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ABSTRACT

Motivation: The in silico prediction of potential interactions between

drugs and target proteins is of core importance for the identification

of new drugs or novel targets for existing drugs. However, only a tiny

portion of all drug–target pairs in current datasets are experimen-

tally validated interactions. This motivates the need for developing

computational methods that predict true interaction pairs with high

accuracy.

Results: We show that a simple machine learning method that uses

the drug–target network as the only source of information is capable

of predicting true interaction pairs with high accuracy. Specifically, we

introduce interaction profiles of drugs (and of targets) in a network,

which are binary vectors specifying the presence or absence of in-

teraction with every target (drug) in that network. We define a kernel

on these profiles, called the Gaussian Interaction Profile (GIP) ker-

nel, and use a simple classifier, (kernel) Regularized Least Squares

(RLS), for prediction drug–target interactions. We test comparatively

the effectiveness of RLS with the GIP kernel on four drug–target

interaction networks used in previous studies. The proposed algo-

rithm achieves area under the precision-recall curve (AUPR) up to

92.7, significantly improving over results of state-of-the-art methods.

Moreover, we show that using also kernels based on chemical and

genomic information further increases accuracy, with a neat improve-

ment on small datasets. These results substantiate the relevance of

the network topology (in the form of interaction profiles) as source of

information for predicting drug–target interactions.

Availability: Software and supplementary material are available at

http://cs.ru.nl/∼tvanlaarhoven/drugtarget2011/.

Contact: tvanlaarhoven@cs.ru.nl, elenam@cs.ru.nl

1 INTRODUCTION

The in silico prediction of interaction between drugs and target pro-

teins is a core step in the drug discovery process for identifying

new drugs or novel targets for existing drugs, in order to guide

and speed up the laborious and costly experimental determination

of drug–target interaction (Haggarty et al., 2003).

Drug–target interaction data are available for many classes of

pharmaceutically useful target proteins including enzymes, ion

channels, GPCRs and nuclear receptors (Hopkins and Groom,

∗to whom correspondence should be addressed

2002). Several publicly available databases have been built and

maintained, such as KEGG BRITE (Kanehisa et al., 2006), Drug-

Bank (Wishart et al., 2008), GLIDA (Okuno et al., 2007), SuperTar-

get and Matador (Günther et al., 2008), and BRENDA (Schomburg

et al., 2004), and ChEMBL (Overington, 2009), containing drug–

target interaction and other related sources of information, like

chemical and genomic data.

A property of the current drug–target interaction databases is that

they contain a rather small number of drug–target pairs which are

experimentally validated interactions. This motivates the need for

developing methods that predict true interacting pairs with high

accuracy.

Recently, machine learning methods have been introduced to

tackle this problem. They can be viewed as instances of the more

general link prediction problem, see Lü and Zhou (2011) for a recent

survey of this topic. These methods are motivated by the observa-

tion that similar drugs tend to target similar proteins (Schuffenhauer

et al., 2003; Klabunde, 2007). This property was shown for instance

for chemical (Martin et al., 2002) and side effect similarity (Campil-

los et al., 2008), and motivated the development of an integrated

approach for drug–target interaction prediction (Jaroch and Wein-

mann, 2006). A desirable property of this approach is that it does not

require the 3D structure information of the target proteins, which is

needed in traditional methods based on docking simulations (Cheng

et al., 2007).

The current state-of-the-art for the in silico prediction of drug–

target interaction is formed by methods that employ similarity

measures for drugs and for targets in the form by kernel func-

tions, like Bleakley and Yamanishi (2009); Jacob and Vert (2008);

Wassermann et al. (2009); Yamanishi et al. (2008, 2010). By using

kernels, multiple sources of information can be easily incorporated

for performing prediction (Schölkopf et al., 2004).

In Yamanishi et al. (2008) different settings of the interaction

prediction problem are explored.

The authors make the distinction between ‘known’ drugs or tar-

gets, for which at least one interaction is in the training set; and

‘new’ drugs or targets, for which there is not. There are then four

possible settings, depending on whether the drugs and/or targets are

known or new. In this paper we focus on the setting where both the

drugs and targets are known. That is, we use known interactions for

predicting novel ones.
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Table 1. The number of drugs and target proteins, their ratio, and the num-

ber of interactions in the drug–target datasets from Yamanishi et al. (2008).

Dataset Drugs Targets nd/nt Interactions

Enzyme 445 664 0.67 2926

Ion Channel 210 204 1.03 1476

GPCR 223 95 2.35 635

Nuclear Receptor 54 26 2.08 90

We want to analyze the relevance of the topology of drug–target

interaction networks as source of information for predicting in-

teractions. We do this by introducing a kernel that captures the

topological information. Using a simple machine learning method

we then compare this kernel to kernels based on other sources of

information.

Specifically, we start from the assumption that two drugs that

interact in a similar way with the targets in a known drug–target

interaction network, will also interact in a similar way with new

targets. We formalize this property by describing each drug with

an interaction profile, a binary vector describing the presence or

absence of interaction with every target in that network. The in-

teraction profile of a target is defined in a similar way. From these

profiles we construct the Gaussian Interaction Profile kernel.

We show that interaction profiling can be effectively used for

accurate prediction of drug–target interaction. Specifically, we pro-

pose a simple regularized least square algorithm incorporating a

product of kernels constructed from drug and target interaction pro-

files. We test the predictive performance of this method on four

drug–target interaction networks in humans involving enzymes, ion

channels, GPCRs and nuclear receptors. These experiments show

that using only information on the topology of the drug–target in-

teraction, in the form of interaction profiles, excellent results are

achieved as measured by the area under the precision-recall curve

(AUPR) (Davis and Goadrich, 2006). In particular, on three of the

four considered datasets the performance is superior to the best re-

sults of current state-of-the-art methods which use multiple sources

of information.

We further show that the proposed method can be easily ex-

tended to also use other sources of information in the form of

suitable kernels. Results of experiments where also chemical and

genomic information on drugs and targets is included show ex-

cellent performance, with AUPR score of 91.5, 94.3, 79.0 and

68.4 on the four datasets, achieving an improvement of 7.4,

13.0, 12.3 and 7.2 over the best results reported in Bleakley

and Yamanishi (2009). A thorough analysis of the results en-

able us to detect several new putative drug–target interactions, see

http://cs.ru.nl/∼tvanlaarhoven/drugtarget2011/new-interactions/.

2 MATERIALS

We used four drug–target interaction networks in humans involv-

ing enzymes, ion channels, G-protein-coupled receptors (GPCRs)

and nuclear receptors; first analyzed by Yamanishi et al. (2008).

We worked with the datasets provided by these authors, in order to

facilitate benchmark comparisons with the current state-of-the-art

algorithms that do the same. These datasets are publicly available at

Figure 1. An illustration of the construction of interaction profiles from

a drug–target interaction network. Circles are drugs, squares are targets. In

this example the interaction profile of target t1 indicates that it interacts with

drugs d1 and d2, but not with d3, d4 or d5.

http://web.kuicr.kyoto-u.ac.jp/supp/yoshi/drugtarget/. Table 1 lists

some properties of the datasets.

Drug–target interaction information was retrieved from the

KEGG BRITE (Kanehisa et al., 2006), BRENDA (Schomburg

et al., 2004), SuperTarget (Günther et al., 2008) and DrugBank

(Wishart et al., 2008) databases. Chemical structures of the com-

pounds was derived from the DRUG and COMPOUND sections in

the KEGG LIGAND database (Kanehisa et al., 2006). The chemical

structure similarity between compounds was computed using SIM-

COMP (Hattori et al., 2003). This resulted in a similarity matrix

for the denoted by Sc, which represents the chemical space. Amino

acid sequences of the target (human) proteins were obtained from

the KEGG GENES database (Kanehisa et al., 2006). Sequence sim-

ilarity between proteins was computed using a normalized version

of Smith–Waterman score (Smith and Waterman, 1981), resulting in

a similarity matrix denoted Sg , which represents the genomic space.

3 METHODS

3.1 Problem formalization

We consider the problem of predicting new interactions in a drug–

target interaction network. Formally we are given a set Xd =
{d1, d2, . . . , dnd

} of drugs and a set Xt = {t1, t2, . . . , tnt} of target

proteins. There is also a set of known interactions between drugs and

targets. If we consider these interactions as edges, then they form a

bipartite network. We can characterize this network by the nd × nt

adjacency matrix Y . That is, yij = 1 if drug di interacts with target

tj , and yij = 0 otherwise. Our task is now to rank all drug–target

pairs (di, tj) such that highest ranked pairs are the most likely to

interact.

3.2 Gaussian Interaction Profile Kernel

Our method is based on the assumption that drugs exhibiting a

similar pattern of interaction and non-interaction with the targets

of a drug–target interaction network are likely to show similar in-

teraction behavior with respect to new targets. We use a similar

assumption on targets. We therefore introduce the (target) interac-

tion profile ydi of a drug di to be the binary vector encoding the

presence or absence of interaction with every target in the consid-

ered drug–target network. This is nothing more than row i of the
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adjacency matrix Y . Similarly, the (drug) interaction profile yT
tj of

a target protein tj is a vector specifying the presence or absence of

interaction with every drug in the considered drug–target network.

The interaction profiles generated from a drug–target interaction

network can be used as feature vectors for a classifier. Figure 1

illustrates the construction of interaction profiles.

Following the current state-of-the-art for the drug–target interac-

tion prediction problem, we will use kernel methods, and hence

construct a kernel from the interaction profiles. This kernel does

not include any information beyond the topology of the drug–target

network.

One of the most popular choices for constructing a kernel from a

feature vector is the Gaussian kernel, also known as the Radial Basis

Function (RBF) kernel. This kernel is, for drugs di and dj ,

KGIP,d(di, dj) = exp(−γd‖ydi − ydj‖
2).

A kernel for the similarities between target proteins, KGIP,t, can

be defined analogously. We call these kernels Gaussian Interaction

Profile (GIP) kernels.

The parameter γd controls the kernel bandwidth. We set

γd = γ̃d

/( 1

nd

nd
∑

i=1

|ydi|
2

)

.

That is, we normalize the parameter by dividing it by the average

number of interactions per drug. With this choice the kernel values

become independent of the size of the dataset. In principle the new

bandwidth parameter γ̃d could be set with cross-validation, but in

this paper we simply use γ̃d = 1.

There are other ways to construct a kernel from interaction pro-

files. For example, Basilico and Hofmann (2004) propose using

the correlation of interaction profiles. We have performed brief

experiments with these other kernels, which show that Gaussian

Interaction Profile kernels consistently outperform kernels based

on correlation or inner products. The detailed results of these

experiments are included in Supplementary Table S1.

3.3 Integrating Chemical and Genomic Information

We construct kernels containing information about the chemical and

genomic space from the similarity matrices Sd and Sg . Because

these similarity matrices are neither symmetric nor positive def-

inite we apply a simple transformation to make them symmetric

with Ssym = (S + ST )/2 and add a small multiple of the iden-

tity matrix to enforce the positive definite property. We denote the

resulting kernels for drugs and targets by Kchemical,d and Kgenomic,t

respectively.

To combine the interaction profile kernel with these chemical and

genomic kernels, we use a simple weighted average,

Kd = αdKchemical,d + (1− αd)KGIP,d

Kt = αtKgenomic,t + (1− αt)KGIP,t.

For the reported results of our evaluation we use simply the un-

weighted average, for both drugs and targets, i.e. αd = αt = 0.5. In

section 4.2 we further analyze the effect of these parameters on the

predictive performance of the method.

3.4 RLS-avg classifier

In principle we could use the Gaussian Interaction Profile ker-

nels with any kernel based classification or ranking algorithm. We

choose to use a very basic classifier, the (kernel) Regularized Least

Squares (RLS) classifier. While Least Squares is primarily used for

regression, when a good kernel is used it has classification accu-

racy similar to that of Support Vector Machines (Rifkin and Klautau,

2004). Our own experiments confirm this finding. In the RLS clas-

sifier, the predicted values ŷ with a given kernel K have a simple

closed form solution,

ŷ = K(K + σI)−1y,

where σ is a regularization parameter. Higher values of σ give a

smoother result, while for σ = 0 we get ŷ = y, and hence no

generalization at all. The value ŷ is a real valued score, which we

can interpret as a confidence.

The RLS classifier is sensitive to the encoding used for y. Here we

use 1 for encoding interacting pairs and 0 for non-interacting ones.

Brief experiments have shown that the classifier is not sensitive to

this choice, as long as the value used for non-interactions is close

to 0. Using a value very different from 0, like −1, would place

too much weight on non-interactions. The classifier would then try

to avoid predicting pairs that look like non-interactions, rather than

predicting pairs that look like interactions.

In the previous sections we defined kernels on drugs and kernels

on target proteins. There are several ways in which we can use

kernels in both of these dimensions. Following other works, like

Bleakley and Yamanishi (2009); Zheng Xia and Wong (2010), a

simple and effective approach is to apply the classifier for each drug

independently using, only the target kernel; and also for each target

independently using only the drug kernel. Then the final score for a

drug–target pair is a combination of the two outputs.

Here we use the average of the output values, and denote the re-

sulting method by RLS-avg. Observe that in the formulation of the

RLS classifier we use, performing independent prediction amounts

to replacing the vector y with the matrix Y , hence the prediction of

RLS-avg is

Ŷ =
1

2

(

Kd(Kd + σI)−1Y
)

+
1

2

(

Kt(Kt + σI)−1Y T
)T

.

Note this model is slightly different from using the Kronecker

sum kernel (Kashima et al., 2009a). Because regularization is per-

formed for drugs and targets separately in the RLS-avg method,

rather than jointly.

3.5 RLS-Kron classifier

A better alternative is to combine the kernels into a larger kernel

that directly relates drug–target pairs. This is done with the Kro-

necker product kernel (Basilico and Hofmann, 2004; Ben-Hur and

Noble, 2005; Oyama and Manning, 2004; Hue and Vert, 2010). The

Kronecker product Kd ⊗Kt of the drug and target kernels is

K((di, tj), (dk, tl)) = Kd(di, dk)Kt(tj , tl).

With this kernel we can make predictions for all pairs at once,

vec(Ŷ T ) = K(K + σI)−1
vec(Y T ),

where vec(Y T ) is the a vector of all interaction pairs, created by

stacking the columns of Y T . We call this method RLS-Kron.
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Using the Kronecker product kernel directly would involve cal-

culating the inverse of an ndnt × ndnt matrix, which would

take O((ndnt)
3) operations, and would also require too much

memory. We use a more efficient implementation based on eigen-

decompositions, previously presented in Raymond and Kashima

(2010).

Let Kd = VdΛdVd
T and Kt = VtΛtVt

T be the eigendecom-

positions of the two kernel matrices. Since the eigenvalues(vectors)

of a Kronecker product are the Kronecker product of eigen-

values(vectors), for our Kronecker product kernel we have simply

K = Kd⊗Kt = V ΛV T , where Λ = Λd⊗Λt and V = Vd⊗Vt. The

matrix that we want to invert, K + σI has these same eigenvectors

V , and eigenvalues Λ + σI . Hence

K(K + σI)−1 = V Λ(Λ + σI)−1V T .

To efficiently multiply this matrix with vec(Y T ) we can use a

further property of the Kronecker product, namely that (A ⊗
B)vec(X) = vec(BXAT ). Combining these facts we get that the

RLS prediction is

Ŷ = VdZ
TVt

T ,

where

vec(Z) = (Λd ⊗ Λt)(Λd ⊗ Λt + σI)−1
vec(Vt

TY TVd).

So, to make a RLS prediction using the Kronecker product kernel we

only need to perform the two eigendecompositions and some matrix

multiplications, bringing the runtime down to O(nd
3 + nt

3). The

efficiency of this computation could be further improved yielding

a quadratic computational complexity by applying recent tech-

niques for large scale kernel methods for computing the two kernel

decompositions (Kashima et al., 2009b; Wu et al., 2006).

3.6 Comparison methods

In order to assess globally the performance of our method, we com-

pare it against current state-of-the-art algorithms. To the best of our

knowledge, the best results on these datasets obtained so far are

those reported by Bleakley and Yamanishi (2009), where the Bipar-

tite Local Models (BLM) approach was introduced. These results

were achieved by combining the output scores of the Kernel Regres-

sion Method (KRM) (Yamanishi et al., 2008) and BLM by taking

their maximum value. We briefly recall these methods here.

In the KRM method, drugs and targets are embedded into a uni-

fied space called the ‘pharmacological space’. A regression model

is learned between the chemical structure (respectively, genomic se-

quence) similarity space and this pharmacological space. Then new

potential drugs and targets are mapped into the pharmacological

space using this regression model. Finally, new drug–target inter-

actions are predicted by connecting drugs and target proteins that

are closer than a threshold in the pharmacological space.

The BLM method is similar to our RLS-avg method. In the BLM

method, the presence or absence of a drug–target interaction is pre-

dicted as follows. First, the target is excluded, and a training set

is constructed consisting of two classes: all other known targets of

the drug in question, and the targets not known to interact with that

drug. Second, a Support Vector Machine that discriminates between

the two classes is constructed, using the available genomic kernel

for the targets. This model is then used to predict the label of the

Table 2. Results on the drug target interaction datasets. The AUC and

AUPR scores are normalized to 100. For each dataset, * indicates the the

highest AUC/AUPR score.

Dataset Method Kernel AUC AUPR

Enzyme

BY09 (AUC) chem/gen 97.6 83.3

BY09 (AUPR) chem/gen 97.3 84.1

RLS-avg GIP 98.2 88.1

RLS-avg chem/gen 96.6 84.5

RLS-avg avg. 97.9 90.5

RLS-Kron GIP 98.3* 88.5

RLS-Kron chem/gen 96.6 85.6

RLS-Kron avg. 97.8 91.5*

Ion Channel

BY09 (AUC) chem/gen 97.3 78.1

BY09 (AUPR) chem/gen 93.5 81.3

RLS-avg GIP 98.5 91.8

RLS-avg chem/gen 97.1 80.7

RLS-avg avg. 98.1 93.2

RLS-Kron GIP 98.6* 92.7

RLS-Kron chem/gen 97.1 77.5

RLS-Kron avg. 98.4 94.3*

GPCR

BY09 chem/gen 95.5* 66.7

RLS-avg GIP 94.5 70.0

RLS-avg chem/gen 94.7 66.0

RLS-avg avg. 95.0 77.1

RLS-Kron GIP 94.7 71.3

RLS-Kron chem/gen 94.8 63.8

RLS-Kron avg. 95.4 79.0*

Nuclear Receptor

BY09 chem/gen 88.1 61.2

RLS-avg GIP 88.7 60.4

RLS-avg chem/gen 86.4 54.7

RLS-avg avg. 92.5* 67.0

RLS-Kron GIP 90.6 61.0

RLS-Kron chem/gen 85.9 51.1

RLS-Kron avg. 92.2 68.4*

target, and hence the interaction or non-interaction of the consid-

ered drug–target pair. A similar procedure is applied with the roles

of drugs and targets reversed, using the chemical structure kernel

instead. These two results are combined by taking the maximum

value.

4 EVALUATION

In order to compare the performance of the methods, we per-

formed systematic experiments simulating the process of bipartite

network inference from biological data on four drug–target inter-

action networks. These experiments are done by full leave-one-out

cross-validation (LOOCV) as follows. In each run of the method,

one drug–target pair (interacting or non-interacting) is left out by

setting its entry in the Y matrix to 0. Then we try to recover its true

label using the remaining data.

Note that when leaving out a drug–target pair the Y matrix

changes, and therefore the GIP kernel has to be recomputed.

We also performed a variation of these experiments using 5 trials

of 10-fold cross-validation. We recomputed the GIP kernels for each

4
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(d) Nuclear Receptor

Figure 2. Precision–recall curves for the RLS-Kron method. The red dotted line corresponds to using only the chemical and genomic kernels. The green

dashed line corresponds to using only the GIP kernels. The blue solid line corresponds to the average of the two types of kernels. On all datasets the average

kernel shows a small improvement over either other kernel type alone.

fold, also for 10-fold cross-validation. So no information about the

removed interactions was leaked in this way.

The results can be found in Supplementary Table S2; we observed

no large differences compared to the results obtained using LOOCV.

In all experiments we have chosen the values for the parameters

in an uninformative way. In particular, we set the regularization pa-

rameter σ = 1 for both RLS methods; and as stated before, we set

the kernel bandwidths γ̃d = γ̃t = 1 for both the drug and target

interaction profile kernels.

We assessed the performance of the methods with the following

two quality measures generally used in this type of studies: AUC

and AUPR. Specifically, we computed the ROC curve of true posi-

tives as a function of false positives, and considered the area under

the ROC curve (AUC) as quality measure (see for instance Fawcett,

2006). Furthermore, we considered the the precision–recall curve

(Raghavan et al., 1989), that is, the plot of the ratio of true posi-

tives among all positive predictions for each given recall rate. The

area under this curve (AUPR) provides a quantitative assessment of

how well, on average, predicted scores of true interactions are sep-

arated from predicted scores of true non-interactions. For this task,

because there are few true drug–target interactions, the AUPR is a

more significant quality measure than the AUC, as it punishes much

more the existence of false positive examples found among the best

ranked prediction scores (Davis and Goadrich, 2006).

Table 2 contains the results for the two RLS-based classifiers,

RLS-avg and RLS-Kron, each with three different kernel combi-

nations:

• GIP: Using only the Gaussian Interaction Profile kernels,

i.e. Kd = KGIP,d and Kt = KGIP,t, corresponding to

αd = αt = 1.

• chem/gen: Using only the chemical structure and genomic se-

quence similarity, so Kd = Kchemical,d and Kt =
Kgenomic,t, corresponding to αd = αt = 0.

• avg: Using the average of the two types of kernels,

corresponding to αd = αt = 0.5.

For comparison, we have also included in the table as BY09

(AUC) and BY09 (AUPR) the best results from the combined BML

and KRM methods from Bleakley and Yamanishi (2009). For the

GPCR and Nuclear Receptor datasets, the method with the highest

AUC is the same as the one with the highest AUPR, therefore it is

included only once, as BY09.

4.1 Analysis

Using only the GIP kernel, our Kronecker product RLS method

has AUPR scores of 88.5, 92.7, 71.3 and 61.0 on the Enzyme, Ion

Channel, GPCR and Nuclear Receptor datasets respectively. These

results are superior to the results from using only the chemical and

genomic kernels.

Overall the RLS-Kron and RLS-avg methods have comparable

AUC scores. However, the RLS-Kron has a better AUPR when using

the GIP kernel, and a worse AUPR when using the chemical and

genomic kernels. We believe that this problem is due to the poor

quality of the chemical similarity kernel, to which the RLS-Kron

method is more sensitive.

Note also that the RLS-avg method is comparable to Bleakley and

Yamanishi’s bipartite local model (BLM) approach. The differences

are that whereas we use a RLS classifier, they use Support Vector

Machines; and whereas we use the average to combine results, they

use the maximum value. It is therefore not surprising that when us-

ing the chemical and genomic kernels the results of the RLS-avg

method are very similar to their results.

In all cases the best results are obtained when the GIP kernels are

combined with the chemical and genomic kernels. With the RLS-

Kron method we then obtain AUPR scores of 91.5, 94.3, 79.0 and

68.4 on the four datasets, which is an improvement of 7.4, 13.0, 12.3

and 7.2 over the best results reported by Bleakley and Yamanishi

(2009). Figure 2 shows the precision–recall curves for the RLS-

Kron method. Compared to other methods, the RLS-Kron method

with the average kernels achieves a good precision also at higher

recall values, especially on the larger datasets (Enzyme and Ion

Channel).

4.2 Kernels’ relevance

In the previous section we have shown that using a mix of the

GIP kernels and the chemical and genomic kernels gives results

superior to either type of kernel alone. In order to determine the

relative importance of the network topology compared to chem-

ical and sequence similarity, we have investigated the change in

prediction performance when varying the parameters αd and αt

between 0 (chemical/genomic kernels only) and 1 (interaction pro-

files kernels only). For computational reasons we have used 10-fold

cross-validation instead of leave-one-out.
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In figure 3 we have plotted the AUPR and AUC scores on the

GPCR dataset for the different parameter values. Lighter colors cor-

respond to higher values. Because of space limitations, plots for the

other datasets are included in Supplementary Figures S1 and S2. For

all datasets the optimal AUPR is obtained using a mix of the drug

and target kernels. Using the parameters αd = αt = 0.5, as we

did in the previous section, seems to be a good choice across the

datasets. Also note that the choice of αd is more important than the

choice of αt. This seems to indicate that the sequence similarity for

targets is more informative than the chemical similarity for drugs.

A similar observation was also made in Bleakley and Yamanishi

(2009). The poor performance of the RLS-Kron method when using

only chemical and genomic kernels that we observed in the previ-

ous section appears to be due entirely to this uninformative chemical

similarity.

On the larger datasets (Enzyme and Ion Channel) the optimal

AUC is obtained with αd = 1, while that choice gives the worst

results on the smaller datasets. This can be explained by noting that

when there are few drugs, there is less information available for

each entry of GIP target kernel, and hence this kernel will be of a

lower quality. We have confirmed this hypothesis by testing differ-

ent sized subsets of the Ion Channel dataset, where we observe the

same effect on small subsets. The full results of that experiment are

available in Supplementary Figure S3.

4.3 New predicted interactions

In order to analyze the practical relevance of the method for pre-

dicting novel drug–target interactions, we conducted an experiment

similar to that described by Bleakley and Yamanishi (2009). We

ranked the non-interacting pairs according to the scores computed

for leave-one-out cross-validation experiments. We estimate the

most highly ranked drug–target pairs as most likely to be putative

interactions. A list of the top 20 new interactions predicted for each

of the four data sets can be found in Supplementary Tables S3–S6.

Table 3 lists the top 10 new interactions predicted for the GPCR

dataset. We have looked up these predicted interactions in ChEMBL

(Overington, 2009) (version 9), DrugBank (Wishart et al., 2008) and

the latest online version of KEGG DRUG (Kanehisa et al., 2006). A

significant fraction of the predictions (4 out of 10) is found in one or

more of these databases. One should bear in mind that a large frac-

tion of the interactions in these databases are already included in the

training data, and hence are not counted as new interactions. More-

over these databases are incomplete, so if a predicted interaction
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Figure 3. AUPR and AUC scores for the GPCR dataset with different

weightings of the kernels. Lighter colors are better. For all datasets αd =

αt = 0.5 gives near optimal results.

Table 3. The top 10 new interactions predicted in the GPCR dataset, 4

have been confirmed. Interactions that appear in the ChEMBL database are

marked with “[C]”, interactions in Drugbank are marked with “[D]”, and

interactions in Kegg are marked with “[K]”. The NN column gives the simi-

larity to the nearest drug interacting with the same target, and to the nearest

target interacting with the same drug.

Rank Pair Description NN

1 D00283 Clozapine 0.769

[C,D] hsa1814 DRD3: dopamine receptor D3 0.455

2 D02358 Metoprolol 0.750

[C,D] hsa154 ADRB2: beta-2 adrenergic receptor 0.434

3 D00604 Clonidine hydrochloride 0.933

hsa147 ADRA1B: alpha-1B adrenergic receptor 0.435

4 D03966 Eglumegad 0.036

hsa2914 GRM4: glutamate receptor, metabotropic 4 0.768

5 D00255 Carvedilol 0.380

hsa152 ADRA2C: alpha-2C adrenergic receptor 0.489

6 D04625 Isoetharine 0.737

[K] hsa154 ADRB2: beta-2 adrenergic receptor 0.434

7 D03966 Eglumegad 0.036

hsa2917 GRM7: glutamate receptor, metabotropic 7 0.758

8 D02340 Loxapine 0.769

[D] hsa1812 DRD1: dopamine receptor D1 0.205

9 D00503 Perphenazine 0.857

hsa1816 DRD5: dopamine receptor D5 0.529

10 D00682 Carboprost tromethamine 0.914

hsa5739 PTGIR: prostaglandin I2 receptor (IP) 0.150

Table 4. The number of highly ranked new interactions that are found in at

least one of the three considered databases (ChEMBL, DrugBank or KEGG

DRUG).

Dataset Method Top 20 Top 50 Top 80

Enzyme
BY09 6 (30%) 15 (30%) 17 (21%)

RLS-Kron-avg 11 (55%) 15 (30%) 22 (28%)

Ion Channel
BY09 11 (55%) 14 (28%) 18 (22%)

RLS-Kron-avg 8 (40%) 12 (24%) 22 (28%)

GPCR
BY09 13 (65%) 22 (44%) 30 (38%)

RLS-Kron-avg 9 (45%) 28 (56%) 40 (50%)

Nuclear Receptor
BY09 5 (25%) 15 (30%) 22 (28%)

RLS-Kron-avg 9 (45%) 20 (40%) 22 (28%)

is not present in one of the used databases, this does not necessar-

ily mean it does not exist. For this dataset, we started with only

635 known drug–target interactions and 20550 drug–target pairs

not known to interact. Of these 20550 we selected 10 as putative

drug–target interaction, and found that at least 4 of them are exper-

imentally verified. These findings support the practical relevance of

the proposed method.

We compared the newly predicted interactions generated by RLS-

Kron-avg and those generated by Bleakley and Yamanishi (2009),

here referred to as BY09. Specifically, given a dataset, for each

method we extracted from its top x new predictions those that

have been experimentally validated (that is, that could be found in

ChEMBL, DrugBank or KEGG DRUG). Table 4 contains a sum-

mary of the results for x = 20, 50, 80. Looking at the top 20

predictions it seems that the two methods perform best on different

datasets. For the top 50 and top 80 predictions, the results indicate
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the capability of RLS-Kron-avg to predict successfully more new

interactions than BY09.

We then compared the resulting two sets of confirmed new pre-

dictions among the top 50, by looking at common predictions and at

interactions uniquely predicted by only one of the two methods. The

results for the four datasets can be found in Supplementary Tables

S7–S10.

On the Enzyme dataset BY09 and RLS-Kron-avg both success-

fully predicted 15 new interactions, with 10 common predictions.

On the Ion Channel dataset, BY09 and RLS-Kron-avg successfully

predicted 14 and 12 new interactions, respectively, of which only 1

interaction was predicted by both methods. Although BY09 found

slightly more confirmed interactions they were less diverse, since

11 of them involve interactions between (different types of) the

voltage-gated sodium channel alpha subunit target and only 2 drugs:

Prilocaine and Tocainide. On the other hand, RLS-Kron-avg found

interactions 4 different classes of targets and 10 different drugs.

On the GPCR dataset, BY09 and RLS-Kron-avg successfully pre-

dicted 22 and 28 new interactions, respectively, with 14 common

predictions. Finally, on the Nuclear Receptor dataset, BY09 and

RLS-Kron-avg successfully predicted 15 and 20 new interactions,

respectively. Among them, 13 were in common.

In general, the two methods seem to differ in the type of new

predictions made. While there is always an overlap of new inter-

actions between the two methods, there is also always a subset of

new interactions which RLS-Kron-avg can successfully predict but

BY09 fails to predict and vice-versa. Moreover, there seems to be a

slight tendency of BY09 to generate new successful predictions that

are less diverse than those generated by RLS-Kron-avg. However,

we were not able to identify any differential biological bias of the

methods towards the detection of specific types of interactions.

4.4 Surprising interactions

A closer inspection shows that many of the predicted interactions

are not very surprising. For example, the GPCR dataset contains

the interaction between Clozapine and Dopamine receptor D1. The

drug Loxapine is very similar to Clozapine, and it is therefore to

be expected that our method also predicts Loxapine to interact with

Dopamine receptor D1. An analogous thing happens with very sim-

ilar target proteins. In order to provide a quantitative measure of

how surprising these predictions are, we computed the similarity of

a the drug and target in an interaction pair to their Nearest Neighbor

(NN), that is, the most similar drug (with respect to chemical struc-

ture similarity) and target (with respect to sequence similarity) in

the training set, respectively. These similarities, which we call sur-

prise scores, are listed in the NN column of table 3. An inspection of

the surprise scores shows that the majority of the drug–target pairs

predicted by our method consist of a drug and a target very similar

to a drug and a target already known to interact, and therefore they

are not very surprising. This phenomenon is common to any compu-

tational approach that uses similarity between objects for inferring

interaction.

To assess the ability of our method to also predict more surprising

interactions, we have looked specifically at the predicted interac-

tions where there is no similar drug interacting with the same target

or similar target interacting with the same drug in the dataset. We

pick a threshold value and consider drugs (targets) to be dissimilar

if their chemical (genomic) similarity is less than this threshold. We

have used the threshold 0.5 for the chemical similarity and 0.25 for

the genomic similarity.

When only these ‘surprising’ pairs are considered, we find, as

expected, that fewer of them are present in the ChEMBL, DrugBank

and KEGG databases. But we still find more interactions among

the highly ranked ‘surprising’ pairs compared to to those that are

ranked lower. For example, on the GPCR dataset, 89 of the 500

highest ranked pairs were surprising, and 10 of them (11%) were

found in one of the databases. See the online Suplementary Material

for details.

5 DISCUSSION

We have presented a new kernel that leads to good predictive perfor-

mance as measured by AUPR on the task of predicting interactions

between drugs and target proteins. An interesting aspect of our

Gaussian Interaction Profile kernel is that it uses no properties be-

yond the interactions themselves. This means that knowing the

sequence of proteins and chemical structure of drugs is perhaps not

as important for this task as previously thought. For example, on

the Ion Channel dataset our method with only the GIP kernel has

an AUC score of 98.6 and an AUPR score of 92.7, which improves

upon the state-of-the-art, while using less prior information.

Besides the GIP kernel we have also introduced the RLS-Kron

algorithm that combines a kernel on drugs and a kernel on targets

using the Kronecker product. Compared to previous methods that

do prediction with the two kernels independently and then com-

bine the results, this new method represents a small but consistent

improvement.

By combining the GIP kernel with chemical and genomic infor-

mation we get a method with excellent performance. This method

has AUPR scores of 91.5, 94.3, 79.0 and 68.4 on four datasets of

drug–target interaction networks in humans, representing an aver-

age improvement of 10 points over previous results. The AUPR is a

particularly relevant metric for this problem, because it is very sen-

sitive to the correctness of the highest ranked predictions. The large

improvement in AUPR suggests that the top ranked putative drug–

target interactions found by our method are more likely to be correct

than those found with previous methods.

A limitation of all machine learning methods for finding new

drug–target interactions is that they are sensitive to inherent biases

contained in the training data. It would be interesting to try and ana-

lyze the bias of existing datasets of drug–target interaction, but this

is out of the scope of the present paper. Note also that the datasets

by Yamanishi et al. (2008) used in this paper do not include any

singletons: each drug interacts with at least one target, and each

target interacts with at least one drug. This property could affect

the cross-validation results, by allowing a limited form of cheating.

However, the experiments in section 4.3 show that our method also

works when tested in other ways.

A further limitation of the approach used in this paper is that

it can only be applied to detect new interactions for a target or a

drug for which at least one interaction has already been established.

Therefore, biologists can use the method as guidance for extending

their knowledge about the interaction of a drug or of a target, not

for discovering interactions of a new drug or target (that is, one for

which no interaction is known). In particular, our method is useful

for experimentalist to aid in experimental design and interpretation,
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especially in solving problems related to drug-target selectivity and

polypharmacology (Metz and Hajduk, 2010; Merino et al., 2010).

There are several ways in which the result might further be

improved. So far we have used uninformative choices of the param-

eters: γ̃ = 1, σ = 1 and α = 0.5. Of these choices we have only

investigated the last one. Perhaps with tuning of the other parame-

ters better predictions are possible, although one has to be careful

not to over-fit them to the data.

Another avenue for improvement is in using more information

about drugs and targets. Since combining the GIP kernel with chem-

ical and genomic kernels leads to a better predictive performance,

perhaps adding different information in the form of additional

kernels would yield further improvements. These kernels could

be interaction profile kernels based on other types data, such as

protein–protein interaction networks. Similarly, for each pair of in-

teracting drug and target more information is known beyond the

fact they interact. For example, the type of interaction, the bind-

ing strength, the mechanism of discovery and its uncertainty might

all be known. In this paper we have made no use of this additional

information, nor did we attempt to predict the type or strength of

interactions.
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