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GAUSSIAN HYPERGEOMETRIC SERIES AND SUPERCONGRUENCES

ROBERT OSBURN AND CARSTEN SCHNEIDER

Abstract. Let p be an odd prime. In 1984, Greene introduced the notion of hypergeometric
functions over finite fields. Special values of these functions have been of interest as they are
related to the number of Fp points on algebraic varieties and to Fourier coefficients of modular
forms. In this paper, we explicitly determine these functions modulo higher powers of p and
discuss an application to supercongruences. This application uses two non-trivial generalized
Harmonic sum identities discovered using the computer summation package Sigma. We illustrate
the usage of Sigma in the discovery and proof of these two identities.

1. Introduction

In [16] and [17], Greene defined general hypergeometric series over finite fields. His aim was
to show that these functions satisfy properties analogous to classical hypergeometric series. For
example, the four major evaluations of the ordinary hypergeometric series 3F2 due to Saalschütz,
Dixon, Watson, and Whipple [5] all have finite field interpretations (see page 126 of [16]).
Greene’s work was in part motivated by the analogy between Gauss sums and Gamma functions
[10], [23], [43].

His approach has proven to be a powerful technique for character sum evaluations. Recently,
several authors have shown that special values of these functions are related to the number
of points over Fp, p an odd prime, of Calabi-Yau threefolds [3], traces of Hecke operators [11],
formulas for Ramanujan’s τ -function [35], and the number of points on a family of elliptic curves
[13]. We should also mention that hypergeometric series over arbitrary fields has been developed
[14], [15], but their application to number theory has yet to be investigated.

The purpose of this paper is to further study arithmetic properties of hypergeometric functions
over finite fields. In particular, we explicitly determine these functions modulo higher powers of
p and then briefly discuss extensions of supercongruences.

We first recall some definitions. Let Fp denote the finite field with p elements. We extend all
characters χ of F∗p to Fp by setting χ(0) := 0. Following [16] and [17], we give two definitions. The
first definition is the finite field analogue of the binomial coefficient. If A and B are characters
of Fp, then

(1)
(
A

B

)
:=

B(−1)
p

J(A, B̄) =
B(−1)
p

∑
x∈Fp

A(x)B̄(1− x),
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2 ROBERT OSBURN AND CARSTEN SCHNEIDER

where J(χ, ψ) denotes the Jacobi sum if χ and ψ are characters of Fp. The second definition is
the finite field analogue of ordinary hypergeometric functions. If A0, A1, . . . , An, and B1, . . . ,
Bn are characters of Fp, then the Gaussian hypergeometric function over Fp is defined by

(2) n+1Fn

(
A0, A1, . . . , An

B1, . . . , Bn
| x
)

p

:=
p

p− 1

∑
χ

(
A0χ

χ

)(
A1χ

B1χ

)
. . .

(
Anχ

Bnχ

)
χ(x),

where the summation is over all characters χ of Fp. In this paper, we restrict our attention to the
case Ai = φp for all i and Bj = εp for all j where φp is the quadratic character and εp is the trivial
character mod p. We shall denote this value by n+1Fn(λ). By [16] and [17], pn

n+1Fn(λ) ∈ Z.
Before stating the main result, we recall that for i, n ∈ N, generalized Harmonic sums H(i)

n are
defined by

H(i)
n :=

n∑
j=1

1
ji

and H(i)
0 := 0. We now define the quantities

(3)
X(p, λ, n) := φp(λ)

p−1
2∑

j=0

(p−1
2 + j

j

)l(p−1
2

j

)l

(−1)jlλ−j

(
1 + 2(n+ 1)j

(
H

(1)
p−1
2

+j
−H

(1)
j

)

+ j2
(

n+1
2 (1 + n)

(
H

(1)
p−1
2

+j
−H

(1)
j

)2
− (n+1

2 )
(
H

(2)
p−1
2

+j
−H

(2)
j

)))
,

(4)
Y (p, λ, n) := φp(λ)

p−1
2∑

j=0

(p−1
2 + j

j

)l(p−1
2

j

)l

(−1)jlλ−jp

(
1 + (n+ 1)j

(
H

(1)
p−1
2

+j

−H
(1)
j

)
− (n+1

2 )j
(
H

(1)
p−1
2

+j
−H

(1)
p−1
2
−j

))
,

(5) Z(p, λ, n) := φp(λ)

p−1
2∑

j=0

(
2j
j

)2l

16−jlλ−jp2
,

and

(6) D(p, λ) :=

p−5
2∑

j=0

j!2∏j
i=0(i+

1
2)2

(j + 1)2λ−j−1,

where l := n+1
2 . The main result of this paper is the following.
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Theorem 1.1. If n ≥ 2, then

(7) −pn
n+1Fn(λ) ≡ (−φp(−1))n+1

[
p2X(p, λ, n) + pY (p, λ, n) + Z(p, λ, n)

]
(mod p3)

and if n = 1, then

(8) −p2F1(λ) ≡ p2
[
X(p, λ, 1) +D(p, λ)

]
+ pY (p, λ, 1) + Z(p, λ, 1) (mod p3).

We note that Theorem 1.1 generalizes both Theorem 1 in [1], where the case n = 2 was
handled modulo p2, and Theorem 2.4 in [25]. As an application of Theorem 1.1, we prove a
supercongruence for the Legendre symbol

(−1
p

)
. This result generalizes Theorem 1 in [27].

Corollary 1.2. Let p be an odd prime. Then

(9)

p−1
2∑

n=0

(
2n
n

)2

16−n +
3
8
p(−1)

p−1
2

p−1
2∑

i=1

(
2i
i

)
1
i
≡

(
−1
p

)
(mod p3).

The method of proof for Theorem 1.1 has its origin in [3]. Namely, the idea is to first observe
that since the functions n+1Fn(λ) are defined in terms of Jacobi sums, then one can express
them as Gauss sums. One then applies the Gross-Koblitz formula [18] to express the Gauss
sums in terms of p-adic Gamma functions. Using combinatorial properties of the p-adic Gamma
function, Theorem 1.1 then follows. For an introduction to these methods, see [32]. This general
framework has been the basis for several recent results on supercongruences (see [1], [21], [25],
[27], [28], [29]). Theorem 1.1 has recently been used to settle a conjecture of van Hamme (see
[26]). Finally, the congruence in (9) appears to hold modulo p4. This has been numerically
confirmed for all primes less than 5000.

The paper is organized as follows. In Section 2, we recall properties of the p-adic Gamma
function. In Section 3, we prove Theorem 1.1. In Section 4, we prove Corollary 1.2 using Theorem
1.1 and two non-trivial Harmonic sum identities discovered using the computer summation
program Sigma [39]. A description of the non-trivial methods involved using the Sigma package
is included in Section 5. We should also mention that similar harmonic number identities were
discovered and proven in [33]. These types of identities played an important role in the proof of
Beukers’ supercongruence for Apéry numbers (see [2] or Theorem 7 in [3]).

2. Preliminaries

We first recall the definition of the p-adic Gamma function and list some of its main properties.
For more details, see [22], [30], or [37]. Let | · | denote the p-adic absolute value on Qp. For
n ∈ N, we define

Γp(n) := (−1)n
∏
j<n

(j,p)=1

j.

One can extend this function to all x ∈ Zp upon setting
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Γp(x) := lim
n→x

Γp(n).

The following Proposition provides some of the main properties of Γp.

Proposition 2.1. Let n ∈ N and x ∈ Zp. Then

(1) Γp(0) = 1.

(2)
Γp(x+ 1)

Γp(x)
=
{
−x if |x| = 1,
−1 if |x| < 1.

(3) If 0 ≤ n ≤ p− 1, then n! = (−1)n+1Γp(n+ 1).
(4) |Γp(x)| = 1.
(5) Let x0 ∈ [1, 2, . . . , p] be the constant term in the p-adic expansion of x. Then

Γp(x)Γp(1− x) = (−1)x0 .

(6) If x ≡ y (mod pn), then Γp(x) ≡ Γp(y) (mod pn).

For x ∈ Zp, we define

(10) G1(x) :=
Γ′p(x)
Γp(x)

and

(11) G2(x) :=
Γ′′p(x)
Γp(x)

.

One can check that G1(x) and G2(x) are defined for all x ∈ Zp using the fact that Γp(x) is
locally analytic and |Γp(x)| = 1. We now mention some congruence properties of the p-adic
Gamma function. For a proof of this result, see [8] or [21].

Proposition 2.2. Let p ≥ 7 be prime, x ∈ Zp, and z ∈ pZp. Then

(1) G1(x), G2(x) ∈ Zp.
(2) We have

Γp(x+ z) ≡ Γp(x)

(
1 + zG1(x) +

z2

2
G2(x)

)
(mod p3).

(3) Γ′p(x+ z) ≡ Γ′p(x) + zΓ′′p(x) (mod p2).

We also need the following combinatorial congruence which relates Γp to certain binomial
coefficients.

Lemma 2.3. If p is an odd prime and 1 ≤ j ≤ p−1
2 , then

−φp(−1)(−1)j

(p−1
2 + j

j

)(p−1
2

j

)
≡

Γp(1
2 + j)2

Γp(1 + j)2
(mod p2).
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Proof. By Proposition 2.1 (3) and (5), we have

−φp(−1)(−1)j

(p−1
2 + j

j

)(p−1
2

j

)
= −φp(−1)(−1)j (p−1

2 + j)!

j!2(p−1
2 − j)!

=
Γp(1

2 + j + p
2)Γp(1

2 + j − p
2)

Γp(1 + j)2
.

Now, using Proposition 2.2 (2), we have

Γp

(1
2

+ j +
p

2

)
Γp

(1
2

+ j − p

2

)

≡
{

Γp

(1
2

+ j
)

+
p

2
Γ′p
(1

2
+ j
)}{

Γp

(1
2

+ j
)
− p

2
Γ′p
(1

2
+ j
)}

(mod p2)

≡ Γp

(1
2

+ j
)2

(mod p2)

and the result follows.
�

Finally, we need to define

(12) A(j) := G1(1
2 + j)−G1(1 + j)

and for a positive integer n

(13)
B(n, j) :=n+1

2

(
G2(1

2 + j)−G2(1 + j)
)

+ (n+1)n
2 G1(1

2 + j)2

+ (n+1)(n+2)
2 G1(1 + j)2 − (n+ 1)2G1(1

2 + j)G1(1 + j).

We require the following Lemma which relates A(j) and B(n, j) to generalized Harmonic
sums. The proof is similar to Lemma 4.1 in [21] and thus is omitted.

Lemma 2.4. Let p be an odd prime and 0 ≤ j ≤ p−1
2 . Then

(14) A(j) ≡ H
(1)
p−1
2

+j
−H

(1)
j + 2p

j−1∑
r=0

1
(2r + 1)2

(mod p2)

and

(15) B(n, j) ≡ (n+1)2

2

(
H

(1)
p−1
2

+j
−H

(1)
j

)2
− (n+1

2 )
(
H

(2)
p−1
2

+j
−H

(2)
j

)
(mod p).
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3. Proof of Theorem 1.1

We are now in a position to prove Theorem 1.1.

Proof. Let n ≥ 3 be odd. From (1) and (2), we know that

−pn
n+1Fn(λ) =

1
1− p

∑
χ

J(φ, χ)n+1χ̄(λ)

where χ̄ is the complex conjugate of χ. After expressing the Jacobi sum J(φ, χ)n+1 in terms of
Gauss sums, we then apply the Gross-Koblitz formula [18] to get (see also [3] or [25])

(16)

−pn
n+1Fn(λ) =

1
1− p

{
φp(λ) + (−φp(−1))

n+1
2

( p−3
2∑

j=0

Γp( j
p−1)n+1

Γp(1
2 + j

p−1)n+1
ωj(λ)

+ pn+1
p−2∑

j=
p+1
2

Γp( j
p−1)n+1

Γp( j
p−1 −

1
2)n+1

ωj(λ)

)}
.

Here ω is the Teichmüller character which satisfies ω(λ) ≡ λps−1
(mod ps) and thus

ωj(λ) ≡ λjps−1
(mod ps)

for s ≥ 1. As n ≥ 3 is odd, the second sum in (16) vanishes modulo p3. As 1
1−p ≡ 1 + p + p2

(mod p3) and thus j
p−1 ≡ −j− jp− jp2 (mod p3), we apply parts (5) and (6) of Proposition 2.1

and reindex the summation to obtain

(17)
− pn

n+1Fn(λ)

≡ (1 + p+ p2)

{
φp(λ) + (−φp(−1))

n+1
2

p−1
2∑

j=1

Γp(1
2 + j + jp+ jp2)n+1

Γp(1 + j + jp+ jp2)n+1
ω

p−1
2 −j(λ)

}
(mod p3).

By Proposition 2.2 (2), we see that

Γp(x0 + j + jp+ jp2)n+1 ≡ Γp(x0 + j)n+1
[
1 + (n+ 1)(jp+ jp2)G1(x0 + j)

+ n+1
2 (jp+ jp2)2

(
G2(x0 + j) + nG1(x0 + j)2

)]
(mod p3)

for x0 ∈ Zp. We expand the numerator and denominator of (17) with x0 = 1
2 and x0 = 1

respectively. After multiplying the numerator and denominator by

1− (n+ 1)jpG1(1 + j)− n+1
2 j2p2

(
G2(1 + j)− (n+ 2)G1(1 + j)2

)
− (n+ 1)jp2G1(1 + j),

we get
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(18)

− pn
n+1Fn(λ)

≡ (1 + p+ p2)

{
φp(λ) + (−φp(−1))

n+1
2

p−1
2∑

j=1

Γp(1
2 + j)n+1

Γp(1 + j)n+1

(
1 + (n+ 1)jpA(j)

+ (n+ 1)jp2A(j) + j2p2B(n, j)
)
ω

p−1
2 −j(λ)

}
(mod p3)

where A(j) and B(n, j) are defined by (12) and (13). We now need to consider the sums

(19) φp(λ) + (−φp(−1))
n+1

2

p−1
2∑

j=1

Γp(1
2 + j)n+1

Γp(1 + j)n+1

(
1 + 2(n+ 1)jA(j) + j2B(n, j)

)
ω

p−1
2 −j(λ),

(20) φp(λ) + (−φp(−1))
n+1

2

p−1
2∑

j=1

Γp(1
2 + j)n+1

Γp(1 + j)n+1

(
1 + (n+ 1)jA(j)

)
ω

p−1
2 −j(λ),

and

(21) φp(λ) + (−φp(−1))
n+1

2

p−1
2∑

j=1

Γp(1
2 + j)n+1

Γp(1 + j)n+1
ω

p−1
2 −j(λ)

which are the coefficients of p2, p, and 1 respectively in (18). Observe that as we want to
determine n+1Fn(λ) mod p3, it suffices to compute (19) mod p, (20) mod p2, and (21) mod p3.
Also note that

(22) ω
p−1
2 −j(λ) = ω

p−1
2 (λ)ω−j(λ) = φp(λ)ω−j(λ)

as ω is of order p− 1. By Lemma 4.4 in [21], we see that

(23) (n+1
2 )j

(
H

(1)
p−1
2

+j
−H

(1)
p−1
2
−j

)
≡ −2(n+ 1)jp

j−1∑
r=0

1
(2r + 1)2

(mod p2).

By Lemma 2.3, we have

(24)

[
− φp(−1)(−1)j

(p−1
2 + j

j

)(p−1
2

j

)]n+1
2

≡
Γp(1

2 + j)n+1

Γp(1 + j)n+1
(mod p2)

and so after combining Lemma 2.4, (22), (23), (24) and accounting for j = 0, then (19) is
congruent modulo p to (3) and (20) is congruent modulo p2 to (4). Here we have used the fact
that Γp(1)2 = 1 and Γp(1

2)2 = −φp(−1) and thus for n ≥ 3 odd
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Γp(1
2)n+1

Γp(1)n+1
= (−φp(−1))

n+1
2 .

By Proposition 2.5 in [27], we have

Γp(1
2 + j)2

Γp(1 + j)2
= −φp(−1)

(
2j
j

)2

16−j

and thus using (22), we have that (21) and (5) are congruent modulo p3, namely

(25)

φp(λ) + (−φp(−1))
n+1

2

p−1
2∑

j=1

Γp(1
2 + j)n+1

Γp(1 + j)n+1
ω

p−1
2 −j(λ)

≡ φp(λ)

p−1
2∑

j=0

(
2j
j

)n+1

16−j
(

n+1
2

)
λ−jp2

(mod p3).

This proves the result for n ≥ 3 odd. A similar argument applies to the case n ≥ 2 is even.
We now turn to the case n = 1. By (16), we need only consider the last sum

(26) −φp(−1)p2
p−2∑

j=
p+1
2

Γp( j
p−1)2

Γp( j
p−1 −

1
2)2

ωj(λ).

By (5) and (6) of Proposition 2.1 and after reindexing the exponent of ω(λ), (26) is equivalent
modulo p3 to

−φp(−1)p2
p−2∑

j=
p+1
2

Γp(1
2 + j)2

Γp(1 + j)2
(1
2 + j)2ω

3p−3
2 −j(λ).

By repeated use of Proposition 2.1 (2) we have for p+1
2 ≤ j ≤ p− 2 that

Γp

(1
2

+
p+ 1

2

)2
≡ 1 (mod p)

Γp

(1
2

+
p+ 1

2
+ 1
)2
≡
(p+ 2

2

)2
(mod p)

Γp

(1
2

+
p+ 1

2
+ 2
)2
≡
(p+ 4

2

)2(p+ 2
2

)2
(mod p)

...

Γp

(1
2

+ p− 2
)2
≡
(2p− 5

2

)2(2p− 7
2

)2
· · ·
(p+ 2

2

)2
(mod p).

By Proposition 2.1 (3), Γp(1 + j)2 = (j!)2. Also using the fact that λp−1 ≡ 1 (mod p), we have
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ω
3p−3

2 −j(λ) ≡ λ
3p−3

2 −j (mod p)

≡ λ
p−1
2 +p−1−j (mod p)

≡ λ
p−1
2 −j (mod p)

for p+1
2 ≤ j ≤ p− 2 and thus

p−2∑
j=

p+1
2

Γp(1
2 + j)2

Γp(1 + j)2
(1
2 + j)2ω

3p−3
2 −j(λ)

≡ 1
(p+1

2 )!2

(p
2

+ 1
)2
ωp−2(λ) + . . .+

(p+2
2 )2 · · · (2p−5

2 )2

(p− 2)!2
(1

2
+ p− 2

)2
ω

p+1
2 (λ) (mod p)

≡ 1
−φp(−1)(1

2)
(1)2λ−1 + · · ·+

(1)2(2)2 · · · (p−5
2 )2

−φp(−1)(p− 2)2(p− 3)2 · · · (p+1
2 )2

(p− 3
2

)2
λ−1−p−5

2 (mod p)

≡ −φp(−1)D(p, λ) (mod p).

This proves the result for n = 1. �

4. Proof of Corollary 1.2

Theorem 1.1 can be used to obtain modulo p3 supercongruences in various settings. For
example, Apéry numbers [3], traces of Frobenius endomorphisms on elliptic curves [24], [31],
and colored partition functions [31] all occur as special values of n+1Fn(λ) for certain n and λ.
We do not mention these results here, choosing instead to illustrate with one example. We now
prove Corollary 1.2.

Proof. If p is an odd prime, then by Section 3 in [16],

p · 2F1(1) = −

(
−1
p

)
and so by (8),(

−1
p

)
≡ p2

[
X(p, 1, 1) +D(p, 1)

]
+ pY (p, 1, 1) + Z(p, 1, 1) (mod p3).

We now claim that

(27) X(p, 1, 1) +D(p, 1) + 1 ≡ 0 (mod p).

In order to verify (27), we first study X(p, 1, 1). By (3), we have
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X(p, 1, 1) =

p−1
2∑

j=0

(p−1
2 + j

j

)(p−1
2

j

)
(−1)j

(
1 + 4j

(
H

(1)
p−1
2

+j
−H

(1)
j

)
+

j2
(
2
(
H

(1)
p−1
2

+j
−H

(1)
j

)2
−
(
H

(2)
p−1
2

+j
−H

(2)
j

)))
.

The identity

(28)
n∑

k=0

(−1)k

(
n+ k

k

)(
n

k

)(
1 + 2k

(
Hn+k −Hk

))
= (−1)n(2n+ 1)

was discovered using Sigma (see Lemma 2.2 in [27]). In particular, we find

p−1
2∑

j=0

(p−1
2 + j

j

)(p−1
2

j

)
(−1)j

(
1 + 2j

(
H

(1)
p−1
2

+j
−H

(1)
j

))
≡ 0 (mod p)

and thus

(29)
X(p, 1, 1)

≡ −1−

p−1
2∑

j=1

(p−1
2 + j

j

)(p−1
2

j

)
(−1)j

+

p−1
2∑

j=1

(p−1
2 + j

j

)(p−1
2

j

)
(−1)j

(
j2
(
2
(
H

(1)
p−1
2

+j
−H

(1)
j

)2
−
(
H

(2)
p−1
2

+j
−H

(2)
j

)))
(mod p).

By Proposition 2.2 and Lemma 2.3, we also have

(30) D(p, 1) ≡

p−3
2∑

j=1

(p−1
2 + j

j

)−1(p−1
2

j

)−1

(−1)j (mod p).

For positive integers n, the relation

(31)

n∑
j=1

(
n+ j

j

)(
n

j

)
(−1)j

(
j2
(
2
(
H

(1)
n+j −H

(1)
j

)2
−
(
H

(2)
n+j −H

(2)
j

)))
+

n∑
j=1

(
n+ j

j

)−1(n
j

)−1

(−1)j = n(−1 + 2n)(−1)n

was found using Sigma. Equation (27) now follows upon taking n = p−1
2 in (31), in the identity
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(32)
n∑

j=1

(
n+ j

j

)(
n

j

)
(−1)j = −1 + (−1)n,

and reducing modulo p. We now consider Y (p, 1, 1). By (4), we have

Y (p, 1, 1) =

p−1
2∑

j=0

(p−1
2 + j

j

)(p−1
2

j

)
(−1)j

(
1 + j

(
H

(1)
p−1
2

+j
−H

(1)
j

)

+ j
(
H

(1)
p−1
2
−j
−H

(1)
j

))
.

For positive integers n, the relation

(33)

n∑
j=0

(
n+ j

j

)(
n

j

)
(−1)j

(
1 + j

(
H

(1)
n+j +H

(1)
n−j − 2H(1)

j

))

= (1 + 2n)
(

2n
n

)
(−1)n − 3

2
n(1 + n)(−1)n

n∑
i=1

(
2i
i

)
i

was discovered using Sigma. Taking n = p−1
2 in (33) and reducing mod p2, we have

(34) Y (p, 1, 1) ≡ p+
3
8
(−1)

p−1
2

p−1
2∑

i=1

(
2i
i

)
1
i

(mod p2).

Equation (9) then follows from (5), (27), and (34). �

5. Finding and proving identities (31) and (33) with Sigma

An efficient algorithm to find and prove identities involving nested definite and indefinite sum
expressions, such as (31) and (33), has only recently been developed and implemented. Inspired
by hypergeometric summation [34], in particular Zeilberger’s creative telescoping method [42],
and Karr’s indefinite summation algorithm [19, 20] (extended to definite summations), the sec-
ond author developed and implemented an algorithm using Mathematica to handle various
summations. The resulting package is called Sigma. For a more detailed description of the
algorithms incorporated into Sigma, please see [39]. Applications of this computer algebra pack-
age include proving identities that arise in the enumeration of rhombus tilings of a symmetric
hexagon [12, 38], in the verification of Stembridge’s totally symmetric plane partitions theo-
rem [41, 6], and in certain Padé approximations [9]. In this section, we illustrate how the
package can be used to discover and prove identities (31) and (33). For simplicity, we write Hk

for H(1)
k .
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5.1. Identity (33). With Sigma we produce the following harmonic sum identities:

n∑
k=0

(−1)k

(
n+ k

k

)(
n

k

)
kHk =(−1)nn(n+ 1)(2Hn − 1),(35)

n∑
k=0

(−1)k

(
n+ k

k

)(
n

k

)
kHn+k =(−1)nn(n+ 1)2Hn − (−1)nn2,(36)

and
n∑

k=0

(−1)k

(
n+ k

k

)(
n

k

)
kHn−k =− (−1)n(n+ 1)2 + (−1)n(2n+ 1)

(
2n
n

)
(37)

+ 2n(n+ 1)(−1)nHn −
3
2
n(n+ 1)(−1)n

n∑
i=1

(
2i
i

)
i
.

Then, combining (32), (36) and (37) we arrive at identity (33).

Remark 5.1. Note that (28), (35) and (36) can be proved using hypergeometric techniques
which appear in [4] and [7]. The key observation is that differentiation of the rising factorial
(x)k = x(x + 1) . . . (x + k − 1) (resp. 1/(x)k) in x and afterwards substituting x = 1 produces
(1)kHk (resp. −Hk/(1)k). With this fact, one can produce, e.g., (35) by setting up the identity

(38)
n∑

k=0

(−n)k(n+ 1)k

k!(x)k
k = −n(n+ 1)

x
2F1(1− n, n+ 2;x+ 1; 1) = −n(n+ 1)

x

(x− n− 1)n−1

(x+ 1)n−1

with Gauss’ theorem, differentiating (38) in x, and setting x = 1. Obviously, the successful
application of this technique relies on the fact that one knows the underlying hypergeometric
identity such as (38) for the particular case (35). It would be interesting to see proofs of
identity (37), in particular of identity (31), along the lines sketched above. Recently, a skillful
application of partial fraction decomposition has been used in [36] to derive identity (37), but
so far no proof of identity (31) has been found.

Subsequently, we illustrate the computation steps for identity (37) which can be executed in
a straightforward manner. After loading the package

In[1]:= << Sigma.m
Sigma - A summation package by Carsten Schneider c© RISC-Linz

into the computer algebra system Mathematica, we insert the sum in question:

In[2]:= S = SigmaSum[SigmaPower[−1, k]kSigmaBinomial[n + k, k]

SigmaBinomial[n, k]SigmaHNumber[n − k], {k, 0, n}]

Out[2]=

nX
k=0

(−1)kk

 
n + k

k

! 
n

k

!
Hn−k

Remark 5.2. Various functions support the user, like SigmaSum for sums, SigmaPower for
powers, SigmaBinomial for binomials, or SigmaHNumber for harmonic numbers.
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Next, we compute a recurrence relation for the given sum S by inputting:
In[3]:= rec = GenerateRecurrence[S]

Out[3]= (n + 2)(2n + 1)(n + 1)2SUM[n + 2] + 2(n + 3)(2n2 + 4n + 1)(n + 1)SUM[n + 1] +

(n + 1)(n + 2)(n + 3)(2n + 3)SUM[n] == −(2n + 1)(2n + 3)(3n + 1)(3n + 4)(−1)n
 
2n

n

!

This means that SUM[n](= S =
n∑

k=0

(−1)kk
(
n+k

k

)(
n
k

)
Hn−k) satisfies Out[3].

Proof of Out[3]: Define f(n, k) := (−1)kk
(
n+k

k

)(
n
k

)
Hn−k. The correctness follows by the creative

telescoping equation

(39) g(n, k + 1)− g(n, k) = c0(n)f(n, k) + c1(n)f(n+ 1, k) + c2(n)f(n+ 2, k)

and the proof certificate c0(n) = (n + 2)(n + 3)(2n + 3), c1(n) = 2(n + 3)
(
2n2 + 4n+ 1

)
,

c2(n) = (n+ 1)(n+ 2)(2n+ 1) and

g(n, k) = (k − 1)k2
(
2Hn−k(k − n− 2)(k − n− 1)(n+ 1)(k(4n+ 7)− 2(2n3 + 10n2 + 17n+ 10))+

(−k − n− 1)(16n4 + 88n3 + 179n2 + 163n+ 2k2(4n2 + 11n+ 7)− k(24n3+

98n2 + 131n+ 59) + 58)
)
(−1)k

(
n+ k

k

)(
n

k

)/(
(n+ 1)(−k + n+ 1)2(−k + n+ 2)2

)
delivered by Sigma. We verify (39) as follows. Express g(n, k + 1) in terms of h(n, k) =
(−1)k

(
n+k

k

)(
n
k

)
and Hn−k by using the relations

h(n, k + 1) = −(n− k)(n+ k + 1)
(k + 1)2

h(n, k)

and

Hn−k−1 = Hn−k −
1

n− k
.

Similarly, express f(n+ i, k) in terms of h(n, k) and Hn−k by using the relations

h(n+ 1, k) =
n+ k + 1
n− k + 1

h(n, k)

and

Hn−k+1 = Hn−k +
1

n− k + 1
.

Then (39) can be checked directly. Summing (39) over k from 0 to n produces Out[3]. �

Next, we solve the recurrence relation Out[3] by typing in:
In[4]:= recSol = SolveRecurrence[rec[[1]], SUM[n]]

Out[4]= {{0, n(1 + n)(−1)n}, {0, (1 + n)(−1)n
`
− 1 + 2n

nX
i=1

1

i

´
},

{1,−1

2
(−1)n

`
− 2(1 + 2n)

 
2n

n

!
+ 3n(1 + n)

nX
i=1

`
2i

i

´
i

´
}}
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The result has to be interpreted as follows. Sigma finds two linearly independent solutions

h1(n) = n(1 + n)(−1)n and h2(n) = (1 + n)(−1)n
(
− 1 + 2n

n∑
i=1

1
i

)
of the the homogeneous

version of Out[3] (indicated by the 0 in front) plus one particular solution

p(n) = −1
2
(−1)n

(
− 2(1 + 2n)

(
2n
n

)
+ 3n(1 + n)

n∑
i=1

(
2i
i

)
i

)
of the input recurrence itself (indicated by the 1 in front). The correctness of the result can be
easily verified by using, e.g., the relation

n+1∑
i=1

(
2i
i

)
1
i

=
n∑

i=1

(
2i
i

)
1
i

+
2(2n+ 1)
(n+ 1)2

(
2n
n

)
.

Finally, by taking all linear combinations c1h1(n) + c2h2(n) + p(n) for constants c1 and c2,
free of n, we obtain all solutions of Out[3]. Hence, by considering the first two initial values of S
we can discover and prove (37):
In[5]:= FindLinearCombination[recSol, S, 2]

Out[5]= −(−1)n(1 + n)2 + (−1)n(1 + 2n)

 
2n

n

!
+ 2n(1 + n)(−1)n

nX
i=1

1

i
− 3

2
n(1 + n)(−1)n

nX
i=1

`
2i

i

´
i

Remark 5.3. Looking at the identities (32),(36) and (35) one immediately sees that the com-
bination (32) + 2 · (36) − 2 · (35) produces (28). Since the sums can be combined so nicely, we
had also the hope to find a solution for the sum

Sλ(n) :=
n∑

k=0

(−λ)k

(
n+ k

k

)(
n

k

)(
1 + 2k

(
Hn+k −Hk

))
.

Sigma was able to compute the recurrence

(n+ 2)2Sλ(n) + (2λ− 1)
(
4n2 + 18n+ 21

)
Sλ(n+ 1)

+
(
16n2λ2 + 80nλ2 + 100λ2 − 16n2λ− 80nλ− 100λ+ 6n2 + 30n+ 39

)
Sλ(n+ 2)

+ (2λ− 1)
(
4n2 + 22n+ 31

)
Sλ(n+ 3) + (n+ 3)2Sλ(n+ 4) = 0,

but failed to find any solution for a generic value λ. Interesting enough, choosing λ = 1
2 the

recurrences gets much simpler. In particular, this indicates that considering the sums S 1
2
(2n)

and S 1
2
(2n + 1) separately, one can compute recurrences of order 2 for each of them. Indeed,

applying the mechanism from above for each of the sums gives (two different) recurrences of
order two. Luckily, we can even solve the recurrences which yields

S 1
2
(2n) =

(−1)n22n(n!)2

(2n)!

and

S 1
2
(2n+ 1) =

(−1)n(2n)!
22n(n!)2

(
(2n+ 1)

(
Hn −H2n

)
− 1
)
.
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5.2. Identity (31). Finally, we derive the two identities

(40)

n∑
k=1

(
n+ k

k

)(
n

k

)
(−1)k

(
2k2
(
Hn+k −Hk

)2
− k2

(
H

(2)
n+k −H

(2)
k

))

=(1 + n)2(−2− 2n+ n2)
(n!)2(−1)n

2(2 + 2n)!
+

1
4
n(−4 + 11n+ 6n2 + 3n3)(−1)n

− 1
2
(−1 + n+ n2) +

3
2
n2(1 + n)2(−1)n

n∑
i=1

i!2

(2 + 2i)!
+ n2(1 + n)2(−1)n

n∑
i=1

(−1)i

i2

and

(41)

n∑
k=1

(
n+ k

k

)−1(n
k

)−1

(−1)k = n(2n− 1)(−1)n

−
(
(1 + n)2(−2− 2n+ n2)

(n!)2(−1)n

2(2 + 2n)!
+

1
4
n(−4 + 11n+ 6n2 + 3n3)(−1)n

− 1
2
(−1 + n+ n2) +

3
2
n2(1 + n)2(−1)n

n∑
i=1

i!2

(2 + 2i)!
+ n2(1 + n)2(−1)n

n∑
i=1

(−1)i

i2

)
which immediately gives identity (31).

One option is to follow the same strategy as above: We can compute a recurrence for

In[6]:= mySum =

nX
k=0

(−1)k
 

n + k

k

! 
n

k

! 
2k2

“
Hn+k − Hk

”2

− k2
“
H

(2)
n+k − H

(2)
k

”!

and can solve the derived recurrence to find the right hand side of (40). But, since the found
recurrence relation is rather big (it has order 4), and the proof certificate is even bigger (it fills
about one page), we follow a refined strategy presented in [33] and [40]. Namely, by running
our creative telescoping algorithm with the additional option SimplifyByExt → DepthNumber
we can find a recurrence of smaller order (order one!):

In[7]:= rec = GenerateRecurrence[mySum, SimplifyByExt → DepthNumber]

Out[7]= 2(2n + 1)(n + 2)2SUM[n] + 2(2n + 1)n2SUM[n + 1] ==

4(1 + 2n) + n
2(n + 1)(n + 2)(3n + 2)

nX
i=0

(−1)i
`
n+i

i

´`
n

i

´
(n + i)2

+ 2n
`
4n

2 + 3n− 4
´
(2n + 1)

nX
i=0

(−1)i
`
n+i

i

´`
n

i

´
+

8(n− 1)n(n + 1)(n + 2)(2n + 1)
“ nX

i=0

(−1)i
`
n+i

i

´`
n

i

´
Hn+i −

nX
i=0

(−1)i
`
n+i

i

´`
n

i

´
Hi

”

Proof of Out[7]: Define f(n, k) = (−1)k
(
n+k

k

)(
n
k

)(
2k2
(
Hn+k −Hk

)2 − k2
(
H

(2)
n+k −H

(2)
k

))
. Then

the correctness of Out[7] follows by the creative telescoping equation

(42) g(n, k + 1)− g(n, k) = c0(n)f(n, k) + c1(n)f(n+ 1, k)
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with the proof certificate c0(n) = 2(n+ 2)2(2n+ 1), c1(n) = 2n2(2n+ 1) and

g(n, k) =

 
4(k − 1)2n(n + 1)2(2n + 1)k2

„
2H2

k − 4Hn+kHk + 2H2
n+k + H

(2)
k −H

(2)
n+k

«
−“

n(n + 2)k3 − (n3 + 2n2 + 2n + 2)k2 − (n + 1)2(n2 − 2)k + n(n + 1)2(n2 + n− 2)
”
8n(n + 1)

(2n + 1)

„
Hk −Hn+k

«
+ (16n5 + 48n4 + 29n3 + 14n2 + 20n + 8)k2 + n(n + 1)2(16n4 + 23n3+

n2 + 12n + 8)− (32n6 + 101n5 + 98n4 + 55n3 + 54n2 + 36n + 8)k

!
(−1)k

`
n+k

k

´`
n
k

´
(1− k + n)n(1 + n)

+

n2(n + 1)(n + 2)(3n + 2)

kX
i=0

(−1)i
`

n+i
i

´`
n
i

´
(n+i)2

+ 2n
`
4n2 + 3n− 4

´
(2n + 1)

kX
i=0

(−1)i`n+i
i

´`
n
i

´
+ 8(n− 1)n(n + 1)(n + 2)(2n + 1)

“ kX
i=0

(−1)i`n+i
i

´`
n
i

´
Hn+i −

kX
i=0

(−1)i`n+i
i

´`
n
i

´
Hi

”
.

Since the sums and products inside of g(n, k) are all indefinite, e.g., we can apply the relation

k+1∑
i=0

(−1)i
(
n+i

i

)(
n
i

)
=

k∑
i=0

(−1)i
(
n+i

i

)(
n
i

)
− (−1)k (k−n)(k+n+1)

(k+1)2

(
n+k

k

)(
n
k

)
,

the verification of (42) is immediate. Summing (42) over k from 0 to n produces Out[7]. �

At first glance the recurrence Out[7] seems to be disappointing: we start with the definite sum
mySum, and end up with a recurrence again involving definite sums. But, these sums are much
simpler than the input sum. In particular, facilitating again Sigma, we can produce mechanically
the identities

n∑
i=0

(−1)i

(
n+i

i

)(
n
i

)
(n+ i)2

= −(−1)n n!2

n2(2n)!

and
n∑

k=0

(−1)k

(
n+ k

k

)(
n

k

)
Hk =

n∑
k=0

(−1)k

(
n+ k

k

)(
n

k

)
Hn+k = (−1)n2Hn.

Using in addition (32), we can simplify the recurrence to

In[8]:= rec = rec/.{
nX

i=0

(−1)i
`
n+i
i

´`
n
i

´
(n+i)2

→ −(−1)n n!2

n2(2n)!
,

nX
i=0

(−1)i
`
n+i
i

´`
n
i

´
→ (−1)n,

nX
i=0

(−1)i
`
n+i
i

´`
n
i

´
Hi →

nX
i=0

(−1)i
`
n+i
i

´`
n
i

´
Hn+i}

Out[8]= 2(2n + 1)n2SUM[n + 1] + 2(n + 2)2(2n + 1)SUM[n] ==

4(2n + 1)− (−1)n(n + 1)(n + 2)(3n + 2)(n!)2

(2n)!
+ 2(−1)nn(2n + 1)

`
4n

2 + 3n− 4
´
.

Given this recurrence, one can directly read off its solution. With some simplifications Sigma
yields:

In[9]:= recSol = SolveRecurrence[rec[[1]], SUM[n], SimpleSumRepresentation → True]
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Out[9]= {{0, (−1)nn2(n + 1)2, {1, (1 + n)2(−2− 2n + n
2)

(n!)2(−1)n

2(2 + 2n)!
− 1

2
(−1 + n + n

2) +

1

4
n(−4 + 11n + 6n

2 + 3n
3)(−1)n +

3

2
n
2(1 + n)2(−1)n

nX
i=1

i!2

(2 + 2i)!
+ n

2(1 + n)2(−1)n
nX

i=1

(−1)i

i2
}}

Looking at the first initial values we end up at the identity (40).
Finally, we attack the sum S(n) on the left hand side of (41). Namely, we derive the recurrence

(n+ 2)S(n) + n2S(n) =
(−1)n(n+ 1)2(n+ 2)(3n+ 2)(n!)2

(2n+ 2)!
− 2;

we remark that for this hypergeometric sum any implementation of Zeilberger’s algorithm [42]
could do the job. Using this information, we find as above, the right hand side of (41).
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IHÉS, Le Bois-Marie, 35, route de Chartres, F-91440 Bures-sur-Yvette, FRANCE



GAUSSIAN HYPERGEOMETRIC SERIES 19

Research Institute for Symbolic Computation, J. Kepler University Linz, Altenberger Str. 69,
A-4040 Linz, Austria

E-mail address: robert.osburn@ucd.ie, osburn@ihes.fr

E-mail address: Carsten.Schneider@risc.uni-linz.ac.at


