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Abstract

In this paper we develop and analyze real-time and accurate filters for nonlinear
filtering problems based on the Gaussian distributions. We present the systematic
formulation of Gaussian filters and develop efficient and accurate numerical integration
of the optimal filter. We also discuss the mixed Gaussian filters in which the conditional
probability density is approximated by the sum of Gaussian distributions. A new
update rule of weights for Gaussian sum filters is proposed. Our numerical testings
demonstrate that new filters significantly improve the extended Kalman filter with no
additional cost and the new Gaussian sum filter has a nearly optimal performance.

1 Introduction

The nonlinear filtering problem consists of estimating the state of a nonlinear stochastic
system from noisy observation data. The problem has been the subject of considerable
research interest during the past several decades because it has many significant applications
in science and engineering such as navigational and guidance systems, radar tracking, sonar
ranging and satellite and airplane orbit determination [11, 14, 15]. As is well-known, the
most widely used filter is the extended Kalman filter for nonlinear filtering problems. It is
derived from the Kalman filter based on the successive linearization of the signal process and
the observation map. The extended Kalman filter has been successfully applied to numerous
nonlinear filtering problems. If nonlinearities are significant, however, its performance can
be substantially improved. Such efforts have also been reported in [1, 5, 7, 12, 13, 20]. In
this paper our objective is to develop and analyze real-time and accurate filters for nonlinear
filtering algorithms based on Gaussian distributions. We present the systematic formulation
of Gaussian filters and mixed Gaussian filters.

We first develop the Gaussian filter. The proposed filter is based on the steps: (1) we as-
sume the conditional probability density to be a Gaussian distribution (i.e., assumed density)
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and next, (2) we obtain the Gaussian filter by equating the Bayesian formula with respect
to the first moment (mean) and the second moment (covariance). Our approach is based
on the efficient numerical integration of the Bayesian formula for optimal recursive filtering.
The direct evaluation of the Jacobian matrix associated with the extended Kalman filter is
avoided, which is similar to the one recently reported in [12]. Secondly, we use Gaussian sum
filters for the development of nearly optimal filters. The Gaussian sum filter has been studied
in [1, 20]. However, we adapt our Gaussian filter for the update of Gaussian distributions.
We also suggest some new update rules of weights for Gaussian sum filters. Through our
experimental study we found that the filters developed in the paper perform better than or
as good as the filter of Julier-Uhlmann [12]. They have a significant improvement over the
extended Kalman filter with no additional cost.

An outline of the paper is as follows. In Section 2 we develop the Gaussian filter based
on a single Gaussian distribution. In Section 3 we discuss the efficient numerical integration
of the Gaussian filter based on quadrature rules, and introduce the Gauss-Hermite filter
(GHF) and the central difference filter (CDF). In Section 4 we formulate the Gauss-Hermite
filter and the central difference filter as the filter algorithms. In Section 5 we introduce the
mixed Gaussian filter and the new update rules of weights. In Section 6 we discuss the
relation of the Gaussian filter for the discrete time system to the continuous time optimal
filter governed by the Zakai equation. In Section 7 we analyze the stability and performance
bound of the Gaussian filters and the mixed Gaussian filters developed in the paper. In
Section 8 we report our numerical findings and comparison studies. Also, we demonstrate a
nearly optimal performance of the mixed Gaussian filter. Finally, we conclude our results in
Section 9.

2 Gaussian Filters

We discuss the nonlinear filtering problem for the discrete-time signal system for R"-valued
process z(k):

(2.1) o) = (o (k= 1)) + w(h
and the observation process y(k) € R? is given by
(2.2 (k) = ha(k)) + o(k)

where w(k) and v(k) are white noises with covariances @) and R, respectively. We assume that
the initial condition z(0) and w(k), v(k) are independent random variables. The optimal
nonlinear filtering problem is to find the conditional expectation E(z(k)|Y)) of the process
z(k) given the observation data Y, = {y(j), 1 < j < k}. The probability density function
Pk of the conditional expectation E[z(k)|Y;] is given by Bayes’ formula
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and
(24) pk|k($) = C 6_%(y_h(z))tR_l(y_h(z))pkh‘c—l (.’,U)

where pi;_; is the one-step prediction and is the probability density function of z(k) condi-
tioned on Y;_q1. That is, the recursive filter (2.3)—(2.4) consists of the prediction step (2.3)
and the correction step (2.4). We consider a Gaussian approximation of this recursive for-
mula and develop Gaussian filters. We assume that py_;3—1 is a single Gaussian distribution
with mean zj_q ;1 and covariance P,_;;_;. Then we construct the Gaussian approximation
of pyr in the following two steps. First, we consider the predictor step. We approximate
Prje—1 by the Gaussian distribution that has the same mean and covariance as pyr—1. By
Fubini’s theorem the mean and covariance of pyr_; are given by

Eyppa[2] = /R pje-1(z) do = / (/ @gyr ¢ 1OV, dl’) Pr-1je-1(t) dt

= f(t)Pk—1|k—1(7f) di

and

-/ ( / g e H IO a0 gt dm) Pecaen (1) di

= Q+ [ TS0 P (1) dt

Remark 1.1: To derive the mean and covariance of pyr_1, we also can use (2.1) and the
independence of w(k) and z(k — 1). For example,

Bieoala] = Ef(2(k — 1)) + w(k)|Yier] = E[f(e(k — 1))[Yioi]

which is precisely the same as the above, though differently expressed.
Thus, if py_qk—1 is a Gaussian with mean z;_;;_; and covariance P,_;j;_1, then the
Gaussian approximation of pyx_, has mean zy;_; and covariance Py, defined by

(25) Tk-1 = /Rn f(t) ((Qﬂ)"detpi—llk—l)lh 6_5(t_zk_1|k_1) Pk__llk_l (t=ok1pi) di

and

Pjp—1 = Q + [pn(f(1) — zpe—1) ([ (1) — $k|k_1)t((27r)“detPi_1|k_1)l/2
(2.6)

-1
6—%(t—$k—1|k—1)tpk_1|k_1 (t-zp_11k-1) di

Next, we discuss the corrector step.

3 (y=h(2))' R™ (y=h(z))

Pre(z) =ce™ 2 Pk|k—1



where c is the normalization constant and we assume that pyz_; is given by the Gaussian
approximation defined by (2.5)-(2.6). Define the innovation process

](k) = y(k) - Ek|k—1[y(k)] = y(k) - Eklk—l[h(x(k)]-

Here we again approximate for the conditional distribution of (z(k), h(z(k)) given the ob-
servations up to time k — 1 by a Gaussian. That is, we approximate Fy_i[h(z(k)] by its
Gaussian approximation z. This means that the probability density function of z is given
by the Gaussian distribution with mean z and covariance P,, defined by

(2.7) gzzl/plh@)«Zﬂn&ﬁ}th)UQe—gu—szJVPQLJa_zMKJ)dt
and
(28) Rw:/‘ww_iﬂMﬂ_%M%Wm%mMﬁéa%mhm%LN%W%ut

Finally, we construct the Gaussian approximation of py; with mean z, and covariance

defined by

(2.9) Tk = Thp-1 + Li(y(k) — 2)
and
(2.10) Pup = Py — L P,

where the Kalman-filter gain L is defined by
(2.11) Ly = P (R+P.)™"

and the covariance P,, is defined by

— _ _ 2\t 1 —%(t—fk|k—1)tp_1_1(t—fk|k—1)
212)  Po= [ (0= age) (1) = 2) G € 0 dt.

In order to implement the Gaussian filter we must develop the approximation methods
to evaluate integrals (2.5)—(2.12). In Section 3 we discuss the approximation methods for
the integration of the form

1

—1(t-z)tx"(t-z
/nFﬁh@Wiﬁﬁﬁ€2“ PEED

where F(t) is a given function. Especially our discussions include the Gauss-Hermite quadra-
ture rule and finite difference approximation. Note that a different approximation to this
integration results in a variant of the Gaussian filter. For example, if we approximate the
integration by linearizing F' at z, then we obtain the extended Kalman filter.



In order to improve the performance of Gaussian filter we also discuss the mixed Gaussian
filter in Section 5. We approximate py_ijx—1 by the linear combination of multiple Gaussian
distributions, i.e.,

_ (0) 1 ~3e=a ) P ) T e )
pk—1|k—1($) - Z ap_q ((QW)ndetp(i) Yi/2 e’ Rtk Rtk Rtk
i=1 k—1|k—1

Then, each Gaussian distribution is updated separately by the Gaussian filter (2.5)—(2.12).
(%)

In the corrector step we update the weights a;’. For example, we can determine the weights

(2) (2)

a;’ by the L?*-projection, i.e., ap”, 1 < i < m, minimize

e

over (R*)™, where py; is defined as in the corrector step (2.4), assuming

m

pk|k E 27.[. ndetp())1/2 6
=1

2) 7 (2
(=50 P T =) | g

l\J|>—\

m . 2) 7 )
~3 ol L L Y
- ((277)“deth|k_1)1/2

Pk|k—1(l‘)

=1

3 Quadrature Rules

In this section we discuss the approximation methods for the integral of the form

(3.1) [= /HF(t)We‘i(t‘f) =7 e-2) gy,

If we assume ¥ = S%S and change the coordinate of integration by ¢ = S's + z, then

(3.2) I= / F(8) s 3 ds

with F(s) = F(S's+ z). We apply the Gauss-Hermite quadrature rule. The Gauss-Hermite
quadrature rule is given by

m

| ow) e e do = 3 wig(a:)

- =1

where the equality holds for all polynomials of degree up to 2m — 1 and the quadrature
points z; and the weights are determined (e.g., see [9]) as follows. Let .J be the symmetric

tri-diagonal matrix with zero diagonals and J; ;41 = 1/¢/2, 1 <1 < m—1. Then {z;} are the
eigenvalues of J and w; equal to |(v;)1|* where (v;); is the first element of the i-th normalized
eigenvector of .J. Thus, [ is approximated by

(33) ]m = Z Z F(qil,qﬁ,...,qin)wilwb e Wy

11=1 in=1



””712, 1 <4 < m and I, is exact for all polynomials of the form s"s ... s

with 1 <17, <2m — 1. In order to evaluate I, we need m”-point function evaluations. For

where ¢; =

example m = 3 we have
2
G=—-V3, =0, ¢=v3 and w =w;=—, wy = 3

and I3 requires 9-point function evaluations for n = 2.
In Julier-Uhlmann [12] the standard normal distribution is approximated by the discrete
distribution as

vnt+eep, 1<k<n
25 k=9n+1

2(n+k)
=13 —Zi_n n+1<k<2n and P(Z) =
1
) 1<k<2n
0 k=2n+1,

where k > 0 is a constant and e is k-th unit vector in R™. Here, this discrete distribution
has the same first, second and higher odd moments as the standard normal distribution.
Julier-Uhlmann developed a Gaussian filter based on the following quadrature rule for (3.1)

(3.4) Ly = Mf F(Zy)P(Zy).

k=1

The JU-rule requires (2n + 1)-point function evaluation and is exact for all quadratic poly-
nomials. If we set k = 2 and n = 1, then the JU-rule coincides with the Gauss-Hermite rule
1.

Finally we consider the polynomial interpolation methods. We approximate F(t) by the
quadratic function P, that satisfies

n+1)(n+2)
2

F(SZ) = PQ(SZ'), 1 S ? S (

at the points {s;} in R" consisting of

0, hejy, —he;, 1 <e<n and he;+ he;, 1 <1<y <n,
where h > 0 is the stepsize. That is, P, 1s given by
(3.5) Py(s) = F(0)+ X0, aisi + %stHs

where s; is the i-th coordinate of a point s € R", a; and the symmetric matrix H = (H; j)nxn



are defined by

- F(he;) —2F(0) —I—F(—hez)7 l<i<n
12

Hi; = Flfei 4 he) = F(_};;Z) —EChe) ¥ F(O), I<i<j<n

Thus, we approximate (3.1) by
11,02 - 1
(3.6) 1= [ Pals) s € ds = F(0) 4+ 550, 5 Hi
and the integral
I = | Fi(s)F(s) gy €721 ds
by
J, = /n PO ()P (s) - oAl g

(3.7)

1
=100 1T W 4 L) 45, O

where PQ(i) is the quadratic approximation of FiNfor 1 =1,2.
Next, we consider the approximation P; of F, defined by
F(he;) — F(—he; 1
(e = (o) oy Ly
2h 2
which only bases on the values F/(+he;) = Pl(:lzhe ), 1 <i<nand F(0) = P(0), and uses

the diagonal second order correction S°7_, 1 H;;s? of the central difference approximation of

(3.8) Py(s) = F(0) + TI,

+ 2

=12

Fin (3.5). Then the integrals I and .J are approximated by

(3.9) j / P(s) oo e P ds = F(0) + 5

and

(3.10)
Jc:/nPf)(s)Pf?)(s)( Loy e HbE

1= 12 272

ds

(h@ ) Fl(—hez) Fg(hez) — FQ(_hGZ) ~ (1) £7(2 )
2%h 2h —|—F1(0) ()—I_Zz 1§H22H2

If we remove the second order correction term in (3.9)—(3.10), then this coincides with the

_Zzl

extended Kalman filter with the central difference approximation of the Jacobian of F.
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4 Filter Algorithms

In this section we describe the filter algorithms that are based on the Gaussian filter and
quadrature methods described in Section 3. We first consider the Gauss-Hermite filter based
on the Gaussian-Hermite quadrature rule. Let (¢;, w;) be the quadrature rule for

N
(4.1) [ F@) s o~ Y (g,
=1

Let zg and Py be the starting values for the mean and covariance of the random variable
z(0) and set Fyp = Fy and zop = #. In Gaussian-Hermite filter we apply the following
predictor and corrector steps recursively.

Gauss-Hermite Filter
Predictor Step Compute the factorization Pp_qjp_1 = S'S and set z; = Stq; + Th_1|k—1-
Update prje—1 = N(zgjg—1, Prje—1) by

Tipe1 = Yoy f(@0)w;

Py = Q + Efvﬂ (f(x:) — $k|k—1)(f(f€i) - $k|k—1)twi-

Corrector Step Compute the factorization Pp_; = T'T and set z; = thi—l—ka_l. Update
Pkl = N($k|k7 Pk|k) by
Trk = Trpp—1 + Le(y(k) — 2)

Pup = Prjp— — Ly PL,
where
P Zﬁl h(z;)w;
P = Y20, (w5 — wppn) (h(i) — 21)"ws.
P =N, (h(x) = zi)(h(z) — 2i) w;.

We use the Choresky decomposition for finding S and 7' [6] in our calculations. One of
the advantages of the quadrature based filter is that we do not require to have the derivative
of f and h.

Secondly, we present the filter algorithm based on the central difference approximation
with second order diagonal correction. We summarize the filter algorithm of the central
difference approximation with second order diagonal correction as follows.

Central Difference Filter




Predictor Step Compute the factorization P_jr_1 = S*S and set f(s) = f(S*s+Tp_1jk-1)
approximated by f(()) + 30 as; + %StHS. Update prjr—1 = N(Zkjg—1, Prjp—1) by

~ 1
Trp—1 = f(0) + 20, 2 H;;

1
Prpor = Q + Y0y aia; + Y0y B Hi,in,z'

9% f(s)
35? )

Corrector Step Compute the factorization Py_y = T'T and set 7L(3) = h(T"s + Typ—_1)
approximated by h(0) 4+ Y7, bis; + £5'G's. Update pyp = N (g, Prjr) by

where H;; are the central difference approximations of

Tk = Trk—1 + Lr(y(k) — 2x)
Pup = Prjpon — Ly PL,

where

P, =T by, -, by)"

. 1

Poo= 30 bib + 3 5 GG

where (&;; are the central difference approximations of %ﬁl.

In the algorithm we avoid to calculate the derivatives of f and h. Instead, we use the
central difference.

The followings are the operation counts in terms of function evaluations.

If we use the quadrature rule based on the ¢-point Gauss-Hermite rule then the algorithm
requires (n + p)¢” function evaluations.

If we use the Julier-Uhlmann discrete Gaussian rule then the algorithm requires (n+4p)(2n+1)
function evaluations.

If we use the central difference algorithm, the (n+p)(2rn+1) function evaluation are required.

As we will see, our numerical testings indicate that the algorithm based on the Gauss-
Hermite rule performs better than the others. If we use the 3-point rule, then we require
729(n + p) function evaluations for the case n = 6, which can be done in real-time.



5 Mixed Gaussian Filter

In this section we discuss the mixed Gaussian filter. We approximate the conditional prob-
ability density py_ijx—1 by the linear combination of multiple Gaussian distributions, i.e.,

LD PO 1
5.1 Pr—11k-1 CY ll € 2 (@ —1[k— A E—1lk—1 E—1lk—1/
(5:1) je-1(2) Z e (2m)det PO 1/

=1

Here we apply the Gaussian filter (2.5)—(2.12) to each Gaussian distribution N(J}Ejl”k_l, Pk(i)1|k—1)

and obtain the update N(:vgl)k, Pk(lz])c) Each update is independent from the others and can
be performed in a parallel manner.

Next, we update the weights ag) for the new update py () at the end of corrector step.
We discuss here three update formulae in what follows.

First, by equating the first moment of each Gaussian distribution we obtain

0 / 1 ) ED T ) g,
B Jrn (myndet PO

~3(w=h(=) R (y=h(@)+ (=2 ) P _) T @) g0

= Q €
k- 1/n 27 dethetPIET; REE

Here we approximate the right hand side by the Gaussian distribution as in (2.5)—(2.6) and
obtain

(1) _ (1) 1 —5(y=2)" (R+P=2) " (y—2
(5.2) o = oy (T © (v=2)%( )7 y—2)

where 2, P,, are defined by (2.7)—(2.8), which is the update formula discussed in [1].
Next, we apply the collocation condition at l’g;')k:
(%) 1
U ((2m)det ;)12

S 1 =3 (= h ) B =)+ =) (Pl ) T (=)

k-1 €
((2m)ndet Py} _ )12

to obtain the update

(5.3) af) =l <du(v()")>1/2/ ¢~ F =R ) R b))+ =)' (Pifho) ™ (o).
(det P )1/2

E|lk—1

Finally we discuss the simultaneous update of the weights. We determine the weights

(%) (4)

a;’ by the L?*-projection, i.e., o;”, 1 < ¢ < m minimize

(5.4) /R ]

moo ) |2

g —=(z—z P() T\t

[N
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over (R*)™, where py; is defined as in the corrector step (2.4) with

1 () (i) y-1 (%)
E 1 —=(z—= V(P YN e—= )

Pr|k— 1 ak 1 ((27r)"detP() )1/2 e 2 klk—1 k|k—1 klk—1
i=1

In order to perform the minimization (5.4) we need to evaluate the integral of the form

—Ly-h R (y—h(z —Ye—2)'2 " (z—-2
/n“(y @) R (y ())W“( )= w-3)

and it is relatively expensive. Hence we propose the minimization of the sum of collocation
distances:

2

i 1) _(5) (4) (1) __(5)
i k :L‘ a(J) -1 e_i(zmk k|k) (Pre)™ (zk|k_zk|k)
| k|k § :1 ((2m)ndet P(J))1/2
]:

(5.5) f}

over a € R™ satisfying a > ap > 0. A positive constant ag is chosen so that the likelihood
of each Gaussian distribution is nonzero (e.g., ag = 0.001(1,...,1)* € R™). Problem (5.5) is
formulated as the quadratic programming

1 )
(5.6) min 3 a'A'Aa — ATb+ = |a|2 subject to a > ay,

where § > 0 is chosen so that the singularity of the matrix A*A is avoided and the matrices

(A, b) are defined by

f z) )
1 e NSRSy

W (@myrdet B2

~5 =k ) R =k D)+~ ) Pl ) T @)

m

€
2 dethet P _ )12
]:

Thus, we solve (5.6) to obtain the weights agf) at each corrector step by using the existing
numerical optimization method (e.g., see [6]).

The theoretical foundation of the Gaussian sum approximation as above is that any
probability density function can be approximated as closely as desired by a Gaussian sum.
More precisionly, we state the following error estimate, the proof of which is found in [17].

Theorem 5.1: Let M be a non-negative integer and N' = 2M 4+ 2. For any ¢ > 0 there
must exist D > 0 and a mask

{aj |.]: (.j17"'7jn)t € Zn7 |.]| = Z.}s < -/M}

s=1
such that for any density function p(z) € CV(R") N WY (R") and all h > 0 the estimate
(5.7) Ip(x) = pr(@)]| < exhVIplwaamy + ellpllwa—1 ny
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holds, where p;(z) is a linear combination of Gaussian distributions given by

_ |z=hk]?
(58) ph(l’) = Z pke 2Dh?2

\/( )”Dh2 kezn

with )
pe= D &p(h(k—j)), & =hD" 7 q;
lil<M
and cy is a constant independent of p(z). Here |- [y (gn) and || - ||W£_1(Rn) are defined by
|p|WOf}f(R“) = Z HajPHC(R“)
l7|=N
and Nt 1o
~ |9'p|
HPHWOJX—l(Rn) = E BT
o J
71=0
respectively.

Roughly speaking, the estimate (5.7) shows that any probability density function p(z) €
CN(R") N WY (R") can be approximated by a sum of Gaussian distributions each of whose
components is given by

o B2
o L
(27)™ Dh?

with order O(hN) for h — 0.

6 Relation to Continuous-Time Filter

In this section let us discuss the nonlinear filtering problem for the continuous-time signal
process x(t) in R" generated by

(6.1) dz(t) = f(z(t)) dt + Q'2dB(¢).

where B(t) is the standard Brownian motion, i.e., z(¢) is the diffusion process [3, 11, 19].
So, equation (6.1) holds in the sense of Ito and z(t) satisfies

)+ [ Fa(r)dr +QVHB() - B(s))

forall 0 <s <1t
Now we consider the continuous observation process z(t) € R?

(6.2) A1) = /Oth(x(s))ds + RV(1)

12



where V(1) is the standard Brownian process that is independent of B(t) and z(0).
Or, we consider the discrete observation process y(k) € RP

(6.3) y(k) = h(x(kAL)) + v(k).

where At > 0 is the stepsize and v(k) is white noise with covariance R. We assume that the
initial condition z(0) and B(t), v(k) are independent.

Then the conditional probability density p(t) = p(t,z) € L*(R") satisfies the Zakai
equation

(6.4) dp(t) = Ap(t)dt + R~ " hpdz(t)

where A is the Fokker-Planck operator [3, 19].
As shown in [8, 10, 15], the discrete-time filter (2.3)—(2.4) applied to the time-discretized
signal system of (6.1)—(6.2):
o(F) = Fla(k— 1)) + QV(B(AY — B((k — 1)A1)
(6.5)
y(k) = H(z(k)) + RV (V(kAL) = V((k — 1)Al))

provides an approximation method for the continuous-time optimal filter to (6.1)—(6.2). Note
that F'(s) denotes the finite difference approximation

r~ F(s)=s+ At f(s)
for the ordinary differential equation:

dx .
E:f(:z:), z(0)=s, s€R".

Next, we apply the discrete-time filter in the following manner. We discuss the continuous-
time process (6.1) with the discrete-time observation (6.3). We approximate the process z(t)
by the discrete-time process xj, by

(6.6) =062 )+ QPup, 1< <M
with 4

wp,=B(kAt+3j8)—B((kAL+(j —1)¢).
Here the interval [kAt, (k+ 1)At] is subdivided into the M subintervals

(kAL + (7 — 1)6, kAL + 5]

Wherelgngand5:%.
So, 7, denotes the approximation of the process z(t) at t = kAt + j§ and ®(6, =} ") denotes
the discretization of the ordinary differential equation

dzx
&~ ().
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We employ a family of Runge-Kutta methods in our calculation, including the Euler approx-
imation:

O(8,21 ") = i 4 6f (23 7)
The predictor step (2.5)—(2.6) is applied successively M times to obtain (zgp—1, Prr—1), i.e.,

4 ey (Pt) et
(6.7) s = [ SO e () et g

k|k—

and

Plg|k—1 = Q + fR"(f(t) - w?ﬂk—l)(f(t) - Jj?c|k—1)t((27r)ndet}w—1 )i/2

klk—1

(6.8) ~1
—L-al ) (Pglgl_l) (t=4 ) di

VVi'h
0 — PO P
$k|k 1 — xk_1|k_1, k|k 1 — k-_1|k_1

for 1 < j < M. Hence, the mean and covariance of py;_; are given by
M M
(6-9) Tklk—1 = Tg|p—1> Pk|k—1 = Pk|k—1'

Then the corrector step (2.7)—(2.12) is applied as it is to obtain (g, Py).

7 Stability Analysis of Filter Algorithms

In this section we analyze the stability and performance bound of the Gaussian filters (2.5)—
(2.12) for the signal process (6.5) with F(s) = s + At f(s), i.e., a discrete approximation of
the continuous signal system (6.1) can be given by

2(k) = a(k— 1)+ At f(z(k — 1)) + VAL w(k)

where w(k) is the white noise with covariance Q.
We assume that

(7.1) |f(z1) — f(22), 71 — 72| < w|zy — 22)?, for w1, xy € R".

Then we have the following theorem.
Theorem 7.1: The solution Py to (2.5)-(2.12) has the estimate

At
(I+wAt)2 -1

(7.2) tr Pop < (14 u)At)Zk (tr Pop + tr Q) , k>0.
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Proof: From (2.5)-(2.6) the Gaussian approximation of pg_; has the mean zy;_; and
covariance Py;_; defined by

(73) $k|k—1 = /Rn F(S)pk_1|k_1 ds
and
t
(7.4) Py = ALQ + - (F(S) — l’k|k-1) (F(S) — $k|k—1) Pr—1)i—1(5) ds.
Note that

F(t) = anpr = [ (F(1) = F(3)) pecajo (s) ds

n

= | (t=s+ AU = f(5)) Proajp-1(s) ds

RTL
Thus by the Cauchy and Schwarz inequality we have

tr [(F(t) — apemr) (F(2) xk|k_1)t] -

< [ 1= s+ AUTW) = DI prop (3) ds.

Hence it follows from (7.3) that
tr Ppr—1 = At (tr Q) +tr [/R" /Rn |t — s+ AL(f(t) — f(S))|2pk—1|k_1(8)pk_1|k_1 (t)dsdt

<AL(tr Q) + tr Pe—yjpor 4 28t wir Py_yjpoy + AP w0 tr Py_yjpq
by assumption (7.1). That is,
(7.5) tr Pmy < (14 28w + A2w?) tr Pyypy + At (tr Q)
Note that for any k& the covariance Py, is nonegative and satisfies the following property
P < Prjp—1-

Thus by (7.5) we obtain the estimate (7.2). O
Remark 7.1: Using the similar arguments that lead to (7.2), we can prove that the same
result holds for the approximation method discussed in Sections 3—4. That is, the estimate
(7.2) is still valid for the Gaussian-Hermite filter, provided that 3N w; = 1, w; > 0.
Next, we discuss the stability of the mixed Gaussian filter. The mixed Gaussian filter
assumes the form

(7.6) pu(z) = Y o N(z), P ()
7=1
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where the j-th Gaussian distribution N(:EEC]L,Pk(fk))(r) is computed by the Gaussian filters

()

described in Sections 3-4 in a parallel manner. The weights o', 1 < j < m are determined
at the end of the corrector step based on the likelihood of each Gaussian distribution. Under
the assumption (7.1) each Gaussian filter in the Gaussian sum (7.6) is stable in the sense of
(7.2).

Next we discuss the performance bound. In general, let the operators Pp_q1(-) and
Uyk—1(-) denote the one-step update of conditional probability density functions that are
based on the exact filter (2.3)—(2.4) and the mixed Gaussian filter discussed in Section 5,
respectively. We estimate the difference between the exact filter and the mixed Gaussian

filter:

(7.7) &ZHLfmawwm—HLﬂma(Zaﬂﬁﬂ)

i=1

where po(x) is the probability density function of random variable z(0) and
=N )
Pojo = Z @;Polo
=1

is the mixed Gaussian approximation of pg(z). Let |f| = [gn |f|dz. Then we have the
following result.
Theorem 7.2: Assume that for any probability density function p(z) and ¢(z)

(78) |\I;n|n—1(p) - an|n—1(Q)‘ < 7|p - Q|'

Then the error estimate

(7.9) €l <A™ &l + D0 7" e

i=1

holds, where & is the initial error defined by
& = po(x) = 3 aipfiol)
=1

and the error £;_; is given by

(7.10) eior = [Pii=1(pi1(2) = Wjima(pioa (@)
Proof: Note that

En = Pan-t (T2} Prge—t (po(2))) = Unjoms (=1 Prjims (po(2)))

+q}n|n—1 (HZ;%PkM—l(po(Jf))) - q}n|n—1 (H’Z;%\I;kwc—l(f: ajp0|0(.’1?))) .

i=1
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Thus we have
|gn| § Y |gn—1| —I' En—1,

which leads to (7.9).

Remark 7.2: Suppose pg(z) is a mixed Gaussian distribution and we set pgo(z) = po(z).
Also assume that f(z) and h(z) are affine functions. Then we can show that |£,| = 0,
i.e., the mixed Gaussian filter is exact, since the Gaussian filter is exact for the Gaussian
distribution in this case.

To understand the validatity and usage of error formula (7.9) we adopt the following filter
(which is different from the one we implemented), i.e., the mixed Gaussian filter with fixed
means and covariances. For simplicity of our discussion we assume n = 1. Let us consider
the fixed Gaussian elements:

1 (z—w))?

¢]($): ‘)770'6 2, 1§J§m

with nodal points z; € R and covariance o > 0.
Then we define the subspace V™ of the probability distributions on R by

V™ = span {¢j};n:1 :
Define P™ is the projection of L*(R) onto V™.

We consider the mixed Gaussian filter Wy, with fixed means and covariances, i.e.,

pr(z) = P™ (\I/Hk—lpk—l) = \i’k|k—1(]3k—1), pr—1 € V™

where

pela) = 3 Bids(e) € V.

Thus \ilk|k_1 is the fixed operator in this case. Hence ¢;, j > 0 can be estimated based on
the error estimate formula (7.9), assuming the smoothness of p;_1(x).

8 Numerical Results and Comparisons

In this section we demonstrate the feasibility of our proposed filter algorithms, Gauss-Hermite
filter (GHF) and central difference filter (CDF), using the three test examples as in Examples
8.1-8.3. We compare the performance of our proposed filters against that of the extended
Kalman filter (EKF) and the filter of Julier-Uhlmann (JUF) [12].

We use the average root mean square error for our comparison of the methods. The
average root mean square error is defined by

(5.1) (k) = J 3 [+ k) - &i(k)]



which is based on N different simulation runs. Here subscript j denotes the j-th component
of the vector z(k) and its corresponding estimate #(k), and the superscript ¢ denotes the
-th simulation run.

Note that for one dimensional system the filter of Julier-Uhlmann [12] coincides with
the 3-point Gauss-Hermite filter when x = 2. Also when the stepsize is v/3, the central
difference filter has the same estimate algorithm as the filter of Julier-Uhlmann except for
the estimation P,.. Hence, in this section the stepsize is always chosen as v/3 for our study.

We also note that our proposed filter algorithms maintain the non-negative definiteness
of the covariance update.

We carried out our comparison study using various examples and different starting states
zg|o and different problem data, but we only present the selected results in what follows.

Example 8.1 We consider the one-dimensional signal process

(8.2) z(k)=a2(k—1)+ At f(z(k—1)) + w(k)
and the observation process
(8.3) y(k) = ALA(a(R)) + o(k)

where

f(z) = dz(1 — 2?), h(z) = (z — 0.05)*

and

w(k) ~ N(0, b*At) v(k) ~ N(0, d*At)
It is motivated from the continuous time systems (6.1) and (6.2) of the form

dz(t) = f(z)dt + bdw(t)
(8.4)
dy(t) = h(x)dt 4+ ddv(t)

as described in Section 6.
This example is used as a benchmark because of the following reasons. The deterministic
equation

(8.5) i = f(a)

has two stable equilibria -1 and 1, and one unstable equilibrium 0. So, we observed that the
signal process z; is distributed around one of stable equilibria. The observation function
h(z) = (x — 0.05)? is the square of shifted distance from the origin and distinguishs the two
stable equilibria marginally. The performance of the filter is possibly tested because of the
minor margin of detecting measurement function h(x) of the signal process.

We use the following problem data: the time elapse At = 0.01; the initial condition
g = —0.2, i.e., z(0) = —0.2; the starting point Zoo = 0.8, Fyo = Fy = 2; the system
parameters b = 0.5 and d = 0.1. We consider the time from 0 to 4. & is chosen as the best
value, i.e., kK = 2 (see [12]),
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Figure 1: The Average of Root Mean Square Error

Figure 1 shows the average root mean square errors committed by each filter across a
simulation consisting of 50 runs. From Figure 1 we see that the 5-point Gauss-Hermite filter
performs better than others. The central difference filter has similar performance like the
filter of Julier-Uhlmann [12] in this example. All the three filters perform superior to the
extended Kalman filter.

Example 8.2 In this example, we consider the Lorenz system

w(k)=xz(k—1)+ At f(z(k—1))+bw(k), y(k)=Ath(z(k))+ dv(k)

where z = [21, 22, z3]" is the R*-valued process. The R-valued processes w(k) and v(k) are
white noises with the same covariance At. Here b € R? is a constant vector and d € R is a
constant scalar. Also

(8.6) f(@) =[r(—z1 + xa), rox1 — 29 — 2123, —Tr3T3 + xlxg]t

The observation function is chosen as the shifted distance from the origin given by

h = \/(1'1 —0.5)% + 2z} + 23

It is motivated from the Lorenz stochastic differential system of the form (8.4) as described
in Section 6 where z € R®.
The three dimensional deterministic equations

(8.7) i = f(a)
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is the Lorenz equations in which r; (j = 1,2,3) are positive parameters. The three param-
eters have a great deal of impact on the system. Here, we choose ry = 10,ry; = 28, and
r3 = 8/3 which is a mathematically very interesting case, because in the case there are three
unstable equilibria and a strange attractor for the equations.

We use the following problem data: the system parameters are chosen as b = [0,0,0.5]"
and d = 0.065; the initial condition is o = [—0.2, —0.3, —0.5]%, i.e., z(0) = [—0.2, —0.3, —0.5]",
and At = 0.01. We consider the time from 0 to 4. The initial estimate is o0 = [1.35, —3, 6]*
with covariance Py = 0.351.

In Figures 2-4 we show the average of root mean square errors for each component of
system state committed by the algorithms of the Gauss-Hermite quadrature rule, the central
difference approximation and the JU-rule respectively across a simulation consisting of 50
runs. As shown in Figures 2-4, the GHF and the CDF have smaller errors than the JUF and
the EKF. From these figures we conclude that in this example the GHF has a substantial
improved performance, and the GHF performs a little better than the CDF.

Example 8.3 We further discuss the three-dimensional continuous signal process

(8.8) #(t) = f(z(1) + w(t)
and the discrete observation process
(8.9 () = V(T + [aa(t) = HI?) + 71

where w(t) € R? and r(t) € R are zero mean and uncorrelated noises with covariances given
by Q(t) € R**® and R(t) € R, respectively. The function f(z) is given by

f(I)ZZ L_$27'_6_WI1$3$37 OP'
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The above system states xq, x2 and 3 represent altitude (in feet), velocity (in feet per
second) and constant ballistic coefficient (in per second), respectively. The detail physical
meaning of the system and its parameters can be found in [2].

We choose this example as a benchmark because it contains significant nonlinearities in
the signal and observation processes, and had been discussed widely in the literature.

In the previous literature, a fourth-order Runge-Kutta scheme with 64 steps between
each observation is employed to solve numerical intergration of (8.8) based on the significant
signal process [2, 12]. That is, in the predicator steps of EKF and JUF, the means are
calculated using the numerical scheme. Then their covariance are propagated from the jth
to (7 + 1)th step using

Prirnysi = (e + (5 + 1), 4 + 56) Poyyistd (te + (4 1)8, L + 56)
with |
V(4 (5 + D)6t +36) = T+ 6J; + 55%]]?

where J; was evaluated at t; + né and 6 = At/64. Thus, Pry1r = Py, 1eas)t,-

In the comparison, we implement the proposed approximation schemes (6.7)—(6.9) to
solve the filtering problem of (8.8)—(8.9). In the predictor step of GHF, we directly use the
Euler approximation of signal process (8.8) based on 32 or 64 steps (i.e., M = 32 or 64)
between each observation (they are shortly denoted by GHF32 or GHF64, respectively).

However, in NGHF the signal process system (8.8) is rewritten as the discrete form

a/’i = :z:i_l —|—5F(:1:i_1) + 6w

where .TL‘?C is the approximation of the process z(t) at ¢t = kAt 4 j 6, and function F(s) =
é(kl + 2k2 + Qk‘g + k4) with

ky = f(s, 8), ky = f(s + 0.56ky, 6),

kg = f(S + 055k2, 5), k4 = f(S + 5k3, 5),

which is the fourth-order Runge-Kutta scheme. Especially, § = At/64 in NGHF64.

We use the following data: the system parameters are chosen as v = 5 x 107°, H = 10°,
M = 105, Q(k) = 0 and R(k) = 10*; the initial condition is z(0) = [3 x 10°, 2 x 10~*, 107?]*
and At = 0.1. We consider the time from 0 to 30. The initial estimate is Zop = [3 x 105, 2 x
107, 3 x 107°]* with covariance

108 0 0
P0|0 - 0 4 X 106 0
0 0 10~

We also choose the optimization number k = 0 in JUF for the three dimensional system.
In Figures 5-7 we show the absolute value of average error for each component committed

by the algorithms of the Gauss-Hermite quadrature rule, the JU-rule and the EKF respec-

tively across a simulation consisting of 50 runs. These figures show that in this example the

GHF has superior performance than the JUF and the EKF.

22



Absolute value of average altitude error (ft)

* GHF32

- GHF64
-— NGHF64
- JUF

.. EKF

Figure 5:

100

Time (sec)

The Absolute Value of Average Altitude Error

90

70

60

50

Absolute value of average velocity error (ft/sec)

* GHF32

- GHF64
—— NGHF64
—-. JUF

.. EKF

Ll R S N RS

Time (sec)

25

30

Figure 6: The Absolute Value of Average Velocity Error

23



* GHF32

- GHF64 -
—— NGHF64

—-. JUF

.. EKF

| g
o

-

Absolute value of average x,-error (ft/sec)

0.5

Time (sec)

Figure 7: The Absolute Value of Average zs-Frror

8.1 Mixed Gaussian Example

In this section we first demonstrate a nearly optimal performance of the mixed Gaussian
method described in Section 5. We consider the same example as in Example 8.1 with
h(z) = |z — .5|. We employ the two Gaussian distributions starting from

=5 PU=1 and 2)=-5 PY=1

Tolo = 0[0 0j0 — oo — %

respectively and the initial weights are ozél) = ozéQ) = .5. In order to demonstrate the
effectiveness of the proposed update (5.5)—(5.6) we jumped the process zj at k = 150 (which
corresponds to ¢ = 1.5 in the continuous time process (8.4)) to x150 = .5. It may represent an
impulse force at t = 1.5. We compare the performance of the mixed Gaussian filter against
the one of the optimal Zakai filter (6.4) with At = .01 in Figures 8-11. Here GHF1 (GHF2)
represents the 3-point Gauss-Hermite filter which is the first (second) component of the two
mixed Gaussian filter with Weight 1 (Weight 2). We approximate the Zakai equation by
the operator-splitting method as described in [10]. We observed that the mixed Gaussian
filter performs nearly optimally up to ¢ = 1.5. We also note that the Zakai filter is no longer
optimal after & = 150 because of the jump. As seen as Figures 8-9, the update formula
(5.5)-(5.6) quickly captures the phase change from the one steady point (z = —1) to the
other (x = 1). The observations are also supported by the comparison in Figures 10-11.

Example 8.3 (Revisted) Next, we also apply our mixed Gaussian method to Example
8.3. We employ the two Gaussian distribution starting from

%B =[3x10°,2x107* 3 x 107°]" and :z;fjo =[3 x10%, 2 x 107*, 107"]
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with the same covariance
106 0 0
P0|0 = 0 4 X 106 0
0 0 1074

(1) (2)

respectively and the initial weights are oy’ = o~ = % We demonstrate the performance of
the mixed Gaussian filter with AZ = 0.1 in Figures 12-15. We see that the mixed Gaussian
filter based on the update formula (5.5)—(5.6) captures the signal process very well. That
is, the weights of the two mixed Gaussian filters shown in Figure 15 effectively pick up the
combined performance of the Gaussian filters: GHF1 and GHF2. More detailed discussions
and numerical testings of the mixed Gaussian filter will be presented in the forthcoming

paper.

9 Conclusions

The paper presents the systematic formulation of Gaussian filters and mixed Gaussian filters
based on the efficient numerical intergation of the Bayesian formula for optimal recursive
filter. Based on our formulation we develop the two filter algorithms, namely, the Gauss-
Hermite filter (GHF) and the central difference filter (CDF). We demonstrated the feasibility
of our proposed filter algorithms for testing nonlinear filtering problems. Our numerical
results indicate that both the Gauss-Hermite filter and the central difference filter have
superior performance to the filter of Julier-Uhlmann and the extended Kalman filter. We
also proposed the new update rules for the Gauss sum filters and show that they can perform
near optimally.
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