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Abstract. We consider a diffusion problem on a network on whose nodes

we impose Dirichlet and generalized, non-local Kirchhoff-type conditions. We
prove well-posedness of the associated initial value problem, and we exploit the

theory of sub-Markovian and ultracontractive semigroups in order to obtain

upper Gaussian estimates for the integral kernel. We conclude that the same
diffusion problem is governed by an analytic semigroup acting on all Lp-type

spaces as well as on suitable spaces of continuous functions. Stability and
spectral issues are also discussed. As an application we discuss a system of

semilinear equations on a network related to potential transmission problems

arising in neurobiology.

1. Introduction

Evolution equations taking place in networks or, more generally, in ramified
structures have been first considered in pioneering articles by K. Ruedenberg and
C. Scherr back in the 1950s, cf. [35], and, at a more mathematical level, in a
series of papers by R. Mills and E. Montroll and by G. Lumer in the 1970s, cf.
[29]–[28] and [24]–[25], respectively. Shortly afterwards, F. Ali Mehmeti, J. von
Below, S. Nicaise, and J.P. Roth among others began a systematical study of prop-
erties of elliptic operators acting on spaces of functions over networks, cf. e.g.
the monographs [33], [2], [23], and references therein. Ever since, such problems
have aroused broad interest among mathematicians working on partial differential
equations, control, and spectral theory – as well as among theoretical physicists
interested in scattering theory of guided waves, photonic crystals, and quantum
wires, resulting in a literature so vast that it can by no means be summarized here.

Throughout this paper we consider a finite, unitarily parametrized, connected
network whose structure is given by a suitable graph. On it we study a general
diffusion equation. Adopting a setting which is standard in literature, the node
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conditions impose continuity and Kirchhoff-type transmission laws in ramification
vertices. However, we extend known results by allowing more general, non-local
node conditions, cf. Section 2 below. Roughly speaking, in each node vi of the
network we allow an absorption that does not only depend on the value of the
function in vi itself, but also on other nodes vh. Using the arguments presented
in [11], one can promptly obtain well-posedness of such a general parabolic network
problem; we are thus more interested in qualitative properties. In some sense, our
results complement those obtained in [18] and [19], where even more general node
conditions are allowed, and where positivity of the semigroups is also discussed,
but where the quantum physical viewpoint was motivated to mainly discuss those
conditions leading to self-adjointness.

In this paper we pursue an approach to parabolic equations on networks based
on the theory of sesquilinear forms and associated sub-Markovian semigroups. Fol-
lowing the approach presented in previous works (see [11], [2, Chapt. 2], and [20]),
we draw some conclusions about several issues, including L∞-contractivity of the
semigroup governing the problem, its L2−L∞-stability and its analyticity in suit-
able spaces of continuous as well as of L1 functions over the graph. The key argu-
ments are upper estimates for the integral kernel of the generated semigroup (which,
roughly speaking, yields the Green function of the problem). The theory of such
Gaussian estimates has become a mature one that proves extremely powerful when
applied to diffusion problems on domains – and, as a matter of fact, on networks,
too; we refer to [14], [3], and [34] for an introduction to this subject.

While the integral kernel for the diffusion problem on a network has already been
explicitly computed in [32] in the special case of constant coefficients for the heat
operator, Gaussian estimates are, to our knowledge, new in the case of variable
coefficients, even in the case of local nodal conditions. Observe also that Gaussian
estimates for the semigroup that governs the discrete diffusion problem on a graph
have recently been proved in [22], cf. also [8].

2. General framework

We consider a finite connected network, represented by a finite graph G with m
edges e1, . . . , em and n vertices v1, . . . , vn. We normalize and parametrize the edges
on the interval [0, 1]. The structure of the network is given by the n ×m matrix
Φ+ := (φ+ij) and Φ− := (φ−ij) defined by

φ+ij :=

{
1, if ej(0) = vi,
0, otherwise,

and φ−ij :=

{
1, if ej(1) = vi,
0, otherwise.

The n×m matrix Φ := (φij), defined by Φ := Φ+−Φ−, is thus the incidence matrix
of the graph G. Further, let Γ(vi) be the set of all the indices of the edges having
an endpoint at vi, i.e.,

Γ(vi) := {j ∈ {1, . . . ,m} : ej(0) = vi or ej(1) = vi} , 1 ≤ i ≤ n− 1.

For the sake of simplicity, we denote the value of the functions cj(·) and uj(t, ·) at 0
or 1 by cj(vi) and uj(t, vi), if ej(0) = vi or ej(1) = vi, respectively. With an abuse
of notation, we also set u′j(t, vi) = cj(vi) := 0 whenever j /∈ Γ(vi).

In the literature networks are usually considered where Dirichlet conditions are
imposed on n0 boundary vertices (i.e., vertices of degree 1). Since no process takes
place in such boundary vertices, we may and do identify all of them. Thus, we
instead consider an equivalent diffusion equation on a rearranged graph where these
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n0 nodes of degree 1 are replaced by only one node of degree n0, on which a Dirichlet
condition is imposed. Without loss of generality we assume that this node is vn.

For t ≥ 0 we are now in the position to consider the network diffusion problem
u̇j(t, x) = (cju

′
j)
′(t, x), x ∈ (0, 1), j = 1, . . . ,m,

uj(t, vi) = u`(t, vi) =: dui (t), j, ` ∈ Γ(vi), i = 1, . . . , n,∑n−1
h=1 bihd

u
h(t) =

∑m
j=1 φijcj(vi)u

′
j(t, vi), i = 1, . . . , n− 1,

dun(t) = 0,

on the network, with initial conditions

uj(0, x) = u0j(x), x ∈ (0, 1), j = 1, . . . ,m.

Throughout this paper we assume that the coefficients cj satisfy 0 < cj ∈ C1[0, 1],
j = 1, . . . ,m, while for the time being the (n−1)×(n−1) matrix B := (bih)1≤i,h≤n−1
is arbitrary, i.e., B ∈ Mn−1(C). The third equation above is a generalized, non-
local Kirchhoff-type law on the first n− 1 nodes, while the fourth one prescribes a
Dirichlet condition in vn.

We introduce the n×m matrices Φ+
w := (ω+

ij) and Φ−w := (ω−ij) defined by

ω+
ij :=

{
cj(vi), if φ+ij = 1 and i ≤ n− 1,

0, otherwise,

and

ω−ij :=

{
cj(vi), if φ−ij = 1 and i ≤ n− 1,

0, otherwise.

In the following we will repeatedly and without further notice write the functions
uj in vector form, i.e.,

u ≡

u1
...
um

 .

With these notations, one can directly check that the second, third and fourth
equations of our network diffusion problem can be rewritten as

∃du(t) ∈ Cn−1 × {0} s.t.
(Φ+)>du(t) = u(t, 0), (Φ−)>du(t) = u(t, 1),
and Φ−wu

′(t, 1)− Φ+
wu
′(t, 0) = Bdu(t),

t ≥ 0,

where we have introduced the n× n matrices

B :=

(
B 0
0 0

)
.

Remark 2.1. Inspired by the non-local boundary conditions introduced above, and
motivated by the theory of ephaptic coupling of myelinated nerve fibers (see [36,
Chapt. 8]) one may also consider an ever more general parabolic system over the
network, where for t ≥ 0 the first equation of the problem is replaced by

u̇j(t, x) =

m∑
`=1

(cj`u
′
`)
′(t, x), x ∈ (0, 1), j = 1, . . . ,m.

Under suitable assumptions on the diffusion coefficients cij one can study well-
posedness and qualitative properties of such a system. However, this introduces
new technical difficulties, as for instance one sees that usual Kirchhoff- conditions
do not ensure dissipativity of such a system any more, and one has to formulate
appropriate, more general conditions in the nodes. We will discuss this kind of
problems in the forthcoming paper [13].
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It is already well-known that the above network diffusion problem is well-posed:
in fact, this has been shown in a Hilbert space setting in [11] for the case of variable
coefficients and diagonal B, cf. also the references therein for earlier results on less
general cases. We also remark that, at least in the case of c1 = . . . = cm ≡ 1
and bih = 0, i, h = 1, . . . , n. S. Nicaise has derived in [32] an explicit formula for
the solution, thus showing the well-posedness of the problem in all Lp-type spaces
as well as on suitable spaces of continuous functions (see also [31]). Our first goal
is to to establish a meaningful Lp-theory for the general case of variable diffusion
coefficients and non-local node conditions. To this aim, we need the following.

Definition 2.2. For given functions fj : [0, 1] → C, j = 1, . . . , n, we define a
mapping Uf : [0,m]→ C by

Uf(x) := f̃(x) := fj(x− j + 1) if x ∈ (j − 1, j), j = 1, . . . ,m.

With this notation one sees that the following holds.

Lemma 2.3. The mapping U is one-to-one from Xp := (Lp(0, 1))
m

onto Lp(0,m)
for all p ∈ [1,∞], and in fact it is an isometry if we endow (Lp(0, 1))

m
with the

canonical lp-norm, i.e.,

‖f‖Xp :=

 m∑
j=1

‖fj‖pLp(0,1)

 1
p

, 1 ≤ p <∞,

or
‖f‖X∞ := max

1≤j≤m
‖fj‖L∞(0,1).

In the following we will hence regard Xp as an Lp-space over a finite measure
space, so that Xp ↪→ Xq for all 1 ≤ q ≤ p ≤ ∞. Moreover, each Xp is a Banach
lattice, and its positive cone can be identified with the positive cone of Lp(0,m).

3. Basic results

We are now in the position to consider an abstract reformulation of our diffusion
problem. First we consider the (complex) Hilbert space X2 =

(
L2(0, 1)

)m
endowed

with the natural inner product

(f | g)X2
:=

m∑
j=1

∫ 1

0

fj(x)gj(x)dx, f, g ∈ X2.

On X2 we define an operator

(3.1) A :=


d
dx

(
c1

d
dx

)
0

. . .

0 d
dx

(
cm

d
dx

)


with domain

(3.2) D(A) :=

f ∈ (H2(0, 1)
)m

:
∃df ∈ Cn−1 × {0} s.t.
(Φ+)>df = f(0), (Φ−)>df = f(1),
and Φ−wf

′(1)− Φ+
wf
′(0) = Bdf

 .

We can finally rewrite the concrete network diffusion problem as an abstract
Cauchy problem

(ACP)

{
u̇(t) = Au(t), t ≥ 0,
u(0) = u0,
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on X2. In order to discuss the semigroup generator property of A it is convenient
to use a variational method.

Recall that we are assuming the network to be connected throughout the paper.
This is crucial for the proof of the following.

Lemma 3.1. The linear space

V0 :=

{
f ∈

(
H1(0, 1)

)m
:
∃df ∈ Cn−1 × {0} s.t.
(Φ+)>df = f(0) and (Φ−)>df = f(1)

}
.

is densely and compactly embedded in X2. It becomes a Hilbert space when equipped
with the inner product

(3.3) (f | g)V0 :=

m∑
j=1

∫ 1

0

f ′j(x)g′j(x)dx, f, g ∈ V0.

Proof. It is well-known that V0 is densely and compactly imbedded in X2: this
follows from the inclusions (C∞c (0, 1))

m ⊂ V0 ⊂ (H1(0, 1))m and the Rellich–
Khondrakov Theorem.

We are going to show that the inner product defined in (3.3) is equivalent to that
induced by the Hilbert space (H1(0, 1))m, i.e., to

(f | g) :=

m∑
j=1

∫ 1

0

(
f ′j(x)g′j(x) + fj(x)gj(x)

)
dx, f, g ∈ (H1(0, 1))m.

Let ej be a general edge. By the connectedness of G we can find a set of edges
ej1 , . . . , ejr linking any x ∈ ej with vn. More precisely, there exist j1, . . . , jr ∈
{1, . . . ,m} such that

• φ−nj1 = 1, i.e., vn is the head of ej1 ;

• for all h = 1, . . . , r there exists a vertex vih+1
such that φ+ih+1jh

= 1 =

φ−ih+1jh+1
, i.e, vih+1

is the tail of ejh and the head of ejh+1
;

• ejr = ej .

Then, for every f ∈ V and at any x ∈ (0, 1) one has fjr (x) = dfir−1
+
∫ x
0
f ′jr (s)ds,

and therefore

|fjr (x)| ≤ |dfir−1
|+
∫ 1

0

|f ′jr (s)|ds

≤ |dfir−2
|+
∫ 1

0

|f ′jr−1
(s)|ds+

∫ 1

0

|f ′jr (s)|ds

≤ . . .

≤ |dfn|+
r∑

h=1

∫ 1

0

|f ′jh(s)|ds

=

r∑
h=1

∫ 1

0

|f ′jh(s)|ds,

due to the Dirichlet condition satisfied at vn by all f ∈ V . We conclude that

m∑
j=1

∫ 1

0

|fj(x)|dx ≤ m
m∑
j=1

∫ 1

0

|f ′j(x)|dx.

Having proved such a Poincaré-type inequality, the claim follows directly. �
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The following lemma extends known results (see e.g. [1], [32], and [11]) to the
case of non-local node conditions. Thus, for the sake of self-containedness we do
not omit the proofs, although basic elements and techniques involved are essentially
well-known.

Proposition 3.2. Consider the sesquilinear form

a(f, g) :=

m∑
j=1

∫ 1

0

cj(x)f ′j(x)g′j(x)dx−
n−1∑
i,h=1

bihd
f
hd
g
i , f, g ∈ V0,

on the Hilbert space X2. Then a enjoys the following properties:

• a is X2-elliptic, i.e.,: there exist ω ∈ R, α > 0 such that

Rea(f, f) + ω‖f‖2X2
≥ α‖f‖2V0

for all f ∈ V0;

• a is continuous, i.e., there exists M > 0 such that

|a(f, g)| ≤M‖f‖V0
‖g‖V0

for all f, g ∈ V0;

• a is symmetric, i.e.,

a(f, g) = a(g, f) for all f, g ∈ V0,

if and only if B is self-adjoint;
• a is coercive, i.e., it is X2-elliptic with ω = 0, if and only if it is accretive,

i.e.,

Rea(f, f) ≥ 0 for all f ∈ V0,
if and only if B is dissipative.

Proof. First of all, we show that a is X2-elliptic. Taking into account (3.3), it
suffices to find ω ∈ R such that for all f ∈ V0

m∑
j=1

∫ 1

0

|f ′j(x)|2dx+ ω

m∑
j=1

∫ 1

0

|fj(x)|2dx ≥ Re

n−1∑
i,h=1

bih
c
dfhd

f
i

where

(3.4) c :=
1

2
min

1≤j≤m
min
x∈[0,1]

‖cj(x)‖ > 0.

Observe that

Re

n−1∑
i,h=1

bih
c
dfhd

f
i =

1

c
Re(Bdf | df ) ≤ ‖B‖

c
‖df‖2 ≤M

m∑
j=1

(‖f ′j‖2L2 + ‖fj‖2L2)

for some constant M . Here we have used the fact that, due to the continuous
imbedding of H1(0, 1) into C[0, 1], there holds

(3.5) |dfi | ≤ max
1≤j≤m

max
x∈[0,1]

|fj(x)| ≤ max
1≤j≤m

‖fj‖H1(0,1) ≤
m∑
j=1

‖fj‖H1(0,1).

for all f ∈ V0 and all i = 1, . . . , n − 1. Now the claim follows, since ‖fj‖L2 6= 0
whenever f ∈ V0 and ‖df‖ 6= 0.

Set now

C := max
1≤j≤m

max
x∈[0,1]

cj(x) and b := max
1≤i,h≤n−1

|bih|.
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Recall that by (3.3) there exists a constant N such that
∑m
j=1 ‖fj‖H1(0,1) ≤

N‖f‖V0
. Take f, g ∈ V0 and observe that

|a(f, g)| ≤ C

∣∣∣∣∣∣
m∑
j=1

∫ 1

0

f ′j(x)g′j(x)dx

∣∣∣∣∣∣+

n−1∑
i,h=1

|bih||dfi ||d
g
h|

≤ C|(f | g)V0
|+ b

n−1∑
i,h=1

N2‖f‖V0
‖g‖V0

≤ M‖f‖V0‖g‖V0

by the Cauchy–Schwartz inequality, where M := C + bN2(n− 1)2. This completes
the proof of the continuity of a.

Since by assumptions the coefficients c1, . . . , cm are strictly positive,

a(f, g) = a(g, f) if and only if

n−1∑
i,h=1

bihd
f
hd
g
i =

n−1∑
i,h=1

bihd
f
i d
g
h, f, g ∈ V0,

and this is the case if and only if B is self-adjoint.
Let finally a be coercive. Then it is clearly accretive. If a is accretive, then a

direct computation shows that

Re

n−1∑
i,h=1

bihd
f
hd
f
i ≤ 0

holds for all f ∈ V0. Due to the arbitrarity of the nodal values df2 , . . . , d
f
n of f ∈ V0,

one sees that this already implies that B is dissipative. Finally, if B is dissipative,
then there holds

Rea(f, f) =

m∑
j=1

∫ 1

0

cj(x)|f ′j(x)|2dx− Re

n−1∑
i,h=1

bihd
f
hd
f
i

≥ c

m∑
j=1

∫ 1

0

|f ′j(x)|2dx,

where c is defined as in (3.4). By Lemma 3.1, we have thus obtained that Rea(f, f) ≥
α‖f‖2V0

for some α > 0. This concludes the proof. �

Corollary 3.3. The operator associated with a is densely defined, sectorial, and re-
solvent compact, hence it generates a strongly continuous, analytic, compact semi-
group (T2(t))t≥0 on X2. If moreover B is dissipative (resp., self-adjoint), then
(T2(t))t≥0 is contractive and uniformly exponentially stable (resp., self-adjoint).

Proof. It follows from Proposition 3.2 and [34, Prop. 1.51, Thm. 1.52] that the
operator associated with a is densely defined, sectorial, and resolvent compact.

Let B be dissipative and take f in the null space of the operator associated with
a. Then by the proof of the above lemma there exists c > 0 such that

0 = Rea(f, f) ≥ c
m∑
j=1

∫ 1

0

|f ′j(x)|2dx.

This means that fj is constant for all j = 1, . . . ,m, hence f is constant on the whole
network, due to the continuity condition in the nodes. In particular, f ≡ dfn = 0,
hence the operator associated with a is one-to-one. �
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In the following we are able to identify the operator associated with a. The
following result is already known in the literature in the special case where the
matrix B is diagonal, see e.g. [2, Chapt. 2].

Lemma 3.4. The operator associated with the form a is (A,D(A)) defined in (3.1)–
(3.2).

Proof. Denote by (C,D(C)) the operator associated with a, which by definition is
given by

D(C) := {f ∈ V0 : ∃g ∈ X2 s.t. a(f, h) = (g | u)X2
∀u ∈ V0} ,

Cf := −g.
Let us first show that A ⊂ C. Take f ∈ D(A). Then for all u ∈ V0

a(f, u) =

m∑
j=1

∫ 1

0

cj(x)f ′j(x)u′j(x)dx−
n−1∑
i,h=1

bihd
f
hd
u
i

=

m∑
j=1

[
cjf
′
juj
]1
0
−

m∑
j=1

∫ 1

0

(cjf
′
j)
′(x)uj(x)dx−

n−1∑
i,h=1

bihd
f
hd
u
i .

Using the incidence matrix Φ = Φ+ − Φ− and recalling that dun = 0 as u ∈ V0, we
can write
m∑
j=1

[
cjf
′
juj
]1
0

=

m∑
j=1

n−1∑
i,h=1

cj(vi)(φ
−
ij − φ

+
ij)f

′
j(vi)d

u
i =

n−1∑
i,h=1

dui

m∑
j=1

(ω−ij − ω
+
ij)f

′
j(vi).

Using the generalized Kirchhoff condition Φ−wf
′(1) − Φ+

wf
′(0) = Bdf , which holds

for all functions f ∈ D(A), we obtain that

a(f, u) =

n−1∑
i=1

dui

m∑
j=1

(ω−ij − ω
+
ij)f

′
j(vi)︸ ︷︷ ︸

=
∑n−1
h=1 bihd

f
h

−
m∑
j=1

∫ 1

0

(cjf
′
j)
′(x)uj(x)dx

−
n−1∑
i,h=1

bihd
f
hd
u
i

= −
m∑
j=1

∫ 1

0

(cjf
′
j)
′(x)uj(x)dx = −(Af | u)X2 ,

which makes sense because Af ∈ X2. The proof of the inclusion A ⊂ C is completed.
To check the converse inclusion take f ∈ D(C). By definition, there exists g ∈ X2

such that

(3.6) a(f, u) = (g | u)X2 =

m∑
j=1

∫ 1

0

gj(x)uj(x)dx for all u ∈ V0,

hence in particular for all functions of the form

(3.7)



0
...
uj
...
0

← jth row, uj ∈ H1
0 (0, 1).
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From this follows that (3.6) in fact implies∫ 1

0

cj(x)f ′j(x)u′j(x)dx =

∫ 1

0

gj(x)uj(x)dx for all j = 1, . . . ,m, uj ∈ H1
0 (0, 1).

By definition of weak derivative this means that cj ·f ′j ∈ H1(0, 1) for all j = 1, . . . ,m.

Since 0 < cj ∈ C1[0, 1], there follows that f ′j ∈ H1(0, 1) for all j = 1, . . . ,m. We

conclude that f ∈
(
H2(0, 1)

)m
. Moreover, integrating by parts as in the proof of

the first inclusion we see that if (3.6) holds for all u ∈ V0, then there also holds

n−1∑
i,h=1

dui

m∑
j=1

(ω−ij − ω
+
ij)f

′
j(vi) =

n−1∑
i,h=1

bihd
f
hd
u
i .

Since u ∈ V0 is arbitrary, this means that

m∑
j=1

(ω−ij − ω
+
ij)f

′
j(vi) =

n−1∑
h=1

bihd
f
h for all i = 1, . . . , n− 1,

that is, Φ−wf
′(1)− Φ+

wf
′(0) = Bdf . Therefore f ∈ D(A) and

−
m∑
j=1

∫ 1

0

(cjf
′
j)
′(x)uj(x)dx =

m∑
j=1

∫ 1

0

gj(x)hj(x)dx

holds for all h ∈ V0. This implies that Af = −g, and the proof is complete. �

By the above results, the operator A generates on X2 a semigroup (T2(t))t≥0:
thus, the abstract Cauchy problem (ACP) (and hence the concrete diffusion prob-
lem on the network) is well-posed in X2. We can characterize several features of
(T2(t))t≥0 by those of (etB)t≥0, and hence of the scalar matrix B: we are going
to show that (T2(t))t≥0 is real, positive, and X∞-contractive (i.e., the unit ball of
X∞ is invariant under T2(t) for all t ≥ 0), respectively, if and only if the semigroup
(etB)t≥0 generated by B is real, positive, and `∞-contractive (i.e., once endowed
Cn−1 with the equivalent ∞-norm, etB leaves the unit ball of Cn−1 invariant for all
t ≥ 0), respectively.

Theorem 3.5. The semigroup (T2(t))t≥0 on X2 associated with a enjoys the fol-
lowing properties:

• it is real if and only if the matrix B has real entries;
• it is positive if and only if the matrix B has real entries that are positive

off-diagonal,

If moreover B is dissipative, then (T2(t))t≥0 is X∞-contractive if and only if

(3.8) Rebii +
∑
h6=i

|bih| ≤ 0, i = 1, . . . , n− 1.

Proof. By Corollary 3.3 a is densely defined, continuous, and elliptic. Thus, by [34,
Prop. 2.5 and Thm. 2.6] and Proposition 3.2, and taking into account the rescaling
argument discussed in [5, § 9.2], the semigroup associated to a is real and positive,
respectively, if and only if

• f ∈ V0 ⇒ Ref ∈ V0 and a(Ref, Imf) ∈ R, and
• f ∈ V0 ⇒ (Ref)+ ∈ V0, a(Ref, Imf) ∈ R, and a((Ref)+, (Ref)−) ≤ 0,
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respectively.
Furthermore, if B is dissipative, then by Proposition 3.2 a is accretive and by [34,

Thm. 2.15] the semigroup (T2(t))t≥0 is X∞-contractive if and only if

f ∈ V0 ⇒ (1 ∧ |f |)signf ∈ V0 and Rea((1 ∧ |f |)signf, (|f | − 1)+signf) ≥ 0,

where sign denotes the generalized (complex-valued) function defined by

signf(x) :=

{
f(x)
|f(x)| , if f(x) 6= 0,

0, if f(x) = 0.

If k ∈ H1(0, 1), then it is clear that Re k ∈ H1(0, 1) as well as (Re k)+ ∈ H1(0, 1).
Furthermore, (Re k)′ = Re(k′) and ((Re k)+)′ = Re(k′)1{k≥0}. Moreover the
functions defined by

((1 ∧ |k|)signk)(x) =

{
k(x), if |k(x)| ≤ 1,
k(x)
|k(x)| , if |k(x)| ≥ 1,

as well as

((|k| − 1)+signk)(x) =

{
0, if |k(x)| ≤ 1,

k(x)− k(x)
|k(x)| , if |k(x)| ≥ 1,

are in H1(0, 1), with ((1∧|k|)signk)′ = k′1{|k|≤1} and ((|k|−1)+signk)′ = k′1{|k|≥1}.
By definition, the subspace V0 contains exactly those functions on the network

that are continuous in the vertices and vanish in the vertex vn. Then for every
f ∈ V0 we have Re(fj) = (Ref)j , 1 ≤ j ≤ m. It follows from the above arguments

that Ref ∈
(
H1(0, 1)

)m
, and one can see that the continuity of the values attained

by f in the vertices is preserved after taking the real part Ref . All in all, Ref ∈ V0.
Moreover, a(Ref, Imf) is the sum of m integrals and n numbers. Recall that the
weights c1, . . . cm are real-valued, positive functions. Since dRef , dImf ∈ Rn, it
follows that a(Ref, Imf) ∈ R if and only if

n−1∑
i,h=1

bihd
Ref
h dImfi ∈ R.

This holds for all f ∈ V0 if and only if bih ∈ R.
Moreover, if f ∈ V0, then ((Ref)+)j = (Re(fj))

+, 1 ≤ j ≤ m, and one sees as
above that (Ref)+ ∈ V0. In particular, for all i = 1, . . . , n− 1 there holds

d
(Ref)+

i =

{
0, if Redfi ≤ 0,

Redfi , if Redfi ≥ 0,
and d

(Ref)−

i =

{
−Redfi , if Redfi ≤ 0,

0, if Redfi ≥ 0.

Accordingly,

a((Ref)+, (Ref)−) = −
n−1∑
i,h=1

bihd
(Ref)+

h d
(Ref)−

i

= −
∑

 1≤i,h≤2

i6=h


bih(Redfh)+(Redfi )−.

Thus, a((Ref)+, (Ref)−) ≤ 0 if B has positive off-diagonal entries. Conversely
assume that bi0h0 < 0 for some i0 6= h0. Then consider the function f with boundary



GAUSSIAN ESTIMATES FOR A HEAT EQUATION 65

values dfi0 = −1, dfh0
= 1, and dfi = 0 for all other i. Then a((Ref)+, (Ref)−) =

−bi0h0 > 0.
Finally, we discuss the property of X∞-contractivity for the semigroup associated

to a. Thus, take f ∈ V0. Then (1 ∧ |f |)signf ∈
(
H1(0, 1)

)m
and, again, the

continuity of f in the vertices imposes the same property to the function (1 ∧
|f |)signf , and in fact

d
(1∧|f |)signf
i = (1 ∧ |dfi |)signdfi =

{
dfi , if |dfi | ≤ 1,

signdfi , if |dfi | > 1,

as well as

d
(|f |−1)+signf
i = (|dfi | − 1)+signdfi =

{
0, if |dfi | ≤ 1,

dfi − signdfi , if |dfi | > 1,

for all i = 1, . . . , n− 1. Now a direct computation yields

a((1 ∧ |f |)signf, (|f | − 1)+signf) = −
n−1∑
i,h=1

bih(1 ∧ |dfh|)signdfh(|dfi | − 1)+signdfi

= b((1 ∧ |df |)signdf , (|df | − 1)+signdf ),

where b denotes the sesquilinear, accretive form on Cn−1 associated to the matrix B.

Since the nodal values df1 , . . . , d
f
n−1 are arbitrary, by [34, Thm. 2.15] (which of course

also applies to the accretive form b) one sees that the property of X∞-contractivity
for (T2(t))t≥0 is equivalent to that of `∞-contractivity for the semigroup (etB)t≥0
generated by B on Cn−1. Now the claim follows by Lemma 6.1. �

We recall that if (T (t))t≥0 and (S(t))t≥0 are semigroups on a Banach lattice X,
then (T (t))t≥0 is said to dominate (S(t))t≥0 in the sense of positive semigroups if

|S(t)f | ≤ T (t)|f | for all f ∈ X, t ≥ 0.

Proposition 3.6. Let B, B̃ be (n − 1) × (n − 1) dissipative matrices and denote

by (etB)t≥0 and (etB̃)t≥0 the semigroups they generate on Cn−1. Assume that B is
real and positive off-diagonal, so that (etB)t≥0 is positive. Denote by aB, aB̃ the

coercive form a with coefficients given by B and B̃, respectively, and by (TB(t))t≥0,
(TB̃(t))t≥0 the associated semigroups on X2. Then (TB(t))t≥0 dominates (TB̃(t))t≥0

in the sense of positive semigroups if and only if (etB)t≥0 dominates (etB̃)t≥0 in the
sense of positive semigroups.

Proof. Observe that V0, the domain of both aB and aB̃ is an ideal of itself by [34,
Prop. 2.20]. A direct computation shows that

aB(|f |, |g|) ≤ ReaB̃(f, g) for all f, g ∈ V0 s.t. fg ≥ 0

if and only if

n−1∑
i,h=1

bih|dfh||d
g
i | ≥ Re

n−1∑
i,h=1

b̃ihd
f
hd
g
i for all f, g ∈ V0 s.t. fg ≥ 0.

Due to the arbitrarity of the nodal values of f, g ∈ V0, such a condition is satisfied
if and only if

n−1∑
i,h=1

bih|xh||yi| ≥ Re

n−1∑
i,h=1

b̃ihxhyi for all x, y ∈ Cn−1 s.t. xy ≥ 0.
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Thus, applying [34, Thm. 2.21] to the forms aB , aB̃ as well as to the forms associated

to the matrices B, B̃ yields the claim. �

It has been shown in [20, § 5] that the positive semigroup governing a diffusion
problem on a network without Dirichlet conditions on any node is irreducible if and
only if G is connected. This is no more true in the setting considered in this paper,
unless we replace the notion of connectedness by a stronger one.

Proposition 3.7. Let B be dissipative with real, positive off-diagonal entries. Then
the following hold.

(1) If the positive semigroup (T2(t))t≥0 is not irreducible, then G is the union
of two non-trivial subgraphs G1, G2 ⊂ G containing vertices v1, . . . , vn0

and
vn0+1, . . . , vn−1, respectively, and such that G1 ∩G2 ⊂ {vn}.

(2) The converse also holds, if further B is assumed to be block-diagonal, i.e.,
of the form

B =



b11 · · · b1n0

...
. . .

... 0
bn01 · · · bn0n0

bn0+1 n0+1 · · · bn0+1 n−1

0
...

. . .
...

bn n0+1 · · · bn−1 n−1


(3) Let B strictly positive off-diagonal. Then (T (t))t≥0 is irreducible.

Proof. Recall that by [34, Thm. 2.10] the positive semigroup (T2(t))t≥0 is irre-

ducible if and only whenever G̃ is an open subset of G such that

(3.9) f1G̃ ∈ V0 and Rea(f1G̃, f1G\G̃) ≥ 0 for all f ∈ V0,

then either G̃ or its complement has zero measure.
In particular, let (T2(t))t≥0 be irreducible and let f ∈ V0 be a function that

agrees with the constant 1 on all edges of G̃ that are not incident to vn, and is
smooth elsewhere. Then f1G̃ is of class H1 on each edge, continuous on each node
of G1 and vanishes in vn. Since f1G̃ also vanishes on all nodes of G2, it follows

that f1G̃ ∈ V0. We deduce that if G̃ contains an interior point x of some edge ej ,

j 6∈ Γ(vn), then the whole ej belongs to G̃ (otherwise f1G̃ would be discontinuous
at x, and in particular not of class H1.)

1) Let (T (t))t≥0 be not irreducible. We want to show that G is the union of
nontrivial subgraphs whose intersection is {vn} or, in other words, that for all
pair of points x, y ∈ G every path p(x, y) connecting them contains vn. Since the

semigroup is not irreducible, there exists G̃ ⊂ G such that µ(G̃) 6= 0 6= µ(G\G̃) and

such that (3.9) holds. As remarked before, G̃ and G\G̃ can thus only contain whole

edges: let thus ej0 , e`0 be edges contained in G̃ and G\G̃, respectively. Assume now
that then there exists a path p ⊂ G that connects some interior point of ej0 to some
interior point of e`0 and such that vn /∈ p. However, by a continuity argument the
function f1G̃ would be constant 1 along the path p, a contradiction. Here we have
denoted by f a smooth function in V0 that agrees with the constant 1 everywhere
beside on the edged incident to vn.

2) Take G̃ = G1 and let f ∈ V0. Then f1G1
is a function that equals f on the

edges of G1: by definition, f1G1
is continuous in the vertices of G1 and it vanishes
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in vn. Furthermore, f1G1
vanishes on the edges of G2 and all the vertices adjacent

to them, thus in particular it is continuous in the vertices of G2, too. Summing up,
f1G1 ∈ V0 and moreover

Rea(f1G1
, f1G\G1

) = −Re

n0∑
i=1

n−1∑
h=n0+1

bihd
f
hd
f
i = 0.

However, G1 is not a set of measure zero.
3) Let G̃ ⊂ G with µ(G̃) 6= 0, and assume that (3.9) holds. We are going to show

that µ(G \ G̃) = 0. In fact, let µ(G \ G̃) 6= 0, i.e., let G \ G̃ contain (at least) one

whole interval. We can thus assume that there exist nodes vi0 ∈ G̃ and vh0
∈ G\ G̃.

Let us now consider some function f ∈ V0 such that dfi0 = dfh0
= 1 and dfi = 0 for

all i 6= i0, i 6= h0. Then there holds

a(f1G̃, f1G\G̃) = −bi0h0
d
f1G̃
h0

d
f1G\G̃
i0

= −bi0h0
< 0,

a contradiction to (3.9). �

4. Extrapolating semigroups, ultracontractivity, and Gaussian
estimates

Let the matrix B and hence its adjoint B∗ be dissipative. One can easily see
that the adjoint of the form a is given by the form a∗ defined by

a∗(f, g) :=

m∑
j=1

∫ 1

0

cj(x)f ′j(x)g′j(x)dx−
n−1∑
i,h=1

bhid
f
hd
g
i , f, g ∈ V0.

By Theorem 3.5 the semigroup associated to a∗ is X∞-contractive if and only if

(4.1) Rebii +
∑
h6=i

|bhi| ≤ 0, i = 1, . . . , n− 1.

By duality, this is the case if and only if (T2(t))t≥0 is X1-contractive. By interpo-
lation we thus conclude that (T2(t))t≥0 is Xp-contractive for all p ∈ [1,∞] if and
only if both (3.8) and (4.1) are satisfied. We thus obtain the following.

Theorem 4.1. Let the matrix B be dissipative, and let it satisfy the assumptions
(3.8)–(4.1). Then (T2(t))t≥0 extrapolates to a family of contractive semigroups
(Tp(t))t≥0 on Xp, p ∈ [1,∞], which are strongly continuous for p ∈ [1,∞) and
analytic for p ∈ (1,∞).

Furthermore, if B has real (resp., real and positive off-diagonal) entries, then
(Tp(t))t≥0 is real for p ∈ [1,∞] (resp., positive for p ∈ [1,∞]).

Finally, for p ∈ (1,∞) the spectrum of Ap is independent of p, where Ap denotes
the generator of (Tp(t))t≥0, and (Tp(t))t≥0 is uniformly exponentially stable with
common growth bound ω(Tp) given by s(A).

Proof. We are in the position to apply the results summarized, e.g., in [4, § 7.2] and
deduce the existence of an extrapolation semigroup (Tp(t))t≥0 on Xp, 1 ≤ p ≤ ∞.
A list of the all properties of (T2(t))t≥0 inherited by (Tp(t))t≥0 can be found in [4,
§ 7.2.2]. This yields all the claimed properties up to exponential stability. To
check this, we combine the uniform exponential stability of the semigroup associated
with a, cf. Corollary 3.3, and the p-independence of the spectrum of the analytic
semigroups (Tp(t))t≥0, p ∈ (1,∞). Hence, the growth bound of (Tp(t))t≥0 agrees
with the spectral bound s(Ap) = s(A2) = s(A) < 0. �
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Remarks 4.2. 1) Let (T2(t))t≥0 be positive and irreducible. If the semigroup
extrapolates to Xp, p ∈ [1,∞], then it is known that also (Tp(t))t≥0 are irreducible,
p ∈ [1,∞), cf. [4, § 7.2].

2) Consider the case of c1 = . . . = cm ≡ 1 and bih = 0, i, h = 1, . . . , n. Then, it
follows by [32, Théo. 2.4 and Théo. 3.1] that

−
(

π

m+ 1

)1

≤ s(A) = ω(Tp) ≤ −
( π

2m

)2
, p ∈ (1,∞).

In other words, we can say that the more edges belong to the network, the slower
is the heat dissipation. A further, more involved upper estimate on s(A) is shown
in [32, Théo. 3.2], showing that the inner structure of the graph does influence the
asymptotical behavior of the diffusion problem.

We have shown that, if B is dissipative and satisfies (3.8)–(4.1), then the semi-
group (Tp(t))t≥0 is contractive on Xp, p ∈ [1,∞]. In fact, we can characterize a
stronger property.

Lemma 4.3. Let the matrix B be dissipative.

(1) If B satisfies (3.8), then the semigroup (T2(t))t≥0 on X2 associated with a
is ultracontractive. In particular, it satisfies the estimate

(4.2) ‖T2(t)f‖X∞ ≤Mt−
1
4 ‖f‖X2

for all t > 0, f ∈ X1,

for some constant M .
(2) If instead B satisfies (4.1), then

(4.3) ‖T2(t)f‖X2
≤Mt−

1
4 ‖f‖X1

for all t > 0, f ∈ X1,

holds.

Proof. By [34, Thm. 6.3] it suffices to show that there holds

‖f‖X2 ≤Ma(f, f)
1
6 · ‖f‖

2
3

X1
for all f ∈ V0,

for some constant M . Recall that

‖k‖L2(0,1) ≤ M1

(
‖k′‖L2(0,1) + ‖k‖L1(0,1)

) 1
3 · ‖k‖

2
3

L1(0,1)

≤ M1‖k‖
1
3

H1(0,1) · ‖k‖
2
3

L1(0,1),

is valid for all k ∈ H1(0, 1) and some constant M1, cf. [27, Thm. 1.4.8.1].
Take finally f ∈ V0 and observe that by the above Nash-type inequality

‖f‖2X2
=

m∑
j=1

‖fj‖2L2(0,1) ≤M
2
1

m∑
j=1

‖fj‖
2
3

H1(0,1) · ‖fj‖
4
3

L1(0,1)

≤ M2

 m∑
j=1

‖fj‖H1(0,1)

 2
3

·

 m∑
j=1

‖f‖L1(0,1)

 4
3

≤ M3‖f‖
2
3

V0
· ‖f‖

4
3

X1

≤ M3a(f, f)
1
3 · ‖f‖

4
3

X1
.

We have so far shown that

‖T2(t)f‖X∞ ≤Mt−
1
4 ‖f‖X2

for all t > 0, f ∈ X2.

If instead (4.1) holds, then the claim follows by duality. �
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Remark 4.4. In the terminology of N.Th. Varopoulos ([37, § 0.1], cf. also [4,
§ 7.3.2]), Lemma 4.3 says that the dimension of the semigroup (T2(t))t≥0 is 1. This
is true regardless of the structure of the underlying graph.

Combining the stability and ultracontractivity results we have obtained, we can
finally show that X2−X∞ uniform exponential stability holds.

Corollary 4.5. Let the matrix B be dissipative and satisfy (3.8). Then the semi-
group (T2(t))t≥0 on X2 satisfies the estimate

‖T2(t)f‖X∞ ≤M
(

1− tω
t

) 1
4

etω‖f‖X2
for all t > 0, f ∈ X2,

where M is the constant that appears in (4.2) and ω is the strictly negative growth
bound of (T2(t))t≥0.

Proof. Taking into account Lemma 4.3 and Theorem 4.1, the claim follows directly
from [34, Lemma 6.5]. �

In order to discuss the well-posedness of the problem in an Lp-setting, we want
to identify the generators of the (Tp(t))t≥0.

Proposition 4.6. Let the matrix B be dissipative, and let it satisfy the assumptions
(3.8)–(4.1). Then for all p ∈ [1,∞] the generator Ap of the semigroup (Tp(t))t≥0 is
the operator whose action on the domain

(4.4) D(Ap) :=

f ∈ (W 2,p(0, 1)
)m

:
∃df ∈ Cn−1 × {0} s.t.
(Φ+)>df = f(0), (Φ−)>df = f(1),
and Φ+

wf
′(0)− Φ−wf

′(1) = Bdf

 .

is formally given in (3.1). In particular, Ap has compact resolvent for all p ∈ [1,∞].

Proof. The proof goes in two steps. We first consider the case of p ∈ (2,∞], then
discuss the case p ∈ [1, 2) by duality.

1) Let p > 2. We have already remarked that Xp ↪→ Xq for all 1 ≤ q ≤ p ≤
∞. Moreover, for all p > 2 the space Xp is invariant under (Tp(t))t≥0 by the
ultracontractivity of (T2(t))t≥0, p > 2. Thus, by [16, Prop. II.2.3] the generator of
(Tp(t))t≥0 is the part of A in Xp. A direct computations yields the claim.

2) Take now some p with 1 ≤ p < 2, and let q such that p−1 + q−1 = 1. By
an argument similar to that of [14, Thm. 1.4.1] one has that the adjoint semi-
group ((Tp)

∗(t))t≥0 of (Tp(t))t≥0 on Xp is actually the extrapolation semigroup
((T ∗)q(t))t≥0 of ((T ∗)2(t))t≥0. Since the generator (A∗)q of ((T ∗)q(t))t≥0 also sat-
isfies the assumption of the theorem, by 1) we deduce that

D((A∗)q) :=

f ∈ (W 2,q(0, 1)
)m

:
∃df ∈ Cn−1 × {0} s.t.
(Φ+)>df = f(0), (Φ−)>df = f(1),
and Φ+

wf
′(0)− Φ−wf

′(1) = B∗df

 .

Set

Dp :=

f ∈ (W 2,p(0, 1)
)m

:
∃df ∈ Cn−1 × {0} s.t.
(Φ+)>df = f(0), (Φ−)>df = f(1),
and Φ+

wf
′(0)− Φ−wf

′(1) = Bdf

 .

Consider the operator Ap whose action on Dp is formally given by (3.1). We are
going to show that the adjoint (Ap)

∗ of (Ap, Dp) actually agrees with (A∗)q. Then,
since the generator of the pre-adjoint semigroup (Tp(t))t≥0 on Xp of ((T ∗)q(t))t≥0
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on Xq is the pre-adjoint operator Ap of Aq, we conclude that (Ap, Dp) generates
the C0-semigroup (Tp(t))t≥0 on Xp, and the claim follows.

By definition we have that the adjoint of (Ap, Dp) is the operator ((Ap)
∗, D∗p)

given by

D∗p = {f ∈ X∗p : ∃g ∈ X∗p :<Apu, f > = <u, g> ∀u ∈ Dp}
= {f ∈ Xq : ∃g ∈ Xq :<Apu, f > = <u, g> ∀u ∈ Dp},

(Ap)
∗f = g.

Let us first show that D∗p ⊂ D((A∗)q). Take f ∈ D∗p and observe that the identity
<Apu, f > = <u, g > holds in particular for all u of the form introduced in (3.7),
with uj ∈ C∞c (0, 1). Thus, we obtain that for all j = 1, . . . ,m there exists gj ∈
Lq(0, 1) such that ∫ 1

0

(cju
′
j)
′(x)fj(x)dx =

∫ 1

0

uj(x)gj(x)dx.

Integrating by parts one thus obtains that (cjf
′
j)
′ = gj (in the sense of distributions),

and since gj ∈ Lq(0, 1) it follows from the definition of Sobolev space of order 2

that fj ∈W 2,q(0, 1). Thus, we conclude that f ∈
(
W 2,q(0, 1)

)m
.

In order to check that the node conditions are also verified, let us perform a
computation similar to that in Lemma 3.4. The condition <Apu, f > = <u, g> for
u ∈ Dp reads then

(4.5)

∑m
j=1

∫ 1

0
uj(x)

(
(cjf ′j)

′(x)− gj(x)
)
dx =

−
∑m
j=1 cj(vn)φnju

′
j(vn)fj(vn)

+
∑n−1
i=1

∑m
j=1(ω−ij − ω

+
ij)
(
dui f

′
j(vi)− u′j(vi)fj(vi)

)
for some g ∈ Xq. Since u ∈ Dp is arbitrary (and therefore so are its derivative’s
nodal values), we deduce that all terms on both the left and the right hand sides
must vanish identically. In particular, whenever the edge ej is incident to vn the
number cj(vn)φnju

′
j(vn) is arbitrary (recall that cj(x) ≥ c > 0 for all x ∈ [0, 1] and

j = 1, . . . ,m), so that necessarily fj(vn) = 0 for all j ∈ Γ(vn). Now we invoke again
the arbitrarity of u ∈ Dp (and hence of its and its derivative’s nodal values) and,
considering functions u s.t. dui = 0 for i = 1, . . . , n, we conclude that there holds

(4.6)
m∑
j=1

(ω−ij − ω
+
ij)u

′
j(vi)fj(vi) = 0 for all i = 1, . . . , n− 1.

Moreover, observe that the generalized Kirchhoff law for u ∈ Dp ∩ (H1
0 (0, 1))m

becomes

(4.7)

m∑
j=1

(ω−ij − ω
+
ij)u

′
j(vi) = 0 for all i = 1, . . . , n− 1.

Let us reduce (4.6) and (4.7) to pairwise relations. More precisely, pick u in such
a way that only exactly two values (ω−i` −ω

+
i`)u

′
`(vi), (ω

−
ik −ω

+
ik)u′k(vi) are non-zero,

1 ≤ `, k ≤ m. Then, we obtain from (4.6)–(4.7) that for given i the vector(
(ω−i` − ω

+
i`)u

′
`(vi)

(ω−ik − ω
+
ik)u′k(vi)

)
is orthogonal to

(
f`(vi)

fk(vi)

)
as well as to

(
1
1

)
.

This promptly yields that f`(vi) = fk(vi). Repeating the argument m− 1 times we

conclude that the nodal values fj(vi) := dfi do not depend on j ∈ Γ(vi).
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Thus, the second term on the right hand side of (4.5) can be written as

n−1∑
i=1

dui m∑
j=1

(ω−ij − ω
+
ij)f

′
j(vi)− d

f
i

m∑
j=1

(ω−ij − ω
+
ij)u

′
j(vi)


or rather, taking into account the generalized Kirchhoff condition satisfied by u, as

(4.8)

n−1∑
i=1

dui m∑
j=1

(ω−ij − ω
+
ij)f

′
j(vi)− d

f
i

n−1∑
h=1

bihd
u
h

 .

Since this expression vanishes identically and because of the arbitrarity of the nodal
values of u and u′, we conclude that

m∑
j=1

(ω−ij − ω
+
ij)f

′
j(vi) =

n−1∑
h=1

bhid
f
h, i = 1, . . . , n− 1.

Summing up, f satisfies the Dirichlet condition at vn as well as the generalized
Kirchhoff law at v1, . . . , vn−1 for coefficients given by B∗, thus f ∈ D((A∗)q).

Let us now check that D((A∗)q) ⊂ D∗p. Take f ∈
(
W 2,q(0, 1)

)m
satisfying the

continuity condition on the nodal values as well as the Dirichlet condition on vn
and the generalized Kirchhoff law on v1, . . . , vn−1 for coefficients given by B∗. Set
gj = (cjf

′
j)
′, so that g ∈ Xq. We only have to prove that for all u ∈ Dp there holds

<Apu, f > = <u, g>, i.e.,
m∑
j=1

∫ 1

0

(cju
′
j)
′(x)fj(x)dx =

m∑
j=1

∫ 1

0

uj(x)(cjf ′j)
′(x)dx.

Integrating by parts as in the proof of the converse inclusion and recalling that the
nodal values of both f and u do not depend on j we see that this is the case if and
only if the expression in (4.8) vanishes identically. �

As a direct consequence of the ultracontractivity of (T2(t))t≥0 and the Dunford–
Petty Theorem, the semigroup has an integral kernel for all t > 0, cf. [4, § 7.3].

More precisely, denote by (T̃p(t))t≥0 the semigroup on Lp(0,m) that is similar to
(Tp(t))t≥0 on Xp with a similarity transformation given by the isometry U intro-

duced in Definition 2.2. Then for all p ∈ [1,∞] the action of (T̃p(t))t≥0 is given
by

T̃p(t)g(·) =

∫ m

0

K̃t(·, y)g(y)dy, t > 0, g ∈ Lp(0,m),

for a suitable kernel K̃t ∈ L∞
(
(0,m)× (0,m)

)
.

The existence of integral kernels is a typical feature of diffusion equations. Also
in view of its consequences in the theory of evolution equations (see e.g. [3]), it
is of great interest to estimate such kernels and compare them with the standard
Gaussian one, which is associated to the heat equation on the whole space. This
is usually done by the so-called Davies’ trick, that amounts to prove uniform L∞-
(quasi)contractivity estimates for a class of perturbed semigroups.

More precisely, introduce a class W of functions ϕ : R → R constructed in the
following way: first, we consider smooth functions φ ∈ (C∞b (0, 1))

m
such that

∃dφ ∈ Cn s.t. (Φ+)>dφ = φ(0), (Φ−)>dφ = φ(1), ‖φ′‖∞ ≤ 1 and ‖φ′′‖∞ ≤ 1.

We then stretch via the isometry U such functions over the network to functions
φ̃ : (0,m) → R. We finally call W the class of all smooth, bounded continuous
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extensions ϕ of φ̃ to the whole line such that also ‖ϕ′‖∞ ≤ 1 and ‖ϕ′′‖∞ ≤ 1.
Finally, for fixed ϕ ∈ W we define an operator Lρ on L2(R) by Lρf := e−ρϕf and

perturbed semigroups (T̃ ρ2 (t))t≥0, where T̃ ρ2 (t) := LρT̃2(t)L−1ρ , ρ ∈ R. Observe that,

by construction, U−1LρUf ∈ V0 for all f ∈ V0, ρ ∈ R.
In the remainder of this section we consider Xp as real spaces, 1 ≤ p ≤ ∞. Then,

by [7, Thm. 3.3] Gaussian estimates for (T̃2(t))t≥0 are equivalent to ultracontrac-

tivity estimates for (T̃ ρ2 (t))t≥0, uniformly in ρ ∈ R and ϕ ∈W . This can be done by
applying the above presented theory to the similar semigroups (T ρ2 (t))t≥0 on X2,
which by a direct computation are associated to the bilinear forms aρ defined by

aρ(f, g) :=

m∑
j=1

∫ 1

0

cj(x)f ′j(x)g′j(x)dx

+ρ

m∑
j=1

∫ 1

0

cj(x)φ′j(x)
(
fj(x)g′j(x)− f ′j(x)gj(x)

)
dx

−ρ2
m∑
j=1

∫ 1

0

cj(x)φ′j(x)2fj(x)gj(x)dx

−
n−1∑
i,h=1

bihe
ρ(dφh−d

φ
i )dfhd

g
i ,

for all f, g ∈ V0. In the following we restrict ourselves to the local case, i.e., to the
case where B is a diagonal matrix. In fact, by considering the above form aρ with

coefficients c ≡ 1 and B =

(
−1 1
1 −1

)
on the domain H1(0, 1) (i.e., for the sake of

simplicity, on a graph with a single edge without Dirichlet boundary conditions),
one sees that it is not possible to find ω ∈ R such that the shifted form aρ+ω(1+ρ2)
is accretive uniformly in ρ ∈ R and φ ∈W , i.e., such that

0 ≤ aρ(f, f) + ω(1 + ρ2)‖f‖2X2
=

∫ 1

0

f ′(x)2 + (ρ2ω + ω − ρ2φ′(x)2)f(x)2dx

−(eρ(φ(1)−φ(0)) + eρ(φ(0)−φ(1)))f(1)f(0)

+f(0)2 + f(1)2

for all ρ ∈ R, φ ∈ W , and f ∈ H1(0, 1). This can be checked by taking f constant,
ρ = 1, φ(x) := (1 + ω)x. The uniform accretivity of the forms aρ seems to be an
essential ingredient of the method of proof explained in [7]: we thus derive in the
following Gaussian estimates only in the local case of B diagonal.

Theorem 4.7. Let the matrix B be diagonal with negative entries. Then the
semigroup (T2(t))t≥0 has Gaussian estimates. More precisely, there exist constants

b, c > 0 such that K̃t satisfies

(4.9) 0 ≤ K̃t(x, y) ≤ ct− 1
2 e−

b|x−y|2
t +t, x ∈ (0,m),

uniformly in t > 0.

Proof. Under our assumptions it is already known that (T2(t))t≥0 is positive and
contractive with respect to the X1 and X∞ norm. Moreover, a direct computation
shows that the shifted form aρ + (1 + ρ2) is accretive.
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Observe now that V0 is not an ideal of (H1(0, 1))m, but indeed of

V :=

{
f ∈

(
H1(0, 1)

)m
:
∃df ∈ Cn−1 × {0} s.t.
(Φ+)>df = f(0) and (Φ−)>df = f(1)

}
.

The proof can now be concluded by mimicking [7, Thm. 4.4]. �

We are finally able to obtain an optimal result on the analiticity of the semigroup
generated by A. We stress that we are not imposing any assumption on B.

Theorem 4.8. Consider the operator Ap whose action on the domain defined
in (4.4) is formally given by 3.1. Then Ap generates on Xp a strongly continu-
ous, analytic semigroup (Tp(t))t≥0 of angle π

2 , p ∈ [1,∞).

Proof. The proof goes in three steps.
1) Let us first consider the case of B = 0, p = 2. Then, it follows by Proposi-

tion 3.2 that the form a is symmetric and coercive, hence in particular the associated
operator A is self-adjoint and dissipative, and the statement follows by the spectral
theorem.

2) If B = 0, then for general p ∈ [1,∞] the semigroup (T2(t))t≥0 extrapolates to
a semigroup (Tp(t))t≥0 on Xp that is analytic of angle π

2 , by Theorem 4.7 and [34,
Thm. 6.16].

3) Finally, consider the case of general B. Then we can apply the theory devel-
oped in [17, § 2], after setting X := Xp, ∂X := Cn−1, and

Y :=

{
f ∈

(
W 2,p(0, 1)

)m
:
∃df ∈ Cn−1 × {0} s.t.
(Φ+)>df = f(0), (Φ−)>df = f(1)

}
,

as well as

Lu :=


∑m
j=1 φ1jcj(v1)u′j(v1)

...∑m
j=1 φn−1jcj(vn−1)u′j(vn−1)

 , u ∈ D(A),

and

Φu := Bdu, u ∈ V0.
We consider the operator A with maximal domain Y and observe that the restric-

tion of A to ker(L) is the operator considered in 2), hence the generator of an ana-
lytic semigroup of angle π

2 . Since the boundary perturbation operator Φ : V0 → ∂X
is compact, the claim follows by [17, Thm. 2.6] (observe that in that theorem is
also proved, although not explicitly stated, that the angle of analiticity remains
invariant under admissible boundary perturbations). �

Remark 4.9. Gaussian estimates like (4.9) are a key argument for discussing a
number of different issues that go far beyond the scope of this paper. Without going
into details, we recall that Theorem 4.7 implies at once, among other, the property
of maximal regularity for (Tp(t))t≥0 for p ∈ (1,∞), upper estimates for the time
derivative of the kernel Kt, L

p-estimates for Schrödinger and wave equations, and
the fact that Ap has bounded H∞-calculus on each sector (and therefore that it
has bounded imaginary powers) for p ∈ (1,∞), cf. [34, § 6.5 and Chapt. 7], [4,
§ 7.4] and references therein. Observe that, even if Gaussian estimates can only be
obtained for local nodal conditions, most of the above mentioned consequences also
hold in the general case by perturbation methods.
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Theorem 4.10. The first order network diffusion problem introduced in Section 2
is well-posed on Xp, p ∈ [1,∞), i.e., for all initial data u0 ∈ Xp it admits a unique
mild solution that continuously depends on the initial data. Such a solution is of
class C∞ in both variables x, t and its ∞-norm tends to 0 in time. If furthermore
cj ∈ C∞[0, 1], j = 1, . . . ,m, then the solution u(t, ·) is of class C∞ with respect to
the space variable.

Proof. The well-posedness and boundedness results follow from the fact that the
semigroup (T2(t))t≥0 is ultracontractive and extends to a family of semigroups
(T2(p))t≥0 that, by Proposition 4.6, actually govern the network diffusion prob-
lem. The decay of the solution is ensured by the uniform exponential stability of
all semigroups.

Finally, if cj ∈ C∞[0, 1], j = 1, . . . ,m, then one sees that D(A∞p ) ⊂ (C∞[0, 1])
m

for all p ∈ (1,∞). Since the semigroup (Tp(t))t≥0 is analytic, it maps Xp into
D(A∞p ), and the claim follows. �

Observe that if we replace the Dirichlet condition in vn by continuity of the
values of uj(t, vn), t ≥ 0, j ∈ Γ(vn), plus a Kirchhoff-type condition analogous to
that imposed on the other nodes, we obtain the system

(4.10)


u̇j(t, x) = (cju

′
j)
′(t, x), x ∈ (0, 1), j = 1, . . . ,m,

uj(t, vi) = u`(t, vi) =: dui , j, ` ∈ Γ(vi), i = 1, . . . , n,∑n
h=1 bihd

u
h =

∑m
j=1 φijcj(vi)u

′
j(t, vi), i = 1, . . . , n,

for t ≥ 0, with initial conditions

uj(0, x) = u0j(x), x ∈ (0, 1), j = 1, . . . ,m.

Here b1h, bi1, are arbitrary numbers, 1 ≤ i, h ≤ n−1. Such an initial-value problem
has been proved to be well-posed in [20] (in the special case of B = 0): we can
compare its solution and that to the original network diffusion problem and obtain
the following. For the sake of simplicity, in the following we restrict to the case of
purely Kirchhoff nodal conditions. However, one can see that a similar proof also
works in the general case.

Proposition 4.11. Let the coefficients bih = 0, 1 ≤ i, h ≤ n. Then the semigroup
(T2(t))t≥0 governing the original network diffusion problem (as in § 2) is dominated

by the semigroup (T̃2(t))t≥0 governing (4.10) in the sense of positive semigroups.

Proof. As shown in [20], (T̃2(t))t≥0 is a sub-Markovian semigroup that comes from
a form with domain

V =
{
f ∈

(
H1(0, 1)

)m
: ∃df ∈ Cn s.t. (Φ̃+)>df = f(0) and (Φ̃−)>df = f(1)

}
,

where Φ̃+ = (φ̃+ij) and Φ̃− = (φ̃−ij) represent the incidence matrices defined by

φ̃+ij :=

{
1, if ej(0) = vi,
0, otherwise,

and φ̃−ij :=

{
1, if ej(1) = vi,
0, otherwise.

Since a Dirichlet condition in the node vn implies in particular continuity on a
function in that vertex, one sees that V0 ⊂ V . Accordingly, by [34, Cor. 2.22]
it suffices to prove that V0 is an ideal of V , i.e., that the following conditions are
satisfied:

• f ∈ V0 ⇒ |f | ∈ V ,
• f ∈ V0, g ∈ V, and |g| ≤ |f | ⇒ g · signf ∈ V0.
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To check the first condition, observe that H1
0 (0, 1) is an ideal of H1(0, 1), and that

the continuity of the values of f ∈
(
H1(0, 1)

)m
in the nodes is not affected by taking

the absolute value of f . Let now f ∈ V0 and g ∈ V . If |g| ≤ |f |, then in particular
|gj(vn)| ≤ |fj(vn)| = 0 for all j ∈ Γ(vn), i.e., g ∈ V0. Finally, since A generates a
positive semigroup, V0 is an ideal of itself and this yields that g · signf ∈ V0. �

5. The heat equation on spaces of continuous functions

Also in view of applications, we are now interested to extend the previous Lp-
type well-posedness results to a setting where continuous functions are considered
instead.

Consider the part Ã∞ of A in the Banach space X̃∞ := (C[0, 1])
m

, whose domain
is given by

D(Ã∞) =

f ∈ (C2(0, 1) ∩ C1[0, 1]
)m

:
∃df ∈ Cn−1 × {0} s.t.
(Φ+)>df = f(0), (Φ−)>df = f(1),
and Φ+

wf
′(0)− Φ−wf

′(1) = Bdf

 .

Lemma 5.1. The operator Ã∞ is sectorial on X̃∞, and it generates a compact
analytic semigroup of angle π

2 . If the matrix B is a diagonal with negative entries,
then such a semigroup is also positive and contractive.

Proof. 1) Let us first consider the case B = 0. Then by Theorem 4.1 and Theo-
rem 4.8 we deduce that all the operators Ap, p ∈ [1,∞], are dissipative and sectorial
of angle π

2 . In particular, for each ε ∈ (0, π2 ) there exists Mε ≥ 1 such that the esti-
mate

(5.1) ‖λR(λ,A∞)‖L(X∞) ≤Mε

holds for all λ ∈ {µ ∈ C : |arg µ| < π − ε}.
Now observe that if f ∈ X̃∞, then R(λ,A∞)f = R(λ,A2)f ∈ D(A2). But one

has D(A2) ⊂
(
H2(0, 1)

)m
↪→
(
C[0, 1]

)m
, with compact embedding. Therefore, we

see that R(λ,A∞)f is a continuous function for all λ ∈ {µ ∈ C : |arg µ| < π − ε}.
It follows that the analogous of (5.1) also holds with respect to the norm of X̃∞,

hence Ã∞ is sectorial and it generates an analytic semigroup of angle π
2 .

2) The case of general B can be treated as in the proof of Theorem 4.8, by means
of the theory of boundary perturbation for sectorial operators discussed in [17]. �

The main motivation for considering semigroups on (C[0, 1])
m

comes from ap-
plications involving semilinear equations, since we can then effectively apply the
theory developed, e.g., in [26] in order to discuss well-posedness and stability. As
an elementary, yet motivating example we mention the following system, related
to a Hodgkin–Huxley-model describing the transmission of potential along neurons
(see [36] and references therein).

Proposition 5.2. Let ψj ∈ C2(R), j = 1, . . . ,m. Consider for t > 0 the semilinear
parabolic network problem given by

u̇j(t, x) = (cju
′
j)
′(t, x) + (ψj(uj(t, x))′, x ∈ (0, 1), j = 1, . . . ,m,

uj(t, vi) = u`(t, vi) =: dui , j, ` ∈ Γ(vi), i = 1, . . . , n,∑n−1
h=1 bihd

u
h =

∑m
j=1 φijcj(vi)u

′
j(t, vi), i = 1, . . . , n− 1,

dun(t) = 0.
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Then for all u0 ∈ (C[0, 1])m the Cauchy problem associated to such a system admits
a unique (global) mild solution u that depends continuously (with respect to the
sup-norm) on the initial data. In fact, u satisfies the problem pointwise for t > 0.

Proof. Rewrite the above system as a semilinear abstract Cauchy problem{
u̇(t) = Ã∞u(t) + Ψ(u(t)), t > 0,
u(0) = u0,

on X̃∞. Here Ψ is the Nemitsky operator defined by

Ψ(u)(·) :=


d
dx (ψ1(u1(·)))

...
d
dx (ψm(um(·)))

 .

Taking into account Lemma 5.1, we are in a setting that is analogous to that of [26,
§ 7.3.3]. Now, mimicking the proof of [26, Prop. 7.3.6] the claim follows. �

A thorough treatment of well-posedness and stability of semilinear diffusion prob-
lems over networks goes beyond the scope of this paper. We will deal with such an
issue in the forthcoming paper [12].

Even in the linear case (i.e., ψ1 ≡ 0, j = 1, . . . ,m), the problem considered
in Proposition (5.2) is not well-posed in a classical sense. In fact, albeit sectorial

(hence the generator of an analytic semigroup), the operator Ã∞ is not densely

defined in X̃∞, thus the generated semigroup is not strongly continuous.
Let us define

C0(G) :=

{
f ∈ (C[0, 1])

m
:
∃df ∈ Cn−1 × {0} s.t.
(Φ+)>df = f(0) and (Φ−)>df = f(1)

}
,

which by the theorem of Stone–Weierstrass is the closure of D(Ã∞). (Observe that
C0(G) can be looked at as the space of all continuous functions on the graph G that
vanish in vn).

Theorem 5.3. The part A of Ã∞ in C0(G) generates a compact, strongly contin-
uous semigroup which is analytic of angle π

2 . If further B is diagonal with negative
entries, then such a semigroup is contractive, real, positive, and uniformly exponen-
tially stable.

Proof. Reasoning as in the proof of Proposition 5.2, we deduce from Theorem 4.1
that A is a resolvent positive operator on C0(G). Since A is also densely defined,
by [6, Thm. 3.11.9] it generates a positive strongly continuous semigroup (T(t))t≥0.

By Lemma 5.1, we see that A is sectorial and dissipative: this yields the ana-
lyticity (with angle π

2 ) and the contractivity of (T(t))t≥0. Observe further that the
p-independence of the spectrum of Ap (by Theorem 4.1) yields the invertibility of
A, hence the uniform exponential stability of (T(t))t≥0.

Finally, in order to show that the semigroup is compact, observe that due to
its analyticity T2(t) maps X2 into D(A∞2 ) ⊂ (C∞[0, 1])

m ∩ C0(G) ⊂ D(A) for all
t > 0. Thus, denoting by XA the Banach space obtained by endowing D(A) with
the graph norm, we have

T(t) = iXA,C0(G) ◦ T2(t) ◦ iC0(G),X2
, t > 0.

Here iC0(G),X2
and iXA,C0(G) denote the canonical imbeddings of C0(G) into X2

and of XA into C0(G), respectively. It follows from the theorem of Ascoli-Arzelà
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that the latter imbedding is compact, so that also T(t) is compact for t > 0, and
the claim follows. �

We can finally draw a conclusion that is similar to Theorem 4.10, and can be
proved likewise.

Theorem 5.4. The network diffusion problem is well-posed on C0(G), i.e., for
all initial data u0 ∈ C0(G) it admits a unique classical solution that continuously
depends on the initial data. The sup-norm of the solution tends to 0 in time.

6. A technical lemma

The following result seems to be of independent interest. Its proof is due to
Wolfgang Arendt, whom we warmly thank.

Lemma 6.1. Let A = (aih) be a n × n matrix with complex-valued coefficients.
Then the semigroup (etA)t≥0 generated by A is `∞-contractive, i.e.,

‖etAx‖∞ ≤ ‖x‖∞, t ≥ 0, x ∈ Cn,

if and only if

(6.1) Reaii +
∑
h6=i

|aih| ≤ 0 for all i = 1, . . . , n.

Proof. The proof goes in two steps.
1) Let us first assume the semigroup (etA)t≥0 generated by the matrix A = (aih)

to be positive, i.e., to have real entries that are positive off-diagonal. Then it is
known that (etA)t≥0 is `∞-contractive if and only if A1 ≤ 0, i.e., if and only if

(6.2) aii +
∑
h6=i

aih ≤ 0 for all i = 1, . . . , n.

2) Let us now consider the case of a general matrix A and define a new matrix

A] = (a]ih) by

a]ih :=

{
Reaii if h = i,
|aih| if i 6= h.

It is known (see [15]) that A] generates the modulus semigroup of (etA)t≥0, i.e.,

the (unique) semigroup (etA
]

)t≥0 that dominates (etA)t≥0 in the sense of positive
semigroups, and is dominated by any other semigroup also dominating (etA)t≥0.

Let us first assume that (6.1) holds. Since (etA
]

)t≥0 is positive, by part 1) it

is also `∞-contractive. Now, since (etA
]

)t≥0 dominates (etA)t≥0, it follows that
(etA)t≥0 is `∞-contractive as well.

Conversely, let (etA)t≥0 be `∞-contractive. In order to show that (6.1) holds, con-

sider the modulus semigroup (etA
]

)t≥0, which is positive and, by [34, Prop. 2.26],

also `∞-contractive. One can check directly that the adjoint (etA
]∗)t≥0 of the

modulus semigroup also dominates the adjoint (etA∗)t≥0, which by duality is `1-
contractive. Now it follows from the proof of [9, Prop. 2.5] that the semigroup

(etA
]∗)t≥0 is also `1-contractive, and by duality the positive semigroup (etA

]

)t≥0 is
`∞-contractive. Thus, by part 1) the entries of A] satisfy the condition (6.2), i.e.,
(6.1) holds. This concludes the proof. �
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