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Abstract

Background: With the advent of high-throughput targeted metabolic profiling techniques, the question of how to

interpret and analyze the resulting vast amount of data becomes more and more important. In this work we

address the reconstruction of metabolic reactions from cross-sectional metabolomics data, that is without the

requirement for time-resolved measurements or specific system perturbations. Previous studies in this area mainly

focused on Pearson correlation coefficients, which however are generally incapable of distinguishing between

direct and indirect metabolic interactions.

Results: In our new approach we propose the application of a Gaussian graphical model (GGM), an undirected

probabilistic graphical model estimating the conditional dependence between variables. GGMs are based on partial

correlation coefficients, that is pairwise Pearson correlation coefficients conditioned against the correlation with all

other metabolites. We first demonstrate the general validity of the method and its advantages over regular

correlation networks with computer-simulated reaction systems. Then we estimate a GGM on data from a large

human population cohort, covering 1020 fasting blood serum samples with 151 quantified metabolites. The GGM

is much sparser than the correlation network, shows a modular structure with respect to metabolite classes, and is

stable to the choice of samples in the data set. On the example of human fatty acid metabolism, we demonstrate

for the first time that high partial correlation coefficients generally correspond to known metabolic reactions. This

feature is evaluated both manually by investigating specific pairs of high-scoring metabolites, and then

systematically on a literature-curated model of fatty acid synthesis and degradation. Our method detects many

known reactions along with possibly novel pathway interactions, representing candidates for further experimental

examination.

Conclusions: In summary, we demonstrate strong signatures of intracellular pathways in blood serum data, and

provide a valuable tool for the unbiased reconstruction of metabolic reactions from large-scale metabolomics

data sets.

Background
Metabolomics is a newly arising field aiming at the mea-

surement of all endogenous metabolites of a tissue or

body fluid under given conditions [1-3]. The resulting

metabolome of a biological system is considered to pro-

vide a readout of the integrated response of cellular

processes to genetic and environmental factors [4].

Understanding the complex biochemical interplay

between hundreds of measured metabolite species is a

daunting task, which can be approached by combining

advanced computational methods with data from large

population-based studies. On the biochemical level,

metabolite concentrations are determined by a set of spe-

cific metabolic enzymes. Variabilities in both enzyme

activity and metabolite exchange rates - induced by a

continuous spectrum of metabolic states throughout

measured samples - give rise to characteristic patterns in

the metabolite profiles which are directly linked the

underlying biochemical reaction network [5,6]. Although

human metabolism has been extensively characterized in
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the past decades [7], the reconstruction of metabolic net-

works from such metabolite patterns is a key question in

the computational research field. Previous attempts

focused on linear metabolite associations measured by

Pearson correlation coefficients. These include studies

utilizing time-course measurements and clustering [8],

theoretical approaches relating metabolite fluctuations to

properties of the dynamical system [5] and metabolic

control analysis to derive effects of enzyme variability [6].

Other reconstruction methods rely on specific perturba-

tions of the biological system, like the induction of con-

centration pulses for certain metabolites [9].

A major drawback of correlation networks, however, is

their inability to distinguish between direct and indirect

associations. Correlation coefficients are generally high

in large-scale omics data sets, suggesting a plethora of

indirect and systemic associations. For example, tran-

scriptional coregulation amongst many genes will give

rise to indirect interaction effects in mRNA expression

data [10]. Similar effects can be observed in metabolic

systems which, in contrast to genetic networks, contain

fast biochemical reactions in an open mass- flow system.

Metabolite levels are supposed to be in quasi-steady

state compared to the time scales of upstream regula-

tory processes [11]. That is, metabolites will follow

changes in gene expression and physiological processes

on the order of minutes and hours, but will appear

unchanged on the order of seconds. These properties,

even though substantially different from mRNA expres-

sion mechanisms, also give rise to indirect, system-wide

correlations between distantly connected metabolites.

Gaussian graphical models (GGMs) circumvent indir-

ect association effects by evaluating conditional depen-

dencies in multivariate Gaussian distributions [10].

A GGM is an undirected graph in which each edge

represents the pairwise correlation between two vari-

ables conditioned against the correlations with all other

variables (also denoted as partial correlation coeffi-

cients). GGMs have a simple interpretation in terms of

linear regression techniques. When regressing two ran-

dom variables X and Y on the remaining variables in the

data set, the partial correlation coefficient between X

and Y is given by the Pearson correlation of the resi-

duals from both regressions. Intuitively speaking, we

remove the (linear) effects of all other variables on X

and Y and compare the remaining signals. If the vari-

ables are still correlated, the correlation is directly deter-

mined by the association of X and Y and not mediated

by the other variables. Partial correlations have recently

been applied to biological data sets for the inference of

association networks from mRNA expression data

[12-15], and for the elucidation of relationships between

genomic features in the human genome [16]. One pre-

vious study used second-order partial correlations of

genetic associations to elucidate genetically determined

relations between metabolites [17].

In this manuscript we now study the capabilities of

GGMs to recover metabolic pathway reactions solely

from measured metabolite concentrations. First, we dis-

cuss the quality of the method and possible problems

and pitfalls on computer-simulated systems. We then

apply GGMs to a lipid-focused targeted metabolomics

data set of 1020 blood serum samples with 151 mea-

sured metabolites from the German population study

KORA [18,19]. The GGM is sparse in comparison to

the corresponding Pearson correlation network, displays

a modular structure with respect to different metabolite

classes, and is stable towards changes in the underlying

data set. We demonstrate that top-ranking metabolite

pairs and further densely connected subgraphs in the

GGM can indeed be attributed to known reactions in

the human fatty acid biosynthesis and degradation path-

ways. In order to systematically verify this finding, we

map partial correlation coefficients to the number of

reaction steps between all metabolite pairs based on a

literature-curated fatty acid pathway model. We observe

statistically significant discriminatory features of GGMs

to distinguish between directly and non-directly inter-

acting metabolites in the metabolic network. In addition,

low-order partial correlations turned out to be a suitable

alternative to full-order GGMs for the present dataset.

Finally, we will summarize and discuss the relevance of

GGMs for metabolomics data sets, point out limitations

of the method and suggest future steps. All metabolo-

mics data used in this study, the generated correlation

networks, model files and metabolite annotations are

available online at http://hmgu.de/cmb/ggm.

Results and Discussion
GGMs delineate direct relationships in artificial reaction

systems

Computer-simulated reaction systems are a valuable tool

for the evaluation of correlation-based measures prior to

their application to real metabolomics data sets. Pre-

vious works focused on the modeling of biological repli-

cates with intrinsic noise on the metabolite levels [5]. In

contrast, we here investigate the effects of variation of

enzymatic activity in a human population cohort. Such

variation might be genetically determined or, more

likely, be the result of distinct regulatory effects and

metabolic states between individuals. All reaction sys-

tems were implemented as ordinary differential equa-

tions with simple mass-action kinetics rate laws and

reversible Michaelis-Menten-type enzyme kinetics (see

Methods). In order to account for the above-mentioned

enzymatic variability we applied a log-normal noise

model, which has been previously described to be a rea-

sonable approximation of cellular rate parameter
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distributions [20]. The standard deviation s was set to a

value of 0.2 for the underlying normal distribution (note

that the results are insensitive to the magnitude of s).

For each parameter sample we calculated the metabolite

steady state concentrations on log-scale, and subse-

quently estimated the GGM by calculating partial corre-

lation coefficients. All analyzed systems exhibit single,

unique steady states independent of the respective para-

meter values. This feature was structurally verified using

the ERNEST toolbox [21] for all networks except the

negative feedback system. For the latter one, we

employed empirical initial state sampling to ensure

monostability in the given parameter range (see Addi-

tional file 1, section 1).

The first network we analyzed consists of a linear

chain of three metabolites with different variants of

reaction reversibility (Figure 1A-C). We observe high

pairwise correlations for metabolites in mutual equili-

brium due to reversible reactions (Figure 1A). This is in

accordance with previous findings from [6], where cor-

relation-generating mechanisms in metabolic reaction

networks were identified. Furthermore, this simple

example demonstrates how partial correlation coeffi-

cients in GGMs discriminate between directly and indir-

ectly related metabolites. If only irreversible reactions

are employed in the chain, neither regular correlation

networks nor GGMs can distinguish between direct and

indirect effects (Figure 1B). Species A is the only input

metabolite in the system, and thus completely deter-

mines the levels of both B and C. This leads to generally

high and non-distinguishable correlations between the

three metabolites. However, if we introduce exchange

reactions for all species, the GGM again correctly

describes the network connectivity (Figure 1C). Such

exchange mechanisms are likely to be present for most

intracellular metabolites, which usually participate in

multiple metabolic pathways (see e.g. KEGG PATH-

WAY online). Note that for this third case both regular

Figure 1 Evaluation of correlation networks (CN) and Gaussian graphical models (GGM) on artificial systems. Line widths represent

relative edge weights in the respective networks (scaled to the strongest edges). A: Linear chain of three metabolites with reversible

intermediate reactions. While the standard Pearson correlation network (CN) is fully connected, implying an overall high correlation of all

metabolites, the GGM correctly discriminates between direct and indirect interactions. B: Linear chain with irreversible intermediate reactions.

Neither CN nor GGM can distinguish direct from indirect effects, as metabolite A equally determines the levels of both B and C. C: Linear chain

with irreversible reactions and input/output reactions for each metabolite. Although the edge weights for both CN and GGM are generally lower,

the GGM now correctly predicts the network topology. D: Branched-chain first-order networks are correctly reconstructed by the GGM. E: End-

product inhibition modules. When modeled as an open system, A is decoupled from the other metabolites and reconstruction fails at this point.

Dashed lines mark enzyme inhibition interactions, larger arrows to the right indicate faster forward than backward reactions. F: Cofactor-driven

network resembling the first three reactions from the glycolysis pathway. A correlation network fails to predict the correct pathway relationships.

G: Non-linear system with a bi-molecular reaction. The GGM predicts only a only weak interaction between B and C. This is due to

counterantagonistic processes of isomerization and substrate participation in the same reaction.

Krumsiek et al. BMC Systems Biology 2011, 5:21

http://www.biomedcentral.com/1752-0509/5/21

Page 3 of 16



and partial correlation values are notably lower than for

the first two chain variants. In addition to linear chains,

pathway modules consisting of branched topologies with

first-order, reversible reactions are correctly recon-

structed by our method (Figure 1D). An overview of the

reconstruction accuracy of GGMs on various types of

first-order networks with different variants of reaction

reversibility can be found in Additional file 1, section 2.

Interestingly, for some reaction setups, the accuracy of

the method improves drastically with an increasing

amount of external noise. Specifically, if the metabolite

transport towards a pathway is subject to higher fluctua-

tions, the GGM edge weight difference between directly

and indirectly connected metabolites becomes larger.

For a detailed discussion of this finding we refer the

reader to Additional file 1, section 3. The second ques-

tion we addressed with artificial reaction networks was

the influence of enzyme-catalyzed reactions on GGM

estimation. Therefore we setup reaction chains with

four metabolites incorporating reversible enzymatic

reactions. Forward maximal reaction rates Vmax were set

twice as fast as the backward reactions in order to

ensure a directed mass flow. We found that the usage of

Michaelis-Menten-type enzyme kinetics instead of mass-

action kinetics does not alter our general findings.

When forward reaction rates exceed backward reactions

by far, the GGM discrimination quality is impaired. This

is in line with the observation that purely irreversible

reactions cannot be distinguished in the mass-action

case (see above). Other specific parameters, like the

Michaelis constant KM , did not affect GGM calculation

(Additional file 1, section 4). Another important aspect

of enzyme-catalyzed reactions are allosteric regulation

mechanism, like end-product inhibition for instance,

which constitutes a negative feedback from the end to

the beginning of a pathway [22]. The reconstruction

results differ depending on whether exchange reactions

are included in the system for not (Figure 1E). If the

inhibitory module represents a closed system (no exter-

nal fluxes except for the first and last metabolite), the

regulatory interaction does not in influence GGM calcu-

lation. The net metabolite turnover speed might be

drastically affected, but the topological effects of this

reaction chain on the correlation structure remain

unchanged. In contrast, when exchange reactions are

introduced (second example in Figure 1E), the inhibition

decouples A from the other metabolites and the recon-

struction fails for this metabolite. Detailed results for

different strengths of the inhibitory interaction are pre-

sented in Additional file 1, section 5.

Next, we studied the influence of cofactor-driven reac-

tions on the reconstruction. Cofactors are ubiquitous

substances usually involved in the transfer of certain

molecular moieties or redox potentials [23]. We

investigated such cofactor-coupled reactions (a) because

they introduce non-linearity in the simulated dynamical

systems, and (b) because cofactors are usually involved

in many reactions and thus generate network-wide

metabolite dependencies. We set up a network resem-

bling the first three reactions from the glycolysis path-

way. It consists of four metabolites and two energy

transfer-related cofactors, ATP and ADP, involved in

two phosphorylation reactions [24]. Again the GGM

precisely describes metabolite connectivity in the system,

whereas a regular correlation graph leads to false inter-

pretations of the network topology (Figure 1F). Cofac-

tors were modeled with input and output reactions to

the rest of the metabolic system in order to account for

the above-mentioned participation of cofactors in var-

ious reactions of the system. Again, it makes a substan-

tial difference whether such exchange reactions are

included in the model or not. Since our toy model only

represents a small part of a larger system, missing

exchange reaction for cofactors would create a false

mass conservation relation that compromises correlation

calculation. Finally, we investigated the effects of rate

laws with non-linear substrate dependencies in the

absence of cofactors. Therefore we modeled a reversible,

bimolecular split reaction with isomerization of the two

substrates (Figure 1G). An example of such a reaction

network can be found in the glycolysis pathway between

fructose-1,6-bisphosphate, glyceraldehyde-3-phosphate

and dihydroxyacetone phosphate. Our simulations

demonstrate that again a regular Pearson correlation

network cannot delineate direct from indirect relation-

ships in the pathway. The GGM only detects a weak

association between B and C. This is due to counteran-

tagonistic processes in this reaction setup: isomerization

and other reversible reactions generally induce positive

correlations, whereas coparticipation as substrates in the

same reaction induces negative correlations. Such effects

of correlation-generating mechanisms which cancel each

other out have been described before [6] and pose a

problem to all reconstruction approaches which rely on

linear dependencies.

The drawbacks of correlation-based methods dis-

cussed in this section, especially inhibitory mechanisms

with exchange reactions and antagonistic mechanism,

have to be kept in mind when attempting to reconstruct

metabolic reactions from steady state data. For the pre-

sent study, however, we assume the primarily linear

lipid pathways not to contain such problematic reaction

motifs.

A GGM inferred from a large-scale population-based data

set displays a sparse, modular and robust structure

In the following we estimated a Gaussian graphical

model using targeted metabolomics data from the
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German population study KORA [18] ("Kooperative

Gesundheitsforschung in der Region Augsburg”). We

used a subset of the data set previously evaluated in a

genome-wide association study [19], containing 1020

targeted metabolomics fasting blood serum measure-

ments with 151 quantified metabolites. The metabolite

panel includes acyl-carnitines, four classes of phospholi-

pid species, amino acids and hexoses (see Methods).

Both regular Pearson correlation coefficients and partial

correlation coefficients (inducing the GGM) were calcu-

lated on the logarithmized metabolite concentrations.

All edges corresponding to correlation values signifi-

cantly different from zero now induce the networks dis-

played in Figure 2A+B. In order to exclude correlation

effects generated by genetic variation in the study

cohort, we investigated the in influence of SNP allele

data from [19] on the GGM calculation. We found

genetic effects to be neglectable (see Additional file 2),

indicating that GGMs capture intrinsic biochemical

properties of the system.

Pearson correlation coefficients show a strong bias

towards positive values in our data set (Figure 2C); a

typical feature of high-throughput data sets, also

observed e.g. in microrarray expression data, which can

be attributed to unspecific or indirect interactions [10].

We obtain 5479 correlation values significantly different

from zero with  = −8 83 10 7. . (a = 0.01 after Bonfer-

roni correction), yielding an absolute significance corre-

lation cutoff value of 0.1619 (see Methods). In contrast,

the GGM shows a much sparser structure with 417 sig-

nificant partial correlations after Bonferroni correction

(Figure 2D). Most values center around a partial correla-

tion coefficient of zero, whereas we observe a clear shift

towards positive significant values. Note that negative

partial correlations provide particular information that

will be discussed later in this manuscript.

The GGM displays a modular structure with respect

to the seven metabolite classes in our panel, while the

class separation in the correlation network appears

rather blurry (Figure 2E+F). We observe a clear separa-

tion of the amino acids and acyl-carnitines from all

other classes. The four groups of phospholipids (diacyl-

PCs, lyso-PCs, acyl-alkyl-PCs, and sphingomyelins) still

showed locally clustered structures, but are strongly

interwoven in the network. This is probably an effect of

the dependence of all phospholipids on a similar fatty

acid pool and, subsequently, the biosynthesis pathway

acting on this substrate pool. In order to get an objec-

tive quantification of this observation, we calculated the

group-based modularity Q on all significantly positive

GGM edges according to [25] (see Methods). The same

measure was calculated for 105 randomized GGM net-

works (random edge rewiring). For the original GGM

we obtain a modularity of Q = 0.488, and the random

networks yield Q = 0.118 ± 0.016, resulting in a highly

significant z-score of z = 23.49. Furthermore, the modu-

larity value induced by using the metabolite classes was

compared to a partitioning optimized by simulated

annealing. The optimized modularity is only slightly

higher with Q = 0.557 and the resulting partitioning is

very similar to the metabolite classes (see Additional file

3). Performing the modularity analysis with the full,

weighted partial correlation matrix produces equivalent

results (also shown in S3).

An important question for a multivariate statistical

measure such as partial correlations is the robustness

with respect to changes in the underlying data set.

Furthermore, the dependence of the measure on the

size of the data set needs to be addressed. To answer

these questions, we performed two types of perturba-

tions of our data set. First, we applied sample bootstrap-

ping with 1000 repetitions and compared the resulting

partial correlations to the original data set (Additional

file 4, Figure S1). We observe small mean differences

with low standard deviation (0.03 ± 8. 2 · 10-4). This

indicates that for a large data set with n = 1020 samples,

GGMs are robust against the choice of samples. We

assume that each distinct metabolic state in the cohort

is captured by a bootstrap sample, and thus all informa-

tion required to calculate the GGM is contained. In

addition to the bootstrap analysis, we estimated partial

correlations for continuously decreasing sample sizes

(Additional file 4, Figure S2). For each data set size we

randomly picked samples from the original data set and

repeated the procedure 100 times. The analysis shows

that the GGM is stable even under decrease of the sam-

ple number. For instance, for a data set containing only

around half of the original samples (n = 530) we get a

partial correlation difference of 0.03 ± 6.9 10-4. Only

when the number of samples gets close to the number

of variables (m = 151) the correlation matrix becomes

ill-conditioned and strong differences from the original

partial correlations occur. These problems of smaller

metabolomics studies could be dealt with by regulariza-

tion approaches or the usage of low-order partial corre-

lation [26]. Taken together, our results demonstrate that

the analyzed metabolomics data set is sufficient to

robustly elucidate relationships between the measured

metabolites.

Strong GGM edges represent known metabolic

pathway interactions

The next step in our analysis was the manual investiga-

tion of metabolite pairs displaying strong partial correla-

tion coefficients. Remarkably, we are able to provide

pathway explanations for most metabolite pairs in the
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Figure 2 Network properties of the correlation network (CN) and Gaussian graphical model (GGM) inferred from a targeted

metabolomics population data set (1020 participants, 151 quantified metabolites). A+B: Graphical depiction of significantly positive edges

in both networks, emphasizing local clustering structures. Each circle color represents a single metabolite class. C+D: Histograms of

151

2
11325









 = pairwise correlation coefficients (i.e. edge weights) for both networks. Green lines indicate the median values, red lines denote a

significance level of 0.01 with Bonferroni correction. The CN displays a general bias towards positive correlations throughout all metabolites. For

the GGM, the median value lies around zero and we observe a shift towards significantly positive values. E+F: Modularity between metabolite

classes measured as the relative out-degree from each class (rows) to all other classes (columns). The GGM (right) shows a clear separation of

metabolite classes, with some overlaps for the different phospholipid species diacyl-PCs, lyso-PCs, acyl-alkyl-PCs and sphingomyelins. Values

range from white (0.0 out-degree towards this class) to black (1.0). PCs = phosphatidylcholines.
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top 20 positive partial correlations (Table 1). In the fol-

lowing, we will specifically discuss interesting, high-scor-

ing metabolite pairs along with their responsible

enzymes in the metabolic pathways.

The highest partial correlation in the data set with ζ =

0.821 is found for the two branched-chain amino acids

Valine and xLeucine, where the latter compound repre-

sents both Leucine and Isoleucine (which have equal

masses and are not distinguishable by the present

method). The three metabolites are in close proximity in

the metabolic network concerning their biosynthesis and

degradation pathways. Further related amino acid pairs

that display significant partial correlations are Histidine

and Glutamine (ζ = 0.383), Glycine and Serine (ζ = 0.326)

as well as Threonine and Methionine (ζ = 0.298).

Clear-cut signatures of the desaturation and elonga-

tion of long chain fatty acids can be seen for various

sphingomyelins and lyso-PCs (Figure 3A). For example,

SM C18:0 and SM C18:1 strongly associate with ζ =

0.767, most probably representing the initial ∆9 desa-

turation step of the polyunsaturated fatty acid biosynth-

esis pathway from C18:0 to C18:1-∆9 by SCD (Steaoryl-

CoA desaturase). The similarly high partial correlation

between SM C16:1 and SM C18:1 (ζ = 0.765) as well as

lysoPC a C16:1 and lysoPC a C18:1 (ζ = 0.315) can be

attributed to the ELOVL6-dependent elongation from

C16:1-∆ 9 to C18:1-∆ 11. Interestingly, this reaction is

not contained in the public reaction databases but has

been previously described by [27].

Table 1 Top 20 positive GGM edge weights (i.e. partial

correlation coefficients, PCC) in our data set along with

proposed metabolic pathway explanations

Metabolite 1 Metabolite 2 PCC Comment

Val xLeu 0.821 Branched-chain amino acids

SM C18:0 SM C18:1 0.767 SCD/SCD5 desaturation

SM C16:1 SM C18:1 0.765 ELOVL6

PC ae C34:2 PC ae C36:3 0.752 2 reaction steps

SM (OH)
C22:1

SM (OH)
C22:2

0.743 sphingolipid-specific desaturation?

PC aa C34:2 PC aa C36:2 0.735 ELOVL1/ELOVL6 elongation

C10:0-carn C8:0-carn 0.735 b-oxidation step

lysoPC a
C16:0

lysoPC a
C18:0

0.731 ELOVL6 elongation

PC aa C38:6 PC aa C40:6 0.709 ACOX1/3 + various ELOVLs

SM (OH)
C14:1

SM (OH)
C16:1

0.686 sphingolipid-specific elongation?

PC aa C36:4 PC aa C38:4 0.672 ACOX1/3 + various ELOVLs

PC aa C32:1 lysoPC a
C16:1

0.661 C16:0/C16:1 phospholipid
association

PC aa C38:5 PC aa C40:5 0.653 various ELOVLs

PC ae C34:3 PC ae C36:5 0.607 at least 3 reaction steps

PC aa C36:5 PC aa C38:5 0.596 ACOX1/3 + various ELOVLs

SM C24:0 SM C24:1 0.577 sphingolipid-specific desaturation?

PC ae C32:1 PC ae C32:2 0.574 SCD/SCD5 desaturation

SM (OH)
C22:2

SM C24:1 0.567 possible elongation intermediate

C18:1-carn C18:2-carn 0.561 b-oxidation intermediate

Most metabolite pairs can be directly linked to reactions in the fatty acid

biosynthesis pathway, the b-oxidation pathway or amino acid-associated

pathways.

Figure 3 Biochemical subnetworks identified by the GGM. Line widths correspond to partial correlation coefficients. A: Elongation and

desaturation signatures, most likely mediated by ELOVL6 and SCD, for C16 and C18 fatty acids incorporated in lyso-PCs and sphingomyelins. B:

Top: Diacyl-phosphatidylcholine (PC aa) species with elongation and peroxisomal b-oxidation associations. Several combinatorial variants of side

chain compositions are possible for C36:4 and C38:4, and thus different enzymes could mediate this connection. Bottom: Alkyl-acyl-

phosphatidylcholines (PC ae) with supposedly distinct side chain composition, giving rise to a low association with a directly connected species

(C36:2). C: Recovered b-oxidation pathway from C18 down to C4. Four enzymes with overlapping substrate specificities catalyze the rate-limiting

reactions of this pathway. D: Two high-scoring triads, where metabolite pairs with a pathway distance of two constitute strong partial

correlations. This feature of partial correlations aids in the reconstruction of the network topology beyond the direct neighborhood of each

metabolite.
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We identify a variety of strong GGM edges between

diacyl-PC (lecithins, PC aa) and acyl-alkyl-PC (plasmalo-

gens, PC ae) metabolite pairs (Figure 3B). For instance,

PC aa C34:2 and PC aa C36:2 associate strongly with ζ

= 0.735, and PC aa C36:4 and PC aa C38:4 show a par-

tial correlation of ζ = 0.672. While the first pair can be

precisely explained by an elongation from C16:0 to

C18:0 by ELOVL6, different combinatorial variants

come into play for the PC aa C36:4/PC aa C38:4 pair.

Our mass-spectrometry technique only measures brutto

compositions, that is the bulk side chain carbon content

and total degree of desaturation. Depending on the

exact composition of both fatty acid residues in the

respective lipids, this association could be caused by

long-chain elongations (C14 to C16 and C16 to C18

through fatty acid synthase and ELOVL6, respectively),

by very-long-chain elongations (C22:4 to C24:4 through

ELOVL2 or ELOVL5) and even by peroxisomal b -oxi-

dation of fatty acids (through ACOX1 or ACOX3). An

interesting situation arises for the phospholipids PC ae

C34:2, PC ae C36:3 and PC ae C36:2. From its brutto

formula the latter species could represent an intermedi-

ate step between the other two metabolites. However, it

associates poorly with both other phospholipids, which

in turn display a strong partial correlation (ζ = 0.752).

This finding can be explained by distinct fatty acid side

chain compositions, showing differential incorporation

of C18:0, C18:1 and C18:2 (Figure 3B, bottom).

For the acyl-carnitine group we observe a remarkably

high partial correlation of ζ = 0.735 for C8-carn and

C10-carn and further acyl-carnitine pairs with a carbon

atom difference of two (Figure 3C). These associations

can be attributed to the b-oxidation pathway, i.e. the

catabolic breakdown of fatty acids in the mitochondria

[23]. During this degradation process, C2 units are con-

tinuously split off from the shrinking fatty acid chain.

Four acyl-CoA dehydrogenases, ACADS, ACADM and

ACADL, ACADVL, catalyze the rate limiting reactions

of b-oxidation for different fatty acid chain lengths

[28,29]. Our interpretation of acyl-carnitine correlations

as signatures of mitochondrial b-oxidation is in accor-

dance with [19], where we identified associations

between C8+C10, C12 and C4 with genetic variation in

the ACADM, ACADL and ACADS loci, respectively.

We observe several associations that were not directly

attributable to enzymatic interactions in the fatty acid

biosynthesis or degradation pathways. For instance,

lysoPC a 18:1 and lysoPC a 18:2 share a strong GGM

edge (ζ = 0.543) although the ∆12-desaturation step

from oleic acid to linoleic acid is known to be missing

in humans [30]. This missing reaction gives rise to the

essentiality of fatty acids in the ω-6 unsaturated fatty

acid pathway. A functional explanation could be a sys-

temic equilibrium between the two fatty acids or

remodeling processes specific for the lyso-PC metabolite

class. Further examples are high partial correlations

between the hydroxy sphingomyelins SM (OH) C22:1

and SM (OH) C22:2 (ζ = 0.743) as well as the sphingo-

myelins SM C24:0 and SM C24:1 (ζ = 0.577). To the

best of our knowledge, there is no evidence for such

fatty acid desaturation reactions in humans. The

detected associations might therefore represent novel

pathway interactions recovered by the Gaussian graphi-

cal model.

Negative values play a particular role in the interpreta-

tion of partial correlations coefficients. On the one

hand, they obviously occur whenever regular negative

correlations are involved. Mechanisms giving rise to

negative correlations are, for example, coparticipation in

the same reaction (cf. Figure 1E), mass conservation

relations [6] or opposing regulatory effects. It is to be

noted, however, that negative correlations are rare in

our specific metabolomics data set (cf. Figure 2C). On

the other hand, due to the mathematical properties of

partial correlation coefficients negative partial correla-

tion coefficients occur whenever two metabolites A and

B have a strong correlation with a third metabolite C,

but do not share a high correlation value with each

other. Two examples from our data set are shown in

Figure 3D. First, SM C18:0 is negatively partially corre-

lated with SM C16:1, and both of these in turn are

highly positively partially correlated with SM C18:1. The

fatty acids C16:1 and C18:0 have no direct connection

in the pathway, causing the strong negative partial cor-

relation value. A similar situation can be found for three

diacyl-PCs: PC aa C34:2 and PC aa C36:1 show a high

partial correlation with PC aa C36:2, but a negative par-

tial correlation with each other. Again, there is no possi-

ble direct reaction from a C34:2 lipid species to a C36:1

species. Not all metabolite triads in the network show

such a one-negative/two-positive motif. But if present,

they provide another step in the reconstruction of meta-

bolic pathways (beyond the direct neighborhood of each

metabolite) by detecting metabolites which are exactly

two steps apart.

Partial correlation coefficients discriminate between

directly and indirectly connected metabolites in a

literature-curated fatty acid pathway model

The analyses from the previous section strengthened our

conception that a GGM inferred from blood serum

metabolomics data represents true metabolite associa-

tions. To systematically assess how GGM edges and

pathway proximity between our lipid metabolites are

related, we generated a literature-based model of fatty

acid biosynthesis (Figure 4A). This model includes reac-

tions from the public databases BiGG (H. sapiens Recon

1) [7], the Edinburgh Human Metabolic Network [31]
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and KEGG PATHWAY [29]. We then mapped the par-

tial correlation coefficients from the KORA data set

onto the minimal number of reaction steps between

each pair of metabolites (pathway distance). Since our

metabolite panel contains fatty-acid based lipids, we

project the respective lipid compositions onto the fatty

acid biosynthesis pathway (Figure 4B-D). For the analy-

sis of acyl-carnitines we implemented a model of the

b-oxidation pathway, consisting of a linear chain of C2

degradation steps (C10®C8®C6 etc.).

We observe a strong tendency towards significantly

positive partial correlations for a pathway distance of

one, i.e. directly connected metabolite pairs, for all five

metabolite classes (Figure 5A). In total, 86 out of 130

partial correlations (66%) for a pathway distance of one

are significantly positive. For instance, for the lyso-PC

Figure 4 Fatty acid biosynthesis model and pathway distance calculation method. A: De novo synthesis of fatty acids with initial SCD-

dependent desaturations (left), and the ω-3 and ω-6 poly-unsaturated fatty acid pathways (middle and right). Note that we omitted the specific

positions of each double-bond since the mass-spectrometry technique in our study does not resolve positional information. B: Exemplary

distance calculation on two lyso-PCs. We projected lipid side chain compositions onto the respective fatty-acid biosynthesis reactions. Reaction

reversibility is not taken into account in our calculation, i.e. distances are always symmetric. C: If no known pathway connection between two

fatty acids exists, we assign a formal distance of infinity. D: For phospholipids that contain two fatty acid residues we need to take into account

all combinatorial variants. We here show three variants for the connection between PC aa C38:4 and PC aa C38:5. In these examples, PC aa C38:4

could either consist of C18:0+C20:4 or C16:0+C22:4, while PC aa C38:5 could be C18:0+C20:5 or C16:0+C22:5. The shortest possible distance, one

in this case, will be used for further calculations.
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class (Figure 5A) nearly all partial correlation coeffi-

cients for a pathway distance of one are above signifi-

cance level, whereas most values for a distance of two

or larger remain insignificant. Some outliers from this

observation, however, require closer inspection: First, for

some metabolite classes we observe negative partial cor-

relation values for metabolite pairs that are exactly two

steps apart in the metabolic pathway: 10 of 73 partial

correlations in the diacyl-PC class and 2 of 2 partial cor-

relations in the sphingomyelin class are significantly

negative for a distance of two. These negative values are

effects of the coregulated metabolite triads described

previously in this text. Second, we find 91 of 932

(~9:8%) unconnected metabolite pairs (pathway distance

= ∞) with a partial correlation above significance level.

These pairs represent potentially novel pathway predic-

tions, missing interactions in the model or effects

upstream of the metabolic network like enzyme

coregulation.

A direct comparison of both partial and Pearson cor-

relation coefficients for the diacyl-phosphatidylcholine

class is shown in Figure 5B. As described earlier in this

manuscript, we observe a general over-abundance of sig-

nificant Pearson correlations independent of the actual

pathway distance. Even for the metabolites without a

known pathway connection, 1394 of a total of 1569

Pearson correlations are significant (88.85%, over all

classes), in contrast to 131 out of 1569 for the partial

correlations (8.35%).

The significantly different correlation value distribu-

tions between directly and indirectly linked metabolites

(Figure 5A+B) barely provide a good quantification of

the actual discrimination accuracy of this feature. There-

fore we assessed the discriminative power of partial cor-

relations to tell apart direct from indirect interactions

by means of sensitivity and specificity. The sensitivity

evaluates which fraction of directly connected metabo-

lites in the pathway are recovered by significant GGM

edges, whereas the specificity states how many of the

significant edges actually represent a direct connection.

A commonly used trade off measure between sensitivity

and specificity is the F1 score, which is defined as the

harmonic mean of both quantities [32] (see Methods).

Figure 5C lists sensitivity, specific city and F1 for all 5

metabolite classes along with an evaluation of partial

correlation distribution differences between directly and

indirectly linked metabolites (determined by Wilcoxon’s

ranksum test). F1 values over 0.75 and significant p-

values for the ranksum test indicate a strong discrimina-

tion effect of partial correlation coefficients concerning

direct vs. indirect pathway interactions. Possible reasons

for non-perfect sensitivity and specific city values will be

discussed in detail at the end of this text.

Low-order partial correlations

The data set from our present study contained enough

samples to calculate full-order partial correlations, that

is to calculate pairwise correlations conditioned against

Figure 5 Systematic evaluation of partial correlation coefficients versus pathway distances. Dashed lines in A and B indicate a

significance level of 0.01 with Bonferroni correction. A: Pathway distances from our consensus model against partial correlation coefficients for

the five lipid-based metabolite classes in our data set. We observe an enrichment of significant partial correlations for a pathway distance of one,

which rapidly drops for an increasing number of pathway steps. B: Comparison of partial correlation coefficients and Pearson correlation

coefficients. Pearson correlation coefficients are generally high, independent of the actual pathway distance, indicating for systemic coregulation

effects throughout the lipid metabolism. C: Wilcoxon rank sum test p-values between the partial correlation distributions of directly and

indirectly connected pairs, and sensitivity/specificity/F1 values measuring the discriminatory power to distinguish direct from indirect pairs.
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all other n-2 metabolites. However, previous studies

demonstrated that low-order partial correlation

approaches can already be sufficient to elucidate direct

interactions [12,16]. In order to assess how these mea-

sures perform in comparison to the full-order GGM, we

calculated first-, second- and third order partial correla-

tions using the approach developed by [12] for both

computer-simulated networks and the metabolomics

data (Additional file 5). The toy systems reveal clear

cases where low-order approaches fail, for instance in

the diamond motif displayed in Figure 1D. Surprisingly,

however, especially first-order partial correlations

worked remarkably well in discriminating direct from

indirect interactions in the real data (F1 values close to

those displayed in Figure 5C). This result provides two

valuable pieces of information. First, low-order partial

correlation approaches, which require much less sam-

ples to obtain stable estimates, appear to be a suitable

alternative to GGMs for the metabolite panel used in

this study. Second, the high relative scoring of first-

order partial correlations provides insights into the cor-

relation structures in the data set. In particular, this

result indicates that the underlying metabolic pathways

are primarily composed of acyclic, linear chains, which

fits well to the fatty acid pathways dominating our mea-

sured lipid species.

Conclusions
In this paper we addressed the reconstruction of meta-

bolic pathway reactions from high-throughput targeted

metabolomics measurements. Previous reconstruction

approaches employed pairwise association measures, pri-

marily standard Pearson correlation coefficients, to infer

network topology information from metabolite profiles

[5,6,8,33]. We here demonstrated the usefulness of

Gaussian graphical models and their ability to distin-

guish direct from indirect associations by estimating the

conditional dependence between variables. GGMs are

based on partial correlation coefficients, that is the Pear-

son correlation between two metabolites corrected for

the correlations with all other metabolites.

From computer simulations of metabolic reaction net-

works we deduced a set important aspects to be consid-

ered when interpreting partial correlation coefficients in

reaction systems: (a) Metabolites in equilibrium due to

reversible reactions can readily be recovered, whereas

irreversible reactions pose a substantial problem to asso-

ciation-based reconstruction attempts (in concordance

with [6]). (b) Input and output reactions for intermedi-

ate metabolites, however, improve the reconstruction

accuracy. Such exchange reactions are likely to be pre-

sent for most naturally occurring metabolites due to

highly interconnected metabolic pathways. (c) With an

increasing amount of fluctuations on the input reaction,

the partial correlation difference between direct and

indirect interactions increases for certain network topol-

ogies (e.g. for the irreversible linear metabolite chains).

This indicates that a high heterogeneity of metabolic

states in a population data set like the KORA cohort

might be beneficial rather than problematic for our

approach. (d) Metabolite connectivity in cofactor-driven

networks can be accurately reconstructed. The presence

of exchange reactions for cofactors, as they are likely to

be present in real systems, has substantial impact on the

reconstruction quality. The connectivity of the cofactors

themselves, however, remains spurious. (e) Saturation

effects in enzyme-catalyzed reactions do not pose a pro-

blem for the reconstruction process. However, inhibitory

influences in metabolic modules that include exchange

reactions might decouple certain metabolites and lead to

false negative results. (f) Non-linear rate laws and antag-

onistic, correlation-generating mechanisms might impair

reconstruction quality.

In the next step we inferred both a GGM and a regu-

lar correlation network from a large-scale metabolomics

data set with 1020 strictly standardized samples from

overnight fasting individuals measured by state-of-the

art metabolomics technologies [19]. We investigated the

influence of the 15 genome-wide-significant SNPs from

this study on our GGM and demonstrated that genetic

variation in the general population is neglectable for

partial correlation calculation. We found that the GGM

displays a much sparser structure than regular correla-

tion networks. Only around 400 partial correlation

values were above significance level (~3.6%), whereas

half of all Pearson correlation values were significant

after Bonferroni correction. This depicted the nature of

partial correlation coefficients to neglect indirect asso-

ciations between distantly related metabolites. We

detected a strongly modular structure in the GGM with

respect to the different metabolite classes, except for the

four types of phospholipids which appear slightly inter-

woven. This provides a unique picture of the separation

of metabolic pathways (synthesis, degradation and

amino acid metabolism), but also the interaction

between different lipid classes dependent on a single

intracellular fatty acid pool. Finally, GGMs were stable

with respect to both choice and number of samples in

the data set. Even a smaller data set with only a few

hundred samples would have been sufficient to achieve

the results from this study. The estimation of GGMs for

data sets with less samples than metabolites is possible

[26], but notable deviations from the true partial corre-

lation coefficient shave to be expected.

Manual investigation of high-scoring substructures in

the GGM revealed groups of metabolites that could be

directly attributed to reaction steps from the human

fatty acid biosynthesis and degradation pathways. We
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detected effects of ELOVL-mediated elongations and

FADS-mediated desaturations of fatty acids as well as

signatures of the catabolic b-oxidation pathway. For

instance, our method successfully recovered a direct

elongation from C16:1 to C18:1, which has been experi-

mentally shown by [27] but is not present in the public

reaction databases. Furthermore, we identified highly

negative partial correlations as an indication for a path-

way distance of two, serving as a further hint in the

reconstruction of metabolic network topology. In order

to systematically evaluate whether high partial correla-

tions represent direct interactions, we generated a con-

sensus model of fatty acid biosynthesis reactions from

three publically available reaction databases. By mapping

partial correlation coefficients to the number of reaction

steps between two metabolites we observed a statistically

significant enrichment of high values for a pathway dis-

tance of one. We calculated a high accuracy for partial

correlations to discriminate between directly and indir-

ectly associated metabolites, as measured by sensitivity,

specificity and the F1 measure. Interestingly, we could

show that the discrimination quality of low-order partial

correlations [12], especially the first-order variants, is

close to the full-order GGM. Even though this might be

a feature specific to the metabolite panel used in this

study, low-order partial correlations represent a suitable

alternative especially for studies with only few samples.

If more samples than variables are available, however,

we recommend GGMs as an unbiased approach condi-

tioning against as many parameters as possible.

Taken together, our results demonstrate that GGMs

inferred from metabolomics measurements in blood

plasma samples reveal strong signatures of intracellular

and even inner-mitochondrial processes. Previous studies

on blood plasma samples detected similar relationships

with cellular processes based on genetic associations [19]

and case/control drug trials [34]. In this work we could

now show that metabolite profiles alone are sufficient to

capture the dynamics of metabolic pathways.

However, GGMs can never provide a perfect recon-

struction of the underlying system. There are several

factors that lead to the absence of high partial correla-

tions between interacting metabolites, that is false nega-

tive edges in the GGM: (a) Counterantagonistic

correlation-generating processes and bimolecular reac-

tions (see above) might lead to the elimination of pair-

wise association; cf. [6]. (b) The respective enzyme

might not be active in the current metabolic state, or its

effects on the respective metabolite pools are neglect-

able. (c) Contrary to our general finding that even blood

plasma metabolites carry strong signatures of metabolic

pathways, the signal might be diminished for certain

types of metabolites. Furthermore, the actual origins of

blood plasma metabolites, e.g. in terms of measured cell

types or causal tissue activity, still remain to be unra-

veled. The above-mentioned mechanisms are possible

explanations for the non-perfect sensitivity values

observed in Figure 5C. False positive GGM edges, on

the other hand, provide interesting new metabolic path-

way hypothesis. The presence of strong partial correla-

tions in the absence of known metabolic connections

could point out missing pathway information or regula-

tory effects not captured in a simple stoichiometric

representation of the pathway.

Conclusively, this study presented Gaussian graphical

models as a valuable tool for the recovery of biochem-

ical reactions from high-throughput targeted metabolo-

mics data. The present work could be extended by

comparing high partial correlation coefficients with

enzyme activity or expression data, or by the experimen-

tal validation of promising interaction candidates. We

suggest using GGMs as a standard tool of investigation

in future metabolomics studies, utilizing the upcoming

wealth of metabolic profiling data to form a more com-

prehensive picture of cellular metabolism.

Methods
In silico simulation of artificial reaction networks

Let x = (x1,..., xr) be a vector of metabolite concentrations

and S ε ℤ
m×r the stoichiometry matrix of a dynamical sys-

tem with m metabolites and r reactions. Each column in

S represents the compound stoichiometry of a single

reaction, with negative values for the educts of a reaction

and positive values for its products (cf. [35]). Further-

more, we define an educt stoichiometry matrix Se, which

only contains the negative values from S. The reaction

rate laws v can be written as v(x, k) = diag(k)c(x), where

k := (k1,...,kr) represents a vector of elementary rate con-

stants and c x x j rj i
m

i
s ij

e

( ) = ∏ ==
−

: , , ...,1 1 contains the

products of substrate concentrations according to the

law of mass action[36]. For example, for the reaction x1 +

x2 ® x3 we obtain c = x1x2, and 2x1 + 3x2 ® 2x3 yields

c = x1
2x2

3. For enzyme-catalyzed reactions i, the corre-

sponding entries in v are formulated using reversible

Michaelis-Menten-type kinetics [37,38] instead of the

mass-action term above:

v

V

K
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K
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K
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Where Vmax
+ and Vmax

− are the product and substrate

formation constants, respectively, K M
s and K M

p repre-

sent the Michaelis constants for substrate and product,
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[S] represents the substrate concentration and [P] repre-

sents the product concentration. Note that we omitted

reaction-specific parameter indices for simplicity here.

Allosteric regulation was modeled using a mixed inhibi-

tion mechanism, which extends the rate law from equa-

tion (1) as follows:

v
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V
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P

I

K

S

K

P

K

i
M M

p

i M M
p

=
⋅ [ ] − ⋅ [ ]
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+ −
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s

s
1 1 ++











[ ]I

K ii

with [I] being the inhibitor concentration, Ki the bind-

ing rate of the inhibitor to the enzyme and Kii the bind-

ing rate of the inhibitor to the substrate-enzyme (or

product-enzyme) complex. In a simple mixed (non-com-

petitive) inhibition scenario, we assume Ki = Kii.

The ordinary differential equations describing the

temporal evolution of the system are now given as

d

d

x

t
S v x k= ⋅ ( ), (2)

To introduce variability each parameter is subject to

fluctuations according to a log-normal distribution

with mean 1 and changing variances:

ki i~ ,LogN 1 2( ) . Finally, for fixed S and k, Pearson

and partial correlations (see below) are calculated by

drawing the vector k multiple times from the para-

meter distribution, calculating the corresponding meta-

bolite steady state concentrations and logarithmizing

the obtained values. If the system contains only zer-

oth-order and first-order reactions (i.e. input reactions

and reactions with only one substrate), the steady state

concentrations for a given k can be readily computed

by equating (2) to zero and solving for c using linear

algebra techniques. On the other hand, if higher order

reactions are present, the ODEs are integrated numeri-

cally and simulated until equilibrium to get corre-

sponding steady states. For this purpose, a variable-

order solver for stiff differential equations (ode15s)

from MATLAB was used [39]. The presence of a

unique, single positive steady state was shown for each

network individually using the ERNEST toolbox [21],

or by empirical evaluation (parameter and initial value

sampling). For a detailed analysis we refer the reader

to Additional file 1, section 1.

Computation of correlation network and Gaussian

graphical model

Let X = (xkl) be the ℝ
n×m matrix of logarithmized meta-

bolite concentrations (either measured data samples or

computer-simulated steady states), where n is the

number of samples, and m again represents the number

of metabolites. Then the standard Pearson product-

moment correlation coefficients P = (rij) between meta-

bolites are calculated as

 ij

ki i kj j
k

n

ki i
k

n

kj j
k

n

x x x x

x x x x

=
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∑
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1

2
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·

where x i represents the mean value of metabolite i.

Since we use a Gaussian graphical model, the condi-

tional distributions are also Gaussian. Their width and

the corresponding partial correlation coefficients can be

calculated as

Z ij ij ii jj= ( ) = −   / with ij P( ) = −1

A partial correlation value ζij denotes the pairwise cor-

relation of metabolites i and j corrected for the effects of

all remaining metabolites. Since our study design con-

tains more samples than measured variables, the correla-

tion matrix has full rank and its inverse can be

straightforwardly determined. First-,second-, and third-

order partial correlations were calculated using the soft-

ware published in [12]. To assess the significance of par-

tial correlations, p-values p(ζij) were calculated using

Fisher’s z-transform [40]:

z

p n m z
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1 2 3
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)) ⋅ 2

(3)

where j stands for the cumulative distribution func-

tion of the standard normal distribution. In order to

account for multiple testing, Bonferroni correction was

applied to obtain an estimate of the significance level.

Note that Bonferroni correction is the most conservative

approach for multiple testing; it assumes independence

of all tested values, which is certainly not the case for

partial correlation coefficients. Based on a nominal sig-

nificance level of a = 0.01, we retrieve an adjusted level

of  = = ⋅ −0 01 11325 8 83 10 7. / . after Bonferroni cor-

rection. Solving equation (3) for ζij yields a minimum

absolute partial correlation coefficient of 0.1619 for the

given significance level. That is, all partial correlations

smaller than -0.1619 or larger than 0.1619 are consid-

ered significant.

Bootstrapping was performed by randomly drawing

1020 samples with replacement from the original data

set. For the second stability analysis, the investigation of

different data set sizes, the respective number of sam-

ples was randomly drawn from the original data set.
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The whole procedure was repeated 100 times to get a

stable estimate of the deviation.

Network modularity calculation

We define the adjacency matrix ξij of a new unweighted,

undirected graph induced by all significantly positive

partial correlations in ζij:


 

ij
ij

:
,

,
=

≥



1

0

if

else



where  represents the significance level after multi-

ple testing correction. Now let (V1,...,V6) be the parti-

tioning of the metabolites into the six metabolite

classes: acyl-carnitines, diacyl-PCs, lyso-PCs, acyl-alkyl-

PCs, sphingomyelins and amino acids (the hexose is left

out as only a single metabolite belongs to that class).

We calculated the relative out-degree Rij Î ℝ
6×6 from

each class to the other classes, (i.e. the proportion of its

edges each class shares with the other classes) as:

R
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 represents the

total number of edges between V’ and V“, and V = UVi

contains all metabolites in the network. The total net-

work modularity Q of the network can be quantified

according to [41] as:
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Intuitively, this measure compares the within-class

edges with the edges to the rest of the network. The

more edges there are within each class in comparison to

the other classes, the higher Q will be. Note that equa-

tion (4) can be applied to both weighted and

unweighted graphs. To assess the significance of the

observed value, we performed graph randomization by

edge rewiring [42,43] and subsequent calculation of Q.

During the rewiring process we randomly pick two

edges from the network and exchange the target nodes

of each edge. In order to achieve sufficient randomiza-

tion, this operation is repeated 5 · e times, where e

represents the number of edges in the graph. To per-

form edge reshuffling on weighted graphs, we decided

on a neighbor-preserving variant as described in [44].

Study cohort and metabolite panel

KORA (Kooperative Gesundheitsforschung in der

Region Augsburg) is a research platform in southern

Germany with a primary focus on cardiovascular dis-

eases, Diabetes mellitus type 2, and genetic epidemiol-

ogy [18]. Fasting serum concentrations from n = 1020

individuals in the KORA F4 were determined by electro-

spray ionization tandem mass spectrometry (ESI-MS/

MS) using the Biocrates AbsoluteIDQ™targeted metabo-

lomics kit technology. These samples represent a subset

of the data set previously evaluated in a genome-wide

association study in [19].

A total of m = 151 metabolites were measured in the

experiments: 14 amino acids including 13 proteinogenic

amino acids and ornithine; hexose (sugars with 6 carbon

atoms, e.g. glucose and fructose); 23 acylcarnitines [Cx:

y-carn] (with x carbon atoms and y double bonds), 7

hydroxy-acylcarnitines [Cx:y-OH-carn], 6 dicarboxy-

acylcarnitines [Cx:y-DC-carn], and 2 methylated dicar-

boxy-acylcarnitines variants [Cx:y-M-DC-carn]; 9 sphin-

gomyelins [SM Cx:y] and 5 hydroxy-sphingomyelins

[SM Cx:y-OH]; and 87 phosphatidylcholines (PC). These

glycerophospholipids are further subdivided with respect

to the presence of ester and ether bonds of fatty acid

residues with the glycerol moiety. The set contains 36

diacyl-PCs with two esterified fatty acid residues [PC aa

Cx:y], 38 acyl-alkyl-PCs with one ether-bond at the sn-2

position [PC ae Cx:y] and 13 lyso-PCs with only one

esterified fatty acid residue at the sn-1 or sn-2 position

[lysoPC a Cx:y]. Our mass spectometry technology can-

not distinguish between the side chains of diacyl-phos-

pholipids. The measured compounds are thus associated

with the sum of carbon atoms and double bounds for

both fatty acid residues. To ensure log-normality, we

compared QQ-plots against normal distributions [45]

for both non-logarithmized and logarithmized metabo-

lite concentrations. All distributions were closer to log-

normality than to regular normality (not shown), so we

logarithmized the metabolite concentrations for the fol-

lowing analysis steps.

Sensitivity and specificity

In order to objectively evaluate the discrimination

between directly and indirectly connected metabolites,

we calculated sensitivity and specificity as:

sens
TP

TP FN
spec

TN

TN FP
: , :=

+
=

+

with TP true positives, FP false positives, TN true

negatives, FN false negatives [46].

A metabolite pair is considered true positive if it exhi-

bits a partial correlation above the threshold and has a

direct pathway connection; a false positive represents a

metabolite pair also above the threshold but with no

direct pathway connection; a false negative pair lies

below the threshold but does have a direct pathway
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connection; and finally a true negative pair lies below

the threshold and also has no direct pathway connec-

tion. The F1 score was calculated as the harmonic mean

of both quantities:

F1 2:= ⋅
⋅
+

sens spec

sens spec

Pathway model

Pathway reactions in the human fatty acid metabolism

were drawn from three independent databases: (1) H.

sapiens Recon 1 from the BiGG databases (confidence

score of at least 4) [7], (2) the Edinburgh Human Meta-

bolic Network reconstruction [31] and (3) the KEGG

PATHWAY database [29] as of July 2010. A complete

list of all curated reactions and the corresponding data-

base identifiers can be found in Additional file 6. The

reaction set was subdivided into two groups: (1) Fatty

acid biosynthesis reactions which apply to the metabo-

lite classes lyso-PC, diacyl-PC, acyl-alkyl-PC and sphin-

gomyelins. (2) b-oxidation reactions representing fatty

acid degradation to model reactions between the acyl-

carnitines. The b-oxidation model consists of a linear

chain of C2 degradation steps (C10®C8®C6 etc.).

Fatty acid residues with identical masses, that cannot

be distinguished by our mass-spectrometry technology,

are merged into a single metabolite in the reaction set.

For instance, the polyunsaturated fatty acids

C20:4∆8,11,14,17 from the omega-3 pathway and C20:4

∆5,8,11,14 from the omega-6 pathway have identical

numbers of carbon atoms and double bonds and are

thus merged into a single metabolite C20:4.

Additional material

Additional file 1: Further results on computer-simulated networks.

Additional file 2: Effects of genetic variation on GGM calculation.

Additional file 3: Modularity: Optimized partitioning and weighted

calculation.

Additional file 4: Stability of the GGM with respect to changes in

the underlying data set.

Additional file 5: comparison with low-order partial correlation

approaches.

Additional file 6: Literature-curated pathway model of human fatty

acid biosynthesis and degradation.
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