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Abstract

We investigate Gaussian Kullback-Leibler (G-KL) variational approximate inference techniques

for Bayesian generalised linear models and various extensions. In particular we make the fol-

lowing novel contributions: sufficient conditions for which the G-KL objective is differentiable

and convex are described; constrained parameterisations of Gaussian covariance that make G-KL

methods fast and scalable are provided; the lower bound to the normalisation constant provided by

G-KL methods is proven to dominate those provided by local lower bounding methods; complexity

and model applicability issues of G-KL versus other Gaussian approximate inference methods are

discussed. Numerical results comparing G-KL and other deterministic Gaussian approximate in-

ference methods are presented for: robust Gaussian process regression models with either Student-t

or Laplace likelihoods, large scale Bayesian binary logistic regression models, and Bayesian sparse

linear models for sequential experimental design.

Keywords: generalised linear models, latent linear models, variational approximate inference,

large scale inference, sparse learning, experimental design, active learning, Gaussian processes

1. Introduction

For a vector of parameters w ∈R
D, in a large class of probabilistic models we require the inferential

quantities

p(w) =
1

Z
N (w|µ,Σ)

N

∏
n=1

φn(w), (1)

Z =
∫

N (w|µ,Σ)
N

∏
n=1

φn(w)dw, (2)

where p(w) is a multivariate real valued probability density function, N (w|µ,Σ) is a multivariate

Gaussian density with mean vector µ and covariance matrix Σ, and {φn}N
n=1 are positive, real

valued, non-Gaussian potential functions.

The range of models that require us to compute these quantities is broad. In the Bayesian set-

ting an important class is Bayesian generalised linear models (GLMs) for which examples include:

sparse Bayesian linear models, where the Gaussian term is the likelihood and {φn}N
n=1 are factors of

the sparse prior (Park and Casella, 2008); Gaussian process models, where the Gaussian term is a

prior over latent function values and {φn}N
n=1 are factors of the non-Gaussian likelihood (Vanhatalo

et al., 2009); and binary logistic regression, where the Gaussian term is a prior on the parameter
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vector and {φn}N
n=1 are logistic sigmoid likelihood functions (Jaakkola and Jordan, 1997). In the

context of unsupervised learning examples include: independent components analysis, where the

Gaussian term is the conditional density of the signals and {φn}N
n=1 are factors of the sparse density

on the latent sources w (Girolami, 2001); and binary or categorical factor analysis models where

the Gaussian term is the density on the latent variables and {φn}N
n=1 are factors of the binary or

multinomial conditional distribution (Tipping, 1999; Marlin et al., 2011).

In Bayesian supervised learning, Z is the marginal likelihood, otherwise termed the evidence,

and the target density p(w) is the posterior of the parameters conditioned on the data. Evaluating

Z is essential for the purposes of model comparison, hyperparameter estimation, active learning

and experimental design. Indeed, any marginal function of the posterior such as a moment, or a

predictive density estimate also implicitly requires Z.

In unsupervised learning, Z is the model likelihood obtained by marginalising out the hidden

variables w and p(w) is the density of the hidden variables conditioned on the visible variables.

p(w) is required to optimise model parameters using either expectation maximisation or gradient

ascent methods.

Computing Z, in either the Bayesian or unsupervised learning setting, is typically intractable due

to the size of most problems of practical interest, which is usually much greater than one both in

the dimension D and the number of potential functions N. Methods that can efficiently approximate

these quantities are thus required.

Due to the importance of this model class, a great deal of effort has been dedicated to finding

accurate approximations to p(w) and Z. Whilst there are many different possible approximation

routes, including sampling, consistency methods such as expectation propagation and perturbation

techniques such as the Laplace method, our focus here is on a technique that lower-bounds Z and

makes a Gaussian approximation to the target density p(w).

We obtain a Gaussian approximation to p(w) and a lower-bound on logZ by minimising the

Kullback-Leibler divergence between the approximating Gaussian density and p(w). Gaussian

Kullback-Leibler approximate inference, which is how we refer to this procedure, is not new (Saul

et al., 1996; Barber and Bishop, 1998; Seeger, 1999b; Kuss and Rasmussen, 2005; Opper and Ar-

chambeau, 2009). However, as we outline in the following subsection, we provide a number of

theoretical and practical developments regarding its application.

1.1 Overview

In Section 2 we provide an introduction and overview of Gaussian Kullback-Leibler (G-KL) ap-

proximate inference methods for problems of the form of Equation (2) and describe a large class of

models for which G-KL inference is feasible.

In Section 3 we address G-KL bound optimisation. We provide conditions on the potential

functions {φn}N
n=1 for which the G-KL bound is smooth and concave. Thus we provide conditions

for which optimisation using Newton’s method will exhibit quadratic convergence rates and using

quasi-Newton methods superlinear convergence rates.

In Section 4 we discuss the complexity of G-KL bound and gradient computations required to

perform approximate inference. To make G-KL approximate inference scalable we present con-

strained parameterisations of covariance.

In Section 5 we compare G-KL approximate inference to other Gaussian approximate infer-

ence methods. We prove that the G-KL lower-bound is tighter than the bound offered by local
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lower-bounding methods. We also discuss and compare computational scaling properties and model

applicability issues.

In Section 6 we apply the G-KL procedure to three popular machine learning models. First, we

consider the problem of Gaussian process regression with noise robust non-conjugate likelihoods.

Second, we apply G-KL approximate inference to large Bayesian binary classification tasks. Third,

we consider sequential experimental design in Bayesian sparse linear models. In these experiments

we aim to assess the performance of the G-KL procedure in terms of speed, accuracy of inference

and predictive performance. Results are compared to other deterministic Gaussian approximate

inference procedures.

2. Gaussian KL Approximate Inference

The primary assumption of this work is that a target density of the form of Equation (2) with un-

bounded support in R
D is reasonably approximated by a Gaussian. Many approximate inference

methods make this assumption, for example the Laplace approximation (see Barber, 2012 for a

recent introduction), expectation propagation with an assumed Gaussian approximating density

(Minka, 2001) and local variational bounding methods (Jaakkola and Jordan, 1997). This paper

considers the method of fitting a Gaussian to p(w) by minimising the Kullback-Leibler divergence

between the two densities.

The Kullback-Leibler (KL) divergence for two probability density functions q(w) and p(w) is

defined as

KL(q(w)| p(w)) :=
∫

W
q(w) log

q(w)

p(w)
dw, (3)

where W is the support of q(w). The KL divergence has the properties: KL(q(w)| p(w))≥ 0 for all

p(w) and q(w), KL(q(w)| p(w)) = 0 iff q(w) = p(w) almost everywhere, and KL(q(w)| p(w)) 6=
KL( p(w)|q(w)) for q(w) 6= p(w). The KL divergence, whilst not being a true metric, is thus a

measure of the discrepancy between two probability distributions.

G-KL approximate inference proceeds by fitting the ‘variational’ Gaussian, q(w) =N (w|m,S),
to the target, p(w), by minimising KL(q(w)| p(w)) with respect to the moments m and S. Substitut-

ing Equation (1) into Equation (3), using the fact that the KL divergence is non-negative, we obtain

the bound logZ ≥ BKL(m,S) where

BKL(m,S) :=−〈logq(w)〉q(w)
︸ ︷︷ ︸

entropy

+
〈
logN (w|µ,Σ)

〉

q(w)
︸ ︷︷ ︸

Gaussian potential

+
N

∑
n=1

〈logφn(w)〉q(w)

︸ ︷︷ ︸

site potentials

, (4)

and 〈 f (x)〉p(x) denotes taking the expectation of f (x) with respect to the density p(x). Unless

otherwise stated all expectations should be assumed to be taken with respect to q(w) and so we omit

this subscript in the following notation.

The first and second terms in Equation (4) are integrals that admit simple analytic forms, the

last term in general does not. The entropy of the variational Gaussian distribution is equal to
1
2

logdet(2πeS). The second term is the Gaussian expectation of a negative quadratic in w which

is itself a negative quadratic in m,S. Whilst the site potentials are not, in full generality, easy to

evaluate in the next section we describe a large class of models for which they can be computed

efficiently and so for which the G-KL bound is tractable.
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2.1 Tractable G-KL Approximations

To evaluate the G-KL bound, Equation (4), we are required to compute ∑N
n=1 〈logφn(w)〉. For

generic potential functions {φn}N
n=1 computing the required integrals is not always a numerically

accessible task. However, in many practical problems of interest each potential function φn takes

the form

φn(w) = φn(w
Thn), (5)

for fixed vectors hn. We refer to such potentials as site projections. We note that the linear projec-

tion of a Gaussian random vector is also Gaussian distributed. That is to say if y = wTh where

w ∼ N (w|m,S) and h is fixed then y ∼ N
(
y|hTm,hTSh

)
. We can use this result to express

〈
logφn(w

Thn)
〉

as a one-dimensional integral

〈
logφn(w

Thn)
〉
= 〈logφn(x)〉N (x|mn,s2

n)
= 〈logφn(mn + zsn)〉N (z|0,1) (6)

with mn :=mThn and s2
n := hT

nShn (this result is presented in Barber and Bishop (1998) and Kuss and

Rasmussen (2005) and Appendix A of this paper). The required integral can then be readily com-

puted either analytically (for example φ(x) ∝ e−|x|) or more generally using any one-dimensional

numerical integration routine.

For models of the form of Equation (2), with each potential φn(w) a site projection, the G-KL

bound can thus be expressed as

BKL (m,S) =
1

2
logdet(2πeS)

︸ ︷︷ ︸

entropy

+
N

∑
n=1

〈logφn(mn + zsn)〉N (z|0,1)
︸ ︷︷ ︸

site projection potentials

− 1

2

[

logdet(2πΣ)+(m−µ)T
Σ

−1 (m−µ)+ trace
(
Σ

−1S
)]

︸ ︷︷ ︸

Gaussian potential

. (7)

2.1.1 NON-GAUSSIAN MODELS

G-KL approximate inference is not limited to models where the target density has a Gaussian po-

tential N (w|µ,Σ). The bound can be evaluated in the more general case p(w) ∝ ∏N
n=1 φn(w

Thn)
with each φn non-Gaussian. One concrete example of this scenario is binary logistic regression with

a Laplace prior on the parameter vector w. In this context each φn potential function corresponds to

either the logistic sigmoid factors specifying the likelihood or the e−|wd | Laplace factors specifying

the prior. When p(w) ∝ ∏N
n=1 φn(w

Thn) the G-KL bound consists only of the first two terms in

Equation (7).

3. G-KL Bound Optimisation

G-KL approximate inference proceeds to obtain the tightest lower-bound to logZ and the ‘closest’

Gaussian approximation to p(w) by maximising BKL(m,S) with respect to the moments m and S of

the variational Gaussian density. Therefore, to realise the benefits of G-KL approximate inference

we require stable and scalable algorithms to optimise the bound. To this end we now show that for

a broad class of models the G-KL objective is both differentiable and concave.
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Figure 1: Non-differentiable functions and their Gaussian expectations. Figures (a) and (c) plot

the non-differentiable function ψ(x) = −|x| and the non-continuous function ψ(x) =
−sgn(x). Figures (b) and (c) plot the expectations of those functions for Gaussian dis-

tributed x as a function of the Gaussian mean m: 〈ψ(x)〉N (x|m,σ2). The expectations are

smooth w.r.t. the Gaussian mean. As the variance of the Gaussian tends to zero the ex-

pectation converges to the underlying function value. Gaussian expectations taken w.r.t.

N
(
x|m,σ2

)
where σ = 0.0125,0.5,1,2.

3.1 G-KL Bound Differentiability

Whilst the target density of our model may not be differentiable in w the G-KL bound with respect

to the variational moments m,S frequently is. See Figure 1 for a depiction of this phenomenon

for two, simple, non-differentiable functions. The G-KL bound is in fact smooth for potential

functions that are neither differentiable nor continuous (for example they have jump discontinuities).

In Appendix C we show that the G-KL bound is smooth for potential functions that are piecewise

smooth with a finite number of discontinuities, and where the logarithm of each piecewise segment

is a quadratic. This class of functions includes the widely used Laplace density amongst others.

3.2 G-KL Bound Concavity

If each site potential {φn}N
n=1 is log-concave then the G-KL bound BKL(m,S) is jointly concave with

respect to the variational Gaussian mean m and C the upper triangular Cholesky decomposition of

covariance such that S = CTC. We say that f (x) is log-concave if log f (x) is concave in x.

Since the bound depends on the logarithm of ∏N
n=1 φn without loss of generality we may take

N = 1. Ignoring constants with respect to m and C, we can write the G-KL bound as

BKL(m,C)
c.
=

D

∑
d=1

logCdd −
1

2
mT

Σ
−1m+µT

Σ
−1m− 1

2
trace

(
Σ

−1CCT
)
+
〈
logφ(wTh)

〉
. (8)

Excluding
〈
logφ(wTh)

〉
from the expression above all terms are concave functions exclusively in

either m or C. Since the sum of concave functions on distinct variables is jointly concave, the first

four terms of Equation (8) represent a jointly concave contribution to the bound.
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To complete the proof1 we need to show that
〈
logφ(wTh)

〉
is jointly concave in m and C. Log-

concavity of φ(x) is equivalent to the statement that for any x1,x2 ∈ R and any θ ∈ [0,1]

logφ(θx1 +(1−θ)x2)≥ θ logφ(x1)+(1−θ) logφ(x2). (9)

Therefore, to show that E(m,C) :=
〈
logφ(wTh)

〉

N (w|m,CTC)
is concave it suffices to show for any

θ ∈ [0,1] that

E(θm1 +(1−θ)m2,θC1 +(1−θ)C2)≥ θE(m1,C1)+(1−θ)E(m2,C2).

This can be done by making the substitution w = θm1 +(1−θ)m2 +(θC1 +(1−θ)C2)
T

z, giving

E (θm1 +(1−θ)m2,θC1 +(1−θ)C2) =
∫

N (z|0,I)×

logφ
(
θhT

(
m1 +CT

1z
)
+(1−θ)hT

(
m2 +CT

2z
))

dz.

Using concavity of logφ(x) with respect to x and Equation (9) with w1 = m1 + CT

1z and w2 =
m2 +CT

2z we have that

E (θm1 +(1−θ)m2,θC1 +(1−θ)C2)≥ θ

∫
N (z|0,I) logφ

(
hT
(
m1 +CT

1z
))

dz

+(1−θ)
∫

N (z|0,I) logφ
(
hT
(
m2 +CT

2z
))

dz

= θE (m1,C1)+(1−θ)E (m2,C2) .

Thus the G-KL bound is jointly concave in m,C provided all site potentials {φn}N
n=1 are log-

concave.

With consequence to the theoretical convergence rates of gradient based optimisation proce-

dures, the bound is also strongly-concave. A function f (x) is strongly-concave if there exists some

c < 0 such that for all x, ∇2 f (x) � cI (Boyd and Vandenberghe, 2004, Section 9.1.2).2 For the

G-KL bound the constant c can be assessed by inspecting the covariance of the Gaussian potential,

Σ. If we arrange the set of all G-KL variational parameters as a vector formed by concatenating

m and the non-zero elements of the column’s of C then the Hessian of
〈
logN (w|µ,Σ)

〉
is a block

diagonal matrix. Each block of this Hessian is either −Σ
−1 or its submatrix

[
−Σ

−1
]

i:D,i:D
, where

i= 2, . . . ,D. The set of eigenvalues of a block diagonal matrix is the union of the eigenvalues of each

of the block matrices’ eigenvalues. Furthermore, the eigenvalues of each submatrix are bounded by

the upper and lower eigenvalues of −Σ
−1. Therefore ∇2BKL(m,S) � cI where c is −1 times the

smallest eigenvalue of Σ
−1. The sum of a strongly-concave function and a concave function is

strongly-concave and thus the G-KL bound as a whole is strongly-concave.

3.3 Summary

In this section, and in Appendix C, we have provided conditions for which the G-KL bound is

strongly concave, smooth, has closed sublevel sets and Lipschitz continuous Hessians. Under these

1. This proof was provided by Michalis K. Titsias and simplifies the original presentation made in (Challis and Barber,

2011).

2. We say for square matrices A and B that A � B iff B−A is positive semidefinite.
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conditions optimisation of the G-KL bound will have quadratic convergence rates using Newton’s

method and super-linear convergence rates using quasi-Newton methods (Nocedal and Wright,

2006; Boyd and Vandenberghe, 2004). For larger problems, where cubic scaling properties aris-

ing from the approximate Hessian calculations required by quasi-Newton methods are infeasible,

we will use limited memory quasi-Newton methods, nonlinear conjugate gradients or Hessian free

Newton methods to optimise the G-KL bound.

Concavity with respect to the G-KL mean is clear and intuitive—for any fixed G-KL covariance

the G-KL bound as a function of the mean can be interpreted as a Gaussian blurring of log p(w)—
see Figure 1. As S = ν2I → 0 then m∗ → wMAP where m∗ is the optimal G-KL mean and wMAP is

the maximum a posteriori (MAP) parameter setting.

Another deterministic Gaussian approximate inference procedure for models of the form of

Equation (2) are local variational bounding methods (discussed at further length in Section 5.1.1).

For log-concave potentials local variational bounding methods, which optimise a different criterion

with a different parameterisation to the G-KL bound, have also been shown to result in a convex

optimisation problem (Seeger and Nickisch, 2011b). To the best of our knowledge, local varia-

tional bounding and G-KL approximate inference methods are the only known concave variational

inference procedures for models of the form of Equation (2).

Whilst G-KL bound optimisation and MAP estimation share conditions under which they are

concave problems, the G-KL objective is often differentiable when the MAP objective is not. Non-

differentiable potentials are used throughout machine learning and statistics. Indeed, the practical

utility of such non-differentiable potentials in statistical modelling has driven a lot of research into

speeding up algorithms to find the mode of these densities—for example see Schmidt et al. (2007).

Despite recent progress these algorithms tend to have slower convergence rates than quasi-Newton

methods on smooth, strongly-convex objectives with Lipschitz continuous gradients and Hessians.

One of the significant practical advantages of G-KL approximate inference over MAP estima-

tion and the Laplace approximation is that the target density is not required to be differentiable.

With regards to the complexity of G-KL bound optimisation, whilst an additional cost is incurred

over MAP estimation from specifying and optimising the variance of the approximation, a saving is

made in the number of times the objective and its gradients need to be computed. Quantifying the

net saving (or indeed cost) of G-KL optimisation over MAP estimation is an interesting question

reserved for later work.

4. Complexity : G-KL Bound and Gradient Computations

In the previous section we provided conditions for which the G-KL bound is strongly concave

and differentiable and so provided conditions for which G-KL bound optimisation using quasi-

Newton methods will exhibit super-linear convergence rates. Whilst such convergence rates are

highly desirable they do not in themselves guarantee that optimisation is scalable. An important

practical consideration is the numerical complexity of the bound and gradient computations required

by any gradient ascent optimisation procedure.

Discussing the complexity of G-KL bound and gradient evaluations in full generality is com-

plex we therefore restrict ourselves to considering one particularly common case. We consider

models where the covariance of the Gaussian potential in Equation (2) is spherical, Σ = ν2I, and

each potential function is a site projection, φn(w) = φn(w
Thn). For models that do not satisfy this

assumption, in Appendix D we present a full breakdown of the complexity of bound and gradient
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computations for each G-KL covariance parameterisation presented in Section 4.1.3 and a range of

parameterisations for the Gaussian potential N (w|m,Σ).

Note that problems where Σ is not a scaling of the identity can be reparameterised to an equiv-

alent problem for which it is. For some problems this reparameterisation can provide significant

reductions in complexity. The procedure, the domains for which it is suitable, and the possible

computational savings it provides are discussed at further length in Appendix E.

For Cholesky factorisations of covariance, S = CTC, of dimension D the bound and gradi-

ent contributions from the logdet(S) and trace(S) terms in Equation (7) scale O(D) and O
(
D2
)

respectively. Terms in Equation (7) that are a function exclusively of the G-KL mean, m, scale at

most O(D) and are the cheapest to evaluate. The computational bottleneck arises from the projected

variational variances s2
n = ‖CThn‖2 required to compute each

〈
logφn(w

Thn)
〉

term. Computing all

such projected variances scales O
(
ND2

)
.3

A further computational expense is incurred from computing the N one dimensional integrals

required to evaluate ∑N
n=1

〈
logφn(w

Thn)
〉
. These integrals are computed either numerically or ana-

lytically depending on the functional form of φn. Regardless, this computation scales O(N), possi-

bly though with a significant prefactor. When numerical integration is required, we note that since
〈
logφn(w

Thn)
〉

can be expressed as 〈logφn(mn + zsn)〉N (z|0,1) we can usually assert that the inte-

grand’s significant mass lies for z ∈ [−5,5] and so that quadrature will yield sufficiently accurate

results at modest computational expense. For all the experiments considered here we used fixed

width rectangular quadrature and performing these integrals was not the principal bottleneck. For

modelling scenarios where this is not the case we note that a two dimensional lookup table can be

constructed, at a one off cost, to approximate 〈logφ(m+ zs)〉N (z|0,1) and its derivatives as a function

of m and s.

Thus for a broad class of models the G-KL bound and gradient computations scale O
(
ND2

)
for

general parameterisations of the covariance S=CTC. In many problems of interest the fixed vectors

hn are sparse. Letting L denote the number of non-zero elements in each vector hn, computing
{

s2
n

}N

n=1
scales now O(NDL) where frequently L ≪ D. Nevertheless, such scaling for the G-KL

method can be prohibitive for large problems and so constrained parameterisations are required.

4.1 Constrained Parameterisations of G-KL Covariance

Unconstrained G-KL approximate inference requires storing and optimising 1
2
D(D+1) parameters

to specify the G-KL covariance’s Cholesky factor C. In many settings this can be prohibitive. To

this end we now consider constrained parameterisations of covariance that reduce both the time and

space complexity of G-KL procedures.

Gaussian densities can be parameterised with respect to the covariance or its inverse the preci-

sion matrix. A natural question to ask is which of these is best suited for G-KL bound optimisation.

Unfortunately, the G-KL bound is neither concave nor convex with respect to the precision ma-

trix. What is more, the complexity of computing the φn site potential contributions to the bound

increases for the precision parameterised G-KL bound. Thus the G-KL bound seems more naturally

parameterised in terms of covariance than precision.

3. We note that since a Gaussian potential, N (w|µ,Σ), can be written as a product over D site projection potentials

computing
〈
logN (w|µ,Σ)

〉
will in general scale O

(
D3
)
—see Appendix B.3.2.
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4.1.1 OPTIMAL G-KL COVARIANCE STRUCTURE

As originally noted by Seeger (1999a), the optimal structure for the G-KL covariance can be as-

sessed by calculating the derivative of BKL(m,S) with respect to S and equating it to zero. Doing

so, S satisfies

S−1 =Σ
−1 +HΓHT, (10)

where H = [h1, . . . ,hn] and Γ is diagonal such that

Γnn =

〈
(
z2 −1

) logφn(mn + zsn)

2s2
n

〉

N (z|0,1)
. (11)

Γ depends on S through the projected variance terms s2
n = hT

nShn and Equation (10) does not provide

a closed form expression to solve for S. Furthermore, iterating Equation (10) is not guaranteed to

converge to a fixed point or uniformly increase the bound. Indeed this iterative procedure frequently

diverges. We are free, however, to directly optimise the bound by treating the diagonal entries of

Γ as variational parameters and thus change the number of parameters required to specify S from
1
2
D(D+1) to N. This procedure, whilst possibly reducing the number of free parameters, requires

us to compute logdet(S) where S has no convenient structure and so in general scales O
(
D3
)
—

infeasible when D ≫ 1.

A further consequence of using this parameterisation of covariance is that the bound is non-

concave. We know from Seeger and Nickisch (2011b) that parameterising S according to Equa-

tion (10) renders logdet(S) concave with respect to (Γnn)
−1. However the site projection potentials

are not concave with respect to (Γnn)
−1 thus the bound is neither concave nor convex for this param-

eterisation resulting in convergence to a possibly local optimum. Non-convexity and O
(
D3
)

scaling

motivates the search for better parameterisations of covariance. In Appendix B we provide equa-

tions for each term of the G-KL bound and its gradient for each of the covariance parameterisations

considered below.

4.1.2 FACTOR ANALYSIS

Parameterisations of the form S=ΘΘ
T+diag

(
d2
)

can capture the K leading directions of variance

for a D×K dimensional loading matrix Θ. Unfortunately this parameterisation renders the G-KL

bound non-concave. Non-concavity is due to the entropic contribution logdet(S) which is not

even unimodal. All other terms in the bound remain concave under this factorisation. Provided

one is happy to accept convergence to possibly local optima, this is still a useful parameterisation.

Computing the projected variances with S in this form scales O(NDK) and evaluating logdet(S)
and its derivative scales O

(
K2(K +D)

)
.

4.1.3 CONSTRAINED CONCAVE PARAMETERISATIONS

Below we present constrained parameterisations of covariance which reduce both the space and

time complexity of G-KL bound optimisation whilst preserving concavity. To reiterate, the com-

putational scaling figures for the bound and gradient computations listed below correspond to eval-

uating the projected G-KL variance terms, the bottleneck for models with an isotropic Gaussian

potential Σ= ν2I. The scaling properties for other models are presented in Appendix D. The con-

strained parameterisations below have different qualities regarding the expressiveness of the vari-

ational Gaussian approximation. We note that a zero at the (i, j)th element of covariance specifies
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(a) Full (b) Banded (c) Chevron (d) Subspace (e) Sparse

Figure 2: Sparsity structure for constrained concave Cholesky decompositions of covariance.

a marginal independence relation between parameters wi and w j. Conversely, a zero at the (i, j)th

element of precision corresponds to a independence relation between parameters wi and w j when

conditioned on the other remaining parameters.

Banded Cholesky. The simplest option is to constrain the Cholesky matrix to be banded, that

is Ci j = 0 for j > i+B where B is the bandwidth. Doing so reduces the cost of a single bound or

gradient computation to O(NDB). Such a parameterisation describes a sparse covariance matrix

and assumes zero covariance between variables that are indexed out of bandwidth. The precision

matrix for banded Cholesky factorisations of covariance will in general be non-sparse.

Chevron Cholesky. We constrain C such that Ci j = Θi j when j ≥ i and i ≤ K, Cii = di for

i > K and 0 otherwise. We refer to this parameterisation as the chevron Cholesky since the sparsity

structure has a broad inverted ‘V’ shape—see Figure 2. Generally, this constrained parameterisation

results in a non-sparse covariance but sparse precision. This parameterisation is not invariant to

index permutations and so not all covariates have the same representational power. For a Cholesky

matrix of this form bound and gradient computations scale O(NDK).
Sparse Cholesky. In general the bound and gradient can be evaluated more efficiently if we im-

pose any fixed sparsity structure on the Cholesky matrix C. In certain modelling scenarios we know

a priori which variables are marginally dependent and independent and so may be able construct a

sparse Cholesky matrix to reflect that domain knowledge. This is of use in cases where a low band

width index ordering cannot be found. For a sparse Cholesky matrix with DK non-zero elements

bound and gradient computations scale O(NDK).
Subspace Cholesky. Another reduced parameterisation of covariance can be obtained by consid-

ering arbitrary rotations in parameter space, S = ETCTCE where E is a rotation matrix which forms

an orthonormal basis over RD. Substituting this form for the covariance into Equation (8) and for

Σ= ν2I we obtain, up to a constant,

BKL(m,C)
c.
= ∑

i

logCii −
1

2ν2

[
‖C‖2 +‖m‖2

]
+

1

ν2
µTm+∑

n

〈logφ(mn + zsn)〉z

where sn = ‖CTEThn‖. One may reduce the computational burden by decomposing E into two

submatrices such that E= [E1,E2] where E1 is D×K and E2 is D×L for L = (D−K). Constraining

C such that C = blkdiag(C1,cIL×L), with C1 a K ×K Cholesky matrix we have that

s2
n = ‖CT

1ET

1hn‖2 + c2(‖hn‖2 −‖ET

1hn‖2),

meaning that only the K subspace vectors in E1 are needed to compute
{

s2
n

}N

n=1
. Since terms such

as ‖hn‖ need only be computed once the complexity of bound and gradient computations reduces to
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scaling in K not D. Further savings can be made if we use banded subspace Cholesky matrices: for

C1 having bandwidth B each bound evaluation and associated gradient computation scales O(NBK).
The success of the subspace Cholesky factorisation depends on how well E1 captures the leading

directions of variance. One simple approach to select E1 is to use the leading principal components

of the ‘data set’ H. Another option is iterate between optimising the bound with respect to {m,C1,c}
and E1. We consider two approaches for optimisation with respect to E1. The first uses the form for

the optimal G-KL covariance, Equation (11). By substituting in the projected mean and variance

terms mn and s2
n into Equation (11) we can set E1 to be a rank K approximation to this S. The best

rank K approximation is given by evaluating the smallest K eigenvectors of Σ−1+HΓHT. For very

large sparse problems D ≫ 1 we approximate this using the iterative Lanczos methods described by

Seeger and Nickisch (2010). For smaller non-sparse problems more accurate approximations are

available. The second approach is to optimise the G-KL bound directly with respect to E1 under the

constraint that the columns of E1 are orthonormal. One route to achieving this is to use a projected

gradient ascent method. Each of these methods and the associated subspace G-KL gradients are

presented in greater detail in Appendix B.4.

5. Comparing Gaussian Approximate Inference Procedures

Due to their favourable computational and analytical properties multivariate Gaussian densities are

used by many deterministic approximate inference routines. For models of the form of Equa-

tion (2) three popular, deterministic, Gaussian, approximate inference techniques are local varia-

tional bounding, Laplace approximations, and expectation propagation with an assumed Gaussian

density. In this section we briefly review and compare these methods to the G-KL procedure.

Of the three Gaussian approximate inference methods listed above only one, local variational

bounding, provides a lower-bound to the normalisation constant Z. In Section 5.1 we give a brief

overview of local bounding procedures and show that the G-KL lower-bound dominates the local

lower-bound on logZ.

In Section 5.2 we discuss the applicability of each Gaussian approximate inference method.

Specifically we describe the computational scaling properties of each of the algorithms and the

potential functions to which they can successfully be applied

5.1 Gaussian Lower-Bounds

An attractive property of G-KL approximate inference is that it provides a strict lower-bound on

logZ. Lower-bounding procedures are particularly useful for a number of theoretical and practical

reasons. The primary theoretical advantage is that it provides concrete exact knowledge about Z

and thus also the target density p(w). Lower-bounds may also be used in conjunction with upper

bounds to form bounds on marginal quantities of interest (Gibbs and MacKay, 2000). Thus the

tighter the lower-bound on logZ the more informative it is. Practically, optimising a lower-bound is

often a more numerically stable task than the criteria provided by other deterministic approximate

inference methods.

Another well studied route to obtaining a lower-bound for problems of the form of Equation (2)

are so called local variational bounding procedures, see for example: Jaakkola and Jordan (1997),

Gibbs and MacKay (2000), Girolami (2001), Palmer et al. (2006), and Nickisch and Seeger (2009).

Whilst both G-KL and local procedures have been discussed in the literature for some time, little

work has been done to elucidate the relation between them. In Section 5.1.1 we give an overview
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Figure 3: Exponentiated quadratic lower-bounds for two super-Gaussian potential functions: (a)

Laplace potential and lower-bound with operating point at 0.5; (b) Logistic sigmoid po-

tential and lower-bound with operating point at 2.5.

of local variational bounding procedures. In Section 5.1.2 we prove that G-KL provides a tighter

lower-bound on Z than local lower-bounding methods.

5.1.1 LOCAL VARIATIONAL BOUNDS

Local variational procedures lower-bound Z by replacing each potential φn in Equation (2) with

a function that lower-bounds it and that renders the integral as a whole analytically tractable.

Tractability is obtained by using exponentiated quadratic lower-bounds for each non-Gaussian site

potential {φn}N
n=1. Local variational bounding procedures that use exponentiated quadratic site

bounds return a Gaussian approximation to the target density p(w).

Site potentials φn are known to have tight exponentiated quadratic lower-bounds provided they

are super-Gaussian (Palmer et al., 2006). A function f (x) is said to be super-Gaussian if ∃b ∈ R

s.t. for g(x) := log f (x)− bx is even, convex and decreasing as a function of y = x2. A number of

potential functions of significant practical utility are super-Gaussian, examples include: the logistic

sigmoid φ(x)= (1+exp(−x))−1, the Laplace density φ(x)∝ exp(−|x|) and the Student’s t density—

see Figure 3 for plots of these potential functions and their respective lower-bounds.

Each site projection potential function is lower-bounded by an exponentiated quadratic param-

eterised in w and a variational parameter ξn. Since exponentiated quadratics are closed under mul-

tiplication one may bound the product of site potentials by an exponentiated quadratic also

∏
n

φn(w
Thn)≥ c(ξ)e−

1
2

wTF(ξ)w+wTf(ξ), (12)

where the matrix F(ξ), vector f(ξ) and scalar c(ξ) depend on the specific functions {φn}N
n=1 and the

vectors H = [h1, . . . ,hn]; and ξ is a vector of length N containing the variational parameters ξn. For
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any setting of w there exists a setting of ξ for which the bound is tight. Thus we can obtain a bound

on Z by substituting Equation (12) into Equation (2):

Z =
∫

N (w|µ,Σ)
N

∏
n=1

φn(w
Thn)dw

≥
∫

N (w|µ,Σ)c(ξ)e−
1
2

wTF(ξ)w+wTf(ξ)dw

= c(ξ)
e−

1
2
µT

Σ
−1µ

√

det(2πΣ)

∫
e−

1
2

wTAw+wTbdw, (13)

where

A :=Σ
−1 +F(ξ) and b :=Σ

−1µ+ f(ξ). (14)

Whilst both A and b are functions of ξ, we drop this dependency for a more compact notation.

One can interpret Equation (13) as a Gaussian approximation to the target density where p(w) ≈
N
(
w|A−1b,A−1

)
. Completing the square in Equation (13) and integrating, we have logZ ≥ B(ξ),

where

B(ξ) = logc(ξ)− 1

2
µT

Σ
−1µ+

1

2
bTA−1b− 1

2
logdet(2πΣ)− 1

2
logdet(2πA) .

To obtain the tightest bound on logZ one then maximises B(ξ) with respect to ξ.

5.1.2 COMPARING G-KL AND LOCAL BOUNDS

An important question is which method, local or G-KL, gives a tighter lower-bound on logZ. Each

bound derives from a fundamentally different criterion and it is not immediately clear which if

either is superior. The G-KL bound has been noted before, empirically in the case of binary classifi-

cation (Nickisch and Rasmussen, 2008) and analytically for the special case of symmetric potentials

(Seeger, 2009), to be tighter than the local bound. It is tempting to conclude that such observed su-

periority of the G-KL method is to be expected since the G-KL bound has potentially unrestricted

covariance S and so a richer parameterisation. However, many problems have more site potentials

φn than Gaussian moment parameters, that is N > 1
2
D(D+3), and the local bound in such cases has

a richer parameterisation than the G-KL.

We derive a relation between the local and G-KL bounds for {φn}N
n=1 generic super-Gaussian

site potentials. We first substitute the local bound on ∏N
n=1 φn(w

Thn), Equation (12), into Equa-

tion (4) to obtain a new bound

BKL(m,S)≥ B̃KL(m,S,ξ),

where

2B̃KL =−2〈logq(w)〉− logdet(2πΣ)+2logc(ξ)−
〈

(w−µ)T
Σ

−1(w−µ)
〉

−
〈
wTF(ξ)w

〉
+2
〈
wTf(ξ)

〉
.

Using Equation (14) this can be written as

B̃KL =−〈logq(w)〉− 1

2
logdet(2πΣ)+ logc(ξ)− 1

2
µT

Σ
−1µ− 1

2

〈
wTAw

〉
+
〈
wTb

〉
.
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m,S

B(m,S)

B̃KL

mξ,Sξ

BKL(mξ,Sξ)

B(ξ) = B̃KL(mξ,Sξ,ξ)

BKL

m∗,S∗

BKL(m
∗,S∗)

Figure 4: Schematic of the relation between the G-KL bound, BKL (blue), and the weakened

KL bound, B̃KL (red), plotted as a function of the Gaussian moments m and S

with ξ fixed. For any setting of the local site bound parameters ξ we have that

BKL (m,S) ≥ B̃KL(m,S,ξ). We show in the text that the local bound, B(ξ), is the

maximum of the weakened KL bound, that is that B(ξ) = maxm,S B̃(m,S,ξ) with

mξ,Sξ = argmaxm,SB̃(m,S,ξ) in the figure. The G-KL bound can be optimised beyond

BKL

(
mξ,Sξ

)
to obtain different, optimal G-KL moments m∗ and S∗ that achieve a tighter

lower-bound on logZ.

By defining q̃(w) = N
(
w|A−1b,A−1

)
we obtain

B̃KL =−KL(q(w)| q̃(w))− 1

2
logdet(2πΣ)+ logc(ξ)− 1

2
µT

Σ
−1µ

+
1

2
bTA−1b− 1

2
logdet(2πA) .

Since m,S only appear via q(w) in the KL term, the tightest bound is given when m,S are set such

that q(w) = q̃(w). At this setting the KL term in B̃KL is zero and m and S are given by

Sξ =
(
Σ

−1 +F(ξ)
)−1

, mξ = Sξ

(
Σ

−1µ+ f(ξ)
)
,

and B̃KL

(
mξ,Sξ,ξ

)
= B (ξ). To reiterate, mξ and Sξ maximise B̃KL(m,S,ξ) for any fixed setting

of ξ. Since BKL(m,S)≥ B̃KL(m,S,ξ) we have that,

BKL(mξ,Sξ)≥ B̃KL(mξ,Sξ,ξ) = B(ξ).
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The G-KL bound can be optimised beyond this setting and can achieve an even tighter lower-bound

on logZ,

BKL(m
∗,S∗) = max

m,S
BKL(m,S)≥ BKL(mξ,Sξ).

Thus optimal G-KL bounds are provably tighter than both the local variational bound and the G-KL

bound calculated using the optimal local bound moments mξ and Sξ. A graphical depiction of this

result is presented in Figure 4.

The experimental results presented in Section 6 show that the improvement in bound values

can be significant. Furthermore, constrained parameterisations of covariance, introduced in Sec-

tion 4, which are required when D ≫ 1, are also frequently observed to outperform local variational

solutions despite the fact that they are not provably guaranteed to do so.

5.2 Complexity and Model Suitability Comparison

We briefly review the core computational bottlenecks and the conditions placed on the potential

functions by the local variational bounding, the Laplace approximation and the Gaussian expecta-

tion propagation approximate inference methods. A more thorough comparison of these techniques

in the context of binary Gaussian Process classification can be found in Nickisch and Rasmussen

(2008). Subsequently, we go onto summarise and compare these properties versus the G-KL proce-

dure.

5.2.1 LAPLACE APPROXIMATIONS

Laplace methods, see Barber (2012) for an introduction, approximate the target density with a

Gaussian whose mean is centered at the mode of p(w) and whose covariance is the inverse Hes-

sian at the mode of log p(w). The computational complexity of finding the mode is that of a

continuous optimisation problem over D real valued parameters on the joint likelihood objective

N (w|µ,Σ)∏n φn(w). Evaluating the Laplace estimate to logZ requires computing the determi-

nant of the Hessian, and so scales O
(
D3
)

which, importantly, only needs to be computed once. To

apply the Laplace approximation we require that the target density be twice continuously differen-

tiable, that is we require that each potential function {φn}N
n=1 be twice continuously differentiable.

Provided the Laplace approximation is valid it is generally the fastest of the methods listed here.

5.2.2 LOCAL VARIATIONAL BOUNDING

Local variational bounding methods, as detailed in Section 5.1.1, have N free variational parameters—

one for each site potential φn. Optimising the bound, using either generalised expectation maximi-

sation or gradient based methods, requires solving N linear symmetric D×D systems. Efficient

exact implementations of this method maintain the covariance using its Cholesky factorisation and

perform efficient rank one Cholesky updates (Seeger, 2007). Doing so each round of updates scales

O
(
ND2

)
. As detailed in Section 5.1.1, local variational bounding procedures are applicable pro-

vided tight exponentiated quadratic lower-bounds to the site projection potentials {φn}N
n=1 exist—

that is each site potential is required to be super-Gaussian (Palmer et al., 2006).

Recently scalable approximate solvers for local variational bounding procedures have been

developed—see Seeger and Nickisch (2011b) for a review. These methods make use of a num-

ber of algorithmic relaxations to reduce the computational burden of local bound optimisation.

First, double loop algorithms are employed that reduce the number of times that logdet(A), see
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Section 5.1.1, and its derivative needs to be computed. Second, these algorithms use approximate

methods to evaluate the marginal variances that are required to drive local variational bound opti-

misation. Marginal variances are approximated either by constructing low rank factorisations of A

using iterative Lanczos methods or by perturb and MAP sampling methods (Papandreou and Yuille,

2010; Seeger, 2010; Ko and Seeger, 2012). Both of these approximations can greatly increase the

speed of inference and the size of problems to which local procedures can be applied. Unfortunately,

these relaxations are not without consequence regarding the quality of approximate inference. For

example, the logdet(A) term is no longer exactly computed and a lower-bound on logZ is no longer

maintained—only an estimate of logZ is provided. Lanczos approximated marginal variances are

often found to be strongly underestimated and bound values strongly overestimated. Whilst the

scaling properties are in general problem and user dependent, roughly speaking, these relaxations

reduce the computational complexity to scaling O
(
KD2

)
where K is the rank of the approximate

covariance factorisation.

5.2.3 GAUSSIAN EXPECTATION PROPAGATION

Gaussian expectation propagation methods seek to approximate the target density by sequentially

matching moments between marginals of the variational Gaussian distribution and a density con-

structed from the Gaussian approximation and individual site potentials (Minka, 2001). Gaussian

expectation propagation (G-EP), for problems of the form of Equation (2), is parameterised us-

ing 2N free variational parameters, updating each of which requires N rank one D×D Cholesky

updates and the solution of N symmetric D-dimensional linear systems—thus scaling O
(
ND2

)
as-

suming N > D. Importantly, G-EP optimises neither a convex nor concave objective and is not

guaranteed to converge. Whilst G-EP does not require the site projection potentials to be either

smooth or super-Gaussian, convergence issues can occur if they are multimodal or not log-concave.

Provably convergent double loop extensions to G-EP have been developed—see Opper and

Winther (2005) and references therein for details. Typically these methods are slower than vanilla

G-EP implementations. However, recent algorithmic developments have yielded significant speed

ups over vanilla G-EP whilst maintaining the convergence guarantees (Seeger and Nickisch, 2011a).

Importantly, however, these procedures require the exact solution of rank D symmetric linear sys-

tems and thus scale O
(
D3
)
.

5.2.4 G-KL

G-KL approximate inference methods require that each site projection potential has unbounded

support on R. Unlike Laplace procedures G-KL is applicable for models with non-differentiable site

potentials. Unlike local variational bounding procedures G-KL does not require the site potentials

to be super-Gaussian. In contrast to G-EP, which is known to suffer from convergence issues for non

log-concave sites, G-KL procedures optimise a strict lower-bound and convergence is guaranteed

for gradient ascent optimisation.

When {φn}N
n=1 are log-concave G-KL bound optimisation is a concave problem and we are

guaranteed to converge to the global optimum of the G-KL bound. Local bounding methods have

also been shown to be concave problems in this setting (Nickisch and Seeger, 2009). However, as

we have shown in Section 5.1, the optimal G-KL bound to logZ is provably tighter than the local

variational bound.
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Exact implementations of G-KL approximate inference require storing and optimising over
1
2
D(D+ 3) parameters to specify the Gaussian mean and covariance. Often the number of G-KL

parameters is greater than that for Laplace, G-EP or local variational bounding methods. However,

the computations required by G-KL methods scale similarly to these other Gaussian approxima-

tion methods. Empirically, as we show in Section 6, G-KL approximate inference is seen to have

comparable convergence speeds to local bounding methods and G-EP.

Importantly, G-KL procedures can be made scalable by using constrained parameterisations

of covariance that do not require making a priori factorisation assumptions for the approximate

posterior density. Scalable covariance decompositions for G-KL inference maintain a strict lower-

bound on logZ whereas approximate local bound optimisers do not. G-EP, being a fixed point

procedure, has been shown to be unstable when using low-rank covariance approximations and

appears constrained to scale O
(
ND2

)
(Seeger and Nickisch, 2011a).

6. Applications

In this section we present results obtained from applying Gaussian KL approximate inference meth-

ods to three popular machine learning models. In Section 6.1 we compare deterministic Gaussian

approximate inference methods in robust Gaussian process regression models. In Section 6.2 we

compare the performance of the constrained parameterisations of G-KL covariance that we pre-

sented in Section 4.1.3 in large scale Bayesian logistic regression models. In Section 6.3 we com-

pare Gaussian approximate inference methods to drive sequential experimental design procedures

in Bayesian sparse linear models.

6.1 Robust Gaussian Process Regression

Gaussian Processes (GP) are a popular non-parametric approach to supervised learning problems,

see Rasmussen and Williams (2006) for a thorough introduction, for which inference falls into the

general form of Equation (2). Excluding limited special cases, computing Z and evaluating the

posterior density, necessary to make predictions and set hyperparameters, is analytically intractable.

The supervised learning model for fully observed covariates X ∈ R
N×D and corresponding de-

pendent variables y ∈ R
N is specified by the GP prior on the latent function values w ∼ N (µ,Σ)

and the likelihood p(y|w). The GP prior moments are constructed by the GP covariance and mean

functions which take the covariates X and a vector of hyperparameters θ as arguments. The posterior

on the latent function values, w, is given by

p(w|y,X,θ) =
1

Z
p(y|w)N (w|µ,Σ) .

The likelihood factorises over data instances, p(y|w) = ∏N
n=1 φ(wn), thus the GP posterior is of the

form of Equation (1) with site projection potentials of the form of Equation (5).

6.1.1 GP REGRESSION

For GP regression models the likelihood is most commonly Gaussian distributed, equivalent to

assuming zero mean additive Gaussian noise. This assumption leads to analytically tractable, indeed

Gaussian, forms for the posterior. However, Gaussian additive noise is a strong assumption to make,

and is often not corroborated by real world data. Gaussian distributions have thin tales—the density
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Figure 5: Gaussian process regression with a squared exponential covariance function and (a) a

Gaussian or (b) a Student’s t likelihood. Covariance hyperparameters are optimised for a

training data set with outliers. Latent function posterior mean (solid) and ±1 standard de-

viation (dashed) values are plotted in blue (a) and red (b). The data generating function is

plotted in black. The Student’s t model makes more conservative interpolated predictions

whilst the Gaussian model appears to over-fit the data.

function rapidly tends to zero for values far from the mean—see Figure 6. Outliers in the training

set then do not have to be too extreme to negatively affect test set predictive accuracy. This effect

can be especially severe for GP models that have the flexibility to incorporate training set outliers

to areas of high likelihood—essentially over-fitting the data.

An example of GP regression applied to a data set with outliers is presented in figure 5(a). In this

figure a GP prior with squared exponential covariance function coupled with a Gaussian likelihood

over-fits the training data and the resulting predicted values differ significantly from the underlying

data generating function.

One approach to prevent over-fitting is to use a likelihood that is robust to outliers. Heavy

tailed likelihood densities are robust to outliers in that they do not penalise too heavily observations

far from the latent function mean. Two distributions are often used in this context: the Laplace

otherwise termed the double exponential, and the Student’s t. The Laplace probability density

function can be expressed as

p(y|µ,τ) = 1

2τ
e−|y−µ|/τ,

where τ controls the variance of the random variable y with var(y) = 2τ2. The Student’s t probability

density function can be written as

p(y|µ,ν,σ2) =
Γ
(

1
2
(ν+1)

)

Γ
(

1
2
ν
)√

πνσ2

(

1+
(y−µ)2

νσ2

)− ν+1
2
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Figure 6: Gaussian, Laplace and Student’s t densities with unit variance: (a) probability density

functions and (b) log probability density functions. Laplace and Student’s t densities

have stronger peaks and heavier tails than the Gaussian. Student’s t with d.o.f. ν = 2.5
and scale σ2 = 0.2, Laplace with τ = 1/

√
2.

where ν ∈ R
+ is the degrees of freedom parameter, σ ∈ R

+ the scale parameter, and var(y) =
σ2ν/(ν− 2) for ν > 2. As the degrees of freedom parameter becomes increasingly large the Stu-

dent’s t distribution converges to the Gaussian distribution. See Figure 6 for a comparison of the

Student’s t, Laplace and Gaussian density functions.

GP models with outlier robust likelihoods such as the Laplace or the Student’s t can yield signif-

icant improvements in test set accuracy versus Gaussian likelihood models (Vanhatalo et al., 2009;

Jylanki et al., 2011; Opper and Archambeau, 2009). In figure 5(b) we model the same training data

as in figure 5(a) but with a heavy tailed Student’s t likelihood, the resulting predictive values are

more conservative and lie closer to the true data generating function than for the Gaussian likelihood

model.

6.1.2 APPROXIMATE INFERENCE

Whilst Laplace and Student’s t likelihoods can successfully ‘robustify’ GP regression models to

outliers they also render inference analytically intractable and approximate methods are required. In

this section we compare G-KL approximate inference to other deterministic Gaussian approximate

inference methods, namely: the Laplace approximation (Lap), local variational bounding (VB) and

Gaussian expectation propagation (G-EP).

Each approximate inference method cannot be applied to each likelihood model. Since the

Laplace likelihood is not differentiable everywhere Laplace approximate inference is not applicable.

Since the Student’s t likelihood is not log-concave, indeed the posterior can be multi-modal, vanilla

G-EP implementations are numerically unstable (Seeger et al., 2007). Recent work (Jylanki et al.,
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Gauss Student’s t Laplace

Exact G-KL VB Lap G-KL VB G-EP

C. ST

LML −15±2 −75±2 −240±21 −7±1 8±5 2±2 −−±−−
MSE 1.15±0.2 1.6±0.2 23.8±4 2.2±0.4 1.3±1.1 1.2±1.0 −−±−−
TLP 0.79±0.10 0.73±0.05 −0.65±0.06 0.41±0.03 0.97±0.06 0.91±0.05 −−±−−

Friedman

LML 70±6 −159±7 −578±34 −97±4 −69±6 −73±8 −−±−−
MSE 10±3 5±1 17±2 13±1 5±1 3±1 −−±−−
TLP −0.26±0.09 0.12±0.09 −0.54±0.06 −0.65±0.06 0.07±0.09 0.25±0.11 −−±−−

Neal

LML 39±10 −171±14 −962±1 −21±15 −26±9 −27±8 −14±7

MSE 1.7±0.6 2.9±1.1 4.4±1.3 0.9±0.5 0.9±0.4 0.9±0.4 0.9±0.5
TLP 0.22±0.12 0.88±0.03 0.36±0.02 0.67±0.08 0.86±0.04 1.13±0.02 0.91±0.04

Boston

LML 51±3 −133±13 −551±37 −53±3 −60±3 −61±3 −53±4

MSE 26±1 25±2 26±1 23±2 25±2 26±1 22±1

TLP −0.74±0.07 −0.44±0.03 −0.58±0.03 −0.44±0.03 −0.52±0.06 −0.51±0.02 −0.46±0.03

Table 1: Gaussian process regression results for different (approximate) inference procedures, like-

lihood models and data sets. First column section: Gaussian likelihood results with exact

inference. Second column section: Student’s t likelihood results with G-KL, local vari-

ational bounding (VB) and Laplace (Lap) approximate inference. Third column section:

Laplace likelihood results with G-KL, VB and Gaussian expectation propagation (G-EP)

approximate inference. Each row presents the (approximate or lower-bound) log marginal

likelihood (LML), test set mean squared error (MSE), or approximate test set log proba-

bility (TLP) values obtained by data set. Table values are the mean and standard error of

the values obtained over the 10 random partitions of the data.

2011) has alleviated some of G-EP’s convergence issues for Student’s t GP regression, however,

these extensions are beyond the scope of this work.

Local variational bounding and G-KL procedures are applied to both likelihood models. For

local variational bounding, both the Laplace and Student’s t densities are super-Gaussian and thus

tight exponentiated quadratic lower-bounds exist—see Seeger and Nickisch (2010) for the precise

forms that are employed in these experiments. Laplace, local variational bounding and G-EP results

are obtained using the GPML toolbox (Rasmussen and Nickisch, 2010).4 G-KL approximate infer-

ence is straightforward, for the G-KL approximate posterior q(w) = N (w|m,S) the likelihood’s

contribution to the bound is

〈log p(y|w)〉q(w) = ∑
n

〈

logφn(mn + z
√

Snn)
〉

N (z|0,1)
.

The equation above is equivalent to Equation (6) with hn = en the unit norm basis vector and φn

the likelihood of the nth data point. The expectations for the Laplace likelihood site potentials have

simple analytic forms—see Appendix B.2.1. The expectations for the Student’s t site potentials

are evaluated numerically. All other terms in the G-KL bound have simple analytic forms and

computations that scale ≤ O
(
D3
)
. G-KL results are obtained, as for all other results in this paper,

using the vgai Matlab package—see Section 8. For the Laplace likelihood model, which is log-

concave, Hessian free Newton methods were used to optimise the G-KL bound. For the Student’s t

likelihood, which is not log-concave, LBFGS was used to optimise the G-KL bound.

4. The GPML toolbox can be downloaded from www.gaussianprocess.org.
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6.1.3 EXPERIMENTAL SETUP

We consider GP regression with training data D = {(yn,xn)}N
n=1 for covariates xn ∈ R

D and de-

pendent variables yn ∈ R. We assume a zero mean Gaussian process prior on the latent function

values, w = [w1, ...,wN ]
T ∼ N (0,Σ). The covariance, Σ, is constructed as the sum of the squared

exponential kernel and the independent white noise kernel,

Σmn = k(xm,xn,θ) = σ2
see−∑d(xnd−xmd)

2/l2
d + γ2δ(n,m),

where xnd refers to the dth element of the nth covariate, σ2
se is the ‘signal variance’ hyperparameter,

ld the squared exponential ‘length scale’ hyperparameter, and γ the independent white noise hyper-

parameter (above δ(x,y) is the Kronecker delta such that δ(n,m) = 1 if n = m and 0 otherwise).

Covariance hyperparameters are collected in the vector θ.

We follow the evidence maximisation or maximum likelihood two (ML-II) procedure to es-

timate the covariance hyperparameters, that is we set covariance hyperparameters to maximise

p(y|X,θ). Since p(y|X,θ) cannot be evaluated exactly we use the approximated values offered

by each of the approximate inference methods. Covariance hyperparameters are optimised numeri-

cally using nonlinear conjugate gradients. The marginal likelihood, p(y|X,θ), is not unimodal and

we are liable to converge to a local optimum regardless of which inference method is used. All

methods were initialised with the same hyperparameter setting. Hyperparameter derivatives for the

G-KL bound are presented in Appendix F.2.

Likelihood hyperparameters were selected to maximise the log predicted probability scores on

a held out validation data set. Simultaneous likelihood and covariance ML-II hyperparameter opti-

misation for the Student’s t and Laplace likelihoods yielded poor test set performance regardless of

the approximate inference method used (as has been previously reported for Student’s t likelihoods

in other experiments (Vanhatalo et al., 2009; Jylanki et al., 2011). For the Student’s t likelihood

model the d.o.f. parameter was fixed with ν = 3.

Results were obtained for the four approximate inference procedures on the four data sets using

both the Laplace and the Student’s t likelihoods. Two UCI data sets were used:5 Boston housing

and Concrete Slump Test. And two synthetic data sets: Friedman6 and Neal.7 Each experiment

was repeated over 10 randomly assigned training, validation and test set partitions. The size of each

data set is as follows: Concrete Slump Test D = 9, Ntrn = 50, Nval = 25, Ntst = 28; Boston D = 13,

Ntrn = 100, Nval = 100, Ntst = 306; Friedman D = 10, Ntrn = 100, Nval = 100, Ntst = 100; Neal

D = 1, Ntrn = 100, Nval = 100, Ntst = 100. Each partition of the data was normalised using the

mean and standard deviation statistics of the training data.

To asses the validity of the Student’s t and Laplace likelihoods we also implemented GP regres-

sion with a Gaussian likelihood and exact inference.

6.1.4 RESULTS

Results are presented in Table 1. Approximate log marginal likelihood (LML), test set mean squared

error (MSE) and approximate test set log probability (TLP) mean and standard error values obtained

over the 10 partitions of the data are provided. It is important to stress that the TLP values are

approximate values for all methods, obtained by summing the approximate log probability of each

5. UCI data sets can be downloaded from archive.ics.uci.edu/ml/datasets/.

6. The Friedman data set is constructed as described in Kuss (2006) §5.6.1. and Friedman (1991).

7. The Neal data set is constructed as described in Neal (1997) §7.
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test point using the surrogate score presented in Appendix F.1. For G-KL and VB procedures the

TLP values are not lower-bounds.

The results confirm the utility of heavy tailed likelihoods for GP regression models. Test set

predictive accuracy scores are higher with robust likelihoods and approximate inference methods

than with a Gaussian likelihood and exact inference. This is displayed in the lower MSE error and

higher TLP scores of the best performing robust likelihood results than for the Gaussian likelihood.

Exact inference for the Gaussian likelihood model achieves the greatest LML in all problems except

the Concrete Slump Test data. That exact inference with a Gaussian likelihood achieves the strongest

LML and weak test set scores implies the ML-II procedure is over-fitting the training data with this

likelihood model.

For the Student’s t likelihood the performance of each approximate inference method varied

significantly. VB results were uniformly the weakest. We conjecture this is an artifact of the squared

exponential local site bounds employed by the gpml toolbox poorly capturing the non log-concave

potential functions mass. For Student’s t potentials improved VB performance has been reported

by employing bounds that are composed of two terms on disjoint partitions of the domain (Seeger

and Nickisch, 2011b), validating their efficacy in the context of Student’s t GP regression models is

reserved for future work. For the test set metrics G-KL approximate inference achieves the strongest

performance.

Broadly, the Laplace likelihood achieved the best results on all data sets. G-EP frequently did

not converge for both the Friedman and Concrete Slump Test problems and so results are not pre-

sented. Unlike the Student’s t likelihood model, results are more consistent across approximate

inference methods. G-KL achieves a narrow but consistently superior LML value to VB. Approxi-

mate test set predictive values are roughly the same for all inference methods with VB achieving a

small advantage.

We reiterate that standard G-EP approximate inference, as implemented in the GPML toolbox,

was used to obtain these results. The authors did not anticipate convergence issues for G-EP in the

GP models considered—the Laplace likelihood model’s log posterior is concave and the system has

full rank. Power G-EP, as proposed in Minka (2004), has previously been shown to have robust

convergence for under determined linear models with Laplace potentials (Seeger, 2008). Similarly,

we expect that power G-EP would also exhibit robust convergence in GP models with Laplace like-

lihoods. Verifying this experimentally and assessing the performance of power G-EP approximate

inference in noise robust GP regression models is left for future work.

The G-KL LML uniformly dominates the VB values. This is theoretically guaranteed for a

model with fixed hyperparameters and log-concave site potentials, see Section 5.1.2 and Section 3.2.

However, the G-KL bound is seen to dominate the local bound even when these conditions are not

satisfied. The results show that both G-KL bound optimisation and G-KL hyperparameter opti-

misation is numerically stable. G-KL approximate inference appears more robust than G-EP and

VB—G-KL hyperparameter optimisation always converged, often to a better local optima.

6.1.5 SUMMARY

The results confirm that the G-KL procedure as a sensible route for approximate inference in GP

models with non-conjugate likelihoods. The G-KL procedure is generally applicable in this setting

and easy to implement for new likelihood models. Indeed, all that is required to implement G-

KL approximate inference for a GP regression model is the pointwise evaluation of the univariate
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likelihood function p(yn|wn). Furthermore, we have seen that G-KL optimisation is numerically

robust, in all the experiments G-KL converged and achieved strong performance.

6.2 Bayesian Logistic Regression

In this section we examine the relative performance, in terms of speed and accuracy of inference,

of each of the constrained G-KL covariance decompositions presented in Section 4.1.3. As a bench

mark, we also compare G-KL approximate inference results to scalable approximate VB meth-

ods with marginal variances approximated using iterative Lanczos methods (Seeger and Nickisch,

2011b). Our aim is not make a comparison of deterministic approximate inference methods for

Bayesian logistic regression models, see Nickisch and Rasmussen (2008) to that end, but to investi-

gate the time accuracy trade-offs of each of the constrained G-KL covariance parameterisations.

Given a data set, D = {(yn,xn) ,n = 1, . . . ,N} with class labels yn ∈ {−1,1} and covariates xn ∈
R

D, Bayesian logistic regression models the class conditional distribution using p(y = 1|w,x) =
σ
(
wTx

)
, with σ(x) := 1/(1+e−x) the logistic sigmoid function and w ∈R

D a vector of parameters.

Under a Gaussian prior, N (w|0,Σ), the posterior is given by

p(w|D) =
1

Z
N (w|0,Σ)

N

∏
n=1

σ
(
ynwTxn

)
. (15)

Where we have used the symmetry property of the logistic sigmoid such that p(y = −1|w,x) =
1− p(y = 1|w,x) = σ

(
−wTx

)
. The expression above is of the form of Equation (2) with log-

concave site projection potentials φn(x) = σ(x) and hn = ynxn.

6.2.1 EXPERIMENTAL SETUP

We synthetically generate the data sets. The data generating parameter vector wtr ∈ R
D is sampled

from a factorising standard normal wtr ∼ N (0,I). The covariates, {xn}N
n=1, are generated by first

sampling an independent standard normal, then linearly transforming these vectors to impose corre-

lation between some of the dimensions, and finally the data is renormalised so that each dimension

has unit variance. The linear transformation matrix we use to impose correlation between covariates

is a sparse square matrix generated as the sum of the identity matrix and a sparse matrix with one el-

ement from each row sampled from a standard normal. Class labels yn ∈ {1,−1} are sampled from

the likelihood p(yn = 1|w,xn) = σ(wTxn). The inferential model’s prior and likelihood distributions

are set to match the data generating process.

Results are obtained for a range of data set dimensions: D = 250,500,1000 and N = 1
2
D,D,5D.

We also vary the size of the constrained covariance parameterisations, which is reported as K in the

result tables. For chevron Cholesky K refers to the number of non-diagonal rows of C. For subspace

Cholesky K is the dimensionality of the subspace. For banded Cholesky K refers to the band width

of the parameterisation. For the factor analysis (FA) parameterisation K refers to the number of

factor loading vectors. For local variational bounding (VB) approximate inference K refers to the

number of Lanczos vectors used to update the variational parameters. The parameter K is varied as

a function of the parameter vector dimensionality with K = 0.05×D and K = 0.1×D.

Since the G-KL bound is strongly concave we performed G-KL bound optimisation using Hes-

sian free Newton methods for all the Cholesky parameterised covariance experiments. G-KL bound

optimisation was terminated when the largest absolute value of the gradient vector was less than

10−3. For subspace Cholesky we iterated between optimising the subspace parameters {m,C,c}
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Ntrn = 250 Ntrn = 500 Ntrn = 2500

K = 25 K = 50 K = 25 K = 50 K = 25 K = 50

Time (s)
G-KL

Chev 0.49±0.02 0.69±0.08 1.25±0.04 1.36±0.04 16.50±0.89 17.31±0.82

Band 0.96±0.02 1.37±0.02 2.25±0.10 4.06±0.29 24.31±0.96 29.60±1.18

Sub 0.73±0.01 0.93±0.03 1.41±0.03 1.93±0.04 11.89±0.54 15.26±1.02

FA 2.05±0.26 2.29±0.21 2.92±0.17 3.47±0.17 20.06±1.51 22.69±2.70

VB 0.37±0.00 0.47±0.01 0.46±0.02 0.52±0.00 1.56±0.03 1.85±0.01

B̃
G-KL

Chev −1.19±0.01 −1.15±0.01 −0.93±0.01 −0.91±0.01 −0.42±0.00 −0.41±0.00

Band −1.15±0.01 −1.09±0.01 −0.92±0.01 −0.88±0.01 −0.42±0.00 −0.41±0.00

Sub −3.08±0.02 −2.20±0.01 −1.90±0.01 −1.46±0.01 −0.62±0.00 −0.54±0.00

FA −1.19±0.01 −1.17±0.01 −0.93±0.01 −0.91±0.01 −0.41±0.00 −0.40±0.00

VB –±– –±– –±– –±– –±– –±–

‖w−wtr‖2/D
G-KL

Chev 0.88±0.00 0.87±0.00 0.84±0.00 0.84±0.00 0.64±0.00 0.64±0.00

Band 0.87±0.00 0.87±0.00 0.84±0.00 0.84±0.00 0.64±0.00 0.64±0.00

Sub 0.88±0.00 0.87±0.01 0.87±0.00 0.86±0.00 0.71±0.00 0.70±0.00

FA 0.88±0.00 0.87±0.01 0.84±0.00 0.84±0.00 0.64±0.00 0.64±0.00

VB 0.90±0.00 0.89±0.00 0.89±0.00 0.88±0.00 0.72±0.00 0.72±0.00

log p(y∗|X∗)/Ntst
G-KL

Chev −0.58±0.01 −0.58±0.01 −0.50±0.01 −0.49±0.01 −0.18±0.00 −0.18±0.00

Band −0.58±0.01 −0.57±0.01 −0.50±0.01 −0.49±0.01 −0.18±0.00 −0.18±0.00

Sub −0.72±0.02 −0.65±0.02 −0.63±0.01 −0.59±0.01 −0.20±0.00 −0.20±0.00

FA −0.58±0.01 −0.58±0.01 −0.51±0.01 −0.50±0.01 −0.18±0.00 −0.18±0.00

VB −0.75±0.02 −0.77±0.02 −0.63±0.01 −0.64±0.01 −0.20±0.00 −0.20±0.00

Table 2: Synthetic Bayesian logistic regression results for a model with unit variance Gaussian

prior w ∼ N (0,I) with dim(w) = 500, likelihood p(y|w,X) = ∏
Ntrn

n=1 σ(ynwTxn), class la-

bels yn ∈ {+1,−1} and Ntst = 5000 test points. G-KL results obtained using chevron

Cholesky (Chev), banded Cholesky (Band), subspace Cholesky (Sub) and factor analysis

(FA) constrained parameterisations of covariance. Approximate local variational bound-

ing (VB) results are obtained using low-rank factorisations of covariance computed using

iterative Lanczos methods. Parameter K denotes the size of the constrained covariance

parameterisation.

and updating the subspace basis vectors E each five times. The subspace vectors were updated

using the fixed point iteration with the Lanczos approximation (see Appendix B.4.3 for details).

For the FA parameterisation the G-KL bound is not concave so we use LBFGS to perform gradient

ascent. All other minFunc options were set to default values.

VB approximate inference is achieved using the glm-ie 1.4 package (Nickisch, 2012). VB

inner loop optimisation used nonlinear conjugate gradients with at most 50 iterations. The maximum

number of VB outer loop iterations was set to 10. All other VB glm-ie optimisation settings were

set to default values. All results for these experiments were obtained using Matlab 2011a on a Intel

E5450 3Ghz machine with 8 cores and 64GB of RAM.

6.2.2 RESULTS

Results for D= 500 are presented in Table 2. For reasons of space, results for D= 250 and D= 1000

are presented in Table 3 and Table 4 in Appendix G. The tables present average and standard error

scores obtained from 10 synthetically generated data sets.

The average convergence time and standard errors of each of the methods is presented in the

first row section of the result tables. In the smaller problems considered, the best G-KL times were
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achieved by the chevron Cholesky covariance followed by the banded, the subspace and the FA

parameterisations in that order.

The recorded banded Cholesky convergence times are seen to scale super-linearly with K. These

results are a consequence of the implementation. Whilst chevron and banded parameterisations

both scale O(NDK) they access and compute different elements of the data and Cholesky matrices.

The chevron gradients can be computed using standard matrix multiplications for which Matlab is

highly optimised. The banded parameterisation needs to access matrix elements in a manner not

standard to Matlab and so is much slower. This implementational artifact, despite a Matlab mex C

implementation, could not be entirely eliminated.

VB and chevron G-KL achieved broadly similar convergence times for the N ≤ D and D ≤ 500

experiments with VB faster in the larger D experiments. VB is significantly faster than G-KL

methods for the N = 5×D experiments, this is a consequence of the double-loop structure of the VB

implementation. Whilst the subspace G-KL method is significantly slower in the smaller problems

when D = 1000 it is the fastest G-KL method, beating VB in problems where N ≤ D.

In the result tables, the bound values are normalised by the size of the training set, with B̃ =
B/Ntrn, to make comparisons across models easier. As the training set size increases the normalised

bound value increases, presumably reflecting the fact that the posterior tends to a Gaussian in the

limit of large data. Furthermore, the difference in bound values between the parameterisations

become smaller as the size of the training set increases.

The G-KL banded covariance parameterisation achieves the strongest bound value with the

chevron and factor analysis parameterisations a close second place. The subspace bound values

are comparatively poor. This is not unexpected since the subspace parameterisation has a single

parameter (denoted c in Section 4.1.3) that specifies the variance in all directions orthogonal to

the subspace vectors E. It is known that the density q that minimises KL(q| p) tends to seek out

the modes of p and avoid those regions of parameter space where p is close to zero. Therefore

the parameter c will tend to the smallest value of the variance of p in the directions orthogonal to

the subspace vectors, the resulting G-KL bound value will therefore be greatly underestimated. The

approximate VB method does not provide a lower bound when marginal variances are approximated

using low-rank methods and therefore values are not reported in the result tables.

Since these results are obtained from data sets sampled from densities with known parameters

we can directly asses the accuracy of the posterior parameter estimate against the ground truth. The

posterior mean minimises the ℓ2 loss ‖wtr −w‖2. Thus, in the third row section of the results table,

we report the average error ‖wtr−m‖2 where m is the mean of the Gaussian posterior approximation

q(w) = N (m,S). To make comparisons easier, the ℓ2 errors are normalised by the dimensionality

of the respective models D. The results show that the the G-KL mean is broadly invariant to the

G-KL covariance parameterisations used. VB results are noticeably poorer than the G-KL methods.

Approximate test set log predictive probabilities are presented in the fourth row section of the

result tables. This metric is arguably the best suited to measure the global accuracy of the pos-

terior approximations since it is an expectation over the entire support of the approximate pos-

terior (MacKay and Oldfield, 1995). The values reported in the table are approximated using

log p(y∗|X∗) ≈ ∑n log
〈

p(y∗nwTx∗n)
〉

q(w)
. The values presented are normalised by the size of the

test set where Ntst = 10×D in all experiments. The results show that chevron, banded and FA

parameterisations achieve the best, and broadly similar, performance. Test set predictive accuracy

increases for all methods as a function of the training set size. Subspace G-KL and approximate VB

achieve broadly similar and noticeably weaker performance than the other methods.
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6.2.3 SUMMARY

The results support the use of the constrained Cholesky covariance parameterisations to drive scal-

able G-KL approximate inference procedures. Whilst neither the banded nor the chevron Cholesky

parameterisations are invariant to permutations of the index set they both achieved the strongest

bound values and test set performance. Unfortunately, due to implementational issues, the banded

Cholesky parameterisation gradients are slow to compute resulting in slow recorded convergence

times. The non-concavity of the factor analysis parameterised covariance resulted in slower recorded

convergence times than the concave models. Whilst the subspace G-KL parameterisation had poorer

performance in the smaller problems it broadly matched or outperformed the approximate VB

method in the largest problems.

6.3 Bayesian Sparse Linear Models

Many problems in machine learning and statistics can be addressed by linear models with sparsity

inducing prior distributions. Examples include, feature selection in regression problems (Wipf,

2004), source separation (Girolami, 2001), denoising or deblurring problems (Fergus et al.), and

signal reconstruction from a set of under-determined observations (Seeger and Nickisch, 2008).

In all of these cases, the prior results in a posteriori parameter estimates that are biased towards

sparse solutions. For feature selection problems this assumption can be useful if we believe that

only a small subset of the features are necessary to model the data. Using an informative prior is

essential in the case of under-determined linear models where there are more sources than signals,

in which case hyper-planes in parameter space have equiprobable likelihoods and priors are needed

to constrain the space of possible solutions.

Figure 7 depicts the posteriors resulting from an under-determined linear model for a selection of

different priors. Since the Laplace prior is log-concave the posterior is unimodal and log-concave.

For non log-concave priors the resulting posterior can be multimodal—for instance when p(w)
is the Student’s t distribution or the sparsity promoting distribution composed from a mixture of

Gaussians.

In the case of signal reconstruction, deblurring and source separation sparse priors are used to

encode some of the prior knowledge we have about the source signal we wish to recover. Natural

images for instance are known to have sparse statistics over a range of linear filters (an example

filter being the difference in intensities of neighbouring pixels) (Olshausen and Field, 1996). Sparse

priors that encode this knowledge about the statistics of natural images then bias estimates towards

settings that share this statistical similarity.

In this section we consider Bayesian sequential experimental design (SED) for the sparse lin-

ear model. At each stage of the SED process we approximate the posterior density of the model

parameters and then use the approximate posterior to greedily select new, maximally informative

measurements. The probabilistic model and experimental design procedure are described in Sec-

tion 6.3.1 and Section 6.3.2. In Section 6.3.3 we compare approximate inference methods on a small

scale artificial SED problem. In Section 6.3.4 we compare G-KL and approximate local variational

bounding methods for SED on a 64× 64 = 4,096 pixel natural image problem. Our approach fol-

lows that laid out in Seeger and Nickisch (2008), Seeger (2009) and Seeger and Nickisch (2011b).
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Figure 7: Isocontours of a linear model’s prior, likelihood and resulting posterior densities. The

top row plots contours of the two dimensional prior (solid) and the Gaussian likelihood

(dashed). The second row displays the contours of the posterior induced by the prior and

likelihood above it. Column one - a Gaussian prior, column two - a Laplace prior, column

three - a Student’s t prior and column four a spike and slab prior constructed as a product

over dimensions of a two component Gaussian mixture.

6.3.1 PROBABILISTIC MODEL

We observe noisy linear measurements y∈R
N assumed to be drawn according to y=Mw+ν where

M∈R
N×D is the linear measurement matrix with N ≪D, ν ∼N

(
0,ν2I

)
is additive Gaussian noise,

and w ∈ R
D is the signal that we wish to recover. A sparse prior, here we use either the Laplace

or the Student’s t, is placed on s the linear statistics of w such that s = Bw. The matrix B ∈ R
M×D

is a collection of M linear filters. By placing the prior directly on the statistics, s, the posterior is

proportional to the product of the Gaussian likelihood and the sparse prior potentials,

p(w|M,y,τ ,ν2) ∝ N
(
y|Mw,ν2I

)
p(s), where s = Bw.

Since the priors are placed directly on the statistics s and not w they are not normalised densities

with respect to w, as a consequence BKL(m,S) is no longer a lower-bound to logZ. However, since

the normalisation constant of p(s) is constant with respect to w ignoring this constant does not affect

the G-KL approximation to the posterior density.

6.3.2 SEQUENTIAL EXPERIMENTAL DESIGN

SED for the sparse linear model described above is the problem of iteratively choosing which

new measurement vectors, M∗, to append to M so as to maximise subsequent estimation accu-

racy. Bayesian SED iterates between estimating the posterior density on w, conditioned on current

observations, and then using this density to select which new measurements to make. Following
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Figure 8: Sequential experimental design for the Bayesian sparse linear model with synthetic sig-

nals. Sparse signals, w, are sampled from (a) a Laplace with τ = 0.2 and (b) a Student’s t

with ν = 3, σ2 = 0.0267.

Seeger and Nickisch (2011b) we use the information gain metric to decide which measurement

vectors will be maximally informative. Information gain is defined as the difference in differential

Shannon information of the posterior density before and after the inclusion of new measurements

and their corresponding observations. For the linear model we consider, it is given by

Igain(M
∗) = H [p(w|M,y)]−H [p(w|M,y,M∗,y∗)] , (16)

where H [p(x)] :=−〈log p(x)〉p(x) is the Shannon differential entropy.

Since inference is not analytically tractable we cannot access either of the densities required

by Equation (16). We can, however, obtain an approximation to the information gain by sub-

stituting in a Gaussian approximation to the posterior. Doing so with p(w|M,y) ≈ N (w|m,S)
we have 〈log p(w|M,y)〉 ≈ 1

2
logdet(S) + c with c an additive constant. The second entropy is

estimated by Gaussian conditioning on the joint approximate Gaussian density defined as

p(w,y∗|y) ∝ N (w|m,S)N
(
y∗|M∗w,ν2I

)
.

The approximation to the information gain can then be written as

Igain(M
∗)≈ 1

2
logdet

(
M∗SM∗T +ν2I

)
+ c.

If we constrain the measurements to have unit norm Igain(M
∗) above will be maximised when the

rows of M∗ lie along the leading principal eigenvectors of the approximate posterior covariance S.

These eigenvectors are approximated in our experiments using iterative Lanczos methods.

6.3.3 SYNTHETIC SIGNALS

Initially we consider applying sequential experimental design to a sparse signal reconstruction prob-

lem using small scale synthetic signals. In this artificial set up we wish to recover some signal
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wtr ∈ R
512 from a set of noisy linear measurement y ∈ R

m where m ≪ 512. We initialised the

experiments with m0 = 40 random unit norm linear measurement vectors M ∈ R
m0×512.

In this setup we placed the sparse prior directly on w with B = I. Sparse signals, wtr, were

sampled independently over dimensions from either the Laplace (µ = 0,τ = 0.2) or the Student’s

t (ν = 3,σ2 = 0.027) densities. Noisy linear measurements were sampled from the source signals

with y ∼ N
(
Mwtr,ν

2I
)

and ν2 = 0.005 throughout. Model priors and likelihoods were fixed to

match the data generating densities.

For the Laplace generated signals we applied G-KL, local variational bounding (VB) and power

G-EP (η = 0.9) approximate inference methods. G-EP and VB results were obtained using the

publicly available glm-ie Matlab toolbox. Since the model is of sufficiently small dimensionality

approximate covariance decompositions were not required. For the Student’s t generated signals

only G-KL and VB approximate inference methods were applied since G-EP is unstable in this

setting.

For the Laplace signals, when D = 512 and N = 110, inference takes 0.3 seconds for VB, 0.6
seconds for G-EP, and 1.6 seconds for G-KL.8 For the Student’s t signals, again with D = 512 and

N = 110, inference takes 0.3 seconds for VB and 6 seconds for G-KL. For Laplace signals, for which

the G-KL bound is concave, gradient ascent was performed using a Hessian free Newton method

with finite differences approximation for Hessian vector products—see (Nocedal and Wright, 2006,

Chapter 7). For the Student’s t signals, for which the G-KL bound is not guaranteed to be concave

or even unimodal, gradient ascent was performed using nonlinear scaled conjugate gradients. G-KL

optimisation was terminated in both settings once the largest absolute value of the bound’s gradient

was less than 0.01. VB and G-EP were optimised for seven outer loop iterations after which no

systematic improvement in the approximate logZ value was observed.

ℓ2 norm reconstruction error mean and standard error scores obtained over the 25 experiments

conducted are presented in Figure 8. For the Laplace generated signals VB, G-EP and G-KL ap-

proximate inference procedures provide broadly the same reconstruction error performance. All

sequentially designed procedures outperform MAP estimates with standard normal random mea-

surements. The improved performance comes mainly in the first few iterations of the SED process

with all methods achieving broadly similar iterative improvements in reconstruction error after that.

For the Student’s t prior again VB and G-KL procedures obtain broadly the same performance with

G-KL appearing to become slightly less effective towards the end of the experiment.

6.3.4 NATURAL IMAGES

We consider sequential experimental design for the problem of recovering natural images from a set

of under-determined noisy linear measurements. This problem is modelled by placing priors on the

statistics of natural images that are known to exhibit sparsity. These statistics can be captured by

suitable linear projections of the image vector (formed by concatenating the pixel value columns of

the image). For the results presented we employ two types of image filter known to exhibit sparse

statistics in natural images: finite differences, the difference in intensity values of horizontally or

vertically neighbouring pixels; and multi-scale orthonormal wavelet transforms, constructed using

the Daubechies four wavelet—see Seeger and Nickisch (2011b) for further details. Both filters

can be expressed as extremely sparse vectors, the set of which is collected in the matrix B, giving

B ∈ R
M×D where M = 3×D. Image filters were implemented using the glm-ie package. Laplace

8. Experiments were timed using Matlab R2009a on a 32 bit Intel Core 2 Quad 2.5 GHz processor.
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Figure 9: Reconstructed images from the Bayesian sequential experimental design (SED) experi-

ments. We plot the estimated images obtained by each approximate inference procedure

at different stages of the SED process. Each pane corresponds to a different underlying

image. The true image is shown in the last image of the first row of each pane. Other-

wise, the first row of each pane plots the G-KL mean, the second row the VB mean and the

third row the MAP reconstruction with randomly selected measurement vectors. The kth

column of each pane plots the estimated image using 100+300× (k−1) measurements.

priors placed on each of the linear filter responses had τ = 0.1 for the finite difference filters and

2268



GAUSSIAN KL APPROXIMATE INFERENCE

200 400 600 800 1000 1200 1400 1600 1800 2000

8

10

12

14

16

18

20

no. measurements

re
c
o
n
s
tr

u
c
ti
o
n
 e

rr
o
r

KL

VB

MAP RND

Figure 10: ℓ2 reconstruction errors for the natural image sequential experimental design task. Mean

and standard error scores are presented averaged over 16 different 64×64 pixel images.

τ = 0.14 for the wavelet filters. This experimental approach follows that laid out in Chapter 5 of

Nickisch (2010).

We apply the SED procedure detailed above by iteratively approximating the posterior density

p(w|y,M,B,τ ,ν2) where: w ∈ R
D corresponds to the unknown image vector; y ∈ R

N the noisy

measurements where N ≪ D; and M ∈ R
N×D is the linear measurement matrix constrained to have

rows with unit norm. The measurement matrix is initialised with 100 standard normal randomly

sampled vectors normalised to have unit norm. The sequential experimental design process ap-

proximates the posterior based on current measurements and the prior, these are then used to select

new unit norm linear measurement vectors M∗ ∈ R
3×D to append to M. New observations are then

synthetically generated by drawing samples from the Gaussian y∗ ∼ N
(
Mwtr,ν

2I
)
. In the exper-

iments conducted we use 64× 64 = 4096 = D pixel grey scale images. The images were down

sampled from a collection frequently used by the vision community,9 gray scale pixel intensities

were linearly transformed to lie in [−1,1]. The likelihood model was fixed with ν2 = 0.005.

In this larger setting we apply G-KL and VB approximate inference methods only and make use

of approximate covariance decompositions. For G-KL approximate inference we use the chevron

Cholesky decomposition with 80 non-diagonal rows. The chevron Cholesky parameterisation was

chosen due to its strong performance in previous experiments with respect to both convergence

time and accuracy of inference—see Section 6.2. VB inference is applied with low rank decom-

positions of covariance using 80 Lanczos vectors. For the first iteration of the SED procedure,

N0 = 100, G-KL converged in 30 seconds and VB in 5 seconds. At each iteration of the SED

process each inference procedure was initialised with the posterior from the previous SED iteration.

When N = 2048 updating the Gaussian approximate posterior took 60 seconds for G-KL and 25 sec-

onds for VB. Convergence of VB inference is difficult to asses since the double loop algorithm with

Lanczos approximated covariance is not guaranteed at each iteration to increase the approximated

9. Images were downloaded from decsai.ugr.es/cvg/dbimagenes/index.php.
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marginal likelihood. We iterated the VB procedure for seven outer loop iterations at which point no

systematic increases of approximate marginal likelihood values were observed. Fluctuations in VB

approximate marginal likelihood value in subsequent iterations were roughly ±10. G-KL inference

was terminated when the greatest absolute value of the bounds gradient was less than 0.1, at which

point G-KL bound values increased by less than 0.5 per iteration. These results highlight a general

distinction between the two methods, VB optimisation is an approximate EM algorithm whilst G-

KL optimisation in this setting is implemented using an approximate second order gradient ascent

procedure. EM is often reported to exhibit rapid convergence to low accuracy solutions but can be

very slow at achieving high accuracy solutions (Salakhutdinov et al., 2003).

Reconstruction error results are plotted in Figure 10. We can see that SED offers greater re-

construction accuracy over random designs for a fixed budget of measurements. Up to roughly

400 designed measurement vectors both G-KL and VB procedures achieve similar reconstruction

errors, after which the rate of VB iterative performance slows down eventually being overtaken by

MAP reconstruction without design (MAP Rand). The reasons for this phenomenon are unclear. As

more measurements are added the posterior density will become more spherical, for approximately

spherical posteriors the benefit of design over simply adding random measurements is negligible.

This could possibly explain the observation that G-KL and the MAP Rand procedures have similar

gradients in Figure 10 towards the end of the experiment. Why the performance of VB approximate

inference in particular degrades as more observations are added is not clear. One possible explana-

tion is due to the Lanczos covariance approximation, as the posterior becomes increasingly spherical

its spectrum will get flatter and the low-rank approximate factorisation may cause degraded Gaus-

sian mean estimation.

Figure 9 displays the estimated deconvolved images at different stages of the SED process.

Specifically we plot the G-KL and VB Gaussian mean estimates and the randomly designed MAP

estimate. Interestingly, each method displays different visual traits with regards to the quality of the

reconstructed image. G-KL estimates have patches with high fidelity and patches with low fidelity

and a soft cloudy texture. VB and MAP Rand estimates appear more pixelated than the G-KL

estimates with image accuracy more uniform across the image pane.

7. Discussion

We have presented several novel theoretical and practical developments concerning Gaussian Kullback-

Leibler approximate inference procedures for models of the form of Equation (2). G-KL approxi-

mate inference is seeing a resurgence of interest by the research community—see, for example: Op-

per and Archambeau (2009), Ormerod and Wand (2012), Honkela et al. (2010) and Graves (2011).

The work presented here provides further justification for its application as a Gaussian approximate

inference procedure.

G-KL approximate inference’s primary strength over other deterministic Gaussian approximate

inference methods is the ease with which it can be applied to new models. All that is required to

apply G-KL to a model of the form of Equation (2) is the pointwise evaluation of the univariate site

projection potentials and that each of these potentials has unbounded support on R. Unlike other

deterministic Gaussian approximate inference methods G-KL does not require the site potentials to

be differentiable, super-Gaussian or log-concave. Since the G-KL method optimises a strict lower-

bound G-KL approximate inference is found to be numerically stable.
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A long perceived disadvantage of G-KL approximate inference is the difficulty of optimising

the bound with respect to the O
(
D2
)

parameters needed to specify the G-KL covariance matrix. We

have shown, however, that whilst O
(
D2
)

parameters are required in full generality, the computations

needed for bound optimisation compare favourably with other deterministic Gaussian approximate

inference procedures. Importantly, we have shown that optimising the G-KL bound is a concave

problem for models with log-concave potential functions {φn}N
n=1.

For larger problems we provided concave constrained parameterisations of covariance that allow

G-KL methods to be applied to larger problems without imposing a priori factorisation assumptions

on the approximate posterior density. The results presented in Section 6 show that such constrained

covariance parameterisations are at least as good as other widely used deterministic methods at

capturing posterior covariance. G-KL approximate inference using constrained concave covariance

parameterisations have optimisation convergence times comparable to fast approximate variational

local bound methods whilst maintaining a strict lower-bound on logZ.

8. Publicly Available Code

A Matlab implementation of the G-KL approximate inference methods described in this paper

is publicly available via the mloss.org website at mloss.org/software/view/308/. The vgai

package implements G-KL approximate inference for models of the form of Equation (2) where

each potential function is a site projection φn(w) = φ(wThn). The toolbox includes implemen-

tations of Gaussian, Laplace, Cauchy, Student’s t, logistic sigmoid and logistic probit potential

functions amongst others. Generic site projection potentials are supported if an implementation of

ψ := logφ : R→ R is provided. The package implements the unconstrained Cholesky, constrained

Cholesky and factor analysis parameterisations of covariance discussed in Section 4.1. G-KL bound

optimisation is achieved in the vgai package using Mark Schmidt’s minFunc optimisation pack-

age.10
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Appendix A. Univariate Expectation

For clarity of exposition we present a reworking of the result, as originally presented by Barber

and Bishop (1998), that
∫

N (w|m,S)ψ(wTh)dw =
∫

N
(
y|wTh,hTSh

)
ψ(y)dy, where: ψ : R→ R

is some nonlinear function, N (w|m,S) is a multivariate Gaussian density with mean m ∈ R
D and

covariance S ∈ R
D×D, and N

(
y|mTh,hTSh

)
is a univariate Gaussian with mean mTh and variance

hTSh.

10. The minFunc package can be downloaded from www.di.ens.fr/˜mschmidt/Software/minFunc.html.
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We start by showing that the D-dimensional expectation
〈
ψ(wTh)

〉

N (w|m,S)
can be expressed as

a univariate integral by making the substitution ψ(wTh) =
∫

δ(y−wTh)ψ(y)dy

〈
ψ(wTh)

〉

N (w|m,S)
=

∫
N (w|m,S)ψ(wTh)dw

=
∫

N (w|m,S)
∫

δ(y−wTh)ψ(y)dydw

=
∫ ∫

N (w|m,S)δ(y−wTh)dw

︸ ︷︷ ︸

:=p(y)

ψ(y)dy.

We now seek to show that p(y)≡ N
(
y|mTh,hTSh

)
. First we make the substitution w = CTv+m,

where C is the Cholesky decomposition of S such that S = CTC, to get

p(y) :=
∫

N (w|m,S)δ(y−wTh)dw =
∫

N (v|0,I)δ(y−vTCh−mTh)dv.

If we now define a basis in the vector space v with unit normal basis vectors {ed}D
d=1 such that e1 is

parallel to Ch so that eT

1Ch = ‖Ch‖2 and so eT

dCh = 0 when d 6= 1. Since N (v|0,I) is isotropic the

density is invariant to orthonormal transformations N (v|0,I) = ∏D
d=1 N

(
eT

dv|0,1
)

and so

p(y) =
∫ D

∏
d=1

N (vd |0,1)δ(y−
D

∑
d=1

vdeT

dCh−mTh)dv

=
∫

N (v1|0,1)δ(y− v1eT

1Ch−mTh)dv1

= N
(
y|mTh,‖Ch‖2

2

)
= N

(
y|mTh,hTSh

)
.

Appendix B. G-KL Bound Gradients

We present the G-KL bound and its gradient for Gaussian and generic site projection potentials with

full Cholesky and factor analysis parameterisations of G-KL covariance. Gradients for the chevron,

banded and sparse Cholesky covariance parameterisations are implemented simply by placing that

Cholesky parameterisation’s sparsity mask on the full Cholesky gradient matrix. Subspace Cholesky

G-KL gradients and associated optimisation procedures are discussed in Section B.4.

B.1 Entropy

For the Cholesky decomposition of covariance, S = CTC, the entropy term of the G-KL bound and

its gradient with respect to C are given by

−〈logq(w)〉q(w) =
D

2
log(2π)+

D

2
+

D

∑
d=1

log(Cdd),

∂

∂Ci j

−〈logq(w)〉q(w) = δi j

1

Ci j

,

where δi j is the Kronecker delta.
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For the factor analysis (FA) parameterisation of G-KL covariance, S = diag
(
d2
)
+ΘΘ

T where

d ∈ R
D and Θ ∈ R

D×K , the entropy is given by,

−〈logq(w)〉= D

2
log(2π)+

D

2
+∑

d

log(dd)+
1

2
logdet

(

IK×K +Θ
Tdiag

(
1

d2

)

Θ

)

,

admitting the gradients:

∂

∂d
〈logq(w)〉q(w) = 2d⊙diag

(
S−1
)
, and

∂

∂Θ
〈logq(w)〉q(w) = 2S−1

Θ.

Where ⊙ refers to taking the element wise product and diag() refers to either constructing a square

diagonal matrix from a column vector or forming a column vector from the diagonal elements of a

square matrix. Evaluating S−1 scales O
(
K2D

)
using the Woodbury matrix inversion identity:

S−1 = diag

(
1

d2

)

−diag

(
1

d2

)

Θ

(

IK×K +Θ
Tdiag

(
1

d2

)

Θ

)−1

Θ
Tdiag

(
1

d2

)

.

B.2 Site Projection Potentials

Each site projection potential’s contribution to the G-KL bound can be expressed as

In =
〈
logφn(w

Thn)
〉
= 〈logφ(y)〉N (y|mn,s2

n)
= 〈logφ(mn + zsn)〉N (z|0,1) ,

where mn = hT
nm and s2

n = hT
nShn. In order that general potentials of this form can be easily imple-

mented for different functions φn we present the gradients according to their chain rule decomposi-

tion,
∂In

∂m
=

∂In

∂mn

∂mn

∂m
and

∂In

∂C
=

∂In

∂s2
n

∂s2
n

∂C
. (17)

Expressing In and its derivatives as expectations with respect to the standard normal density renders

the implementation of numerical integration routines simpler whilst avoiding expressions involving

the derivative of the potential function itself. The expectations and their derivatives are given by:

In =
∫

N (z|0,1) logφn(mn + zsn)dz,

∂In

∂mn

=
∫

zN (z|0,1) logφn(mn + zsn)

sn

dz,

∂In

∂s2
n

=
∫
(
z2 −1

)
N (z|0,1) logφn(mn + zsn)

2s2
n

dz.

The gradients of mn = hT
nm and s2

n = hT
nShn are

∂mn

∂m
= hn, and

∂s2
n

∂C
= 2triu

(
ChnhT

n

)
,

where triu(·) is a sparsity mask such that elements below the diagonal are fixed to zero. For FA

parameterisations we have

∂s2
n

∂d
= 2h2

n ⊙d, and
∂s2

n

∂Θ
= 2hnhT

nΘ.
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B.2.1 LAPLACE POTENTIALS

The Gaussian expectation of the logarithm of a Laplace potential has a simple analytic expres-

sion. Laplace potentials, as considered here, take the product of site projections form. Accordingly,

we need only present the derivatives with respect to mn and s2
n so that they can be used in con-

junction with Equation (17). We consider the case of a zero mean Laplace density, p(wThn|τ) =
e−|wThn|/τ/2τ, giving

〈log p(mn + zsn)〉z =− log(2τ)− 1

τ
〈|mn + zsn|〉z . (18)

Laplace potentials with non zero mean, p(x) = e−|x−η|/τ/2τ, can be calculated by making the simple

transformation m′
n = mn −η. Evaluating the last term of Equation (18) above involves computing

the expectation of a rectified univariate Gaussian random variable,

〈|mn + zsn|〉z =

(
2

π

) 1
2

sne−
1
2

a2
n +mn [1−2Φ(−an)]

where Φ(x) :=
∫ x
−∞ N (t|0,1)dt and an := mn/sn. The corresponding derivatives of which are:

∂〈|mn + zsn|〉
∂mn

= 1−2Φ(−an) ,

∂〈|mn + zsn|〉
∂s2

n

=
a2

n +1
√

2πs2
n

e−
1
2

a2
n − a2

n

sn

N (an|0,1) .

B.3 Gaussian Potentials

For a Gaussian potential N (w|µ,Σ) the log expectation is given by

〈
logN (w|µ,Σ)

〉

q(w)
=−1

2

[

logdet(2πΣ)+(m−µ)T
Σ

−1 (m−µ)+ trace
(
Σ

−1S
)]

.

Derivatives with respect to the mean and covariance are:

∂

∂m

〈
logN (w|µ,Σ)

〉
=Σ

−1 (µ−m) , and
∂

∂C

〈
logN (w|µ,Σ)

〉
=−triu

(
CΣ

−1
)
.

For the FA covariance structure we have,

∂

∂d

〈
logN (w|µ,Σ)

〉
=−diag

(
Σ

−1
)
⊙d, and

∂

∂Θ

〈
logN (w|µ,Σ)

〉
=−Σ

−1
Θ.

B.3.1 GAUSSIAN LIKELIHOODS

Linear models with additive Gaussian noise have a likelihood potential that can be expressed as

N
(
y|HTw,Σ

)
where H ∈ R

D×N and y ∈ R
N . In this setting typically we assume isotropic noise

Σ= ν2I and so present gradients for this case only. The expectation of the log of this term has the

following algebraic from

〈
logN

(
y|HTw,ν2I

)〉
=−1

2

[

N log(2πν2)+
1

ν2

〈(
y−HTw

)T (
y−HTw

)〉
]

, (19)
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where the expectation of the quadratic can be expressed as

〈(
y−HTw

)T (
y−HTw

)〉

= yTy−2yTHTm+∑
i j

[CH]2i j +∑
i

[
HTm

]2

i
.

Equation (19) admits the gradients:

∂

∂m

〈
logN

(
y|HTw,ν2I

)〉
=

1

ν2

(
yTHT −HHTm

)
,

∂

∂C

〈
logN

(
y|HTw,ν2I

)〉
=− 1

ν2
triu
(
CHHT

)
.

For the FA parameterised covariance we have

〈(
y−HTw

)T (
y−HTw

)〉

= yTy−2yTHTm+∑
i

[
HTm

]2

i
+∑

i j

[
Θ

THT
]2

i j
+∑

j

(

∑
i

H2
ji

)

d2
j

with corresponding gradients:

∂

∂d j

〈
logN

(
y|HTw,ν2I

)〉
=− 1

ν2

(

∑
i

H2
ji

)

d j,

∂

∂Θ

〈
logN

(
y|Mw,ν2I

)〉
=− 1

ν2
HHT

Θ.

B.3.2 GAUSSIAN POTENTIALS AS SITE PROJECTIONS

The Gaussian potential N (w|µ,Σ) can be equivalently expressed as a product of D site projection

potentials. To see this we use the Cholesky factorisation of the precision matrix Σ
−1 =PTP. Making

this substitution, we see that

N (w|µ,Σ) ∝ e−
1
2
(w−µ)T

PTP(w−µ) = e−
1
2
‖P(w−µ)‖2

2 =
D

∏
d=1

e−
1
2(pT

d(w−µ))
2

, (20)

where the vector pd is the dth row vector of P, that is pT

d := Pd,:. Thus Equation 20 is a product of

D site projections with potential function φd(x) ∝ e−
1
2

x2

.

B.4 Subspace Covariance Decomposition

We consider optimising the G-KL bound with respect to a covariance matrix parameterised on a

subspace of the parameters w ∈ R
D. Letting E = [E1,E2] be a matrix of orthonormal vectors that

span R
D then we may parameterise the covariance as

S′ = ETSE = [E1,E2]
T

S [E1,E2] ,

which is equivalent to making an orthonormal transformation in the space of parameters w using E.

If we restrict S to be block diagonal, S = diag(S1,S2), we can write S′ as the sum

S′ = ET

1S1E1 +ET

2S2E2.
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Since E is orthonormal it does not effect the value or gradient of the entropy’s contribution to the

bound since logdet(S) = logdet(S′). Provided the Gaussian potential has spherical covariance,

Σ= ν2I, then E does not effect its contribution the G-KL bound since

trace
(
Σ

−1S′)=
1

ν2
trace

(
ETSE

)
=

1

ν2
trace(S) .

Thus we are left to evaluate the projected variance terms
{

s2
n

}N

n=1
required to evaluate the product

of site potentials contribution. For S block diagonal with the second block component spherical,

S2 = c2I, the orthonormal basis vectors E2 do not need to be computed or maintained since

s2
n = hT

nS′hn = hT

nET

1S1E1hn + c2hT

nET

2E2hn = hT

nET

1S1E1hn + c2
(
‖hn‖2

2 −‖E1hn‖2
)
.

We seek to optimise the G-KL bound w.r.t. to the subspace parameterised variational Gaussian

by iterating between optimising the bound with respect to the parameters {m,C1,c} and updating

the subspace basis vectors E1. In Section B.4.1 we present the gradients required to optimise the

G-KL bound with respect to {m,C1,c}. In Sections B.4.2 and B.4.3 we consider different routes to

optimising the subspace basis E1.

B.4.1 SUBSPACE CHOLESKY G-KL BOUND GRADIENTS

In this subsection we present the subspace Cholesky G-KL bound gradients. The subspace covari-

ance matrix is given by S = ET

1CT

1C1E1 + c2ET

2E2, where C1 ∈ R
K×K is a Cholesky matrix, c ∈ R

+

and D=K+L. Since E2 does not occur in the expressions presented below, in what follows we omit

subscripts and denote E1 and C1 as E and C. We reiterate that the Gaussian potential has spherical

covariance Σ = ν2I. The G-KL bound for the subspace Cholesky covariance parameterisation is

given by

BKL(m,C,c,E) =
D

2
log(2π)+

D

2
+

K

∑
k=1

log(Ckk)+L log(c)

− D

2
log
(
2πν2

)
− 1

ν2

[
‖m−µ‖2

2 + trace
(
CTC

)
+Lc2

]

+
N

∑
n=1

〈logφn(mn + zsn)〉N (z|0,1) .

The gradient of the G-KL entropy’s contribution to the bound is

∂

∂Ci j

−〈logq(w)〉= δi j

1

Ci j

, and
∂

∂c
−〈logq(w)〉= L

c
.

The Gaussian potential’s contribution to the G-KL bound admits the gradients:

∂

∂C

〈
logN

(
w|µ,ν2I

)〉
=− 1

ν2
C, and

∂

∂c

〈
logN

(
w|µ,ν2I

)〉
=−Lc

ν2
.

The site projection potential’s contribution to the G-KL bound is computed as in Section B.2 but

with the partial derivatives of s2
n with respect to C and c:

∂s2
n

∂C
= 2triu

(
Ch̃nh̃T

n

)
,

∂s2
n

∂c
= 2c

(
‖hn‖2

2 −‖h̃n‖2
2

)
,

where h̃n := Ehn.
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B.4.2 SUBSPACE OPTIMISATION : PROJECTED GRADIENT ASCENT

One route to finding good subspace vectors E1 is to directly optimise the bound with respect to them.

Again we omit subscripts since E2 makes no contribution to the expressions below. Optimisation is

complicated by the fact that we require E to be orthonormal, that is we require that ETE= IK×K . The

set of all such orthonormal vectors forms a smooth manifold in R
D×K . A crude but simple approach

to optimising the bound with respect to E is projected gradient ascent—after each gradient step we

orthonormalise the updated basis:

Enew := orth

[

E+α
∂

∂E
BKL(m,C,E,c)

]

where orth [·] denotes an orthonormalisation operator, implemented for instance using a Gram-

Schmidt procedure or the singular value decomposition, and α is a parameter controlling the gradi-

ent step size.

As described above, when Σ= ν2I, the only term in the G-KL bound that depends on E are the

site projection potential functions
〈
logφn(w

Thn)
〉
. The derivative of the bound then with respect to

E is given by

∂

∂E
BKL (m,C,E,c) = ∑

n

∂

∂s2
n

〈logφ(mn + zsn)〉
∂s2

n

∂E
,

where the partial derivative with respect to s2
n is given in Section B.2 and

∂s2
n

∂E
=

∂

∂E
hT

nETCTCEhn = 2CTCEhnhT

n.

B.4.3 SUBSPACE OPTIMISATION: FIXED POINT ITERATION

Another route to optimising the subspace vectors E is to use the form for the optimal G-KL covari-

ance matrix presented in Equation (10). Using this method, once we have optimised the bound w.r.t.

{m,C1,c} we update the subspace vectors E to be the leading K eigenvectors of S as defined in

Equation (21). Whilst this procedure is not guaranteed to increase the bound in experiments it has

yielded strong performance—see for example Section 6.2 and Challis and Barber (2011).

For problems where the Gaussian potential has isotropic variance, Σ = ν2I, the form for the

optimal G-KL inverse covariance, Equation (10), simplifies to

S−1 =
1

ν2
I+HΓHT, (21)

where Γ is defined in Equation (11) of Section 11. We now consider two routes to updating the

subspace vectors E. First, we consider an approximate eigen decomposition method suitable for

smaller non-sparse problems. Second, we consider an iterative Lanczos method better suited to

larger sparse problems.

One route to possibly recovering the K leading eigenvectors of S is to evaluate the K smallest

eigenvectors of 1
ν2 I+HΓHT. We note that HΓHT ≈ HΓ

′HT where Γ′
nn = Γnn if Γnn > δ and zero

otherwise - we set δ small enough such that there are K non zero diagonal elements Γ′. If we now

calculate the eigen decomposition to HΓ
′HT = EΛET we see that

[
1

ν2
I+HΓ

′HT

]−1

= Ediag

(
ν2

1+λ′
nnν2

)

ET.
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For L ≪ D we can evaluate the L eigenvectors of HΓ
′HT cheaply since the eigenvalues of XXT

coincide with the eigenvalues of XTX.11 Therefore approximating the K dimensional subspace

eigen decomposition reduces to the complexity of decomposing a K × K matrix. If δ is small

enough this method can often outperform approximate iterative decompositions provided the data

is non-sparse and of moderate dimensionality.

Iterative Lanczos methods can approximately recover the eigenvectors corresponding to the

largest and smallest eigenvalues of a matrix. General details about Lanczos methods can be found

in Golub and Van Loan (1996), for the special case of covariance matrices of the form Equation (21)

details are provided in Seeger (2010). Iterative Lanczos methods are fast provided the number

of eigenvectors we wish to recover is not too large and matrix vector products can be computed

efficiently—for example when the matrix has some special structure or is sparse.

Appendix C. Newton Convergence Rate Conditions

Sufficient conditions under which optimising BKL(m,C) using Newton’s method will exhibit quadratic

convergence rates are that BKL(m,C) is twice continuously differentiable, strongly concave, has

closed sublevel sets and has Lipschitz continuous Hessians on the sublevel sets (Boyd and Vanden-

berghe, 2004, section 9.5.3). In Section 3.2 we showed that if all φn are log-concave then the bound

is strongly concave in m,C. In this section we provide conditions for which the other requirements

hold.

We consider G-KL inference problems of the form of Equation (2) where {φn}N
n=1 are site

projection potentials that are piecewise exponentiated quadratics, log-concave and have unbounded

support on R. Specifically, we show that the required properties hold for potential functions that

can be written

φ(x) :=
I

∑
i=0

I [x ∈ (li, li+1)]exp(aix
2 +bix+ ci)

where −∞ = l0 < l1, ..., lI+1 = ∞ and I [·] is an indicator function equal to one when its argument is

true and zero otherwise. Note that φ(x) need not be continuous and can have jump discontinuities at

the partition points lk. For such functions we have that logφ(x) = ∑I
i=0 I [x ∈ (li, li+1)]aix

2+bix+ci.

C.1 Continuously Differentiable

The expectation of such potentials can then be expressed as a sum of integrals each over a disjoint

domain
〈
logφ(wTh)

〉
=

I

∑
i=0

∫ li+1

li

N
(
z|m,s2

)
aiz

2 +biz+ cidz, (22)

where m = mTh and s2 = ‖Ch‖2
2. Each integral on the right hand side of Equation (22) has a known

analytic form which depends on terms of up to order 2 in m,s, standard normal density functions and

standard normal cumulative distribution functions—see Marlin et al. (2011) and Herbrich (2005) for

their explicit forms and derivatives w.r.t. m,s. As an example, and to make this more concrete, we

give the truncated expectation of just the quadratic term aiz
2 below

∫ li+1

li

aiz
2N
(
z|m,s2

)
dz = ai

[
s2
(
l̃iN (l̃i)− l̃i+1N (l̃i+1)

)
+
(
s2 +m2

)(
Φ(l̃i+1)−Φ(l̃i)

)]
,

11. To see this consider the eigen equation for XTXE = EΛ thus XXTXE = XEΛ.
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where l̃i := (li −m)/s, N (x) is the standard normal density function and Φ(x) the standard normal

cumulative distribution function. The truncated Gaussian expectation of the linear, biz, and the

constant, ci, terms have similar simpler analytic expressions.

We note that the standard normal density function and the standard normal cumulative density

function are both smooth. Thus the expectation in Equation (22) is the sum of smooth functions

w.r.t. the parameters m,s. Therefore Equation (22) as a function of m,C is the composition of a

function that is smooth in m,s and the functions m = mTh and s2 = ‖Ch‖2
2 that are smooth in m,C.

By the chain rule, we see that
〈
logφ(wTh)

〉
is smooth with respect to m,C.

By Lebesgue’s dominated convergence theorem, we expect the differentiability of
〈
logφ(wTh)

〉

to hold for a much broader class of potentials φ than the piecewise exponentiated quadratic class of

functions considered here.

C.2 G-KL Sublevel Sets are Closed

The G-KL sublevel sets, S , are defined

S :=
{

m ∈ R
D,C ∈ R

D×D
chol |B(m,C)≥ B(m0,C0)

}
,

where m0,C0 are the moments that the G-KL bound optimisation procedure is initialised with and

R
D×D
Chol is the set of D×D upper triangular Cholesky matrices with strictly positive diagonals. Im-

portantly S is closed since the G-KL bound is a closed function—which is a sufficient condition

(Boyd and Vandenberghe, 2004, p.471). A function f : RD → R with dom( f ) open is closed iff f

converges to −∞ along every sequence converging to a boundary point of dom( f ) (Boyd and Van-

denberghe, 2004, p.640). The G-KL bound is closed since it is the sum of the entropic term (which

up to a constant is equal to ∑d logCdd), a negative quadratic in m,C, and
〈
logφ(wTh)

〉
(proven to

be jointly concave in m,C). Thus for any sequence of moments {mk,Ck} that converges to the

boundary of the G-KL domain we have BKL(mk,Ck) converging to −∞.

C.3 G-KL Lipschitz Continuous Hessians

We say the Hessian of f is Lipschitz continuous on S if there exists a constant L ≥ 0 such that

∀x,y ∈ S

‖∇2 f (x)−∇2 f (y)‖2 ≤ L‖x−y‖2.

An equivalent condition is that the Hessian has bounded and continuous derivatives on S . Since

the bound is continuously differentiable, since the sublevel sets are closed and since the entropy’s

contribution to the bound ensures that s2 is bounded below by a positive constant this property holds.

Appendix D. Complexity of Bound and Gradient Computations

To perform G-KL approximate inference we optimise the G-KL bound, Equation (7), by gradient

ascent. In this section we consider the computational scaling properties of single evaluations of the

bound and its gradient. We consider each term that depends on the variational parameters m and

S separately, namely: logdet(S) from the entropy’s contribution, trace
(
Σ

−1S
)

and mT
Σ

−1m from

the Gaussian potential’s contribution, and
{

mn,s
2
n

}N

n=1
from the product of site projection potential’s

contribution.

The G-KL covariance parameterisations we consider are: full Cholesky, diagonal Cholesky,

banded Cholesky with bandwidth B, chevron Cholesky with K non-diagonal rows, subspace Cholesky
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with K dimensional subspace, sparse Cholesky with DK non-zeros, and factor analysis (FA) with K

factor loading vectors. We report only the leading scaling terms and assume, for the sake of clarity,

that N ≥ D ≥ K,B where N is the number of site factors and D is the dimensionality of the parame-

ter vector w. In the last column we report the complexity figures required to compute the projected

Gaussian moments {mn,s
2
n}N

n=1 where mn = mThn, s2
n = ‖Chn‖2

2, and nnz : RD → N is a function

that counts the number of non-zero elements in a vector.

logdet(S) trace
(
Σ

−1S
)

mT
Σ

−1m {mn,s
2
n}N

n=1

Σ - iso Σ - diag Σ - full Σ - iso Σ - diag Σ - full nnz(h) = D nnz(h) = L

C f ull O(D) O
(
D2
)

O
(
D2
)

O
(
D3
)

O(D) O(D) O
(
D2
)

O
(
ND2

)
O(NDL)

Cdiag O(D) O(D) O(D) O(D) O(D) O(D) O
(
D2
)

O(ND) O(NL)

Cband O(D) O(DB) O(DB) O
(
D2B

)
O(D) O(D) O

(
D2
)

O(NDB) O(NLB)

Cchev O(D) O(DK) O(DK) O
(
D2K

)
O(D) O(D) O

(
D2
)

O(NDK) O(NLK)

Csub O(K) O(DK) O(DK) O
(
K3
)

O(D) O(D) O
(
D2
)

O
(
NK2

)
O
(
NK2

)

Cspar O(D) O(DK) O(DK) O
(
D2K

)
O(D) O(D) O

(
D2
)

O(NDK) O(NLK)

SFA O
(
D2K

)
O(DK) O(DK) O

(
KD2

)
O(D) O(D) O

(
D2
)

O(NDK) O(NLK)

Appendix E. Transformation of Basis

When the model’s Gaussian potential, N (w|µ,Σ), has full covariance optimising the G-KL bound

can sometimes be made less expensive by linearly transforming the basis of the parameter vectors

m and C. To do this, essentially we hard code the information contributed to the posterior from the

Gaussian potential into our G-KL parameters. That is we parameterise m and C as

C = C̃P and m = PTm̃+µ (23)

where P is the Cholesky decomposition of the prior covariance such that PTP =Σ. For the G-KL

moments parameterised this way we each term of the G-KL bound can be evaluated using:

−〈logq(w)〉= logdet
(
C̃
)
+ logdet(P)+

D

2
log(2π)+

D

2
,

2
〈
logN (w|µ,Σ)

〉
=−D log(2π)−D−2logdet(P)− m̃Tm̃− trace

(
C̃TC̃

)
,

〈
ψ(wTh)

〉
=

∫
N (z|0,1)ψ(m+ zs)dz,

where m := m̃Th̃+µTh, s := ‖C̃h̃‖2
2 and h̃ := Ph. Combining these terms the G-KL bound can be

written

B(m,C) = B̃(m̃, C̃) = ∑
d

log
(
C̃dd

)
− 1

2
m̃Tm̃− 1

2
∑
i j

C̃2
i j +∑

n

〈logφn (mn + zsn)〉N (z,0)1 .

We are free then to optimise the G-KL bound just with respect to m̃, C̃ at a reduced cost. For

a model with a full covariance Gaussian potential and non-sparse H = [h1, ...,hN ] computing the

bound and gradient of B̃(m̃, C̃) scales O
(
D2 +ND2

)
whereas computing the bound and gradient of

the untransformed bound scales O
(
D3 +ND2

)
—see the table in Appendix D.

This procedure requires some pre-processing—namely the Cholesky decomposition of Σ and

the ‘whitening’ of the data set H̃ = PH which scale O
(
D3
)

and O
(
ND2

)
respectively. And some

post-processing—the final G-KL moments m and C are obtained using equations Equation (23)

which require a matrix-vector and a matrix-matrix product which scale O
(
D2
)

and O
(
D3
)

respec-

tively.
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Since during optimisation the bound and its gradient are usually computed many more times

than twice, the basis transformation procedure detailed above will result in a significant compu-

tational saving. Note that this procedure can speed up G-KL bound optimisation only in settings

where hn are not sparse. For example Gaussian process regression models, where hn are standard

normal basis vectors, will not benefit from this reparameterisation since h̃n = Phn are not sparse.

Appendix F. Gaussian Process Regression

In this section we present equations necessary to implement Gaussian process regression models

using G-KL approximate inference methods.

F.1 Predictive Density

A Gaussian approximation to the posterior density on the latent function values of the training data

may be used to obtain an approximation to the predictive density of the latent function value for a

new test point. The GP predictive density to the target variable y∗ for a new input x∗ is defined by

the integral

p(y∗|x∗,X,y) =
∫

p(y∗|w∗)p(w∗|X,y,x∗)dw∗.

The distribution on the test point latent function value, p(w∗|X,y,x∗), is approximated by marginal-

ising out the training set latent variables using our Gaussian approximate posterior, N (w|m,S) ≈
p(w|X,y,θ), giving

p(w∗|X,y,x∗) =
∫

p(w∗|w,X,x∗)p(w|y,X)dw

=
∫

N
(
w∗|σT

∗Σ
−1w,σ∗∗−σT

∗Σ
−1σ∗

)
p(w|y,X)dw

≈
∫

N
(
w∗|σT

∗Σ
−1w,σ∗∗−σT

∗Σ
−1σ∗

)
N (w|m,S)dw

= N
(
w∗|σT

∗Σ
−1m,σ∗∗−σT

∗Σ
−1σ∗+σT

∗Σ
−1SΣ−1σ∗

)
,

where σ∗ and σ∗∗ are the prior covariance and variance terms of the test data point x∗. The elements

of σ∗ are calculated by evaluating the covariance function, k(x,x′), between the each of the training

covariates and the test point covariate such that [σ∗]m = k(xm,x∗) and σ∗∗ = k(x∗,x∗).

F.2 Hyperparameter Optimisation

For a general likelihood p(y|w) = ∏N
n=1 φn(wn) and GP prior N (w|0,Σ) with covariance function

Σmn = k(xm,xn) we get the G-KL bound

BKL(m,C) =
D

2
+∑

n

logCnn −
1

2
logdet(Σ)− 1

2
mT

Σ
−1m− 1

2
trace

(
Σ

−1S
)

+∑
n

〈

logφ(mn + z
√

Snn)
〉

N (z|0,1)
.

Taking the derivative of the above expression with respect to the covariance hyperparameters θ we

get

∂BKL

∂θ
=−1

2
trace

(

Σ
−1 ∂Σ

∂θ

)

+
1

2
mT

Σ
−1 ∂Σ

∂θ
Σ

−1m+
1

2
trace

(

CΣ
−1 ∂Σ

∂θ
Σ

−1C

)

. (24)
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Note that m and C implicitly depend on the covariance hyperparameters θ. However, cross terms

such as
∂BKL

∂m

∂m

∂θ
or

∂BKL

∂C

∂C

∂θ

do not contribute to Equation (24) at the optimum of the G-KL bound since the gradients of BKL

with respect to m or C are zero at this point. Therefore, to evaluate the gradient of BKL with respect

to the covariance hyperparameters first the G-KL bound is optimised with respect to m,C with θ

fixed, then at that optimum we use Equation (24) to calculate the derivative with respect to θ.

Appendix G. Bayesian Logistic Regression Results

Ntrn = 125 Ntrn = 250 Ntrn = 1250

K = 13 K = 25 K = 13 K = 25 K = 13 K = 25

Time (s)
G-KL

Chev 0.14±0.01 0.16±0.00 0.32±0.02 0.34±0.01 3.31±0.09 3.38±0.14

Band 0.21±0.01 0.28±0.01 0.41±0.01 0.53±0.01 4.05±0.09 4.64±0.09

Sub 0.42±0.05 0.46±0.02 0.69±0.03 0.81±0.04 4.24±0.15 5.17±0.28

FA 0.75±0.05 0.74±0.05 0.94±0.08 1.12±0.08 6.18±0.61 5.49±0.40

VB 0.27±0.01 0.28±0.00 0.29±0.00 0.31±0.01 0.46±0.01 0.45±0.00

B̃
G-KL

Chev −1.08±0.02 −1.05±0.02 −0.89±0.01 −0.87±0.01 −0.41±0.00 −0.40±0.00

Band −1.05±0.02 −1.00±0.01 −0.88±0.01 −0.85±0.01 −0.41±0.00 −0.40±0.00

Sub −2.93±0.01 −2.11±0.02 −1.83±0.01 −1.43±0.01 −0.60±0.00 −0.52±0.00

FA −1.08±0.02 −1.06±0.02 −0.89±0.01 −0.87±0.01 −0.40±0.00 −0.39±0.00

VB –±– –±– –±– –±– –±– –±–

‖m−wtr‖2/D
G-KL

Chev 1.48±0.01 1.48±0.01 1.38±0.01 1.38±0.01 1.11±0.01 1.11±0.01

Band 1.48±0.01 1.48±0.01 1.38±0.01 1.38±0.01 1.11±0.01 1.11±0.01

Sub 1.49±0.01 1.48±0.01 1.43±0.01 1.41±0.01 1.20±0.01 1.18±0.01

FA 1.48±0.01 1.48±0.01 1.38±0.01 1.38±0.01 1.11±0.01 1.11±0.01

VB 1.52±0.01 1.51±0.01 1.45±0.01 1.45±0.02 1.21±0.01 1.21±0.01

log p(y∗|X∗)/Ntst
G-KL

Chev −0.57±0.01 −0.56±0.01 −0.47±0.01 −0.47±0.01 −0.19±0.00 −0.19±0.00

Band −0.56±0.01 −0.56±0.01 −0.47±0.01 −0.46±0.01 −0.19±0.00 −0.19±0.00

Sub −0.67±0.02 −0.63±0.02 −0.57±0.02 −0.54±0.02 −0.21±0.01 −0.20±0.01

FA −0.57±0.01 −0.57±0.01 −0.48±0.01 −0.47±0.01 −0.19±0.00 −0.19±0.00

VB −0.68±0.02 −0.68±0.02 −0.57±0.01 −0.56±0.01 −0.21±0.01 −0.21±0.01

Table 3: Bayesian logistic regression results for a unit variance Gaussian prior, with parameter

dimension D = 250 and number of test points Ntst = 2500. Experimental setup and metrics

are described in Section 6.2.
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Ntrn = 500 Ntrn = 1000 Ntrn = 5000

K = 50 K = 100 K = 50 K = 100 K = 50 K = 100

Time (s)
G-KL

Chev 2.68±0.04 3.37±0.05 6.41±0.11 7.28±0.14 75.23±1.51 78.38±2.10

Band 6.66±0.58 8.97±0.14 12.81±0.15 20.59±0.26 127.69±2.36 190.65±3.47

Sub 1.59±0.07 2.58±0.12 3.24±0.03 7.71±0.20 56.67±1.80 75.35±1.63

FA 9.94±1.00 12.24±0.63 16.21±0.74 18.64±1.09 70.87±3.92 82.13±5.83

VB 1.78±0.03 2.65±0.05 4.12±0.04 6.17±0.07 21.88±0.03 33.87±0.02

B̃
G-KL

Chev −1.28±0.01 −1.24±0.01 −0.99±0.00 −0.96±0.00 −0.42±0.00 −0.41±0.00

Band −1.24±0.01 −1.17±0.01 −0.98±0.00 −0.94±0.00 −0.42±0.00 −0.42±0.00

Sub −5.40±0.23 −4.54±0.25 −7.56±0.00 −1.52±0.00 −0.62±0.00 −0.54±0.00

FA −1.29±0.01 −1.26±0.01 −1.00±0.00 −0.97±0.00 −0.42±0.00 −0.41±0.00

VB –±– –±– –±– –±– –±– –±–

‖w−wtr‖2/D
G-KL

Chev 0.53±0.00 0.53±0.00 0.49±0.00 0.49±0.00 0.38±0.00 0.38±0.00

Band 0.53±0.00 0.53±0.00 0.49±0.00 0.49±0.00 0.38±0.00 0.38±0.00

Sub 0.56±0.00 0.55±0.00 0.56±0.00 0.50±0.00 0.44±0.00 0.43±0.00

FA 0.53±0.00 0.53±0.00 0.49±0.00 0.49±0.00 0.38±0.00 0.38±0.00

VB 0.54±0.00 0.54±0.00 0.52±0.00 0.52±0.00 0.45±0.00 0.45±0.00

log p(y∗|X∗)/Ntst
G-KL

Chev −0.62±0.01 −0.61±0.01 −0.51±0.01 −0.49±0.01 −0.18±0.00 −0.18±0.00

Band −0.61±0.01 −0.59±0.01 −0.50±0.01 −0.49±0.01 −0.18±0.00 −0.18±0.00

Sub −0.62±0.01 −0.61±0.01 −0.69±0.00 −0.61±0.01 −0.21±0.00 −0.21±0.00

FA −0.62±0.01 −0.61±0.01 −0.52±0.01 −0.51±0.01 −0.18±0.00 −0.18±0.00

VB −0.88±0.01 −0.95±0.02 −0.68±0.01 −0.70±0.01 −0.21±0.00 −0.21±0.00

Table 4: Bayesian logistic regression results for a unit variance Gaussian prior, with parameter di-

mension D = 1000 and number of test points Ntst = 5000. Experimental setup and metrics

are described in Section 6.2.
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