2(c). An interesting fact that emerges from 
these plots is that registration accuracy first degrades 
rapidly up to a value of σ  roughly equal to the length of 
the objects then deteriorates at a much slower rate.  For σ  
between one and two times the objects length the average 
translational registration error is around 12% for the 
‘Parts’ dataset and 17% for the ‘Van’. The rotation error, 
in the same region, is 7º and 13º for the ‘Parts’ and ‘Van’ 
datasets respectively. For smaller values of σ  (less than 
one length) the registration error becomes very small. 
Based on this behavior we can design an algorithm that 
starts from unknown initial pose with a large σ  then 
decreases the value of this parameter until accurate 
transformations are obtained.  

Using the same datasets, we studied the effect of 
uniform sub-sampling on the accuracy of the algorithm. 
The plots of Fig. 2(d) show that the Gaussian Energy 
function is robust to sub-sampling. The registration error 
remains very low until we reach a number of points of less 
than 1% of the original one (we have around 70000 points 
for the ‘Parts’ dataset and 35000 points for the ‘Van’ 
dataset). This also, in addition to the Fast Gauss 
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(a) (b)

(d) 

Figure 2. Two 3D views of a 14-passenger Van (a) and multiple parts and objects (b), shown in un-registered 
and registered positions.  The registration error as a function of σ  is shown in (c). Also the effect of sampling on 
the alignment using the Gaussian function is illustrated in (d). 

(c) 

Transform, permits very fast implementations that 
improve on the current combination of local feature 
matching and ICP-based algorithms. 

 
5. Conclusion 
 

In this paper we show that a simple new criterion, 
based on the sum of Gaussians of distances, leads to a 
fully automatic registration framework. The method 
overcomes the current dichotomy between (1) 
initialization using feature extraction and matching 
techniques and (2) refinement using ICP based algorithms. 
Using a single energy function, we can start from arbitrary 
initial positions and converge accurately to the pose 
parameters.  Furthermore, the method can be implemented 
with linear complexity using the recent numerical 
technique known as the Fast Gauss Transform, which 
clearly improves on current algorithms. Our experiments, 
performed on real noisy datasets, illustrate the behavior of 
the method and show its applicability to real world data.   
While in this paper we focused mainly on 3D rigid 
registration, the Gaussian energy approach can be used for 
non-rigid registration as well. We are currently 
investigating this task. 
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