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GAUSSIAN GRAPHICAL MODEL ESTIMATION WITH FALSE
DISCOVERY RATE CONTROL

BY WEIDONG LIU1

Shanghai Jiao Tong University

This paper studies the estimation of a high-dimensional Gaussian graph-
ical model (GGM). Typically, the existing methods depend on regularization
techniques. As a result, it is necessary to choose the regularized parameter.
However, the precise relationship between the regularized parameter and the
number of false edges in GGM estimation is unclear. In this paper we pro-
pose an alternative method by a multiple testing procedure. Based on our new
test statistics for conditional dependence, we propose a simultaneous testing
procedure for conditional dependence in GGM. Our method can control the
false discovery rate (FDR) asymptotically. The numerical performance of the
proposed method shows that our method works quite well.

1. Introduction. Estimation of dependency networks for high-dimensional
data sets is especially desirable in many scientific areas such as biology and so-
ciology. The Gaussian graphical model (GGM) has proven to be a very powerful
formalism to infer dependence structures of various data sets. GGM is an equiv-
alent representation of conditional dependence of jointly Gaussian random vari-
ables. Inference on the structure of GGM is challenging when the dimension is
greater than the sample size. Many classical methods do not work any more.

Let X = (X1, . . . ,Xp)′ be a multivariate normal random vector with mean μ
and covariance matrix �. GGM is a graph G = (V ,E), where V = {X1, . . . ,Xp}
is the set of vertices and E is the set of edges between vertices. There is an edge
between Xi and Xj if and only if Xi and Xj are conditional dependent given
{Xk, k �= i, j}. It is well known that estimating the structure of GGM is equivalent
to recovering the support of precision matrix � = �−1; see Lauritzen (1996).

The typical way of GGM estimation depends on regularized optimizations. The
past decade has witnessed significant developments on the regularization method
for various statistical problems. For example, in the context of variable selection,
Tibshirani (1996) introduced Lasso, which selects important variables in regres-
sion by solving the least squares optimization with the l1 regularization. Graphical-
Lasso, an extension of Lasso to GGM estimation, was introduced by Yuan and Lin
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(2007), Friedman, Hastie and Tibshirani (2008) and d’Aspremont, Banerjee and
El Ghaoui (2008). Graphical-Lasso estimates the support of precision matrix by an
l1 penalized likelihood method. Theoretical properties of Graphical-Lasso can be
found in Rothman et al. (2008) and Ravikumar et al. (2011). Other methods, based
on the l1-minimization technique, can be found in Meinshausen and Buhlmann
(2006), Yuan (2010), Zhang (2010), Cai, Liu and Luo (2011), Liu et al. (2012)
and Xue and Zou (2012). The nonconvex penalties, such as the SCAD function
penalty [Fan, Feng and Wu (2009)], have also been considered in the context of
GGM estimation.

It is well known that regularization approaches often require the choice of tuning
parameters. Large tuning parameters often lead to sparse networks and they are
powerless on finding the edges with small weights. On the other hand, small tuning
parameters will generate many false edges and result in high false discovery rates.
The theory of the precise relationship between the number of false edges and the
tuning parameter is very difficult to derive.

A different way of GGM estimation relies on simultaneous tests

H0ij :ωij = 0 versus H1ij :ωij �= 0(1)

for 1 ≤ i < j ≤ p, where � =: (ωij )p×p . An edge between Xi and Xj is included
into the estimated network if and only if H0ij is rejected. When the dimension p is
fixed, Drton and Perlman (2004) proposed a multiple testing procedure to estimate
GGM. They used the Fisher’s z transformations of the sample partial correlation
coefficients (SPCCs). A procedure on controlling the family-wise error was devel-
oped. However, when the dimension p is greater than the sample size, the sample
partial correlation matrix is not even well defined. Hence, we do not have a natural
pivotal estimator as SPCCs so that the asymptotic null distribution can be eas-
ily derived. In high-dimensional settings, it becomes very challenging to estimate
GGM by tests on the entries of the precision matrix.

In the present paper, we study the estimation of GGM by multiple tests (1). We
are particularly interested in high-dimensional settings. The false discovery rate
(FDR) is a useful measure on evaluating the performance of GGM estimation. We
will introduce a procedure called GGM estimation with FDR control (GFC).

A basic step in hypothesis tests is the construction of test statistics. The sam-
ple partial correlation coefficients are not well defined when p > n. Hence, we
introduce new test statistics suitable for high-dimensional settings. The new test
statistics are based on a bias correction version of the sample covariance coeffi-
cients of residuals. They are shown to be asymptotically normal distributed under
some sparsity conditions on �. In addition to new test statistics, GFC carries out
large-scale tests simultaneously. To this end, an adjustment for significance levels
is necessary. In this paper, we develop a multiple testing procedure with an adjust-
ment for significance levels and it controls the false discovery rate. The proposed
procedure thresholds test statistics directly rather than p-values which were widely
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used [cf. Benjamini and Hochberg (1995)]. It is convenient for us to develop novel
theoretical properties on FDR. We show that the GFC method controls both FDR
and false discovery proportion (FDP) asymptotically.

In addition to its desirable theoretical properties, the GFC method is compu-
tationally very attractive for high-dimensional data. The computational cost is the
same as the neighborhood selection method by Meinshausen and Buhlmann (2006)
or the CLIME method by Cai, Liu and Luo (2011). We only need to solve p regres-
sion equations with the Lasso or the Dantzig selector. Numerical performance of
GFC is investigated by simulated data. Results show that the procedure performs
favorably in controlling FDR and FDP.

The rest of the paper is organized as follows. In Section 2.1 we introduce new
test statistics for conditional dependence. The GFC procedure is introduced in Sec-
tion 2.2. In Section 3 we give limiting distributions of our test statistics. Theoretical
results on GFC are also stated. Since GFC needs initial estimations of regression
coefficients, we provide their detailed implementations in Section 4. Numerical
performance of the procedure is evaluated by simulation studies in Section 5. The
proofs of the main results are delegated to Section 6.

2. Tests on conditional dependence. We begin this section by introducing
basic notation. For any vector x, let x−i denote the p − 1 dimensional vector by
removing xi from x = (x1, . . . , xp)′. For any p × q matrix A, let Ai,−j denote the
ith row of A with its j th entry being removed and A−i,j denote the j th column of
A with its ith entry being removed. A−i,−j denote a (p−1)×(q −1) matrix by re-
moving the ith row and j th column of A. Throughout, define |x|0 = ∑p

j=1 I {xj �=
0}, |x|1 = ∑p

j=1 |xj | and |x|2 =
√∑p

j=1 x2
j . For a matrix A = (aij ) ∈ R

p×q , we
define the element-wise l∞ norm |A|∞ = max1≤i≤p,1≤j≤q |aij |, the spectral norm
‖A‖2 = sup|x|2≤1 |Ax|2 and the matrix �1 norm ‖A‖l1 = max1≤j≤q

∑p
i=1 |aij |. Let

λmax(�) and λmin(�) denote the largest eigenvalue and the smallest eigenvalue
of �, respectively. Ip denotes a p × p identity matrix. Let H0 = {(i, j) :ωij =
0,1 ≤ i < j ≤ p} and H1 = {(i, j) :ωij �= 0,1 ≤ i < j ≤ p}.

It is well known that, for X = (X1, . . . ,Xp)′ ∼ N(μ,�), we can write

Xi = αi + X′−iβi + εi,(2)

where εi ∼ N(0, σii − �i,−i�
−1
−i,−i�−i,i) is independent of X−i , αi = μi −

�i,−i�
−1
−i,−iμ−i and (σij )p×p = �; see Anderson (2003). The regression coef-

ficients vector β i and the error terms εi satisfy

βi = −ω−1
ii �−i,i and Cov(εi, εj ) = ωij

ωiiωjj

.

We estimate GGM by recovering the support of �ε , the covariance matrix of
(ε1, . . . , εp)′.
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2.1. Test statistics for H0ij . In this subsection we introduce new test statistics
for H0ij . Let X = (X1, . . . ,Xn)

′, where Xk = (Xk1, . . . ,Xkp)′, 1 ≤ k ≤ n, are
independent and identically distributed random samples from X. By (2), we can
write

Xki = αi + Xk,−iβi + εki, 1 ≤ k ≤ n,

where Xk,−i is the kth row of X with its ith entry being removed and εki is inde-
pendent with Xk,−i . Let β̂i = (β̂1,i , . . . , β̂p−1,i)

′ be any estimators of βi satisfying

max
1≤i≤p

|β̂i − βi |1 = OP(an1)(3)

and

min
{
λ1/2

max(�) max
1≤i≤p

|β̂i − βi |2, max
1≤i≤p

√
(β̂i − βi )

′�̂−i,−i(β̂i − βi )
}

(4)
= OP(an2)

for some convergence rates an1 and an2, where �̂ = 1
n

∑n
k=1(Xk − X̄)(Xk − X̄)′

and X̄ = 1
n

∑n
k=1 Xk . Define the residuals by

ε̂ki = Xki − X̄i − (Xk,−i − X̄−i)β̂i

and the sample covariance coefficients between the residuals by

r̂ij = 1

n

n∑
k=1

ε̂ki ε̂kj ,(5)

where X̄i = 1
n

∑n
k=1 Xki and X̄−i = 1

n

∑n
k=1 Xk,−i . Our test statistics are based on

a bias correction of r̂ij . To this end, for 1 ≤ i < j ≤ p, define

Tij := 1

n

(
n∑

k=1

ε̂ki ε̂kj +
n∑

k=1

ε̂2
ki β̂i,j +

n∑
k=1

ε̂2
kj β̂j−1,i

)
.(6)

It should be noted that the index is j − 1 in β̂j−1,i and β̂i is a p − 1 dimensional
vector. Let

bnij = ωiiσ̂ii,ε + ωjj σ̂jj,ε − 1,(7)

where (σ̂ij,ε)1≤i,j≤p = 1
n

∑n
k=1(εk − ε̄)(εk − ε̄)′, εk = (εk1, . . . , εkp)′ and ε̄ =

1
n

∑n
k=1 εk . We will prove that

Tij = −bnij

ωij

ωiiωjj

+
∑n

k=1(εkiεkj − Eεkiεkj )

n

+ OP

(
λmax(�)a2

n2 + an1

√
logp

n
+ logp

n

)
.
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And under

an2 = o
(
n−1/4) and an1 = o(1/

√
logp),(8)

we will prove that√
n

r̂ii r̂jj

(
Tij + bnij

ωij

ωiiωjj

)
⇒ N

(
0,1 + ω2

ij

ωiiωjj

)
.(9)

Note that, under H0ij , the limiting distribution in (9) does not depend on any
unknown parameter. Also, bnij → 1 in probability, uniformly in 1 ≤ i ≤ j ≤ p.
Hence, for the hypothesis test H0ij , we shall use the following test statistic:

T̂ij =
√

n

r̂ii r̂jj
Tij .(10)

The estimators β̂i , 1 ≤ i ≤ p, can be Lasso estimators or Dantzig selectors
[Candès and Tao (2007)]. Theoretical results on the convergence rates in (8)
have been proved by many papers under various conditions. For example, for
the Dantzig selector, it can be proved by (46) and (47) that, under (C1) in Sec-

tion 3, (8) is satisfied when max1≤i≤p |βi |0 = o(λmin(�)
√

n
logp

). The same conclu-

sion holds for the Lasso estimators. The detailed choices of β̂i will be given in
Section 4.

REMARK 1. There are a number of recent papers in the regression context
where bias correction is used to derive p-values or confidence intervals for the re-
gression coefficients in the high-dimensional case; see Zhang and Zhang (2011),
Bühlmann (2013), van de Geer et al. (2013) and Javanmard and Montanari (2013).
When applying their methods in GGM estimation, we briefly discuss the differ-
ence between our method and theirs. The theoretical results in Javanmard and
Montanari (2013) require the standard Gaussian designs or the covariance ma-
trix of the covariates is known. Also, the simulation in Javanmard and Mon-
tanari (2013) shows that the method in Bühlmann (2013) is very conservative.
These existing methods are computation-intensive and time-consuming. For ev-
ery i, to get the p-values for the components of β i , they need to estimate the
(p − 1)× (p − 1) precision matrix of X−i . So, to derive the p-values for all of the
components of β i , 1 ≤ i ≤ p, estimators of p precision matrices with dimension
(p − 1) × (p − 1) are required. Sun and Zhang (2012a) and Ren et al. (2013) also
developed a different and interesting residual-based estimator to construct con-
fidence intervals for ωij . Their method needs to solve two (p − 1)-dimensional
regressions for each entry in �, and (p2 − p) high-dimensional regressions in to-
tal for all of the entries in �. This requires a huge computational cost. Our method
only needs the initial estimators for β i . No additional precision matrix estimator
or regression coefficient estimator is required. Moreover, the theoretical results in
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Zhang and Zhang (2011), Sun and Zhang (2012a) and Ren et al. (2013) require
c1 ≤ λmin(�) ≤ λmax(�) ≤ c2 for some c1, c2 > 0. In contrast, our method with
the initial estimator Lasso or the Dantzig selector does not need the boundedness
condition on λmax(�) and allows λmin(�) → 0; see Propositions 4.1 and 4.2.

It is difficult to give a comprehensive comparison between these existing meth-
ods with ours. For example, Sun and Zhang (2012a) and Ren et al. (2013) de-
veloped the asymptotic confidence intervals for ωij . Our method is focused on the
testing problem, although with a little more effort, the asymptotic confidence inter-
val result can be easily proved. It is also unknown whether these existing methods
can be used to control FDR due to the complicated dependence between the test
statistics.

2.2. GGM estimation with FDR control. With the new test statistic T̂ij , we can
carry out (p2 −p)/2 tests (1) simultaneously and control FDR as follows. Let t be
the threshold level such that H0ij is rejected if |T̂ij | ≥ t . The false discovery rate
and false discovery proportion are defined by

FDP(t) =
∑

(i,j)∈H0
I {|T̂ij | ≥ t}

max{∑1≤j<j≤p I {|T̂ij | ≥ t},1} , FDR(t) = E
[
FDP(t)

]
.

A “good” threshold level t makes many true alternative hypotheses be rejected and
remains that the FDR/FDP be controlled at a pre-specified level 0 < α < 1. So an
ideal choice of t is

t̂o = inf
{

0 ≤ t ≤ 2
√

logp :

∑
(i,j)∈H0

I {|T̂ij | ≥ t}
max{∑1≤j<j≤p I {|T̂ij | ≥ t},1} ≤ α

}
,

where H0 = {(i, j) :ωij = 0,1 ≤ i < j ≤ p}. In the definition of t̂o, t is restricted
to [0,2

√
logp] because P(max(i,j)∈H0 |T̂ij | ≥ 2

√
logp) → 0 by the proof in Sec-

tion 6. Since H0 is unknown, we shall use an estimator of
∑

(i,j)∈H0
I {|T̂ij | ≥ t}.

As we will prove in Section 6, an accurate approximation for
∑

(i,j)∈H0
I {|T̂ij | ≥ t}

is 2(1 −	(t))|H0|, where 	(t) = P(N(0,1) ≤ t). Moreover, H0 can be estimated
by (p2 − p)/2 due to the sparsity of �. This leads to the following procedure:

GFC PROCEDURE. Calculate test statistics T̂ij in (10). Let 0 < α < 1 and

t̂ = inf
{

0 ≤ t ≤ 2
√

logp :
G(t)(p2 − p)/2

max{∑1≤i<j≤p I {|T̂ij | ≥ t},1} ≤ α

}
,(11)

where G(t) = 2 − 2	(t). If t̂ in (11) does not exist, then let t̂ = 2
√

logp. For
1 ≤ i < j ≤ p, we reject H0ij if |T̂ij | ≥ t̂ .

In GFC procedure, the estimators β̂i , 1 ≤ i ≤ p, are needed. As mentioned
earlier, we can use the Lasso estimators or the Dantzig selectors. Both of them
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require the choice of tuning parameters. In Section 4 we will propose a method
on the choice of tuning parameters, which is particularly suitable for our multiple
testing problem.

For general multiple testing problems, Liu and Shao (2012) developed a proce-
dure that controls the false discovery rate. They proposed to threshold test statistics
directly rather than the true p-values as in Benjamini and Hochberg (1995), be-
cause the true p-values are unknown in practice. Additionally, to control FDR, the
Benjamini–Hochberg method requires the independence or some kind of positive
regression dependency between p-values. Our test statistics do not meet such con-
ditions. By thresholding the test statistics directly as in Liu and Shao (2012), we
shall show that FDR(t̂) → α and FDP(t̂) → α in probability. It should be pointed
out that Liu and Shao (2012) imposed the dependence condition among the test
statistics. In GGM estimation, it is more natural to impose the dependence condi-
tion on the precision matrix. To this end, we need many novel techniques in the
proof.

Meinshausen and Bühlmann (2010) proposed the stability selection for variable
selection and Gaussian graphical modeling. They established the bound for the
expectation of falsely selected variables. It is unknown whether their procedure
can be used to control FDR.

3. Theoretical results. In this section we will show that GFC procedure can
control the false discovery rate asymptotically at any pre-specified level.

(C1) Let X ∼ N(μ,�). Suppose that max1≤i≤p σii ≤ c0 and max1≤i≤p ωii ≤ c0
for some constant c0 > 0. Assume that logp = o(n).

Since σiiωii ≥ 1, (C1) implies that min1≤i≤p ωii ≥ c−1
0 and min1≤i≤p σii ≥

c−1
0 . We give the asymptotic distribution of T̂ij , which is useful in testing a single

H0ij :ωij = 0.

PROPOSITION 3.1. Suppose that (C1) holds. Let β̂i be any estimator satisfy-
ing (3), (4) and (8). Then, we have√

n

r̂ii r̂jj

(
Tij + bnij

ωij

ωiiωjj

)
⇒ N

(
0,1 + ω2

ij

ωiiωjj

)
as (n,p) → ∞, where the convergence in distribution is uniformly in 1 ≤ i <

j ≤ p.

Let the false discovery proportion and false discovery rate of GFC be defined
by

FDP =
∑

(i,j)∈H0
I {|T̂ij | ≥ t̂}

max(
∑

1≤i<j≤p I {|T̂ij | ≥ t̂},1)
, FDR = E(FDP).
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Recall that H0 = {(i, j) :ωij = 0,1 ≤ i < j ≤ p}. Let q0 = Card(H0) be the car-
dinality of H0 and q = (p2 − p)/2. For a constant γ > 0 and 1 ≤ i ≤ p, define

Ai(γ ) = {
j : 1 ≤ j ≤ p, j �= i, |ωij | ≥ (logp)−2−γ }.

Theorem 3.1 shows that GFC controls FDP and FDR at level α asymptotically.

THEOREM 3.1. Let p ≤ nr for some r > 0. Suppose that

Card
{
(i, j) : 1 ≤ i < j ≤ p,

|ωij |√
ωiiωjj

≥ 4
√

logp/n

}
≥
√

log logp.(12)

Assume that q0 ≥ cp2 for some c > 0 and β̂i satisfies (3), (4) and

an1 = o(1/ logp) and an2 = o
(
(n logp)−1/4).(13)

Under (C1) and max1≤i≤p Card(Ai(γ )) = O(pρ) for some ρ < 1/2 and γ > 0,
we have

lim
(n,p)→∞

FDR

αq0/q
= 1 and

FDP

αq0/q
→ 1 in probability

as (n,p) → ∞.

The dimension p can be much larger than the sample size because r can be
arbitrarily large. Note that q0 ≥ cp2 is a natural condition. If q0 = o(p2), then
almost all of ωij are nonzero. Hence, rejecting all the hypothesis tests leads to
FDR → 0. The condition max1≤i≤p Card(Ai (γ )) = O(pρ) is also mild. For ex-
ample, if p ≥ nδ for some δ > 1 and � is a sn,p-sparse matrix with sn,p = O(

√
n)

(i.e., the number of nonzero entries in each row is no more than sn,p), then this
condition holds. The sparsity sn,p = O(

√
n) is often imposed in the literature on

precision matrix estimation.
The technical condition (12) is used to ensure |H0|G(t̂) → ∞ which is almost

necessary for ∑
(i,j)∈H0

I
{|T̂ij | ≥ t̂

}
/
(|H0|G(t̂)

) → 1(14)

in probability. We believe (14) is nearly necessary for the false discovery propor-
tion FDP

αq0/q
→ 1 in probability. On the other hand, the condition for controlling FDR

may be weaker than that for controlling FDP. Even if (14) is violated, the false dis-
covery rate may still be controlled at level α. Hence, it is possible that (12) is not
needed for FDR results. In addition, (12) is not strong because the total number of
hypothesis tests is (p2 −p)/2 and we only require a few standardized off-diagonal
entries of � having magnitudes exceeding 4

√
logp/n.

The condition (13) is stronger than (8). In large scale multiple tests, the result
on convergence in distribution [i.e., P(|T̂ij | ≥ t) → 2 − 2	(t)] is not enough to
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ensure the accuracy. Because the threshold level t̂ typically tends to infinity, we
often need the Cramér type moderate deviation result such as

max
(i,j)∈H0

sup
0≤t≤2

√
logp

∣∣∣∣P(|T̂ij | ≥ t)

2 − 2	(t)
− 1

∣∣∣∣ → 0,

which requires a stronger condition (13).

4. Data-driven choice of β̂i . GFC requires to choose the estimators of βi .
There is much literature on the estimation of high-dimensional regression coeffi-
cients. In this paper we use the popular Dantzig selector and Lasso estimator. Some
other recent procedures such as the scaled-Lasso [Sun and Zhang (2012b)] and the
Square-root Lasso [Belloni, Chernozhukov and Wang (2011)] can also be used and
similar theoretical results such as Propositions 4.1 and 4.2 can be established.

Dantzig selector for β̂i . The Dantzig selector estimates βi by solving the fol-
lowing optimization problems:

β̂i (δ) = arg min
{|ω|1 subject to

∣∣D−1/2
i �̂−i,−iω − D−1/2

i â
∣∣∞ ≤ λni1(δ)

}
(15)

for 1 ≤ i ≤ p, where Di = diag(�̂−i,−i), â = 1
n

∑n
k=1(Xk,−i − X−i)

′(Xk,i − X̄i)

and

λni1(δ) = δ

√
σ̂ii,X logp

n

for δ > 0, where σ̂ii,X = 1
n

∑n
k=1(Xki − X̄i)

2. Note that Var(εi) = ω−1
ii . Hence,

the choice of λni1(δ) in the original version of the Dantzig selector should be

δ

√
ω−1

ii logp

n
. As ω−1

ii is unknown, σ̂ii,X is used in place of ω−1
ii by the inequality

σiiωii ≥ 1. We can let δ = 2, which is fully specified and has theoretical interest.
For finite sample sizes, we will propose a more useful data-driven choice for δ

in (19).

PROPOSITION 4.1. Suppose that (C1) holds and max1≤i≤p |βi |0 =
o(λmin(�)

√
n

(logp)3/2 ). For δ = 2 in (15), β̂i (2), 1 ≤ i ≤ p, satisfy (3), (4) and (13).

Lasso estimator for β̂ i . The coefficients β i can be estimated by the Lasso as
follows:

β̂i (δ) = D−1/2
i α̂i (δ),(16)

where

α̂i (δ) = arg min
α∈Rp−1

{
1

2n

n∑
k=1

(
Xki − X̄i − (Xk,−i − X̄−i)D

−1/2
i α

)2 + λni1(δ)|α|1
}
.
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The following proposition shows that for any δ > 2, (13) is satisfied. The data-
driven choice for δ is given in (19).

PROPOSITION 4.2. Suppose that (C1) holds and max1≤i≤p |βi |0 =
o(λmin(�)

√
n

(logp)3/2 ). For any δ > 2 in (16), β̂ i (δ), 1 ≤ i ≤ p, satisfy (3), (4) and
(13).

Data-driven choice of δ. As in many regularization approaches, the choice δ ≥ 2
is often large. Hence, in this paper, we propose to select δ adaptively by data.
We let β̂i (δ) be the solution to (15) or (16) and then obtain the statistics T̂ij (δ),
1 ≤ i < j ≤ p. As noted in Section 2.2, GFC works because for good estimators
β̂ i (δ), 1 ≤ i ≤ p,

∑
(i,j)∈H0

I {|T̂ij (δ)| ≥ t} will be close to |H0|G(t). Hence, an
oracle choice of δ can be

δ̂o = arg min
0≤δ≤2

∫ 1

τp

(∑
(i,j)∈H0

I {|T̂ij (δ)| ≥ 	−1(1 − α/2)}
α|H0| − 1

)2

dα,(17)

where τp = G(2
√

logp). H0 is unknown, however. Since � is sparse, |H0| is close
to (p2 − p)/2. So a good choice of δ should minimize the following error:∫ 1

τ

(∑
1≤i �=j≤p I {|T̂ij (δ)| ≥ 	−1(1 − α/2)}

α(p2 − p)
− 1

)2

dα,(18)

where τ > 0 is a fixed number bounded away from zero. The constraint α ≥ τ aims
to ensure the nonzero entries part

∑
(i,j)∈H1

I {|T̂ij (δ)| ≥ 	−1(1− α
2 )} = o(α(p2 −

p)). In our choice, we let τ = 0.3. This leads to the final choice of δ by discretizing
the integral as follows:

δ̂ = ĵ /N,
(19)

ĵ = arg min
0≤j≤2N

9∑
k=3

(∑
1≤i �=j≤p I {|T̂ij (j/N)| ≥ 	−1(1 − k/20)}

k(p2 − p)/10
− 1

)2

,

where N is an integer number that can be pre-specified. Finally, we use β̂i (δ̂) as
the estimator of βi . Deriving theoretical properties for δ̂ is important. We leave
this as a future work.

5. Numerical results. In this section we carry out simulations to examine the
performance of GFC by the following graphs:

• Band graph. � = (ωij ), where ωi,i+1 = ωi+1,i = 0.6, ωi,i+2 = ωi+2,i = 0.3,
ωij = 0 for |i − j | ≥ 3. � is a 5-sparse matrix.

• Hub graph. There are p/10 rows with sparsity 11. The rest of the rows have
sparsity 2. To this end, we let �1 = (ωij ), ωij = ωji = 0.5 for i = 10(k − 1)+ 1



2958 W. LIU

TABLE 1
Empirical false discovery rates

α = 0.1 α = 0.2

p 50 100 200 400 50 100 200 400

GFC-Dantzig
Band 0.0899 0.1085 0.1160 0.1168 0.1738 0.1991 0.2103 0.2035
Hub 0.0722 0.0599 0.0557 0.0459 0.1651 0.1415 0.1369 0.1154
E–R 0.1174 0.0887 0.0747 0.0892 0.2099 0.1738 0.1516 0.1703

GFC-Lasso
Band 0.0849 0.0768 0.0801 0.0842 0.1759 0.1650 0.1707 0.1718
Hub 0.0917 0.0835 0.0766 0.0708 0.1937 0.1852 0.1693 0.1560
E–R 0.1038 0.0967 0.1011 0.1180 0.2149 0.1963 0.2083 0.2297

and 10(k − 1) + 2 ≤ j ≤ 10(k − 1) + 10, 1 ≤ k ≤ p/10. The diagonal ωii = 1
and others entries are zero. Finally, we let � = �1 + (|min(λmin)| + 0.05)Ip to
make the matrix be positive definite.

• Erdős–Rényi random graph. There is an edge between each pair of nodes with
probability min(0.05,5/p) independently. Let ωij = uij ∗ δij , where uij ∼
U(0.4,0.8) is the uniform random variable and δij is the Bernoulli random vari-
able with success probability min(0.05,5/p). uij and δij are independent. Fi-
nally, we let � = �1 + (|min(λmin)| + 0.05)Ip such that the matrix is positive
definite.

For each model, we generate n = 100 random samples with Xk ∼ N(μ,�),
� = �−1 and p = 50,100,200,400. We use the Dantzig selector and Lasso to
estimate β i in GFC and denote the corresponding procedures by GFC-Dantzig and
GFC-Lasso. The tuning parameter λni1(δ̂) is given in Section 4 with N = 20. The
simulation results are based on 100 replications. As we can see from Table 1, the
FDRs of the GFC-Dantzig for Band graph and Erdős–Rényi (E–R) random graph
are close to α. The FDRs for Hub graph are somewhat smaller than α. For all
three graphs, the FDRs can be effectively controlled below the level α. Similarly,
GFC-Lasso can control FDR at the level α. The FDPs of GFC-Dantzig in 100
replications are plotted in Figure 1 with p = 200. For the reason of space, we give
the other figures for p = 50,100,400 and GFC-Lasso in the supplemental material
[Liu (2013)]. We can see from these figures that most of the FDPs are concentrated
around the FDRs.

In Figure 2 we plot the FDPs for all GFC-Dantizg estimators with p = 200,
α = 0.2 and β̂ i (j/20), 1 ≤ j ≤ 40. The histograms of ĵ are plotted in Figure 3.
We use F̂DR(j) to denote the false discovery rates for GFC-Dantzig with β̂(j/20).
As we can see from Figure 2, there always exist several j such that F̂DR(j) are
well controlled at level α = 0.2. From the histograms of ĵ in Figure 3, we see that
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(a) Band graph (b) Hub graph

(c) E–R graph

FIG. 1. FDP (GFC-Dantzig, p = 200 and α = 0.2).

ĵ in Section 4 can always take the values of these j ’s for all three graphs. Similar
phenomenon can be observed in GFC-Lasso; see the supplemental material [Liu
(2013)]. We can also see from Figure 2 that, when δ = 2 (i.e., j = 40), the FDPs
are much higher than α. This indicates that the choice of δ = 2 is too big to have a
good performance when the sample size is small.

We examine the power of GFC on controlling FDR. Based on 100 replications,
the average powers are defined by

Average
{∑

(i.j)∈H1
I {|T̂ij | ≥ t̂}

Card(H1)

}
.

We state the numerical results in Table 2. The power increases when α increases.
For the Hub graph, the powers are close to one. For the Band graph, GFC-Dantzig
can also effectively detect the edges and GFC-Lasso is more powerful than GFC-
Dantzig. For the Erdős–Rényi random graph, GFC has nontrivial powers when
p = 50, 100 and 200. The powers are low when p = 400. This is mainly due to
the very small magnitude of ωij . Actually, all of ωij√

ωiiωjj
belong to the interval

(0.1275,0.255) when p = 400. So it is very difficult to detect such small nonzero
entries.
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(a) Band graph (b) Hub graph

(c) E–R graph

FIG. 2. FDP for j = 1, . . . ,40 (GFC-Dantzig, p = 200 and α = 0.2).

Finally, we compare GFC with the Graphical Lasso (Glasso) which estimates
the graph by solving the following optimization problem:

�̂(λn) := arg min
��0

{〈�, �̂n〉 − log det(�) + λn‖�‖1
}
.

As in Rothman et al. (2008), Fan, Feng and Wu (2009) and Cai, Liu and Luo
(2011), the tuning parameter λn is selected by the popular cross-validation method.
To this end, we generate another n = 100 training samples from X and let �̂train be
the sample covariance matrix from the training samples. We choose the following
tuning parameter:

λn = k̂/50, k̂ = arg min
1≤k≤200

{〈
�̂(k/50), �̂train

〉− log det
(
�̂(k/50)

)}
.

The empirical false discovery rates and the standard deviations are stated in Ta-
ble 3. We can see that for all three graphs the FDRs of Glasso are quite close
to 1. This indicates that Glasso with the cross-validation method fails to control
the false discovery rate. We next examine the power of Glasso. Since the power of
Glasso depends on the choice of λn, we plot all of the FDRs and the average pow-
ers for �̂(λn) with λn = 1

50 , 2
50 , . . . , 200

50 in Figure 4 with p = 200. Other figures
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(a) Band graph (b) Hub graph

(c) E–R graph

FIG. 3. Histogram for ĵ (GFC-Dantzig, p = 200 and α = 0.2).

for p = 50,100,400 are given in the supplemental material [Liu (2013)]. As we
can see from these figures, for the Band graph and ER graph, the powers are quite
low (≤ 0.05) if the FDRs ≤ 0.2. Hence, for these two graphs, GFC significantly
outperforms Glasso even if we know the oracle choice of the tuning parameter for
Glasso. It is also interesting to see that, for the Hub graph, the power of Glasso is
close to one even when the FDRs are small. This phenomenon is similar to that of
GFC, which also performs quite well for the Hub graph.

6. Proof.

6.1. Proof of Proposition 3.1. Put ε̃ki = εki − ε̄i , where (ε̄1, . . . , ε̄p)′ = ε̄. Re-
call the definitions of Xk,−j and X̄−j in Section 2.1. Note that

ε̂ki ε̂kj = ε̃ki ε̃kj − ε̃ki(Xk,−j − X̄−j )(β̂j − βj )

− ε̃kj (Xk,−i − X̄−i)(β̂i − βi )(20)

+ (β̂i − βi )
′(Xk,−i − X̄−i )

′(Xk,−j − X̄−j )(β̂j − βj ).
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TABLE 2
Power of GFC (SD)

α = 0.1 α = 0.2

p 50 100 200 400 50 100 200 400

GFC-Dantzig
Band 0.7934 (0.0447) 0.7182 (0.0368) 0.6688 (0.0255) 0.6265 (0.0151) 0.8547 (0.0430) 0.7937 (0.0409) 0.7399 (0.0283) 0.6865 (0.0157)
Hub 0.9607 (0.0503) 0.9767 (0.0208) 0.9776 (0.0140) 0.9778 (0.0087) 0.9767 (0.0384) 0.9877 (0.0139) 0.9873 (0.0096) 0.9868 (0.0074)
E–R 0.7319 (0.0652) 0.3596 (0.0445) 0.2623 (0.0249) 0.1416 (0.0140) 0.7943 (0.0551) 0.4693 (0.0448) 0.3505 (0.0240) 0.2051 (0.0177)

GFC-Lasso
Band 0.8814 (0.0365) 0.8489 (0.0244) 0.8027 (0.0215) 0.7491 (0.0149) 0.9227 (0.0306) 0.8939 (0.0234) 0.8490 (0.0172) 0.7955 (0.0155)
Hub 0.9224 (0.0647) 0.9202 (0.0389) 0.9202 (0.0323) 0.9327 (0.0181) 0.9553 (0.0456) 0.9531 (0.0308) 0.9513 (0.0218) 0.9570 (0.0132)
E–R 0.7629 (0.0561) 0.4178 (0.0429) 0.3014 (0.0266) 0.1596 (0.0149) 0.8265 (0.0550) 0.5294 (0.0412) 0.4063 (0.0258) 0.2390 (0.0168)
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TABLE 3
Empirical false discovery rates (SD) for Glasso

p 50 100 200 400

Band 0.8449 (0.0073) 0.8887 (0.0035) 0.9156 (0.0022) 0.9354 (0.0020)
Hub 0.8622 (0.0101) 0.9074 (0.0055) 0.9333 (0.0013) 0.9509 (0.0010)
E–R 0.8513 (0.0154) 0.8257 (0.0042) 0.8564 (0.0253) 0.8692 (0.0024)

For the last term in (20), we have

∣∣(β̂i − βi )
′�̂−i,−j (β̂j − βj )

∣∣ ≤ ∣∣(β̂i − βi )
′(�̂−i,−j − �−i,−j )(β̂j − βj )

∣∣
+ ∣∣(β̂i − βi )

′�−i,−j (β̂j − βj )
∣∣.

(a) Band graph (b) Hub graph

(c) E–R graph

FIG. 4. FDR curve and power curve for graphical lasso (p = 200).
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It follows from Lemma 1 in Cai and Liu (2011) that, for any M > 0, there exists
C > 0 such that

P
(

max
1≤i<j≤p

|σ̂ij − σij | ≥ C
√

logp/n
)

= O
(
p−M)

.(21)

Hence,

max
i,j

∣∣(β̂i − βi )
′(�̂−i,−j − �−i,−j )(β̂j − βj )

∣∣ = OP
(
a2
n1(logp/n)1/2).

Moreover, ∣∣(β̂ i − βi )
′�−i,−j (β̂j − βj )

∣∣ = OP
(
λmax(�)|β̂i − βi |22

)
uniformly in 1 ≤ i ≤ j ≤ p. By the Cauchy–Schwarz inequality, we have∣∣∣∣∣1n

n∑
k=1

(β̂i − βi )
′(Xk,−i − X̄−i)

′(Xk,−j − X̄−j )(β̂j − βj )

∣∣∣∣∣
≤ max

1≤i≤p
(β̂i − βi )

′�̂−i,−i (β̂i − βi ).

Combining the above arguments,∣∣∣∣∣1n
n∑

k=1

(β̂i − βi )
′(Xk,−i − X̄−i)

′(Xk,−j − X̄−j )(β̂j − βj )

∣∣∣∣∣
= OP

(
a2
n2 + a2

n1(logp/n)1/2).
We now estimate the second term on the right-hand side of (20). For 1 ≤ i ≤ j ≤ p,
write

ε̃ki(Xk,−j − X̄−j )(β̂j − βj ) = ε̃ki(Xki − X̄i)(β̂i,j − βi,j )I {i �= j}
+ ∑

l �=i,j

ε̃ki(Xkl − X̄l)(β̂l,j − βl,j ),

where β̂j = (β̂1,j , . . . , β̂p−1,j )
′ and we set β̂p,j = 0. Recall that εki is independent

with Xk,−j . Then it can be proved that, for any M > 0, there exists C > 0 such that

P

(
max

1≤i≤p
max

1≤l≤p,l �=i

∣∣∣∣∣1n
n∑

k=1

ε̃ki(Xkl − X̄l)

∣∣∣∣∣ ≥ C

√
logp

n

)
= O

(
p−M)

.

This implies that

max
1≤i≤j≤p

∣∣∣∣∑
l �=i,j

1

n

n∑
k=1

ε̃ki(Xkl − X̄l)(β̂l,j − βl,j )

∣∣∣∣ = OP(an1

√
logp/n).
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A similar inequality holds for the third term on the right-hand side of (20). There-
fore,

1

n

n∑
k=1

ε̂ki ε̂kj = 1

n

n∑
k=1

ε̃ki ε̃kj − 1

n

n∑
k=1

ε̃ki(Xki − X̄i)(β̂i,j − βi,j )I {i �= j}

− 1

n

n∑
k=1

ε̃kj (Xkj − X̄j )(β̂j−1,i − βj−1,i)I {i �= j}(22)

+ OP
((

a2
n1 + an1

)√
logp/n + a2

n2
)

uniformly in 1 ≤ i ≤ j ≤ p. By (2), we have

1

n

n∑
k=1

ε̃ki(Xki − X̄i) = 1

n

n∑
k=1

ε̃2
ki + 1

n

n∑
k=1

ε̃ki(Xk,−i − X̄−i )βi .(23)

By (C1), we have Var(Xk,−iβi ) = (σiiωii − 1)/ωii ≤ C. It follows that

P

(
max

1≤i≤p

∣∣∣∣1n
n∑

k=1

ε̃ki(Xk,−i − X̄−i)βi

∣∣∣∣ ≥ C

√
logp

n

)
= O

(
p−M)

.

By (22) and (23), we have, uniformly in 1 ≤ i ≤ p,

1

n

n∑
k=1

ε̃ki(Xki − X̄i) = 1

n

n∑
k=1

ε̃2
ki + OP(

√
logp/n)

= 1

n

n∑
k=1

ε̂2
ki + OP(

√
logp/n),(24)

+ OP
((

a2
n1 + an1

)√
logp/n + a2

n2
)
,

where the last equation follows from (22) with i = j . So, by (22), (24) and
maxi,j |β̂i,j − βi,j | = OP(an1) = oP(1), for 1 < i < j ≤ p,

1

n

n∑
k=1

ε̂ki ε̂kj = 1

n

n∑
k=1

ε̃ki ε̃kj − 1

n

n∑
k=1

ε̂2
ki(β̂i,j − βi,j )

− 1

n

n∑
k=1

ε̂2
kj (β̂j−1,i − βj−1,i )

+ OP
((

a2
n1 + an1

)√
logp/n + a2

n2
)
.

By (22), we have uniformly in 1 ≤ i ≤ p,

1

n

n∑
k=1

ε̂2
ki = 1

n

n∑
k=1

ε̃2
ki + OP

((
a2
n1 + an1

)√
logp/n + a2

n2
)
.(25)
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So, by (25) and maxi,j |βi,j | ≤ C for some constant C > 0,

1

n

n∑
k=1

ε̂ki ε̂kj + 1

n

n∑
k=1

ε̂2
ki β̂i,j + 1

n

n∑
k=1

ε̂2
kj β̂j−1,i

= 1

n

n∑
k=1

ε̃ki ε̃kj + 1

n

n∑
k=1

ε̂2
kiβi,j + 1

n

n∑
k=1

ε̂2
kjβj−1,i

+ OP
((

a2
n1 + an1

)√
logp/n + a2

n2
)

(26)

= −bnij

ωij

ωiiωjj

+
∑n

k=1(εkiεkj − Eεkiεkj )

n

+ OP

(
an1

√
logp/n + a2

n2 + logp

n

)
uniformly in 1 ≤ i < j ≤ p. The proposition is proved by (C1) and the central
limit theorem.

6.2. Proof of Theorem 3.1. To prove Theorem 3.1, we need some lemmas.
Let ξ1, . . . , ξn be independent and identically distributed d-dimensional random
vectors with mean zero. Let G(t) = 2 − 2	(t) and define | · |(d) by |z|(d) =
min{|zi |;1 ≤ i ≤ d} for z = (z1, . . . , zd)′.

LEMMA 6.1. Suppose that p ≤ cnr and E|ξ1|bdr+2+ε
2 < ∞ for some fixed

c > 0, r > 0, b > 0 and ε > 0. Assume that ‖Cov(ξ1) − Id‖2 ≤ C(logp)−2−γ for
some γ > 0. Then we have

sup
0≤t≤√

b logp

∣∣∣∣P(|∑n
k=1 ξk|(d) ≥ t

√
n)

(G(t))d
− 1

∣∣∣∣ ≤ C(logp)−1−γ1

for γ1 = min{γ,1/2}.
REMARK 2. In the application of Lemma 6.1, only d = 2 is needed.

PROOF OF LEMMA 6.1. For 1 ≤ i ≤ p, put

ξ̂i = ξiI
{|ξi |2 ≤ √

n/(logp)4}− EξiI
{|ξi |2 ≤ √

n/(logp)4},
ξ̃i = ξi − ξ̂i .

We have

P

(∣∣∣∣∣
n∑

k=1

ξk

∣∣∣∣∣
(d)

≥ t
√

n

)
≤ P

(∣∣∣∣∣
n∑

k=1

ξ̂k

∣∣∣∣∣
(d)

≥ t
√

n − √
n/(logp)2

)

+ P

(∣∣∣∣∣
n∑

k=1

ξ̃k

∣∣∣∣∣
2

≥ √
n/(logp)2

)
.
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Note that
n∑

i=1

E|ξi |2I{|ξi |2 >
√

n/(logp)4} = o
(√

n/(logp)2).
We have by condition E|ξ1|bdr+2+ε

2 < ∞,

P

(∣∣∣∣∣
n∑

k=1

ξ̃k

∣∣∣∣∣
2

≥ √
n/(logp)2

)
≤ nP

(|ξ1|2 ≥ √
n/(logp)4) ≤ C(logp)−3/2(G(t)

)d
uniformly in 0 ≤ t ≤ √

b logp. Similarly, we have

P

(∣∣∣∣∣
n∑

k=1

ξk

∣∣∣∣∣
(d)

≥ t
√

n

)

≥ P

(∣∣∣∣∣
n∑

k=1

ξ̂k

∣∣∣∣∣
(d)

≥ t
√

n + √
n/(logp)2

)
− C(logp)−3/2(G(t)

)d
.

So it suffices to prove

sup
0≤t≤√

b logp

∣∣∣∣P(|∑n
k=1 ξ̂k|(d) ≥ (t ± (logp)−2)

√
n)

(G(t))d
− 1

∣∣∣∣ ≤ C(logp)−1−γ1 .

By Theorem 1 in Zaïtsev (1987), we have

P

(∣∣∣∣∣
n∑

k=1

ξ̂k

∣∣∣∣∣
(d)

≥ (
t − (logp)−2)√n

)

≤ P
(|W|(d) ≥ t − 2(logp)−2)+ c1,d exp

(−c2,d (logp)2),
P

(∣∣∣∣∣
n∑

k=1

ξ̂k

∣∣∣∣∣
(d)

≥ (
t + (logp)−2)√n

)

≥ P
(|W|(d) ≥ t + 2(logp)−2)− c1,d exp

(−c2,d (logp)2),
where c1,d and c2,d are positive constants depending only on d , and W is a mul-
tivariate normal vector with mean zero and covariance matrix Cov(

∑n
i=1 ξ̂i/

√
n).

By E|ξ1|bdr+2+ε
2 < ∞,∥∥∥∥∥Cov

(
n∑

i=1

ξ̂i/
√

n

)
− Id

∥∥∥∥∥
2

≤ C(logp)−2−γ .

So, with the density of the multivariate normal random variable, it is easy to show
that

P
(|W|(d) ≥ t − 2(logp)−2) ≤ (

1 + C(logp)−1−γ )(G(t)
)d
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uniformly in 0 ≤ t ≤ √
b logp. By noting that c1,d exp(−c2,d (logp)2) ≤

C(logp)−1−γ1(G(t))d for 0 ≤ t ≤ √
b logp, we obtain that

P

(∣∣∣∣∣
n∑

k=1

ξ̂k

∣∣∣∣∣
(d)

≥ (
t − (logp)−2)√n

)
≤ (

1 + C(logp)−1−γ1
)(

G(t)
)d

uniformly in 0 ≤ t ≤ √
b logp. Similarly, we can prove that

P

(∣∣∣∣∣
n∑

k=1

ξ̂k

∣∣∣∣∣
(d)

≥ (
t − (logp)−2)√n

)
≥ (

1 − C(logp)−1−γ1
)(

G(t)
)d

.

This finishes the proof. �

Let ηk = (ηk1, ηk2)
′ be independent and identically distributed 2-dimensional

random vectors with mean zero.

LEMMA 6.2. Suppose that p ≤ cnr and E|η1|2br+2+ε
2 < ∞ for some fixed

c > 0, r > 0, b > 0 and ε > 0. Assume that Var(η11) = Var(η12) = 1 and
|Cov(η11, η12)| ≤ δ for some 0 ≤ δ < 1. Then we have

P

(∣∣∣∣∣
n∑

k=1

ηk1

∣∣∣∣∣ ≥ t
√

n,

∣∣∣∣∣
n∑

k=1

ηk2

∣∣∣∣∣ ≥ t
√

n

)
≤ C(t + 1)−2 exp

(−t2/(1 + δ)
)

uniformly for 0 ≤ t ≤ √
b logp, where C only depends on c, b, r, ε, δ.

PROOF. The proof is similar to that of Lemma 6.1. Actually, following the
proof of Lemma 6.1, we only need to prove

P
(|W|(2) ≥ t − 2(logp)−2) ≤ C(t + 1)−2 exp

(−t2/(1 + δ)
)
,(27)

where W is a two-dimensional normal vector with mean zero and covariance ma-
trix Cov(

∑n
i=1 η̂i/

√
n) and

η̂i = ηiI
{|ηi |2 ≤ √

n/(logp)4}− EηiI
{|ηi |2 ≤ √

n/(logp)4}.
By E|η1|2br+2+ε

2 < ∞, we have∥∥∥∥∥Cov

(
n∑

i=1

η̂i/
√

n

)
− Cov(η1)

∥∥∥∥∥
2

≤ C(logp)−2−γ .

This, together with Lemma 2 in Berman (1962) and some tedious calculations,
implies (27). �

We now start to prove Theorem 3.1. Let ρij,ω = ωij /
√

ωiiωjj . Put

σii,ε = Var(εi) and Uij =
∑n

k=1(εkiεkj − Eεkiεkj )√
nσ

1/2
ii,ε σ

1/2
jj,ε

.
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Note that Var(εkiεkj ) = σii,εσjj,ε(1 + ρ2
ij,ω). By letting b = 16 in Lemma 6.1,

max
i,j

sup
0≤t≤4

√
logp

∣∣∣∣P(|Uij | ≥ t
√

1 + ρ2
ij,ω)

G(t)
− 1

∣∣∣∣ ≤ C(logp)−1−γ1 .(28)

By (22), it is easy to see that

max
1≤i≤p

|r̂ii − σii,ε| = OP

(√
logp

n

)
.

By (13) and (26), we have

max
1≤i<j≤p

∣∣∣∣
√

n

r̂ii r̂jj

(
Tij + bnij

ωij

ωiiωjj

)
− Uij

∣∣∣∣ = oP
(
(logp)−1/2).

This implies that

P
(

max
1≤i<j≤p

√
n

r̂ii r̂jj (1 + ρ2
ij,ω)

∣∣∣∣Tij + bnij

ωij

ωiiωjj

∣∣∣∣ ≥ (
2 − O

(
1

logp

))√
logp

)
→ 0.

Under the conditions of Theorem 3.1 and noting that max1≤i≤j≤p |bnij − 1| =
OP(

√
logp/n), we have∑

1≤i<j≤p

I
{|T̂ij | ≥ 2

√
logp

} ≥ max(cp, dp)

with probability tending to one, where

cp =
√

log logp and dp = 1

2
max

1≤i≤p
Card

(
Ai (γ )

)
.

Hence,

(p2 − p)/2

max{∑1≤i<j≤p I {|T̂ij | ≥ 2
√

logp},1} ≤ p2 − p

2

1

max(cp, dp)
(29)

with probability tending to one. For 0 < θ < (1 − ρ)/(1 + ρ), let

�(θ) =
{

1 ≤ i ≤ p :∃j �= i, s.t.
|ωij |√
ωiiωjj

≥ θ

}
.

If Card(�(θ)) ≥ p/(logp)6, then∑
1≤i<j≤p

I
{|T̂ij | ≥ 2

√
logp

} ≥ 2−1p/(logp)6
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with probability tending to one and the upper bound in (29) can be replaced by
Cp(logp)6. Set dp = max1≤i≤p Card(Ai (γ )). We let

bp = G−1(p−2α max{cp, dp}) and θ1 = θ

if Card(�(θ)) < p/(logp)6;

bp =
√

2 logp + 14 log logp and θ1 = 1

if Card(�(θ)) ≥ p/(logp)6. Note that

1 − 	(bp) ∼ 1√
2πbp

exp
(−b2

p/2
)
.

Hence, by the definition of t̂ , we have P(0 ≤ t̂ ≤ bp) → 1. By the continuity of
G(t) and the monotonicity of the indicator function, we can obtain that, for 0 ≤
t̂ < 2

√
logp,

G(t̂)(p2 − p)/2

max{∑1≤i<j≤p I {|T̂ij | ≥ t̂},1} = α.

To prove Theorem 3.1, by P(0 ≤ t̂ ≤ bp) → 1, it is enough to show that

sup
0≤t≤bp

∣∣∣∣
∑

(i,j)∈H0
I {|T̂ij | ≥ t}

q0G(t)
− 1

∣∣∣∣ → 0(30)

in probability, where q0 = Card(H0). To prove (30), we need the following lemma.

LEMMA 6.3. Suppose that for any ε > 0,

sup
0≤t≤bp

P
(∣∣∣∣

∑
(i,j)∈H0

[I {|Uij | ≥ t} − P(|Uij | ≥ t)]
2q0(1 − 	(t))

∣∣∣∣ ≥ ε

)
= o(1)(31)

and ∫ bp

0
P
(∣∣∣∣

∑
(i,j)∈H0

[I {|Uij | ≥ t} − P(|Uij | ≥ t)]
2q0(1 − 	(t))

∣∣∣∣ ≥ ε

)
dt = o(vp),(32)

where vp = 1/
√

(logp)(log logp)1/2. Then (30) holds.

Let us first finish the proof of Theorem 3.1. By Lemma 6.3, it suffices to
prove (31) and (32). Define

S1 =
{{

(i, j) : i ∈ �(θ), j ≥ i
}
, if Card

(
�(θ)

)
< p/(logp)6,

∅, if Card
(
�(θ)

) ≥ p/(logp)6,

S2 = {
(i, j) : 1 ≤ i ≤ p, j ∈ Ai(γ )

}
,

H01 = H0 ∩ {S1 ∪ S2}, H02 = H0 ∩ {S1 ∪ S2}c.
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Note that εi and εj have strong correlations for (i, j) ∈ H01. However, because the
cardinality of H01 is O(p1+ρ + p2/(logp)6), the terms in H01 can be neglected.
Actually, by (28) and the fact that q0 ≥ cp2,

E

∣∣∣∣
∑

(i,j)∈H01
[I {|Uij | ≥ t} − P(|Uij | ≥ t)]

q0G(t)

∣∣∣∣
≤ C

(p1+ρ + p2/(logp)6)G(t)

p2G(t)
(33)

= O
(
(logp)−6)

uniformly for 0 ≤ t ≤ 2
√

logp. On the other hand, since |H02| ∼ p2/2, we need
to calculate the variance of the sum

∑
(i,j)∈H02

[· · ·] as follows:

E
[∑

(i,j)∈H02
{I {|Uij | ≥ t} − P(|Uij | ≥ t)}

q0G(t)

]2

(34)

=
∑

(i,j)∈H02

∑
(k,l)∈H02

{P(|Uij | ≥ t, |Ukl| ≥ t) − P(|Uij | ≥ t)P(|Ukl| ≥ t)}
q2

0G2(t)
.

To estimate the sums with four indices i, j, k, l in (34), we split the set H02 into
two subsets as in Cai, Liu and Xia (2013). Let Gabcd = (Vabcd,Eabcd) be a graph,
where Vabcd = {a, b, c, d} is the set of vertices and Eabcd is the set of edges. There
is an edge between i �= j ∈ {a, b, c, d} if and only if |ωij | ≥ (logp)−2−γ . If the
number of different vertices in Vabcd is 3, then we call Gabcd a three vertices
graph (3-G). Similarly, Gabcd is a four vertices graph (4-G) if the number of dif-
ferent vertices in Vabcd is 4. A vertex in Gabcd is said to be isolated if there is no
edge connected to it. Note that for any (i, j) ∈ H02, (k, l) ∈ H02 and (i, j) �= (k, l),
Gijkl is 3-G or 4-G. We say a graph G := Gijkl satisfies (�) if

If G is 4-G, then there is at least one isolated vertex in G;
(�)

otherwise G is 3-G and Eijkl =∅.

Note that for any integers 1 ≤ i, j, k, l ≤ p,

E[εiεj εkεl] = ωijωkl + ωikωjl + ωilωjk

ωiiωjjωkkωll

.

Hence, for any Gijkl satisfying (�),∣∣E[εiεj εkεl]
∣∣ = O

(
(logp)−2−γ ),(35)

where O(1) is uniformly for i, j, k, l. By the above definition, we further divide
the indices set in (34) into

H020 = {
(i, j) ∈ H02, (k, l) ∈H02 : (i, j) = (k.l)

};
H021 = {

(i, j) ∈ H02, (k, l) ∈H02 : (i, j) �= (k.l),Gijkl satisfies (�)
};

H022 = {
(i, j) ∈ H02, (k, l) ∈H02 : (i, j) �= (k.l),Gijkl does not satisfy (�)

}
.
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For the indices in H020 ∪H022, Uij and Ukl may have strong correlations, but the
cardinalities of H020 and H022 are small compared to p2. For these two subsets, we
will use (28) and Lemma 6.2 to estimate the joint tail probabilities of Uij and Ukl .
On the other hand, it follows from (35) that the correlation between Uij and Ukl in
H021 is weak so that their joint tail probabilities can be estimated by Lemma 6.1.
Thus, the sums in the three subsets can be further bounded in the following way.
For the indices in H020, we have by (28),∣∣∣∣

∑
{(i,j),(k,l)}∈H020

{P(|Uij | ≥ t, |Ukl| ≥ t) − P(|Uij | ≥ t)P(|Ukl| ≥ t)}
q2

0G2(t)

∣∣∣∣
(36)

≤ C

p2G(t)
.

It is easy to show that Card(H022)≤ Cp2d2
p . We say the graph Gijkl is aG-bE if

Gijkl is a-G and there are b edges in Eijkl for a = 3,4 and b = 0,1,2,3,4. Note
that for any (i, j) ∈ H0, the vertices i and j are not connected. So we can divide
H022 into two parts:

H022,1 = {{
(i, j), (k, l)

} ∈ H022 :Gijkl is 3G-1E or 4G-2E
}
,

H022,2 = {{
(i, j), (k, l)

} ∈ H022 :Gijkl is 4G-3E or 4G-4E
}
.

It can be shown that Card(H022,2) = O(pd3
p) and Card(H022,1) = O(p2d2

p). Then,
by (28),∣∣∣∣

∑
{(i,j),(k,l)}∈H022,2

{P(|Uij | ≥ t, |Ukl| ≥ t) − P(|Uij | ≥ t)P(|Ukl| ≥ t)}
q2

0G2(t)

∣∣∣∣
(37)

≤ Cd3
p

p3G(t)
.

It remains for us to estimate the terms in H022,1 and H021. To this end, we need
the following lemma.

LEMMA 6.4. We have

max{(i,j),(k,l)}∈H021
P
(|Uij | ≥ t, |Ukl| ≥ t

) = (1 + An)G
2(t)(38)

and

max{(i,j),(k,l)}∈H022,1
P
(|Uij | ≥ t, |Ukl| ≥ t

) ≤ C(t + 1)−1 exp
(−t2/(1 + θ1)

)
(39)

uniformly in 0 ≤ t ≤ bp , where An ≤ C(logp)−1−γ1 .

PROOF. It can be proved that, uniformly for {(i, j), (k, l)} ∈ H021,∥∥Corr
(
(Uij ,Ukl)

)− I2
∥∥

2 = O
(
(logp)−2−γ ),
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and uniformly for {(i, j), (k, l)} ∈ H022,1,∣∣Corr(Uij ,Ukl)
∣∣ ≤ θ1 + O

(
(logp)−2−γ ).

The proof is complete by Lemmas 6.1 and 6.2. �

By Lemma 6.4, we have∣∣∣∣
∑

{(i,j),(k,l)}∈H021
{P(Uij ≥ t,Ukl ≥ t) − P(Uij ≥ t)P(Ukl ≥ t)}

q2
0G2(t)

∣∣∣∣
(40)

≤ C(logp)−1−γ1

and ∣∣∣∣
∑

{(i,j),(k,l)}∈H022,1
{P(Uij ≥ t,Ukl ≥ t) − P(Uij ≥ t)P(Ukl ≥ t)}

q2G2(t)

∣∣∣∣
(41)

≤ Cp−2d2
p

[
G(t)

]−2θ1/(1+θ1).

Using some elementary calculations,∫ bp

0

[
1

p2G(t)
+ d3

p

p3G(t)
+ d2

p

p2[G(t)]2θ1/(1+θ1)

]
dt = o(vp).

Combining (33), (37), (40), (41) and the fact dp = O(pρ), we prove (32). The
proof of (31) is exactly the same with that of (32) and hence is omitted.

PROOF OF LEMMA 6.3. Recall the definition of bp in the proof of Theo-
rem 3.1. Let 0 = t0 < t1 < · · · < tm = bp satisfy ti − ti−1 = vp for 1 ≤ i ≤ m − 1
and tm − tm−1 ≤ vp . So m ∼ bp/vp . For any tj−1 ≤ t ≤ tj , we have∑

(i,j)∈H0
I {|T̂ij | ≥ t}

q0G(t)
≤

∑
(i,j)∈H0

I {|T̂ij | ≥ tj−1}
q0G(tj−1)

G(tj−1)

G(tj )
(42)

and ∑
(i,j)∈H0

I {|T̂ij | ≥ t}
q0G(t)

≥
∑

(i,j)∈H0
I {|T̂ij | ≥ tj }

q0G(tj )

G(tj )

G(tj−1)
.(43)

In view of (42), (43) and G(tj )/G(tj−1) → 1, we only need to prove

max
0≤j≤m

∣∣∣∣
∑

(i,j)∈H0
[I {|T̂ij | ≥ tj } − G(tj )]

q0G(tj )

∣∣∣∣ → 0

in probability. We have

max
1≤i<j≤p

|T̂ij − Uij | = OP
(
an1

√
logp + √

na2
n2 + (logp)/

√
n
)
.
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Since

G(t + o(
√

1/ logp))

G(t)
= 1 + o(1)

uniformly in 0 ≤ t ≤ 2
√

logp, by (13), it suffices to show that

max
0≤j≤m

∣∣∣∣
∑

(i,j)∈H0
[I {|Uij | ≥ tj } − G(tj )]

q0G(tj )

∣∣∣∣ → 0

in probability. We have

P
(

max
1≤j≤m

∣∣∣∣
∑

(i,j)∈H0
[I {|Uij | ≥ tj } − G(tj )]

q0G(tj )

∣∣∣∣ ≥ ε

)

≤
m∑

j=1

P
(∣∣∣∣

∑
(i,j)∈H0

[I {|Uij | ≥ tj } − G(tj )]
q0G(tj )

∣∣∣∣ ≥ ε

)

≤ 1

vp

∫ bp

0
P
(∑

(i,j)∈H0
I {|Uij | ≥ t}

q0G(t)
≥ 1 + ε/2

)
dt

+ 1

vp

∫ bp

0
P
(∑

(i,j)∈H0
I {|Uij | ≥ t}

q0G(t)
≤ 1 − ε/2

)
dt

+
m∑

j=m−1

P
(∣∣∣∣

∑
(i,j)∈H0

[I {|Uij | ≥ tj } − G(tj )]
q0G(tj )

∣∣∣∣ ≥ ε

)
.

So it suffices to prove∫ bp

0
P
(∣∣∣∣

∑
(i,j)∈H0

I {|Uij | ≥ t} − G(t)

q0G(t)

∣∣∣∣ ≥ ε

)
dt = o(vp)

and

m∑
k=m−1

P
(∣∣∣∣

∑
(i,j)∈H0

[I {|Uij | ≥ tk} − G(tk)]
q0G(tk)

∣∣∣∣ ≥ ε

)
= o(1),

which are the conditions of Lemma 6.3. �

6.3. Proof of Propositions 4.1 and 4.2.

PROOF OF PROPOSITION 4.1. We first show that the true βi belongs to the
region ∣∣D−1/2

i �̂−i,−iβi − D−1/2
i â

∣∣∞ ≤ λni(2)(44)
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with probability tending to one. Without loss of generality, we assume EXk = 0. It
suffices to prove that∣∣∣∣1n

n∑
k=1

(Xkj − X̄j )

{∑
l �=i

(Xkl − X̄l)βl − Xki + X̄i

}∣∣∣∣
=

∣∣∣∣1n
n∑

k=1

(Xkj − X̄j )εki

∣∣∣∣ ≤ √
σ̂jjλni(2),

uniformly in 1 ≤ i �= j ≤ p, with probability tending to one. By the independence
between {εki} and {Xk,j , j �= i}, we have

P

(
max
i �=j

1√
nσ̂jj Var(εi)

∣∣∣∣ n∑
k=1

(Xkj − X̄j )εki

∣∣∣∣ ≥ (
2 + O

(
(logp)−1/2))√logp

)

≤ C(logp)−1/2.

Since Var(εi) = 1/ωii ≤ σii , we prove (44). By the definition of β̂i ,∣∣D−1/2
i �̂−i,−i β̂i − D−1/2

i â
∣∣∞ ≤ λni(2).

Then it follows that ∣∣D−1/2
i �̂−i,−i (β̂i − βi )

∣∣∞ ≤ 2λni(2)

with probability tending to one. We next prove the restricted eigenvalue (RE) as-
sumption in Bickel, Ritov and Tsybakov (2009), page 1710, holds with κ(s,1) ≥
cλmin(�)1/2 for some c > 0. Actually, the RE assumption follows from

max
1≤i≤p

|βi |0 = o

(
λmin(�)

√
n

logp

)
and the inequality

δ′�̂−i,−iδ ≥ λmin(�−i,−i )|δ|22 − OP

(√
logp

n

)
|δ|21(45)

for any δ ∈ Rp . By the proof of Theorem 7.1 in Bickel, Ritov and Tsybakov (2009),
we obtain that

max
1≤i≤p

(β̂i − βi )
′�̂−i,−i (β̂i − βi ) = OP

(
max1≤i≤p |βi |0 logp

λmin(�)n

)
(46)

and

max
1≤i≤p

|β̂i − βi |1 = OP

(
max

1≤i≤p
|β i |0λmin(�)−1

√
logp

n

)
.(47)

This implies Proposition 4.1. �
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PROOF OF PROPOSITION 4.2. By the proof of Proposition 4.1, we have for
any δ > 2 and some 1 < c < δ/2,

max
i �=j

1√
nσ̂jj

∣∣∣∣∣
n∑

k=1

(Xkj − X̄j )εki

∣∣∣∣∣ ≤ 1

c
λni1(δ)(48)

with probability tending to one. For a vector a = (a1, . . . , ap)′ and an index set
T ⊆ {1,2, . . . , p}, let aT be the vector with (aT )i = ai for i ∈ T and (aT )i = 0 for
i ∈ T c. Let Ti be the support of β i . Then by the proof of Theorem 1 in Belloni,
Chernozhukov and Wang (2011), we can get |(α̂i (δ) − D1/2

i βi )T c
i
|1 ≤ c̄|(α̂i (δ) −

D1/2
i βi )Ti

|1 for c̄ = (c + 1)/(c − 1). Also,∣∣D−1/2
i �̂−i,−iD

−1/2
i

(
α̂i − D1/2

i βi

)∣∣∞ ≤ 2λni(δ)

with probability tending to one. By the proof of Theorem 7.1 in Bickel, Ritov and
Tsybakov (2009), we can get that (46) and (47) hold for β̂i = β̂i(δ). �
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SUPPLEMENTARY MATERIAL

Supplement to “Gaussian graphical model estimation with false discovery
rate control” (DOI: 10.1214/13-AOS1169SUPP; .pdf). This supplemental mate-
rial includes additional numerical results for GFC-Dantizg and GFC-Lasso.
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