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Abstract

We consider a parametric spectral density with power-law behaviour about a frac-
tional pole at the unknown frequency !. The case of known !, especially ! = 0, is
standard in the long memory literature. When ! is unknown, asymptotic distribution
theory for estimates of parameters, including the (long) memory parameter, is signif-
icantly harder. We study a form of Gaussian estimate. We establish n¡consistency
of the estimate of !, and discuss its (non-standard) limiting distributional behaviour.
For the remaining parameter estimates, we establish

p
n - consistency and asymptotic

normality.
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1 Introduction

Cyclic behaviour in covariance stationary time series is typically manifested in a pro-
nounced peakedness in spectral density estimates. If the spectral density of a series
xt; t = 0;�1;�2; : : : ; is estimated over the Nyqvist band (��; �], a peak at frequency
! 2 (0; �] corresponds to a cycle of 2�=!. Various statistical models for such a phe-
nomenon have been proposed. Two long-standing ones are of autoregressive (AR) and
cosinusoidal type. For example the AR(2) model

(1� �1L� �2L
2)xt = "t; t = 0;�1; : : : ; (1.1)

where L is the lag operator and "t is a sequence of uncorrelated and homoscedastic zero-
mean random variables, has spectrum with peak at

! = arc cos(
�1(�2 � 1)

4�2
)

when the zeroes of 1 � �1z � �2z
2 are complex and j�1(�2 � 1)=4�2j < 1. On the other

hand, a very simple cosinusoidal model is

xt = � cos(!t) + � sin(!t); (1.2)

where � and � are uncorrelated random variables with zero means and the same variance.
Whereas (1.1) implies that xt has a spectral density that is analytic even at a peak, xt
given by (1.2) has a spectral distribution function that jumps at !. The model (1.2)
cannot describe real data, unlike the nonstationary-in-the-mean modi�cation

xt = � cos(!t) + � sin(!t) + ut; (1.3)

where � and � are interpreted as �xed unknown constants and ut is an unobservable
covariance stationary process with smooth spectral density. However, (1.1) and (1.2)
constitute mathematically radically di�erent descriptions of cyclic behaviour within the
stationary class, and help to motivate and place in perspective the model studied in the
current paper.
An intermediate possibility between (1.1) and (1.2) is that xt has a spectral density

with a pole at !. Denote by f(�) the spectral density of xt, satisfying

j
def
= E(x0xj) =

Z �

��
f(�) cos(j�)d�; j = 0;�1; : : : :

We are implicitly assuming here, as in (1.1) and (1.2), that xt has zero mean, but we will
later indicate how our results apply in case xt has unknown mean. We say that f(�) has
a (fractional) pole of order � 2 (0; 1) at ! if

f(�) � Cj�� !j�� as �! !; (1.4)

where C 2 (0;1) and 0 �0 indicates that the ratio of left and right hand sides tends to
1. In case ! = 0, (1.4) is a familiar description of long-memory time series, so that for
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! 2 (0; �) (1.4) can be said to denote long-memory at a non-zero frequency. Parametric
models for f(�), specifying f for all � as a given function of unknown parameters and �,
and satisfying (1.4) for some ! 2 (0; �), have been proposed by Hosking (1981), Andel
(1986), Gray et al. (1989) and others. The simplest of these modi�es (1.1) to

a(L;!; d)xt = "t; (1.5)

where
a(z;!; d) = (1� 2z cos! + z2)d; (1.6)

and was termed a Gegenbauer model by Gray et al. (1989). Writing �2 = V ar("t), we
deduce that, for � 2 (��; �],

f(�) =
�2

2�
ja(ei�;!; d)j�2 = �2

2�

���4 sin(�+ !

2
) sin(

�� !

2
)
����2d: (1.7)

When d > 0, f(�) has a pole at � = ! (and, when ! 6= 0, at �!, as anticipated
from symmetry). Moreover, when ! 2 (0; �), (1.7) satis�es (1.4) with � = 2d and C =
(�2=2�)j2 sin!j�2d: When ! = 0 or �, (1.7) satis�es (1.4) with � = 4d and C = �2=2�;
noting in case ! = � that j sin 1

2
(�+!)j = j sin 1

2
(��!)j. Correspondingly, xt is covariance

stationary for d < 1=2 when ! 2 (0; �) and for d < 1=4 when ! = 0 or �: When ! = 0, xt
is a standard long-memory model, ARIMA (0,2d,0), though in this case the usual notation
replaces 2d by d. Note that a zero in f(�) occurs in (1.4) when � < 0 or in (1.7) when
d < 0, but we do not pursue this case. Hosking (1981), Gray et al. (1989) extended (1.5)
by replacing "t by a covariance stationary and invertible autoregressive moving average
(ARMA) process, when (1.4) is satis�ed in the same way. Robinson (1994), Giraitis
and Leipus (1995) considered more general models, providing spectral poles at several
frequencies. They are motivated in part by seasonal processes, for which pole location is
known. Hosoya (1997) established

p
n-consistency and asymptotic normality of Gaussian

estimates of the remaining parameters in such models, extending work for the case of a
known pole at zero frequency by Fox and Taqqu (1986), Dahlhaus (1989) and Giraitis
and Surgailis (1990). In applications of non-seasonal, single-pole (in (0; �]) models such
as (1.5), however, it is likely that ! is unknown, as when investigating the length of a
cycle in geophysical or macroeconomic time series.
The present paper proposes estimates based on a Gaussian objective function in case of

parametric models satisfying (1.4) with unknown ! and studies their asymptotic statistical
properties. The theory seems signi�cantly harder than for the case of known !. The
following section sets down the basic model with examples, and describes the parameter
estimates, which are prompted by an approximate Gaussian likelihood, though we nowhere
assume Gaussianity. In Section 3 the regularity conditions and limiting behaviour of the
parameter estimates are presented, with discussion, along with the main steps of the proof
and a small numerical example, the remaining details appearing in Sections 4 - 7. Our
main �ndings are that the estimates of ! are n-consistent (like those proposed by Hannan
(1973a) for (1.3)), while the estimates of the remaining parameters are

p
n-consistent and

have the same normal distribution as when ! is known.

2



2 Model and parameter estimates

We parameterize f(�) in the �rst place by writing

f(�) =
�20
2�
k(�; �0; !0); �� < � � �; (2.1)

where �20 is an unknown positive scalar, �0 is an unknown p�dimensional column vector,
assumed to be in a compact set � � R

p, and k(�; �; !) is a known function of �, �, !,
such that, for � 2 �, ! 2 � = [0; �];

k(�; �; !) > 0; �� < � � �;Z �

��
log k(�; �; !)d� = 0: (2.2)

The zero subscripted quantities in (2.1) denote true values, � and ! denoting any ad-
missible values (so that �0; !0, should replace �; ! in (1.4), for example). Following
the discussion of Section 1, we subdivide � as � = (� 0; �)0 and correspondingly write
� = �� � �� for compact sets �� , ��, �� � [0; 1]. The (p� 1)-vector � is empty when
p = 1, in which case a particular k(�; �; !) can be deduced from (1.7). For p > 1, � es-
sentially describes short-range dependence, for example it can contain the coe�cients of
a stationary and invertible ARMA, so that we have the more general Gegenbauer model
of Gray et al. (1989), with

k(�; �; !) =
���a(ei�;!; �=2)b(ei�; �)

c(ei�; �)

����2; �� < � � �; (2.3)

where a is given by (1.6), and with �j the j th element of � ,

b(z; �) = 1�
p1X
j=1

�jz
j1f1�p1�p�1g; c(z; �) = 1�

p�1X
j=p1+1

�jz
j�p11f0�p1�p�2g; (2.4)

where 1f:g is the indicator function, 0 � p1 � p� 1, all zeroes of b(z; �) and of c(z; �) are
outside the unit circle, and b(z; �) and c(z; �) have no zeroes in common. More generally,
we can consider models

k(�; �; !) =
��� h(�; �)

a(ei�;!; �=2)

���2 � � < � � �; (2.5)

where h(�; �) is bounded and bounded away from zero. Condition (2.2) indicates that
for a process with spectral density (�2=2�)k(�; �; !), the free parameter �2 (functionally
independent of � and !) is the variance of the one-step-ahead best linear predictor (see
Hannan, 1970, pp 157-163). In view of (2.2), which is satis�ed by (2.3) and (2.5), we
might consider, following Hannan (1973b), estimating (�00; !0)

0 by 
~�
~!

!
= arg min

���
S(�; !);
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where

S(�; !) = ~n�1
~nX
j=0

I(�j)

k(�j; �; !)
; (2.6)

~n = [n=2] and we introduce the periodogram

I(�j) = (2�n)�1
��� nX
t=1

xte
it�j
���2;

evaluated at the Fourier frequencies �j = 2�j=n.
Under the conditions of Hannan (1973b), the objective function S(�; !) approximates

a Gaussian log-likelihood in the sense that (~�0; ~!)0 has the same limit distribution as a
Gaussian maximum likelihood estimate (though Hannan did not assume Gaussianity).
However, Hannan's (1973b) conditions are not all satis�ed due to the pole ! in k(�; �; !).
In case the true pole !0 is known (for example it is taken for granted that !0 = 0, as in
standard long-memory models) then it is already known that the conditions of Hannan
(1973b) can be suitably relaxed, as shown by Fox and Taqqu (1986), Dahlhaus (1989),
Giraitis and Surgailis (1990) when !0 = 0, and by Hosoya (1997) when !0 2 (0; �], (though
strictly these authors consider di�erent approximations to the log-likelihood function from
(2.6)). Indeed the consistency proof of Hannan (without rates of convergence) still holds
in case of known or unknown pole, the latter case having been considered by Giraitis
and Leipus (1995). For limit distribution theory with a known pole !0, the smoothness
conditions of Hannan can be relaxed due to the "compensation" to I(�) a�orded by
the reciprocal of k(�; �0; !0) near � = !0. When !0 is unknown, derivation of limit
distribution theory, and even rates of convergence, is signi�cantly more di�cult. An
attempt at this was made, in the context of an alternative type of approximation to the
Gaussian likelihood, by Chung (1996a, b); we shall briey comment on Chung's treatment
subsequently. Although k(�; �; !)�1 = 0 at � = !, the derivative (@=@!)k�1(�; �; !) is
not well behaved near � = ! in case of (2.3) and (2.5). For this reason we have chosen to
study instead the estimate  

�̂
!̂

!
= arg min

��Q
S(�; �q)

where Q = Qn = fq : q = 0; 1; : : : ; ~ng: Thus minimization with respect to ! is now carried
out over a discrete set. We could in fact consider a �ner set, with spacing �=n for arbitrary
� > 0, but it is essential that the intervals not be o(n�1) as n!1. We can estimate �20
by

�̂2 = S(�̂; !̂):

3 Regularity conditions and asymptotic properties

We introduce �rst the following assumptions, denoting by r� the vector of partial deriv-
atives @=@�, for a column vector or scalar �.
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Assumption A.1. xt has spectral density f(�) given by (2.1), (2.5), that is

f(�) =
�20
2�

���4 sin(�+ !0
2

) sin(
�� !0

2
)
�����0 jh(�; �0)j2; �� < � � �; (3.1)

where �0 denotes the true value of � , and for �� < � � �, � 2 �� , h(�; �) is even in � and
bounded away from zero, and the derivativesr�h(�; �);r�h(�; �), r�r�h(�; �);r�r0

�h(�; �)
are continuous.

Assumption A.2. (2.2) holds for all � 2 �; ! 2 [0; �].

Assumption A.3.

inf
(�0;!)2���

(2�)�1
Z �

��

k(�; �0; !0)

k(�; �; !)
d� = 1 (3.2)

and the set
f� : k(�; �; !) 6= k(�; �0; !0)g; (�0; !) 6= (�00; !0) (3.3)

has positive Lebesgue measure. Also, the matrix


 = (wij)i;j=1;:::;p =
1

4�

Z �

��
r� log k(�; �0; !0)r0

� log k(�; �0; !0)d� (3.4)

is positive de�nite.

Assumption A.4. �0 is an interior point of � and !0 2 [0; �], such that 0 < �0 < 1 for
0 < !0 < � and 0 < �0 < 1=2 for !0 = 0; �.

Assumption A.5. We have

xt =
1X
j=0

�j"t�j;
1X
j=0

�2j <1; �0 = 1; (3.5)

where f"tg is ergodic and

E ["t jFt�1 ] = 0; E
h
"2t jFt�1

i
= �20 ; a:s:;

E
h
"it jFt�1

i
= �i a:s:; i = 3; 4;

such that �3 and �4 are non-stochastic, and Ft is the �- algebra generated by "s; s � t;
also, for some � > 0,

max
t
Ej"tj4+� <1: (3.6)

Assumption A.6. Uniformly in � 2 [0; �]nf!0g the function �(�) := P1
j=0 �je

ij� has the
property

j(d=d�)�(�)j = O(j�(�)jj�� !0j�1):

Assumption A.1 covers a wide range of short memory spectral densities h, including
both invertible ARMA ones and Bloom�eld (1973) ones, though it also permits the mod-
elling of processes with autocovariances that decay much more slowly than exponentially.
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We might call (3.1) a 'generalized' Gegenbauer model. We have already discussed As-
sumption A.2, but add that in view of (1.6) and (2.5), it is equivalent toZ �

��
logh(�; �)d� = 0; � 2 �� :

Assumption A.3 is an identi�ability condition; note that in view of the structure of a, it
will be implied if the set f� : h(�; �) 6= h(�; �0)g; � 6= �0 has positive Lebesgue measure
and the matrix

1

4�

Z �

��
r� log h(�; �0)r0

� log h(�; �0)d�

is positive de�nite. These conditions are satis�ed in the ARMA case h(�; �) = jc(ei�; �)=b(ei�; �)j2;
where b(z; �) and c(z; �) (see (2.4) ) have no zeroes in common. Note that Assumption
A.4 entails �0 > 0, which is essential for Assumption A.3 to hold, because !0 is not
identi�able when �0 = 0. In Assumption A.5, the normalization �0 = 1 is consistent
with Assumption A.2. Assumption A.5 is similar to ones used by Hannan (1973b) in
Whittle estimation for short memory series, and on the other hand by Robinson (1995b)
in narrow-band semiparametric Whittle estimation of long memory. However, Hannan's
assumptions only extend to second moments in order to establish the Central Limit Theo-
rem for estimators of �0 in case �0 = 0, so that f(�) = (�20=2�)h(�; �0), whereas Robinson
allowed � = 0 in (3.6). Assumption A.6 is like one used by Robinson (1995b).
We also establish our results over a slightly di�erent class than provided by Assumptions

A.1, A.4:

Assumption A.10. xt has spectral density given by (2.1) where

k(�; �; !) =

( j�� !j��g(�; �; !) if 0 � � � �;
j�+ !j��g(�; �; !) if �� < � < 0;

(3.7)

such that for �� < � � �, � 2 �, ! 2 �, g(�; �; !) is even in � and bounded and bounded
away from zero, the derivatives r�g(�; �; !), r�r0

�g(�; �; !) are continuous and bounded,
g(�; �; !) and r�g(�; �; !) satisfy uniform Lipschitz conditions in ! of order greater than
1=2, while, for 0 < j�j < �; � 2 �, ! 2 �, r�g(�; �; !) and r�r�g(�; �; !) are bounded.

We correspondingly replace Assumption A.4 by

Assumption A.40. �0 is an interior point of � such that 0 < �0 < 1, and !0 2 [0; �].

Note that for ! 6= 0; �, we can write the generalized Gegenbauer spectrum (2.5) in the
form (3.7) by taking

g(�; �; !) =
n j�� !j�
ja(ei�;!; �=2)j2

o
jh(�; �)j2; � 2 �;

with the corresponding expression for �� < � < 0, where the factor in braces tends to
(2 sin!)�� as � ! !, and is continuous but not di�erentiable at � = 0; � because of
the inevitable evenness and periodicity of spectral densities, explaining our avoidance of

6



di�erentiability in � at these frequencies. In other words, if g(�; �; !) were di�erentiable
at � = 0; �, then k(�; �; !) would not be, and the Gegenbauer model (2.3), for example,
would be excluded. On the other hand, Assumption A.10 also includes models for which
g(�; �; !) is everywhere smooth, such as when

k(�; �; !) = c(�; !)j�� !j��; � 2 �; (3.8)

with c(�; !) = expf(�=�)[!(log! � 1) + (� � !)(log(� � !) � 1)]g; so that Assumption
A.2 is satis�ed. Moreover, under Assumption A.10 we constrain � to (0; 1), not (0; 1=2) at
! = 0; �, so we avoid this type of discontinuity. Notice that from (1.7), ja(ei�;!; �=2)j�2 �
(2 sin!)��j��!j�� as �! ! for ! 6= 0; �, so that ja(ei�;!; �=2)j�2 and j��!j�� behave
similarly around the pole. The model (3.8) was mentioned by Hosoya (1997). One notable
feature of (3.8) is that besides the pole at � = !, intended by the modeller, it entails lack
of di�erentiability in � at � = 0; �, which, alongside the in�nite di�erentiability of k at all
� 6= 0; !; �; is probably not a feature that a modeller would intend. On the other hand,
models for short memory series with non-di�erentiable peaks or troughs at frequencies
0; �, were considered by Robinson (1978).

To discuss further the distinction between A.1, A.4 and A.10, A.40, note that we can
also write (2.5) as

k(�; �; !) =

( j�� !j��j�+ !j��g1(�; �; !) if 0 � � � �=2;
j�� !j��j�+ ! � 2�j��g2(�; �; !) if �=2 < � � �;

(3.9)

where

g1(�; �; !) =
��� (�� !)(�+ !)

4 sin(�+!
2
) sin(��!

2
)

����jh(�; �)j2;
g2(�; �; !) =

���(�� !)(�+ ! � 2�)

4 sin(�+!
2
) sin(��!

2
)

����jh(�; �)j2:
From (3.9) it follows that (3.7) holds with

g(�; �; !) =

( j�+ !j��g1(�; �; !) if 0 � � � �=2;
j�+ ! � 2�j��g2(�; �; !) if �=2 < � � �:

(3.10)

Although the functions g1; g2 satisfy Assumptions A.10 on g, (3.10) does not satisfy these
assumptions, since it is unbounded at � = ! for ! = 0; �. We shall use in the proofs
the fact that the Gegenbauer density k can be written in the form (3.9); the fact that
in this expression g1; g2 satisfy Assumption A.10 on g; and the fact that if ! 2 [�; � � �]
where � > 0, i.e. when ! is separated from 0; �, the function g, given by (3.10) satis�es
Assumption A.10 on g.
For brevity we say that Assumptions A are satis�ed if either A.1-A.6 hold or A.10, A.2,

A.3, A.40, A.5 and A.6 hold.

Theorem 3.1 Under Assumptions A, as n!1,

b� � �0 = OP (n
�1=2); b! � !0 = OP (n

�1):
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Proof. It su�ces to show that for all � > 0 we can choose K = K� such that

Pfnjjb� � �0jj2 � Kg+ Pfnjb! � !0j � 2�(K + 1)g � � (3.11)

for n su�ciently large, where jj:jj denotes Euclidean norm. De�ne q0 = q0n = argminQ j!0�
�qj so that jq0 � n!0

2�
j � 1

2
: If there are two such q, de�ne q0 as the smaller. Thus the left

side of (3.11) is bounded by twice

Pfun( ̂) � Kg; (3.12)

where  = (�0; !)0;  ̂ = (�̂0; !̂)0 and un( ) = njj���0jj2+j�qj with �q = q�q0: By a standard
type of argument for proving consistency of implicitly de�ned extremum estimates, (3.12)
is bounded by

P ( inf
 2	K

fS( )� S( 0)g � 0) = P ( inf
 2	K

fun( )�1(S( )� S( 0))g � 0); (3.13)

where S( ) = S(�; !) and 	K = f : � 2 �; q 2 Q; un( ) � Kg. Now (3.13) is bounded
by

P
�
sup
	K

jun( )�1Un( )j+ sup
	K

jun( )�1Vn( )j+K�1 � inf
	K

(un( )
�1Tn( )

�
; (3.14)

where

Tn( ) =
X
j(q;q0)

0nkj( 0)

kj( )
� 1

o
; Vn( ) = 1� 2�Iq0

�20kq0( )
; (3.15)

Un( ) =
X
j(q0)

0nkj( 0)

kj( )
� 1

on 2�Ij
�20kj( 0)

� 1
o
; (3.16)

and Ij = I(�j), kj( ) = k(�j; ),
P0
j(q) =

P~n
j=0;j 6=q,

P0
j(q;q0)

=
P~n
j=0;j 6=q;q0

, so that

S( 0)� S( ) =
�20
2�~n

n
�Un( ) + Vn( )� Tn( )� 1fq=q0g

o
:

It is shown in Lemmas 6.1 and 6.2 below that as n!1; K !1,

E sup
 2	K

jun( )�1Un( )j ! 0; E sup
 2	K

jun( )�1Vn( )j ! 0; (3.17)

whereas by Lemma 7.1 below, for some c > 0,

inf
 2	K

(un( )
�1Tn( )) � c (3.18)

where c does not depend on K; n: Thus, by Markov's inequality (3.14) is bounded by

E(sup	K
jun( )�1Un( )j+ sup	K

jun( )�1Vn( ))j+K�1)

inf	K
(un( )�1Tn( ))

! 0 (n!1; K !1):

2
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Theorem 3.2 Under Assumptions A, as n!1,

n1=2(b� � �0)
d) N(0;
�1):

Proof. From Theorem 3.1 and the fact that �0 is an interior point of �, for n su�ciently
large

0 = r�S( b ) = r�S(�0; !̂) +M(b� � �0); (3.19)

where the i-th row of the p� p matrixM is the i-th row of r�r0
�S(�; b!) evaluated at �(i),

where jj�(i) � �0jj � jjb� � �0jj: Since f"tg is ergodic, by a well - known argument (see e.g.
Theorem 3.5.8 of Stout (1974)), the moving average sequence fxtg (3.5) is also ergodic.
Therefore from Lemma 1 of Hannan (1973b) and Assumptions A, it follows that

M
P) ��1�20
: (3.20)

To complete the proof it remains to prove that

n1=2r�S(�0; b!) d) N(0; ��2�40
); (3.21)

which is shown in Lemma 5.2 below. 2

Theorem 3.2 indicates that the estimates of the short and long memory parameters �0
and �0 have the same limit distribution when !0 is unknown as when it is known. In
order to use the theorem in conducting inference on �0 we might consistently estimate 

by


̂ = n�1
X
j(q̂)

0r� log k(�j; �̂; !̂)r0
� log k(�j; �̂; !̂):

Given Theorem 3.1, it is straightforward to show that n1=2(b�2 � �20)
d) N(0; 2�40 + �4)

as n!1 (where �4 is the 4-th cumulant of "t), as in Whittle estimation of other models.

We now allow that Ext = � is unknown, � 2 R, estimating (�00; !0)
0 instead by 

�̂�

!̂�

!
= arg min

��Q
S�(�; �q) where S�(�; !) = ~n�1

~nX
j=1

I(�j)

k(�j; �; !)
:

Theorem 3.3 Under Assumptions A, with xt = �+
P1
j=0 �j"t�j replacing the represen-

tation for xt in A.5, the results of Theorems 3.1 and 3.2 remain valid for the modi�ed

estimate (�̂�0; !̂�)0.

Proof. As is well known, for the Fourier frequencies �j; j = 1; : : : ; ~n, we can write

I(�j) = (2�n)�1
���Pn

t=1(xt � Ext)e
it�j
���2 since I(�j) is invariant to location shift in xt for

such j. Hence
S�(�; !) = S(�; !)� ~n�1Rn(�; !); (3.22)
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where Rn(�; !) = k(0; �; !)�1I(0). Similarly to the proof of Lemma 6.2 it can be shown
that

E sup
 2	K

jun( )�1Rn(�; !)j � CK��

for some � > 0 where C > 0 does not depend on n; � and

E sup
 =2	K

jjn�1r�Rn(�; !)jj = o(n�1=2); E sup
 =2	K

jn�1Rn(�; !)j = o(n�1=2) (n!1):

These relations imply that the term ~n�1Rn(�; !) in (3.22) is negligible. Namely, S(�; !)
approximates S�(�; !) and the same method of proof as in Theorems 3.1 - 3.2 can be
applied. 2

Chung (1996a, 1996b) claims to have established the limit distribution of related es-
timates of both �0 and !0 in the context of the Gegenbauer model (2.3). Chung uses a
conditional sum of squares method suggested by Gray et. al. (1989) in the same setting,
and employed earlier by Box and Jenkins (1971) for ARMA models. This involves a time
domain approximation to the Gaussian log likelihood, in which the conditional mean and
variance of xt given xs; 1 � s < t are replaced respectively by the conditional expectation
given xs;�1 < s < t with xs then set to zero for s � 0, and the innovations variance.
Our frequency domain approximation to the Gaussian log likelihood is proposed in part
for computational reasons, because the functional form of the spectral density is typically
of simple form and immediately identi�able, as in the Gegenbauer case, whereas time do-
main features such as AR coe�cients are relatively cumbersome, while our approach can
also make direct use of the fast Fourier transform. Though the limit distribution Chung
states for his estimate of �0 is identical to that of ours, we are unable to check various de-
tails of his proofs of limit theory for estimates of �0 or !0. Perhaps, most notably, Chung
claims that consistency of his estimates follows from the property that the expectation
of his log likelihood approximation has zero derivative at the true parameter point. This
property is insu�cient, however, especially in the context of implicitly de�ned extremum
estimates, where an initial consistency proof is an essential �rst step to deriving limit
distribution theory, and indeed it is the proof of consistency that is the most challenging
problem in the present situation due to the di�erent rates of convergence of the estimates
of �0 and !0, as we believe the proof of our Theorem 3.1 illustrates.

In the semiparametric context (1.4) there are known partial answers. Yajima (1996), in
Gaussian case, and Hidalgo (1999), in the linear process case, have proposed estimators
for !0 that are n�-consistent for any � < 1. Though Yajima (1996) did not obtain the
asymptotic distribution, Hidalgo (1999) established asymptotic normality and suggested
an estimator for �0 having the same rate of convergence and limiting distribution as in
case of known !0.

Theorem 3.1 establishes n-consistency of !̂. We are unable to derive its limit distribu-
tion. In fact we believe that none exists, due to the fact that !̂ minimizes S(�; !) not over
the interval [0; �] but over the grid Q, with mesh 2�=n. If !0 6= 0, the Fourier frequency
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�q0, closest to !0, satis�es j�q0�!0j � 2�=n but the limit nj�q0 �!0j (n!1) does not
exist. To explain the problem more precisely, note that

S(b�; �q̂)� S(�0; �q0) = (S(�0; �q̂)� S(�0; �q0)) + (1=2)(�̂ � �0)
0M(�̂ � �0): (3.23)

By Theorem 3.2 and (3.20), the limit ~n(�̂ � �0)
0M(�̂ � �0) ) (�20=2�)Z

0
Z as n ! 1
exists and does not depend on �q, !, where Z � N(0;
�1). Therefore, by (3.23), the limit
distribution of q̂ can be de�ned as arg minq limn!1 Vn(q) where Vn(q) = ~n(S(�0; �q) �
S(�0; �q0)): Write

Vn(q) = �X
j(q0)

0
k�1j ( 0)Ij +

X
j(q)

0
k�1j (�0; �q)Ij =

X
j(q0)

0
dn;jzn(j) + k�1q0 (�0; �q)Iq0

where dn;j = �20(k
�1
j (�0; �q)kj(�0; �q0) � 1); zn(j) = (�20kj(�0; �q0))

�1Ij: Note that for

�xed �nite j, as n!1, dn;j � ~dn;j = �20
�
j(j�q)=(j�q0)j�0�1

�
: If the limit zn(j)) z(j)

exists we would expect that Vn(q) � V (q) =
P1
j=0:j 6=q0

djz(j)+ k
�1
q0
(�0; �q)Iq0: However, in

case !0 6= 0, even the limit of Ezn(j) does not exist. Indeed,

Ezn(j) =
kj(�0; !0)

kj( 0)
(�20kj(�0; !0))

�1EIj:

By Robinson (1995a), (�20kj(�0; !0))
�1EIj has �nite limit as n!1 but

kj(�0; !0)=kj( 0) �
���(�j � !0)=(�j � �q0)

����0 = ���1 + (2�n(�q0 � !0))=(j � q0)
����0

does not converge since as n!1 the limit of n(�q0 � !0) does not exists.

To illustrate the �nite-sample performance of our procedure, a small Monte Carlo ex-
periment was carrried out by Dr Gilles Teyssi�ere on the basis of the simple Gegenbauer
model (1.5), with "t Gaussian, d = 0:4 and ! = 0:25; 0:5; 1:0; 2:0; 2:5; 3:0: 5; 000 replica-
tions of sample sizes n = 64 and 256 were generated using 3; 000 presample innovations
and truncating the MA expansion at 3; 000 terms. Monte Carlo bias and standard de-
viation (SD) of b! and bd = b�=2 are reported in Tables 1 and 2. The bias in b! seems
fairly uniform across !; whereas the bias of bd is noticeably greater near ! = �=2: Biases
signi�cantly decline as n increases, while in a more speci�c way the asymptotic theory,
which predicts that SD( bd) and SD(b!) should be respectively doubled and quadrupled
going from n = 256 to n = 64, is fairly well reected by comparison of the two tables.
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Table 1: n = 64 Table 2: n = 256

! BIAS(!̂) SD(!̂) BIAS(d̂) SD(d̂) ! BIAS(!̂) SD(!̂) BIAS(d̂) SD(d̂)

0.25 -.001 .085 -.013 .074 0.25 -.002 .019 -.006 .031

0.5 -.014 .081 -.042 .080 0.5 -.003 .020 -.002 .037

1.0 -.023 .110 -.075 .111 1.0 .001 .020 -.011 .049

1.5 -.015 .119 -.108 .138 1.5 -.002 .019 -.031 .059

2.0 .000 .107 -.085 .127 2.0 .000 .022 -.009 .055

2.5 .000 .089 -.050 .096 2.5 .002 .018 -.016 .039
3.0 -.026 .078 -.054 .079 3.0 -.004 .019 -.011 .031

4 Central Limit Theorem for weighted sums of pe-

riodograms

Throughout this section we assume that fxtg satis�es Assumptions A, so it has spectral
density

f (�) =
�20
2�
j�� !0j�� g(�); 0 � � � � (4.1)

where �20 = E"20 and g(�) is bounded away from in�nity and zero and has bounded
derivative (@=@�)g(�) uniformly over 0 < � < �. However, whereas Assumptions A
entail � 2 (0; 1), we allow in the current section also for � = 0. Note that Assumption
A.2 does not need to be imposed, however.
We prove now a Central Limit Theorem for the sums

Sn :=
X
j(q0)

0
bj

 
Ij

f(�j)
� 1

!
(4.2)

with real weights bj � bn;j, j = 0; : : : ; ~n, the conditions on which are formulated in terms
of

n1(b) := n�1=2
X
j(q0)

0
bj; n2(b) :=

X
j(q0)

0
b2j

and

n3(b; ) :=
~nX

j=�1:j 6=q0;q0�1

jbj � bj+1jjj � q0j ( > 0);

setting b�1 = b~n+1 = 0.

Lemma 4.1 Suppose that as n!1
n1(b)! v1 <1; n2(b)! v2 <1 and n3(b; )! 0 (4.3)

for some  > 1=3. Then Sn, given by (4.2), satis�es

Sn
d) N(0; �2); (4.4)

where �2 = v2 + v21�
�4
0 �4:
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The proof of Lemma 4.1 is technical and is reserved for the next section.

We consider now a special case of the weights bj.

Theorem 4.2 Let

bj = n�1=2hn(�j); j = 0; : : : ; ~n

where hn(�); � 2 [0; �], n � 1 are real valued functions. Suppose there exist C > 0; K > 0,
0 � �0 < 1=2 and 0 � 0 < 3=2, independent of n, such that for all su�ciently large n

c1) jhn(�)j � Cj�� !0j��0

uniformly in j�� !0j � �=n,

c2) j(d=d�)hn(�)j � Cj�� !0j�0 uniformly in j�� !0j � K=n, 0 < � < �,

and also

c3) limn!1 hn(�) = h(�) exists for � 6= !0.

Then (4.4) holds with

v1 = (2�)�1
Z �

0
h(�)d�; v2 = (2�)�1

Z �

0
h2(�)d�:

Proof. By Lemma 4.1, it su�ces to show that as n!1 the weights bj = n�1=2hn(�j)
satisfy (4.3). We prove �rst that n3(b; ) ! 0 for any  2 (1=3; 1=2). By c1), with
b�1 = b~n+1 = 0,

n3(b; ) = n�1=2
~n�1X

j=0:jj�q0j�2K

jhn(�j)� hn(�j+1)jjj � q0j + o(1)

� Cn�3=2
nX

j=0:jj�q0j�2K

(n=jj � q0j)0jj � q0j + o(1) = o(1)

since by c2),

jhn(�j)� hn(�j+1)j � Cn�1 sup
�2[�j ;�j+1]

jh0n(�)j � Cn�1j�j � �q0j�
0

: (4.5)

Convergence of the sums n1(b) = n�1
P0
j(q0)

hn(�j) ! v1; n2(b) = n�1
P0
j(q0)

h2n(�j) ! v2
follows by Lemma 5.3 below, because c1) - c3) imply h2n(�) � Cj�� !0j�2�0

uniformly in
j�� !0j � �=n and j(d=d�)h2n(�)j � Cj�� !0j��0�0 uniformly in j�� !0j � K=n. 2

We provide now an auxiliary lemma on the approximation of normalised periodograms.
Denote Ij;" = (2�n)�1jPn

t=1 "te
it�j j2 and write

�
(1)
j;n = f�1(�j)Ij � 1; �

(2)
j;n = 2�Ij;"=�

2
0 � 1; �

(3)
j;n = f�1(�j)Ij � 2�Ij;"=�

2
0 : (4.6)

De�ne for i = 1; 2; 3,

Z
(i)
j;n =

8<:
Pj
`=q0+1

�
(i)
`;n if j = q0 + 1; : : : ; ~n;Pq0�1

`=j+1 �
(i)
`;n if j = �1; : : : ; q0 � 2;

(4.7)

recalling that �q0 is the closest Fourier frequency to !0.
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Lemma 4.3 As n!1, for j = 1; : : : ; ~n; j 6= q0,

E(Z
(i)
j;n)

2 �
(
Cjj � q0j if i = 1; 2;
Cjj � q0j2p if i = 3;

(4.8)

for any p > 1=3 where C does not depend on n and j.

Proof. Since �
(1)
j;n = �

(2)
j;n + �

(3)
j;n, then relation (4.8) for i = 1 follows if it is valid for

i = 2; 3; for any p > 1=3: The proof of (4.8) in case i = 2 is the same as that of (4.9) in
Robinson (1995b). Relation (4.8) in case i = 3 follows since

E(Z
(3)
j;n)

2 � Cjj � q0j2=3(log jj � q0j)4=3 (4.9)

which can be obtained similarly to relation (4.8) in Robinson (1995b), applying Lemma
4.1 and

1

2�n

Z �

��

��� �(�)
�(�j)

� 1
���2��� nX

l=1

eil(���j)
���2d� � Cjj � q0j�1 (4.10)

which holds uniformly over 0 � j � ~n; j 6= q0. Estimate (4.10) generalizes Robinson's
(1995b) Lemma 3 for all !0 2 [0; �] and extends it over all Fourier frequences �j, j 6= q0.
The proof of (4.10) requires Assumption A.6. We omit the proof since, in general, it
repeats the proof of Robinson's (1995b) Lemma 3. (Note that relation (4.8) in Robinson
(1995b) where the peridogram Ij is normalized by the approximate spectral density Cj�j�
�q0j��0 , C > 0, due to the approximation, contains the additional term jj � q0j�+1n��.)
2

We now consider jointly covariance stationary processes fytg and fztg, individually
satisfying Assumptions A, (or more precisely, Assumptions A.5 and A.6) with the same
innovations sequence f"tg, but with possibly di�erent memory parameters, denoted �y; �z.
In fact we allow also for �y = 0 and/or �z = 0, in order to apply Lemma 4.4 in the proof
of Lemma 4.3 with (yt; zt) representing (xt; xt), (xt; "t) and ("t; "t). Denote by fy and fz
the spectral densities of yt; zt, respectively, and by Ryz(�) their coherency. Introduce

vy(�) = (
nX
t=1

yte
it�)=ffy(�)2�ng1=2; vz(�) = (

nX
t=1

zte
it�)=ffz(�)2�ng1=2:

Lemma 4.4 Let the sequences fytg; fztg satisfy Assumptions A with 0 � �y; �z < 1.
Then, as n ! 1, the following relations hold uniformly over q0 + 1 � k; j � ~n and

0 � k; j � q0 � 1 such that jq0 � jj > jk � q0j:
E[vy(�j)vz(�j)] = Ryz(�j) +O(jj � q0j�1 log jj � q0j);

E[vy(�j)vz(�j)] = O(jj � q0j�1 log jj � q0j);
max

�
jE[vy(�j)vz(�k)]j; jE[vy(�j)vz(�k)]j

�
= O(jk � q0j�1 log jj � q0j):
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Proof. We can write yt =
P1
j=0 �yj"t�j, zt =

P1
j=0 �zj"t�j, where f�yjg; f�zjg satisfy the

conditions on f�jg implied by Assumptions A. Further, fy and fz have representations of
the form (4.1), with � replaced by �y 2 [0; 1) and �z 2 [0; 1), respectively, while the cross-
spectral density of (yt; zt) is of the form (�20=2�)�y(�)�z(�), where �y(�) =

P1
j=0 �yje

ij�;

�z(�) =
P1
j=0 �zje

ij�, and thus has derivative in � that is O(j� � !0j�1�(�y+�z)=2) for
� 2 [0; �]nf!0g. It follows that Assumptions A.1- A.2 of Robinson (1995a) are satis�ed,
and the proof follows as in Robinson's (1995a) Theorem 2. 2

5 Proof of Lemma 4.1

Write, in the notation of (4.6),

Sn �
X
j(q0)

0
bj�

(1)
j;n =

X
j(q0)

0
bj�

(2)
j;n +

X
j(q0)

0
bj�

(3)
j;n =:Mn +Rn:

(4.4) follows if we show that as n!1
Mn

d) N(0; �2) (5.1)

and

Rn
P) 0: (5.2)

We begin with the proof of (5.2). By summation by parts,

EjRnj = E
��� ~nX
j=�1:j 6=q0;q0�1

(bj � bj+1)Z
(3)
j;n

���
�

~nX
j=�1:j 6=q0;q0�1

jbj � bj+1j(E(Z(3)
j;n)

2)1=2 � Cn3(b; ):

by (4.8) where  > 1=3 is the same as in (4.3). So (5.2) follows by (4.3).
It remains to show (5.1). Since we employ a similar approach to that of Theorem 2 of

Robinson (1995b) and Sn is invariant to �20, we set �
2
0 = 1 in the proof as he did. Write

Mn as

Mn =
~nX
j=0

bj (2�Ij;" � 1) =
nX
t=1

zt;n (5.3)

where we can set bq0 = 0 because Mn excludes j = q0, and

zt;n = 2"t
Pt�1
s=1 ct�s"s + c0("

2
t � 1); cs = n�1

P~n
j=0 bj cos (s�j) :

zt;n is a triangular martingale di�erence array since E[zt;njFt�1] = 0 by A.5. Thus, as in
the proof of Theorem 2 of Robinson (1995b), (5.1) follows if

Vn =
nX
t=1

E
�
z2t;njFt�1

�
P! �2 (n!1) (5.4)
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and
nX
t=1

E
�
z2t;n1fjzt;nj>�g

�
P! 0 for all � > 0: (5.5)

To derive (5.4) it su�ces to show that

EVn = n2(b)(1 + n�2) + �4n
2
1(b) (5.6)

and
V ar(Vn)! 0 (n!1) (5.7)

since together with (4.3) they imply (5.4). By de�nition of zt;n,

z2t;n = 4"2t
X

1�r;s<t

ct�sct�r"s"r + c20("
2
t � 1)2 + 4"t("

2
t � 1)c0

X
1�s<t

ct�s"s:

By Assumption A.5, E["2t jFt�1] = 1; E[("2t � 1)2jFt�1] = �4 � 1, E["t("
2
t � 1)jFt�1] = �3.

Therefore

Vn = 4
nX
t=1

X
1�r;s<t

ct�sct�r"s"r + (�4 � 1)c20n+ 4�3c0
nX
t=1

X
1�s<t

ct�s"s;

and thus

EVn = 4
nX
t=1

t�1X
s=1

c2t�s + (�4 � 1)c20n: (5.8)

Since by de�nition
nc20 = n21(b); (5.9)

(5.6) follows from (5.8) if

in := 4
nX
t=2

t�1X
s=1

c2t�s = n2(b)(1 + n�2)� 2n21(b) (5.10)

which can be obtained using similar algebra as in Robinson (1995b). Indeed,

in = 4
n�1X
t=1

n�tX
s=1

c2s = 4n�2
~nX

j;k=0

bjbk
n�1X
t=1

n�tX
s=1

[cos(s�j) cos(s�k)]

= 4n�2
~nX
j=0

b2j

n�1X
t=1

n�tX
s=1

cos2(s�j)+2n�2
~nX

j;k=0:j 6=k

bjbk
n�1X
t=1

n�tX
s=1

[cos(s(�j+�k))+cos(s(�j��k))];

and applying the equalities

n�1X
t=1

n�tX
s=1

cos2(s�j) = (n� 1)2=4;
n�1X
t=1

n�tX
s=1

[cos(s(�j + �k)) + cos(s(�j � �k))] = �n
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we obtain

in = n�2(n� 1)2
~nX
j=0

bj
2 � 2n�1

~nX
j;k=0:j 6=k

bjbk

=
~nX
j=0

bj
2(1 + n�2 � 2n�1)� 2n�1[(

~nX
j=0

bj)
2 �

~nX
j=0

bj
2] = n2(b)(1 + n�2)� 2n21(b);

establishing (5.6).
Next we show (5.7). We have

Vn � EVn = 4
nX
t=1

X
1�r;s<t

ct�sct�r("s"r � E["s"r]) + 4�3c0
nX
t=1

X
1�s<t

ct�s"s: (5.11)

By (5.11) and elementary inequalities,

V ar(Vn) � 32
�
E(

nX
t=1

X
1�r;s<t

ct�sct�r("s"r � E["s"r]))
2 + E(�23c

2
0(

nX
t=1

X
1�s<t

"sct�s)
2)
�

� C
� nX
t1;t2=1

hmin(t1;t2)X
s=1

jct1�sct2�sj
i2
+ c20

nX
t1;t2=1

hmin(t1 ;t2)X
s=1

jct1�sct2�sj
i�
:

For 1 � s � n� 1, jcsj = o(1)n�pmin(s; n� s)p�1 by Lemma 5.1 below and (4.3) for any
p 2 (1=3;min(; 1=2)). Thus,

min(t1;t2)X
s=1

jct1�sct2�sj = o(n�2p)
min(t1;t2)X

s=1

n
min(jt1 � sj+; jt1 � s� nj+)p�1

� min(jt2 � sj+; jt2 � s� nj+)p�1
o
= o(n�2p)min(jt1 � t2j+; jt1 � t2 � nj+)2p�1

uniformly in t1; t2, where jtj+ = max(jtj; 1). By (5.9) and (4.3), c20 = O(n�1). Hence,

V ar(Vn) = o(1)
�
n�4p

nX
t1;t2=1

jt1 � t2j2(2p�1)+ + n�2p�1
nX

t1;t2=1

jt1 � t2j2p�1+

�

= o(1)
�
n�4p

nX
t1=1

nX
u=�n

juj4p�2+ + n�2p�1
nX

t1=1

nX
u=�n

juj2p�1+

�
= o(1)

since p > 1=3: Thus, (5.7) is established, to complete the proof of (5.4).
To complete the proof of Lemma 4.1 we need to examine (5.5). Write

zt;n = 2
n
"t

X
1�s<t

"sct�s
o
+
n
c0("

2
t � 1)

o
=: Xt + Yt:

Then
E[z2t;n1fjzt;nj��g] � E[(jXtj+ jYtj)21fjXt+Ytj��g]

� E[(2jXtj)21fjXtj�jYtj;jXtj��=2g] + E[(2jYtj)21fjYtj�jXtj;jYtj��=2g]: (5.12)
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The �rst term in (5.12) is bounded by

4E[jXtj21fjXtj��=2g] � 4(�=2)�2EjXtj4 = CE("t)
4E(

X
1�s<t

"sct�s)
4

� C(
t�1X
s=1

c2s)
2 � Cn�4p(

1X
s=1

s2p�2)2 � Cn�4p

applying (5.13) with p 2 (1=3;min(; 1=2)). The second term of (5.12) is bounded by

4E[jYtj21fjYtj��=2g] � 4(�=2)��=2EjYtj2+�=2 � CEjc0("2t � 1)j2+�=2
� Cjc0j2+�=2Ej"tj4+� = o(n�1)

since jc0j � Cn�1=2 and by Assumption A.5, Ej"tj4+� <1 for some � > 0. Hence

nX
t=1

E[z2t;n1fjzt;nj��g] = [O(n�4p) + o(n�1)]
nX
t=1

1 = o(1) (n!1):

This completes the proof of (5.5) and Lemma 4.1. 2

Lemma 5.1 Under the assumptions of Lemma 4.1, for any 0 < p < 1,

jcsj � Cn�pmin(s; n� s)p�1n3(b; p) (5.13)

uniformly in 1 � s � n� 1.

Proof. Recall that b~n+1 = b�1 = 0. Summation by parts implies

cs = n�1
n ~nX
j=q0+1

(bj � bj+1)
jX

l=q0+1

cos(l�s) +
q0�1X
j=0

(bj � bj�1)
q0�1X
l=j

cos(l�s)
o
:

Note that jPm
l=k+1 cos(l�s)j � jm � kjpjPm

l=k+1 cos(l�s)j1�p � Cjm � kjp(n=min(s; n �
s))1�p which holds because jPm

l=k+1 cos(l�s)j � Cj sin(�s=2)j�1 � C(n=min(s; n � s))
uniformly in 0 � k < m and 1 � s � n� 1. Thus

jcsj � (n=min(s; n� s))1�pn�1
h ~nX
j=q0+1

jbj � bj+1jjj � q0jp +
q0�1X
j=0

jbj � bj�1jjj � q0jp
i

� Cn�pmin(s; n� s)p�1n3(b; p):

2

Lemma 5.2 Under the conditions of Theorem 3.2 the convergence (3.21) holds.
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Proof. By Theorem 3.1, it su�ces to consider b! = 2�q̂=n such that jq̂� q0j � K where
K > 0 is large enough. The `-th element of n1=2r�S(�0; �q) equals to (n=~n)W

(`)
n;q, where

W (`)
n;q = n�1=2

P~n
j=0(@=@�`)k

�1
j (�0; �q)Ij;

and �` is the `-th element of �. Setting h(`)n;q(�) = (�20=2�)k(�; 0)(@=@�`)k
�1(�; �0; �q),

write W (`)
n;q = v(`)n;q + e(`)n;q + r(`)n;q where

v(`)n;q = n�1=2
P0
j(q0)

h(`)n;q(�j)
�

2�Ij
�2
0
kj( 0)

� 1
�
; e(`)n;q = n�1=2

P0
j(q0)

h(`)n;q(�j);

r(`)n;q = n�1=2(@=@�`)k
�1
q0
(�0; �q)Iq0: To complete the proof it su�ces to show: 1) that as

n!1, �
v(`)n;q0

�
`=1;:::;p

d)
�
Z(`)

�
`=1;:::;p

; (5.14)

where (Z(1); : : : ; Z(p))0 is a Gaussian vector with zero mean and covariance E(Z(`)Z(`0)) =
(2�)�2�40w``0; and 2) that for k = �K; : : : ; K; ` = 1; : : : ; p,

v
(`)
n;q0+k

� v(`)n;q0
P) 0; (5.15)

e
(`)
n;q0+k

! 0; Ejr(`)n;q0+kj ! 0: (5.16)

(5.14) - (5.16) imply (3.21). Also, as a by - product, (5.14) - (5.15) imply that the
distribution of �̂ in Theorem 3.2 is the same whether !0 is known or estimated.
By the Cramer-Wold device, the convergence (5.14) holds if for any sequence of real

numbers a1; : : : ; ap, p � 1, as n!1,

Qn :=
pX
`=1

a`v
(`)
n;q0

d) Q :=
pX
`=1

a`Z
(`): (5.17)

Write

Qn = n�1=2
P
j(q0)

0hn(�j)(2�(�
2
0kj( 0))

�1Ij � 1); hn(�) =
Pp
`=1 a`h

(`)
n;q0(�):

To derive (5.17) we apply Theorem 4.2. Note that �q0 ! !0 as n!1, so that

hn(�)! h(�) =
Pp
`=1 a`h

(`)(�); h(`)(�) = �(�20=2�)(@=@�`) log k(�; �0; !0):
By Assumption A.2,

R �
0 h

(`)(�)d� = 0;
R �
0 h(�)d� = 0: In addition, from Assumption

A.10 or A.1 it is easy to obtain that there exists " 2 (0; 1=2) such that

jh(`)n;q0(�)j � Cj�� !0j�"; j(d=d�)h(`)n;q0(�)j � Cj�� !0j�1�" (5.18)

uniformly in j� � !0j � 2K=n. Therefore, the functions hn; n � 1 satisfy conditions c1)

- c3) of Theorem 4.2 which yields Qn
d) Q = N(0; s2); s2 = (2�)�1

R �
0 h

2(�)d�: Hence
(5.14) holds.
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To show (5.15), write

v
(`)
n;q0+k

� v(`)n;q0 = n�1=2
P0
j(q0)

~hn(�j)((2�=�
2
0)kj( 0)

�1Ij � 1)

where for � 6= !0, ~hn(�) = h
(`)
n;q0+k

(�) � h(`)n;q0(�) ! 0 as n ! 1. Then the convergence
(5.15) follows by the same argument as in the proof of (5.14).
Finally we show (5.16). By (5.18) and Lemma 5.3 below,

e(`)n;q0+k = (n1=2=2�)
R �
0 1fj��!0j�2K=ngh

(`)
n;q0+k

(�)d�+ o(1):

Furthermore, since
R �
0 h

(`)(�)d� = 0,

je(`)n;q0+kj � Cn1=2
Z �

0
1fj��!0j�2K=ngjh(`)n;q0+k(�)� h(`)(�)jd�

+ Cn1=2
Z �

0
1fj��!0j<2K=ngjh(`)(�)jd�+ o(1):

It is easy to check that under Assumptions A (i.e. under Assumptions A.1 or A.10),
uniformly in j�� !0j � 2K=n,

jh(`)n;q0+k(�)� h(`)(�)j =
�20
2�

��� k(�; �0; �q0)
k(�; �0; �q0+k)

@

@�`
log k(�; �0; �q0+k)�

@

@�`
log k(�; �0; !0)

���
� C

�
�k(�� �q0)

�1 + ��k
�
logn � C(n�1(�� �q0)

�1 + n��) logn

where � 2 (1=2; 1) is the Lipschitz parameter in Assumption A.10 (or A.1), and jh(`)(�)j =
j(@=@�`) log k(�; �0; �q0+k)j � Cj�� �q0j�" with 0 < " < 1=2. Thus, as n!1,

je(`)n;q0+kj � Cn1=2
�
logn

Z �

0:j��!0j�2K=n
(n�1(�� �q0)

�1 + n��)d�

+ Cn1=2
Z �

0:j��!0j<2K=n
j�� �q0j�"d�

�
+ o(1) = o(1):

It remains to estimate Ejr(`)n;q0+kj: Since j(@=@�`)k�1(�q0; �0; �q0+k)j � Cj�kj�0j log�kj �
Cn��0 logn; then Ejr(`)n;q0+kj � Cn�1=2��0 lognEIq0 ! 0 follows by standard arguments.
2

The following lemma is used in the proofs of Lemma 5.2 and Lemma 7.1, Section 7.

Lemma 5.3 Suppose the functions  n(�); n � 1, satisfy Assumptions c1) - c3) of The-
orem 4.2 on hn(�) with 0 � �0 < 1 and 0 � 0 < 2; 0 6= 1. Then, for large enough

K > 0,

n�1
X
j(q0)

0
 n(�j) = (2�)�1

Z �

0
1fj��!0j�K=ng n(�)d�+O(n�1+max(�0;0�1)) (5.19)

= (2�)�1
Z �

0
 (�)d�+ o(1):
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Proof. Denote by Jn the left hand side of (5.19). By c1)

Jn = n�1
~n�1X

j=0:jj�q0j�K

 n(�j) +O(n�
0�1)

= n�1
~n�1X

j=0:jj�q0j�K

Z j+1

j
( n(2�[�]=n)�  n(2��=n))d�

+n�1
Z ~n

0
1fj��q0j�Kg n(2��=n)d�+O(n�

0�1) =: in;1 + in;2: (5.20)

By (4.5)

in;1 = O
�
n�2

~nX
j=0:jj�q0j�K

(jj � q0j=n)�0
�
= O(n�1+max(0;0�1)); (5.21)

whereas by c1), c3) and Lebesgue's dominated convergence theorem

in;2 = (2�)�1
Z �

0:j��!0j�2�K=n
 n(�)d� = (2�)�1

Z �

0
 (�)d�+ o(1): (5.22)

(5.20) - (5.22) imply (5.19). 2

The following Lemma 5.4 is used in the proof of Lemma 6.1.

Lemma 5.4 Under the assumptions of Lemma 4.3 and with Z
(2)
j;n de�ned by (4.7),

jZ(2)
j;n j � Cjj � q0j1=2Zn + ~Z(2)

j;n (5.23)

where Zn = n�1=2jPn
t=1("

2
t � �20)j and ~Z

(2)
j;n = 2��20 jP1�s<t�n ct�s"t"sj; which satisfy

EZ2
n � C; E( ~Z

(2)
j;n)

4 � Cjj � q0j2; (5.24)

uniformly in j = 0; : : : ; ~n (j 6= q0):

Proof. Set bl = 1fq0+1�l�jg if j > q0; bl = 1fj+1�l�q0�1g if j < q0. By (4.7), similarly to
(5.3)

Z
(2)
j;n =

~nX
l=0

bl�
(2)
l;n = �20

nX
t=1

zt;n where zt;n =
2"t
�20

t�1X
s=1

ct�s"s + c0(
"2t
�20
� 1):

Since c0 = n�1=2n1(b) = n�1
P0
j(q0)bj = n�1jj � q0j � n�1=2jj � q0j1=2; (5.23) follows.

Clearly by A.5, EZ2
n � C. On the other hand

E( ~Z
(2)
j;n)

4 = 16
4Y
i=1

X
1�si<ti�n

cti�siE["t1"s1 : : : "t4"s4]:

Since the number of equal indices in the set ft1; s1; : : : ; t4; s4g does not exceed 4, by
Assumption A.5 it follows jE["t1"s1 : : : "t4"s4]j � C. Moreover, by A.5, the inequality
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E["t1"s1 : : : "t4"s4] 6= 0 can hold only if any ti; si are repeated in ft1; s1; : : : ; t4; s4g at least
twice. Hence, applying the Cauchy inequality we obtain that

E( ~Z
(2)
j;n)

4 � C
4Y
i=1

(
X

1�si<ti�n

c2ti�si)
1=2 = C(

X
1�s<t�n

c2t�s)
2

� C(n2(b) + n1(b)
2)2 � Cn2(b)

2 = 4jj � q0j2;

by (5.10), which proves (5.24). 2

6 Proof of (3.17)

Lemma 6.1 Under the assumptions of Theorem 3.1, there exists � > 0 such that as

n!1,

E sup
 2	K

un( )
�1jUn( )j � CK��

where C <1 does not depend on n and K.

Proof. From (3.16) we may write Un( ) =
P0
j(q0)

bj( )�
(1)
j;n where

bj( ) =
kj( 0)

kj( )
� 1; �

(1)
j;n =

2�Ij
�20kj( 0)

� 1: (6.1)

By summation by parts

jUn( )j �
~nX

j=�1:j 6=q0;q0�1

jbj( )� bj+1( )jjZ(1)
j;n j

where b�1( ) = b~n+1( ) = 0 and Z
(1)
j;n is de�ned by (4.7). Then jUn( )j � U (1)

n ( ) +

U (2)
n ( ), where

U (1)
n ( ) =

~n�1X
j=0:j 6=q0;q0�1

jbj( )� bj+1( )jjZ(1)
j;nj;

U (2)
n ( ) = 1fq0<~ngjb~n( )Z(1)

~n;nj+ 1fq0>0gjb0( )Z(1)
�1;nj:

It su�ces to show that

E sup
 2	K

un( )
�1jU (i)

n ( )j � CK��; i = 1; 2: (6.2)

We begin with i = 2. We have

E
�
sup
 2	K

un( )
�1U (2)

n ( )
�

� sup
 2	K

un( )
�1
h
1fq0<~ngjb~n( )j+ 1fq0>~ngjb0( )j

i�
EjZ(1)

~n;nj+ EjZ(1)
�1;nj

�
� CK�1=2
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since, by (6.18) below, 1fq0<~ngjb~n( )j+1fq0>0gjb0( )j � C(jj���0jj+j��qj1=2) � Cn�1=2un( )
1=2

and, by Lemma 4.3, EjZ(1)
~n;nj+ EjZ(1)

�1;nj � Cn1=2:
Next we show (6.2) for i = 1. Set A = f : jj� � �0jj � (logn)�1g and B = f :

jj���0jj > (logn)�1g. Since by Lemma 6.3 below, jbj( )�bj+1( )j � C(�j;1( )+�j;2( )),
where

�j;1( ) =
� jj� � �0jj+ j��qj1=2

jj � q0j+ + j�qj1�"+ jj � q0j�(2�")+

�
1A + n1�"jj � q0j�(2�")+ 1B; (6.3)

�j;2( ) = j�qj+jj � q0j�1+ jj � qj�1+ 1A + n1�"jj � q0j�(1�")+ jj � qj�1+ 1B (6.4)

for j = 0; : : : ; ~n � 1 (j 6= q0; q0 � 1), where 0 < " < 1=2 is an arbitrarily small positive
number, it follows that

E
�
sup
 2	K

un( )
�1jU (1)

n ( )j
�
� C

�
E

~n�1X
j=0:j 6=q0;q0�1

sup
 2	K

un( )
�1�j;1( )jZ(1)

j;n j

+E
~n�1X

j=0:j 6=q0;q0�1

sup
k=0;:::;~n

sup
�: =(�;�k)2	K

un( )
�1�j;2( )jZ(1)

j;n j
�
=: C(An +Rn): (6.5)

Thus the proof is completed if we show that both An and Rn in (6.5) are bounded by

CK��. First, since by Lemma 4.3, EjZ(1)
j;n j � Cjj � q0j1=2, then

An � C
~n�1X

j=0:j 6=q0;q0�1

��j jj � q0j1=2; (6.6)

where ��j = sup : =(�;�q)2	K
fu�1n ( )�j;1( )g. To estimate ��j , note that for  2 	K,

un( ) � njj� � �0jj2 + j�qj � max(K; njj� � �0jj2; j�qj): Then
un( )

�1(jj� � �0jj+ j��qj1=2+ ) � CK�1=2n�1=2; (6.7)

and
un( )

�1j�qj1�" � K�" if  2 A, un( )
�1 � n�1 log2 n if  2 B. (6.8)

Using (6.7)-(6.8) in the de�nition (6.3) of �j;1( ) we obtain that

��j � C(K�1=2n�1=2jj � q0j�1 +K�"jj � q0j�2+")
so that by (6.6)

An �
�
K�1=2n�1=2

~n�1X
j=0:j 6=q0

jj � q0j�1=2 +K�"
~n�1X

j=0:j 6=q0

jj � q0j�3=2+"
�
� CK�":

It remains to examine Rn. Denoting

~q = arg maxq=0;:::;~n

~n�1X
j=0:j 6=q0;q0�1

��j;qjZ(1)
j;n j; ��j;q = sup

�: =(�;�q)2	K

u�1n ( )�j;2( )
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we observe that

Rn � E
h~n�1X
q=0

1f~q=qg
~n�1X

j=0:j 6=q0;q0�1

��j;qjZ(1)
j;n j
i
:

Since (4.6) - (4.7) and (5.23) imply jZ(1)
j;n j � jZ(2)

j;n j+ jZ(3)
j;n j � Cjj � q0j1=2Zn+ ~Z

(2)
j;n + jZ(3)

j;n j
we obtain

Rn � C
�
ES 0n;1 + E

~n�1X
q=0

[1f~q=qgSn;2(q)] + E
~n�1X
q=0

[1f~q=qgSn;3(q)]
�
; (6.9)

where

S 0n;1 = Zn sup
q=0;:::;~n

B(q); B(q) =
~n�1X

j=0:j 6=q0;q0�1

��j;qjj � q0j1=2; (6.10)

Sn;2(q) =
~n�1X

j=0:j 6=q0;q0�1

��j;qj ~Z(2)
j;n j; Sn;3(q) =

~n�1X
j=0:j 6=q0;q0�1

��j;qjZ(3)
j;n j:

It remains to show that the terms on the right hand side of (6.9) are bounded by CK��.
We �rst bound

ES 0n;1 � Cmax
q
B(q)EjZnj � Cmax

q
B(q):

We estimate now B(q). Using (6.7) - (6.8) in (6.4), we obtain

u�1n ( )�j;2( ) � C(
K�"j�qj"+

jj � q0j+jj � qj+ +
n�"(logn)2

jj � q0j1�"+ jj � qj+
) =: �j(q): (6.11)

Thus ��j;q � �j(q) and

B(q) � C
~n�1X

j=0:j 6=q0;q0�1

�j(q)jj � q0j1=2

� CfK�"j�qj"
~nX
j=0

jj � q0j�1=2+ jj � qj�1+ + n�"(logn)2
~nX
j=0

jj � q0j�1=2+"+ jj � qj�1+ g

� CfK�"j�qj�1=2+2"+ + n�"(logn)2j�qj�1=2+2"+ g � CK�"j�qj�1=2+2"+ (6.12)

for su�ciently large n. Therefore

ES 0n;1 � CK�": (6.13)

To bound the 2nd and 3nd terms in (6.9) set pq = Prob (~q = q). By H�older's inequality
it follows that

~nX
q=0

�
E[1f~q=qgSn;2(q)] + E[1f~q=qgSn;3(q)]

�
�

~nX
q=0

p3=4q

�
(ESn;2(q)

4)1=4 + p1=2q (ESn;3(q)
2)1=2

�

� (
~nX
q=0

pq)
3=4
� ~nX
q=0

ESn;2(q)
4
�1=4

+ (
~nX
q=0

pq)
1=2
� ~nX
q=0

ESn;3(q)
2
�1=2

=
� ~nX
q=0

ESn;2(q)
4
�1=4

+
� ~nX
q=0

ESn;3(q)
2
�1=2
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since
P~n
q=0 pq = 1. To complete the proof it su�ces to show that for some � > 0,

~nX
q=0

ESn;2(q)
4 � CK��;

~nX
q=0

ESn;3(q)
2 � CK��: (6.14)

By Lemma 5.4, E( ~Z
(2)
j;n)

4 � Cjj � q0j2: Therefore

Ej ~Z(2)
j1;n : : :

~Z
(2)
j4;nj � (E( ~Z

(2)
j1;n)

4 : : : E( ~Z
(2)
j4;n)

4)1=4 � C(
4Y
i=1

jji � q0j2)1=4

and

E(Sn;2(q))
4 =

~n�1X
j1;:::;j4=0:jl 6=q0;q0�1

��j1;q : : : �
�
j4;q
Ej ~Z(2)

j1;n : : :
~Z
(2)
j4;nj � CB(q)4: (6.15)

Hence, (6.15) and (6.12) imply

~nX
q=0

ESn;2(q)
4 � CK�4"

~nX
q=0

jq � q0j8"�2+ � CK�4":

By Lemma 4.3, E(Z(3)
j;n)

2 � Cjj � q0j2p with p 2 (1=3; 1=2). Therefore

EjZ(3)
j1;nZ

(3)
j2;nj � (E(Z

(3)
j1;n)

2E(Z
(3)
j2;n)

2)1=2 � C(jj1 � q0jjj2 � q0j)p

and

ES2
n;3(q) =

~n�1X
j1;j2=0:j1;j2 6=q0;q0�1

��j1;q�
�
j2;q
EjZ(3)

j1;nZ
(3)
j2;nj � C

� ~n�1X
j=0:j 6=q0;q0�1

��j;qjj � q0jp
�2
:

Since ��j;q � �j(q), this and (6.11) imply

ESn;3(q)
2 � C

n
K�"j�qj"+

~nX
j=0

jj � q0j�1+p+ jj � qj�1+ + n�"(logn)2
~nX
j=0

jj � q0j�1+p+"+ jj � qj�1+
o2

� C(K�"j�qj2"+p�1+ + n�"(logn)2j�qj2"+p�1+ )2 � CK�2"j�qj4"+2p�2+ :

Hence
~nX
q=0

ESn;3(q)
2 � CK�2"

~nX
q=0

jq � q0j4"+2p�2+ � CK�2"

since 4"+ 2p� 2 < �1 for p 2 (1=3; 1=2) and su�ciently small " > 0. Thus (6.14) holds.
2

Lemma 6.2 Let Vn( ) = 1�2���20 k(�q0; �; �q)
�1Iq0. Under the assumptions of Theorem

3.1, there exists � > 0 such that

E sup
 2	K

ju�1n ( )Vn( )j � CK�� (6.16)

where 0 < C <1 does not depend on K; n.
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Proof. By A.10 or A.1, kq0( )
�1 � Cj��qj�: If j� � �0j � (logn)�1 and q 6= q0 then

j��qj���0 � C, and kq0( )
�1 � Cj��qj�0 � Cun( )

�0n��0 : If j� � �0j � (logn)�1, then
un( ) � njj� � �0jj2 � n log�2 n. Hence for  2 	K ,

un( )
�1jVn( )j � C(un( )

�0�1n��0 + n�1 log2 n)(Iq0 + 1) � CK�1+�0(n��0Iq0 + 1):

Since by standard arguments E[n��0Iq0] � C; it follows that (6.16) holds with � = 1��0.
2

Lemma 6.3 Let bj( ) be de�ned by (6.1). Under the assumptions of Lemma 6.1, there

exists 0 < " < 1=2, such that as n!1, uniformly in j = 0; : : : ; ~n� 1 (j 6= q0; q0 � 1),

jbj( )� bj+1( )j � (6.17)

C

8<:
jj���0jj+j��qj1=2

jj�q0j
+ j�qj1�"+ jj � q0j�(2�") + j�qj+jj � q0j�1jj � qj�1+ if jj� � �0jj � (logn)�1;

n1�"jj � q0j�(2�") + n1�"jj � q0j�(1�")jj � qj�1+ if jj� � �0jj � (logn)�1;

where 0 < C <1 above does not depend on n;  , and moreover,

1f!0<�gjb~n( )j+ 1f!0>0gjb0( )j � C(jj� � �0jj2 + j��qj1=2): (6.18)

Proof. We prove �rst (6.17) in case jj� � �0jj � (logn)�1. Write jbj( ) � bj+1( )j =
jv(�j; ;  0)� v(�j+1; ;  0)j where

v(�; ;  0) = k(�; 0)k
�1(�; ): (6.19)

Let j 6= q; q � 1. By the mean value theorem

jv(�j; ;  0)� v(�j+1; ;  0)j � (2�=n) sup
�2(�j ;�j+1)

j(d=d�)v(�; ;  0)j: (6.20)

Note that
(@=@�)v(�; ;  0) = v(�; ;  0)j(@=@�) log v(�; ;  0)j: (6.21)

By inequality (6.28) of Lemma 6.4 below,

sup
�2(�j ;�j+1)

n�1j(@=@�) log v(�; ;  0)j � Cn�1j(@=@�) log v(�j; ;  0)j

� C
�
(jj� � �0jj+ j��qj1=2)jj � q0j�1 + j�qjjj � q0j�1jj � qj�1

�
: (6.22)

Next we bound v(�; ;  0). Relation (6.29) of Lemma 6.4 below implies that for � 2
(�j; �j+1) under Assumption A.10 or A.1 and 0 < !0 < �,

v(�; ;  0) � Cj�j�qj�j�j�q0j��0 � Cj j � q

j � q0
j�0 j�j�qj���0 � Cj1� �q

j � q0
j�0 ; (6.23)
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and under Assumption A.1 and !0 = 0; �,

v(�; ;  0) � Cj�2j�q0 � �2�qj�j�2j�q0j��0 � Cj1� (�q=(j � q0))
2j�0 (6.24)

because j�� �0j � (logn)�1 implies that j�j�qj���0 � C and j�2j�q0 � �2�qj���0 � C.
If j�qj=jj � q0j � 2, then (6.23)-(6.24) imply that v(�j; ;  0) � C, and from (6.20) -

(6.22) it follows that

jbj( )� bj+1( )j � C
�
(jj� � �0jj+ j��qj1=2)jj � q0j�1 + j�qjjj � q0j�1jj � qj�1

�
: (6.25)

If j�qj=jj�q0j > 2, then (6.23)-(6.24) yield v(�j; ;  0) � C(j�qj=jj�q0j)1�" for small enough
" > 0, and using (6.20) - (6.22) we obtain that

jbj( )�bj+1( )j � C(j�qj=jj�q0j)�(1�")
�
(jj���0jj+ j��qj1=2)jj�q0j�1+ j�qjjj�q0j�1jj�qj�1

�
� Cj�qj1�"jj � q0j�(2�") (6.26)

since jj���0jj+j��qj1=2 � C by compactness of �, and j�qj=jj�q0j > 2 implies j�qj=jj�qj � 2
. From (6.25) - (6.26) we deduce (6.17).
It remains to prove (6.17) in case jj���0jj � (logn)�1. From (6.23) and (6.24) it follows

that v(�; ;  0) � C(n=jj � q0j)1�" for arbitrarily small " > 0. Therefore (6.20) - (6.22)
imply

jbj( )� bj+1( )j � C(n=jj � q0j)1�"
�
(jj�� �0jj+ j��qj1=2)jj� q0j�1+ j�qjjj� q0j�1jj� qj�1

�
� C(n1�"jj � q0j�(2�") + n1�"jj � q0j�(1�")jj � qj�1) (6.27)

observing that jj���0jj+j��qj1=2 is bounded and j�qjjj�q0j�1jj�qj�1 � 2(jj�q0j�1+jj�qj�1):
From (6.27) we deduce (6.17).
We complete the proof by showing that (6.17) holds for j = q; q � 1 but j 6= q0; q0 � 1.

Note that jbj( )� bj+1( )j � kj( 0)kj( )
�1+ kj+1( 0)kj+1( )

�1: If jj�� �0jj � (logn)�1,
then similarly as in (6.23) - (6.24) it follows that jbj( )� bj+1( )j � C and (6.17) holds.
If jj���0jj � (logn)�1, then k(�q�1; 0)k(�q�1; q)

�1 � Cj��qj��0� (n=j�qj+)1�" for small
enough " > 0. Therefore jbn;j( ) � bn;j+1( )j � C(n=j�qj+)1�" which is bounded by the
second term in (6.17) for j = q; q � 1 and j 6= q0; q0 � 1.
Finally, (6.18) follows from relation (6.30) of Lemma 6.4 below. 2

Lemma 6.4 Let v(�; ;  0) be given by (6.19) and Assumptions A.10 or A.1 be satis�ed.

Then uniformly in 0 < � < � such that j�� �qj � �=n and j�� �q0j � �=n,

j(@=@�) log v(�; ;  0)j � C
� jj� � �0jj+ j��qj1=2

j�� �q0j
+ j��qjj�� �q0 j�1j�� �qj�1

�
(6.28)

where C 2 (0;1) does not depend on n;  , and

jv(�; ;  0)j �
( j�� �qj�j�� �q0j��0 if A.1 holds and 0 < !0 < � or A.10 holds,

j(�� �q0)
2 � �2�qj�j(�� �q0)

2j��0 if A.1 holds and !0 = 0; �
(6.29)
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where an � bn means that c1 � an=bn � c2 as n!1 for some 0 < c1; c2 <1. Moreover,

for any � > 0

jv(�; ;  0)� 1j � C(jj� � �0jj+ j��qj1=2) if j�� �q0 j � �: (6.30)

Proof. (6.29) follows from Assumptions A.10 or A.1, taking into account (3.9).
We prove now (6.28). Let A.10 hold. Then log k(�; ) = �� log j�� �qj + log g(�; ):

Since (d=dx) log jxj = 1=x (x 6= 0), it follows that (@=@�) log k(�; ) = ��(� � �q)
�1 +

(@=@�) log g(�; ). Therefore

(@=@�) log(k(�; )=k(�; 0)) = ��(�� �q)�1+�0(���q0)�1+ h(�; )� h(�; 0) (6.31)

where h(�; ) = (@=@�) log(g(�; �; �q)): (6.31) implies (6.28) noting that

j�(�� �q)
�1 � �0(�� �q0)

�1j � j(�0 � �)j�� �q0j�1j+ �j��q(�� �q)
�1(�� �q0)

�1j
� jj� � �0jj j�� �q0j�1 + j��q(�� �q)j�1j�� �q0j�1

and, by Assumption A.10

jh(�; )� h(�; 0)j � Cjh(�; �; �q)� h(�; �0; �q)j+ jh(�; �0; �q)� h(�; �0; �q0)j
� C(jj� � �0jj+ j��qj�) � C(jj� � �0jj+ j��qj1=2)

where � > 1=2 is the Lipschitz parameter.
Suppose that Assumption A.1 holds. By (3.9)

log k(�; ) =

( �� log j�� �qj � � log j�+ �qj+ log g1(�; ) if 0 � � < �=2;
�� log j�� �qj � � log j�+ �q � 2�j+ log g2(�; ) if �=2 � � � �:

(6.28) now follows by the same argument as in case of Assumption A.10 once it is observed
that j�+ �q � 2�j � j�� �qj and j�+ �qj � j�� �qj.
Finally, we show (6.30). Let j� � �q0j � �. Then under A.10 or A.1 k�1(�; �; !) and

k(�; 0) are bounded. Therefore if j��qj � �=2, then

jv(�; ;  0)� 1j = j1� k(�; 0)k(�; )
�1j � C � C(�=2)�1=2(jj� � �0jj+ j��qj1=2):

If j��qj � �=2 then j�� �qj � j�� �q0j � j��qj � �=2 and by A.10 or A.1,

jv(�;�; �0)� 1j = k(�; �; �q)
�1jk(�; �; �q)� k(�; �0; �q0)j

� C(jk(�; �; �q)� k(�; �0; �q)j+ jk(�; �0; �q)� k(�; �0; �q0)j) � C(jj� � �0jj+ j��qj1=2):

2
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7 Proof of (3.18)

Lemma 7.1 Let Tn( ) be given by (3.15). Then under Assumptions A, as n!1, there

exists a constant c > 0 such that for su�ciently large K > 0,

inf
 2	K

fun( )�1Tn( )g � c (7.1)

where c does not depend on K; n and un( ) = njj� � �0jj2 + j�qj:

Proof. Set L(�; ;  0) = � log(v(�; ;  0)) + v(�; ;  0) � 1; where v(�; ;  0) is given
by (6.19). L is nonnegative for all � because � log x+ x� 1 is, for all x > 0. Rewrite

Tn( ) =
X
j(q0;q)

0nk(�j; 0)

k(�j; )
�1
o
=

X
j(q0;q)

0
L(�j; ;  0)+

X
j(q0;q)

0
log v(�j; ;  0) =: Dn( )+Fn( ):

(7.1) follows if we show that as n!1,

Dn( ) � cun( ) (9c > 0) (7.2)

since by Lemma 7.3 below, jFn( )j � (c=2)un( ):We show that (7.2) holds in each of the
following three, exhaustive, cases

(1) jj� � �0jj2 � j��qj � �; (2) j��qj+ jj� � �0jj2 � �; (3) j��qj � jj� � �0jj2 � �

for some � > 0.
Case (1). Then j�qj � un( )=4� and (7.2) follows if Dn( ) � cj�qj: To show that note

that by Lemma 7.2 below, for � 2 Aq := [�q0 + (3=4)��q; �q0 + (7=8)��q] and �; q satisfying
(1),

inf
�2Aq

jv(�; ;  0)� 1j � c� > 0 (7.3)

for small enough �. Then, since L � 0

Dn( ) �
~nX

j=0:�j2Aq

L(�j;  ;  0)

� (j�qj=8) inf
�2Aq

L(�; ;  0) � (j�qj=8) inf
jx�1j�c�

(� log x+ x� 1) � cj�qj:

Case (2). Let � > 0. Under Assumptions A.10 or A.1, j(@=@�)L(�; ;  0)j is bounded
uniformly in �;  satisfying j�� �qj � �; j�� �q0j � �. Therefore by standard arguments
(see also the proof of (5.19)),

Dn( ) �
X

j:j�j��qj��;j�j��q0 j��

L(�j;  ;  0) = (n=2�)d�( ) + �n( )

29



where

d�( ) =
Z �

0
1fj���q j��;j���q0 j��gL(�; ;  0)d�; j�n( )j � C <1 (7.4)

and C = C�(�) does not depend on n and  . By (7.4), to prove (7.2) it su�ces to show
that

d�( ) � c(j��qj+ jj� � �0jj2): (7.5)

Since compactness of � implies j��qj+ jj�� �0jj2 � C <1 for some C > 0, (7.5) follows if

d�( ) � c > 0 (9c > 0) (7.6)

uniformly in  satisfying (2). Set d( ) =
R �
0 L(�; ; �0; !0)d�: Then

d�( ) � inf
 
d( )� sup

 
jd�( )� d( )j

where inf and sup are taken over the compact set I� = f = (�; !) : jj���0jj2+j!�!0j �
�=4g \ � � [0; �]: Under Assumptions A.10 or A.1, d( ) is continuous. So it achieves its
minimum, d( �) > 0, on I�, since L � 0 by (3.3) for jj 0 �  �jj � �. On the other hand,
under Assumptions A.10 or A.1 we can choose � > 0 such that

sup
 
jd�( )� d( )j < d( �)=2: (7.7)

Indeed, if A.10 holds then by (6.29) L(�; ;  0) � C(1 + log j�� �qj+ log j�� �q0j +j��
�q0j��0); and therefore

sup
 
jd�( )� d( )j � sup

 2	K

Z �

0
1fj���qj<� or j���q0 j<�gL(�; ;  0)d�

can be made arbitrarily small by choosing su�ciently small �, so that (7.7) holds. Under
Assumption A.1, (7.7) follows using a similar argument. Hence (7.6) holds with c =
d( �)=2.
Case (3). As above it su�ces to show (7.5). Under Assumptions A.10 or A.1, the

Taylor expansion with respect to � can be applied in (7.4), which leads to

d�( ) = d�(�0; �q) +rd�(�0; �q)(� � �0) + (� � �0)
0M(� � �0)

� rd�(�0; �q)(� � �0) + (� � �0)
0M(� � �0) (7.8)

since d�(�0; �q) � 0 by L � 0 and (7.4). The i-th element of the vector rd�(�0; �q) is

(@=@�i)d�(�0; �q) =
Z �

0
1fj���q j��; j���q0 j��g(@=@�i)L(�; �0; �q;  0)d�;
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whereas the (j; i)-th element of the p� p matrix M is

(@2=@�j@�i)d�(�
(i)
� ; �q) =

Z �

0
1fj���qj��; j���q0 j��g(@

2=@�j@�i)L(�; �
(i)
� ; �q;  0)d�

with jj�(i)� � �0jj � jj� � �0jj � �1=2 under (3). Now if there exist �; � > 0 such that

(� � �0)
0M(� � �0) � cjj� � �0jj2; (7.9)

jrd�(�0; �q)(� � �0)j � cjj� � �0jj2=2; (7.10)

then by (7.8) d�( ) � (� � �0)
0M(� � �0) � jrd�(�0; �q)(� � �0)j � cjj� � �0jj2=2 �

c(jj� � �0jj2 + j��qj)=4 by (3), and so (7.5) follows. To verify (7.9), note that

(� � �0)
0M(� � �0) � (� � �0)

0
(� � �0)� j(� � �0)
0(
�M)(� � �0)j:

By (3.4), 
 > 0, so (� � �0)
(� � �0)
0 � cjj� � �0jj2 for some c > 0. Under Assumptions

A.10 or A.1 the (j; i)-th element of M � 
 is of formZ �

0
1fj���q j��; j���q0 j��g(@

2=@�j@�i)L(�; �
(i)
� ; �q;  0)d��

Z �

0
(@2=@�j@�i)L(�; 0;  0)d�

=
Z �

0
1fj���q j��; j���q0 j��g

�
(@2=@�j@�i)L(�; �

(i)
� ; �q;  0)� (@2=@�j@�i)L(�; 0;  0)

�
d�

�
Z �

0
1fj���qj<� or j���q0 j<�g(@

2=@�j@�i)L(�; 0;  0)d�;

where each of the two integrals can be made arbitrarily small by choosing, respectively, �
and � su�ciently small. Thus, there exist � > 0 and � > 0 such that jj
�M jj � c=2 and

(� � �0)
0M(� � �0) � cjj� � �0jj2 � jj
�M jj � jj� � �0jj2 � (c=2)jj� � �0jj2;

to prove (7.9).
It remains to prove (7.10). By Assumptions A.10 or A.1, the partial derivativer�d�(�; �q)

satis�es a Lipschitz condition in � of order � > 1=2. Note that r�L(�; 0;  0) = 0 and
thus r�d�(�0; �q0) = 0. Therefore

jr�d�(�0; �q)(� � �0)j � jjrd�(�0; �q)�rd�(�0; �q0)jj � jj� � �0jj
� C(�)j�q � �q0j�jj� � �0jj � C(�)jj� � �0jj1+2� � C(�)�(2��1)=2jj� � �0jj2

since j�q � �q0j� � jj�� �0jj2� � �� by (3). Choosing � such that C(�)�(2��1)=2 < c=2 we
obtain (7.10). 2

Lemma 7.2 If (1) holds then (7.3) is valid.
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Proof. It su�ces to show that uniformly in  satisfying (1),

sup
�2Aq

v(�; ;  0) � c < 1: (7.11)

Let A.10 hold. Then v(�; ;  0) = j�� �qj�j�� �q0j��0g(�; 0)g(�; )
�1 and for � 2 Aq,

v(�; ;  0) � j��q=4j�j3��q=4j��0g(�; 0)=g(�; ): (7.12)

Since (1) implies j� � �0j2 � jj� � �0jj2 � j��qj � �, then j��q=4j���0 = exp((� �
�0) log(j��q=4j)) = 1 +O(j�� �0j log(j�� �0j2)) = 1 +O(�1=4) and

j��q=4j�j3��q=4j��0 = (1=3)�0j��q=4j���0 = (1=3)�0(1 +O(�1=4)): (7.13)

Under A.10,

g(�; 0)g(�; )
�1 = 1 +O(jj� � �0jj+ j��qj) = 1 +O(�1=2): (7.14)

Therefore from (7.12)-(7.14) it follows that v(�; ;  0) � (1=3)�0(1+O(�1=4)) < 1 assum-
ing that � is su�ciently small. Hence (7.11) holds.
Suppose that A.1 holds. Let 0 < !0 < �. If � is su�ciently small then the Gegenbauer

spectral density (3.1) can be written in the form (3.7), and (7.11) can be shown using the
same argument as above.
Let !0 = 0. Then by (3.9), v(�; ;  0) = j�2��2qj�j�j�2�0g1(�; �; �q0)=g1(�; �; �q): Since

for q0 = 0 we have �q = q, then � 2 Aq = [(3=4)�q; (7=8)�q]. Similarly to (7.14), it follows
that g1(�; �; �q)=g1(�; �0; �q0) = 1 +O(�1=2): Therefore

v(�; ;  0) � j�2�q � (3=4)�2�qj�j(3=4)��qj�2�0(1 +O(�1=2))

= (7=9)�0 j(7=16)�2�qj���0(1 +O(�1=2)): (7.15)

The same argument as that used to prove (7.13) implies that j(7=16)�2�qj���0 = 1+O(�1=4).

Hence v(�; ;  0) � (7=9)�0(1 +O(�1=4)) < 1 and (7.11) holds.
Let !0 = �. Then �q0 = � and by (3.9), v(�; ;  0) = j(�� �)2� (�q� �)2j�j�� �j�2�0

g2(�; �; �q)=g2(�; �0; �q0): Using a similar argument as in case !0 = 0 we derive that for
� 2 Aq, v(�; ;  0) satis�es (7.15) which proves (7.11). 2

Lemma 7.3 Under the assumptions of Lemma 7.1, as n!1,

sup
 2	K

un( )
�1
��� X
j(q;q0)

0
log(kj( 0)=kj( ))

��� � CK�1=2: (7.16)

Proof. Let v(�; ;  0) be given by (6.19). Then by (2.2),
R n=2
0 log(v(2�x=n; ;  0))dx =

0: Therefore ��� X
j(q;q0)

0
log(kj( 0)=kj( ))

��� � dn;1( ) + dn;2( ) + dn;3( ); (7.17)
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where, setting Jq = fx � 0 : x =2 [q � 1; q + 1] [ [q0 � 1; q0 + 1]g, Jcq = [0; n=2]nJq,

dn;1( ) =
Z n=2

0

���log v(2�[x]=n; ;  0)� log v(2�x=n; ;  0)
���1Jqdx;

dn;2( ) =
X

p2f~n;q�1;q0�1gnfq;q0g

j log v(�p; ;  0)j;

dn;3( ) =
Z n=2

0

���log v(2�x=n; ;  0)
���1Jcqdx:

It su�ces to show that

sup
 2	K

un( )
�1dn;i � CK�1=2 (i = 1; 2; 3): (7.18)

Using (6.28) to bound j(@=@�) log v(�; ;  0)j, by the mean value theorem we obtain

dn;1( ) � C
Z n=2

0
n�1 sup

�2[2�[x]=n;2�x=n]

��� @
@�

log v(�; ;  0)
���1Jqdx:

� C
Z n=2

0

�
(jj� � �0jj+ j��qj1=2)jx� q0j�1 + j�qjjx� q0j�1jx� qj�1

�
1Jqdx

� C(jj� � �0jj+ j��qj1=2) logn+ C log j�qj:
Thus, for  2 	K, as n!1,

un( )
�1jdn;1( )j � Cn�1=2 logn + CK�1=2 � 2CK�1=2: (7.19)

We estimate now dn;2( ). 1) Suppose �rst that j� � �0j � (logn)�1. Then it is easy
to check that under Assumptions A.1 or A.10, j log v(2�p=n;  ;  0)j � C logn. Thus,
dn;2( ) � C logn � Cn�1 lognun( ) = o(1)un( ) and (7.18) holds. 2) If j� � �0j <
(logn)�1, then j�jj���0 � C uniformly in j = 1; : : : ; ~n and A.1 or A.10 imply that in
dn;2( ), j log v(2�p=n;  ;  0)j � C log j�qj. Thus dn;2( ) � C log j�qj � C logun( ) and
(7.18) holds.
To estimate dn;3( ) note that when A.1 and 0 < !0 < � hold or A.10 holds, (6.29) and

the de�nition of v(�;  ;  0) imply j log(v(2�x=n;  ;  0)j � C(j�0 � �j logn+ log jx� qj+
log jx� q0j+ 1). Then dn;3( ) � Cj�0 � �j logn+ Cj�qj1=2 and

sup
 2	K

un( )
�1jdn;3( )j � C(n�1=2 logn+K�1=2): (7.20)

When A.1 holds and !0 = 0; �, using (6.29) it can be shown that (7.20) remains valid.
Then (7.17) - (7.20) prove (7.16). 2
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