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GAUSSIAN LIMITS FOR GENERALIZED SPACINGS

BY YU. BARYSHNIKOV, MATHEW D. PENROSE AND J. E. YUKICH1

Bell Laboratories, University of Bath and Lehigh University

Nearest neighbor cells in Rd,d ∈ N, are used to define coefficients of
divergence (φ-divergences) between continuous multivariate samples. For
large sample sizes, such distances are shown to be asymptotically normal
with a variance depending on the underlying point density. In d = 1, this ex-
tends classical central limit theory for sum functions of spacings. The general
results yield central limit theorems for logarithmic k-spacings, information
gain, log-likelihood ratios and the number of pairs of sample points within a
fixed distance of each other.

1. Introduction. Suppose X(i),1 ≤ i ≤ n, are the order statistics drawn from
an i.i.d. sample with distribution F on R and let G be a distribution function.
Classical spacing functionals on R (Section 6 of [35]) take the form of an empirical
φ-divergence

n−1∑
i=1

φ
(
n
[
G

(
X(i+1)

) − G
(
X(i)

)])
,(1.1)

where φ : R+ → R is a specified function and where typically F is unknown.
When F and G have densities f and g, respectively, the functionals (1.1) represent
an empirical version of the φ-divergence of g from f , namely

∫
f (x)φ(

g(x)
f (x)

) dx.
The φ-divergence functional, introduced by Ali and Silvey [1–3] and indepen-
dently by Csiszár [9–11] is a measure of the discrepancy of G relative to F . Em-
pirical φ-divergences are widely used in nonparametric estimation and are well
suited for goodness-of-fit tests [7, 8, 15, 22, 34, 36, 42].

This paper has two main goals. The first is to use kth nearest neighbor cells to es-
tablish high-dimensional analogs of the φ-divergences (1.1). The nearest neighbor
cells are employed to define the statistical discrepancy of a proposed distribution
with density g relative to an observed i.i.d. sample drawn from a distribution with
density f . We establish a general central limit theorem (CLT) showing that the re-
sulting distance functionals converge to a normal random variable whenever f and
g are bounded away from zero and infinity. The limiting variance is given in terms
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of the Vφ,k-divergence and �φ,k-divergence of g from f , where Vφ,k and �φ,k are
certain integral transforms of φ.

Our second goal is to use φ-divergences based on kth nearest neighbors cells
to provide a unifying approach toward proving classical central limit theorems for
sum functions of k-spacings [7, 8, 12, 13, 18, 40, 42]. This yields asymptotic nor-
mality for information gain, log-likelihood ratios and sums of logarithmic spacings
whenever the densities of F and G are bounded away from zero and infinity. The
methods extend to yield a central limit theorem for the number of pairs of sample
points within a fixed distance.

More generally, we consider the natural random measures associated with the
empirical φ-divergences, obtained for d = 1 by putting a point mass at each X(i)

of size equal to the ith term in (1.1), and analogously for d > 1. We show that
these point measures, when acting on bounded test functions, and when suitably
centered and scaled, converge weakly to a Gaussian field.

Our approach uses stabilization methods, a tool [5, 31–33] for establishing gen-
eral limit theorems for sums of weakly dependent terms in geometric probability.
These methods quantify local dependence in ways useful for establishing thermo-
dynamic and Gaussian limits and they also show that locally defined functionals
of Poisson points on large bounded sets can be well approximated by globally de-
fined functionals of homogeneous Poisson points on all of R

d . This latter feature
conveniently often leads to explicit thermodynamic and variance asymptotics.

Existing general limit results cannot be applied directly to the high-dimensional
analogs of (1.1). However, it turns out that the empirical φ-divergences nonetheless
involve sums of stabilizing functionals, and one might thus expect that the underly-
ing ideas and methods at the heart of stabilization are applicable and lead to vari-
ance asymptotics and Gaussian limits for the high-dimensional analogs of (1.1).
This paper shows that this is indeed the case. Further, by adapting the methods
of [32] to the present setting, we may prove variance asymptotics and central limit
theorems over point sets with a fixed (non-Poisson) number of points.

Our general results are stated in Section 2; applications associated with partic-
ular choices of φ are discussed in Section 3. Because of their generality, our main
results have lengthy proofs, which we provide (in Section 4) with some details
omitted; for full details, see the extended version of this article [4].

2. Main results.

2.1. Preliminaries.

Notation. We use the following notation throughout. If B is a Borel subset
of R

d , then |B| denotes its Lebesgue measure. Given X ⊂ R
d , a ≥ 0 and y ∈ R

d ,
let y + aX := {y + ax :x ∈ X}. For x ∈ R

d , let |x| be its Euclidean modulus and
for r > 0, let Br(x) denote the open Euclidean ball {y ∈ R

d : |y − x| < r}. Let 0
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denote the origin of R
d , and let ωd := |B1(0)| = πd/2/�((d/2)+ 1). We use logx

to denote the natural logarithm of x.
We let f and g denote two probability density functions on R

d (d ∈ N) with
common compact support, which we assume is convex and which is denoted by A.
We assume once and for all that f and g are bounded and that they are bounded
away from zero on A. Abusing notation, we let F(·) [resp. G(·)] denote the prob-
ability measure on R

d with density f (resp. g), that is, F(B) := ∫
B f (x) dx and

G(B) := ∫
B g(x) dx.

Throughout X1,X2, . . . denotes a sequence of independent random d-vectors
with common density f . Let Xn := {X1, . . . ,Xn}. Also, given λ > 0, let Pλ be
a Poisson point process in A with intensity function λf :A → R

+. For all a > 0,
let Ha denote a homogeneous Poisson point process on R

d with intensity a. We
write H for H1.

Given a Borel subset E ⊂ R
d , let B(E) denote the class of bounded Borel-

measurable real-valued functions on E. Given h ∈ B(Rd), we write ‖h‖∞ for
supx∈Rd (|h(x)|) and given also μ a Borel measure on R

d , we let 〈h,μ〉 denote the
integral of h with respect to μ.

We shall consider φ-divergences and related quantities for a general class F
of functions φ, which we now describe. Let R

+ := (0,∞). Given a continuous
function φ : R+ → R, define the function φ∗ : R+ → [0,∞) by

φ∗(t) :=
{

sup{|φ(u)| : t ≤ u ≤ 1}, if 0 < t ≤ 1,
sup{|φ(s)| : 1 ≤ s ≤ t}, if t ≥ 1.

(2.1)

In other words, φ∗ is the minimal function on R
+ with the properties that

(i) −φ∗(·) is unimodal with a maximum at 1, and (ii) φ∗(·) dominates |φ(·)| point-
wise.

Let F be the class of continuous functions φ : R+ → R such that the restriction
to (0,1) of the function φ∗ defined by (2.1) is square-integrable on (0,1), and
such that log(max(φ(t),1)) = o(t) as t → ∞. Let F0 be the class of functions
in F which are bounded on (0,1].

Let �1 denote a gamma(1,1) random variable, that is, let �1 be exponentially
distributed with mean one. Letting �1,i , i ≥ 1, be independent copies of �1, we put
�k := ∑k

i=1 �1,i , a gamma random variable with parameters k and 1. For σ 2 > 0,
let N(0, σ 2) denote a normal random variable with mean zero and variance σ 2.
Given random variables X,Y we write X ≺ Y (or Y 
 X) if Y dominates X sto-
chastically, that is, if P [X ≤ t] ≥ P [Y ≤ t] for all t ∈ R.

2.2. High-dimensional φ-divergence based on k-nearest neighbor cells. Let
K be an open convex cone in R

d (a cone is a set that is invariant under dilations).
For all r > 0, let BK

r (x) := x + (K ∩ Br(0)). Recall that the aspect ratio of a
subset E of R

d is the ratio of the radius of the smallest ball containing E and the
radius of the largest ball contained in E. For d ≥ 2, we assume that K is “regular”
with respect to A, that is, K is chosen such that the sets BK

r (x)∩A have bounded
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aspect ratio uniformly over x ∈ A, r > 0. When K = R
d, this condition is trivially

satisfied. If A is the unit cube, then K may be either a tilted orthant or a right
circular cone not tangent to any coordinate subspace.

Given the cone K , x ∈ R
d, a finite set X ⊂ R

d , and k ∈ N, put

Ck(x,X) := CK
k (x,X) := ⋃

t>0 : card(BK
t (x)∩X\{x})<k

BK
t (x).(2.2)

Here, card(Y) denotes the cardinality of the finite set Y. If card((x + K) ∩ X \
{x}) ≥ k, then CK

k (x,X) is the largest set of the form BK
t (x) containing fewer

than k points of X \ {x}; otherwise, CK
k (x,X) is the whole “wedge” x + K .

When K = R
d , CK

k (x,X) is a ball whose radius is the distance between x and
its kth nearest neighbor in X \ x.

For each n ≥ 2 and Xi,1 ≤ i ≤ n, we use the directed nearest neighbor cells
CK

k (Xi,Xn) to define high-dimensional spacing functionals analogous to the clas-
sical one-dimensional functionals (1.1). Define for 1 ≤ i ≤ n the transformed kth
nearest neighbor spacings

D
g
i,n,k := G(CK

k (Xi,Xn)).

Given φ ∈ F , define the random point measure ν
g
n,φ,k , with total measure

N
g
n,φ,k , as follows:

ν
g
n,φ,k :=

n∑
i=1

φ(nD
g
i,n,k)δXi

; N
g
n,φ,k :=

n∑
i=1

φ(nD
g
i,n,k).(2.3)

Here, δx denotes the unit point mass at x. Let ν
g
n,φ,k := ν

g
n,φ,k − E[νg

n,φ,k] be the

centered version of the measure ν
g
n,φ,k .

Henceforth, we call N
g
n,φ,k the “k-nearest neighbors spacing statistic,” or “em-

pirical nearest neighbor φ-divergence”; it provides a high-dimensional analog of
the statistic (1.1). Our main concern is with the limit theory of ν

g
n,φ,k and N

g
n,φ,k .

The statistic N
g
n,φ,k provides an empirical measure of the discrepancy of the

proposed distribution G from the (typically unknown) true distribution F . For ex-
ample, if k = 1, then equating D

f
i,n,1 with its approximate expected value of 1/n

yields the approximation N
g
n,φ,1 ≈ ∑

i φ(D
g
i,n,1/D

f
i,n,1), and thus N

g
n,φ,1 provides

a naive empirical estimate for the so-called φ-divergence [1–3, 9–11] of g from f

which is defined by

Iφ(g, f ) :=
∫
A

φ

(
g(x)

f (x)

)
f (x) dx.(2.4)

In general, Iφ(g, f ) is possibly negative, and Iφ(g, f ) = Iφ∗(f, g) where φ∗(x) :=
xφ(x−1). Also,

Iφ(f, f ) = φ(1);(2.5)

Iφ(g, f ) ≥ Iφ(f, f ) if φ is convex.(2.6)
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Choices of φ ∈ F figuring prominently in estimation and decision theory in-
clude:

• φ0(x) := − logx defines Kullback–Leibler information (also called the modi-
fied log-likelihood ratio statistic or relative entropy) and is used in maximum
spacing methods,

• φ1/2(x) := 2(1 − √
x)2 yields the square of the Hellinger distance,

• φ1(x) := x logx yields the log-likelihood ratio statistic or I-divergence of
Kullback–Leibler,

• φ2(x) := (x − 1)2/2 yields the chi-squared divergence, and
• φ(r)(x) := xr yields information gain of order r, r > 0.

The φ-divergences N
g
n,φ,k and Iφ(g, f ) (“coefficients of divergence”) are used

heavily in goodness-of-fit tests [36] and are useful in characterizing the amount
of information of one distribution contained in another [36, 37]. Nearest neighbor
cells have been used in goodness-of-fit tests in multidimensions in [6, 38, 43],
among others. Note that (2.6) shows Iφ0(g, f ) and Iφ1(g, f ) are nonnegative, and
that Iφ(1/2)(g, f ) is symmetric in f and g.

The following integral transforms of φ (defined for β > 0) arise naturally in
the asymptotic analysis of ν

g
n,φ,k (the random variables �k were defined in Sec-

tion 2.1):

Mφ,k(β) := E[φ(β�k)],(2.7)

�φ,k(β) := (k + 1)Mφ,k(β) − kMφ,k+1(β),(2.8)

Vφ,k(β) := Mφ2,k(β)

+
∫

Rd

[
E

[
φ

(
β|Ck(0,H ∪ y)|)φ(

β|Ck(y,H ∪ 0)|)](2.9)

− Mφ,k(β)2]
dy.

Note that Mφ,1(x) = (1/x)φ̂(1/x), where φ̂ denotes the Laplace transform of φ.

2.3. A general CLT for φ-divergences. The following general central limit the-
orem, our main result, establishes convergence of n−1/2〈h, ν

g
n,φ,k〉 to a mean zero

normal random variable whose variance is a weighted average of the functions
Vφ,k and �φ,k . For h ∈ B(A), we define the h-weighted φ-divergence of g from f

by

Iφ(g, f,h) :=
∫
A

f (x)φ

(
g(x)

f (x)

)
h(x) dx,

which in the case h ≡ 1 reduces to the φ-divergence Iφ(f, g) defined at (2.4). Also,
for h,h1, h2 in B(A) and φ ∈ F , we define the functions h2, h1h2, φ

2 pointwise,
that is, h2(x) = (h(x))2 and so on.
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In the theorem below, since the formula (2.10) is rather concise, we expand
it in (2.11). We prove the theorem in Section 4, referring to [4] for some of the
details.

THEOREM 2.1. Suppose that either φ ∈ F0, d = 1, or K = R
d . As n → ∞,

it is the case that for h ∈ B(A),

n−1 Var[〈h, ν
g
n,φ,k〉] → IVφ,k

(g, f,h2) − (I�φ,k
(g, f,h))2(2.10)

=
∫
A

h2(x)Vφ,k

(
g(x)

f (x)

)
f (x) dx

(2.11)

−
(∫

A
h(x)�φ,k

(
g(x)

f (x)

)
f (x) dx

)2

and

n−1/2〈h, ν
g
n,φ,k〉 D−→ N

(
0, IVφ,k

(g, f,h2) − (I�φ,k
(g, f,h))2)

.(2.12)

Putting h ≡ 1 in Theorem 2.1 yields a CLT for the empirical φ-divergence
N

g
n,φ,k :

n−1/2(N
g
n,φ,k − EN

g
n,φ,k)

D−→ N
(
0, IVφ,k

(g, f ) − (I�φ,k
(g, f ))2)

.

For practical purposes, it is of use to compute Vφ,k , and the next two results show
how to simplify the expression (2.9) in some special cases. Using these simpli-
fications, we may explicitly identify Vφ,k for certain choices of φ, as shown in
Section 3.

The first of our simplifications applies when K �= R
d , and either k = 1 or d = 1.

The latter case is particularly relevant to the study of spacings (see Section 2.4).

PROPOSITION 2.1. If K �= R
d , and either d = 1 or k = 1, then for all β > 0,

we have

Vφ,k(β) = Mφ2,k(β) + 2kMφ,k(β)
(
Mφ,k(β) − Mφ,k+1(β)

)
(2.13)

+ 2
k−1∑
j=1

Cov
[
φ(β�k),φ

(
β(�k+j − �j )

)]
,

the sum being interpreted as zero for k = 1.

Our second simplifying formula for Vφ,k is applicable when k = 1, K = R
d ,

and φ is differentiable with limt↓0 φ(t) = 0. This will provide limiting distributions
for some cases of interest, including information gain and log-likelihood in high
dimensions (see Section 3.2). For s, t, u ∈ R

+, let I (s, t, u) be the volume of the
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intersection of two balls in R
d , with respective volumes s and t , at a distance u

apart. Set

Jd(s, t) :=
∫ ∞

max(s,t)

[
eI (s,t,(u/ωd)1/d ) − 1

]
du.(2.14)

PROPOSITION 2.2. Suppose that K = R
d and that φ ∈ F is differentiable

with limt↓0 φ(t) = 0. Then for all β > 0,

Vφ,1(β) = Mφ2,1(β)+β2
∫ ∞

0

∫ ∞
0

φ′(βs)φ′(βt)e−(s+t)[Jd(s, t)−max(s, t)]ds dt

provided that the integral exists.

REMARKS. (i) (Related work) Bickel and Breiman [6], and subsequently
Schilling [38], consider the functionals N

g
n,φ,1 when φ(x) = exp(−x) and

K = R
d . Using the approximation D

g
i,n,1 ≈ g(Xi)|C1(Xi,Xn)|, they establish

a CLT for the empirical process of nearest neighbor distances, but do not consider
convergence of the associated random measures. Zhou and Jamalamadaka [43] es-
tablish the central limit theory for the functionals N

g
n,φ,1 for certain φ of bounded

variation for the case g = f as well as for the case involving a sequence of appro-
priately converging alternatives. Strong limit theorems for multivariate spacings
using general “shapes” are given by Deheuvels et al. [14].

(ii) (Finite-dimensional CLT) By standard arguments based on the Cramér–
Wold device, it is straightforward to deduce from Theorem 2.1 the convergence of
the finite-dimensional distributions of n−1/2ν

g
n,φ,k as n → ∞ [i.e., the convergence

of the m-vector n−1/2(〈h1, ν
g
n,φ,k〉, . . . , 〈hm, ν

g
n,φ,k〉) for all h1, . . . , hm in B(A)]

to those of a mean zero finitely additive Gaussian field with covariance kernel

(h1, h2) �→ IVφ,k
(g, f,h1h2) − I�φ,k

(g, f,h1)I�φ,k
(g, f,h2).(2.15)

(iii) (Poisson CLT) For λ > 0, k ∈ N, the Poisson analog of measure ν
g
n,φ,k is

μ
g
λ,φ,k := ∑

x∈Pλ

φ(λG(Ck(x,Pλ)))δx,(2.16)

and its total measure is a Poissonized version of N
g
n,φ,k . Our approach yields a

proof (see Proposition 4.1 below) that if φ ∈ F and h ∈ B(A), then as λ → ∞,

λ−1 Var[〈h,μ
g
λ,φ,k〉] → IVφ,k

(g, f,h2)(2.17)

and λ−1/2μ
g
λ,φ,k converges in law to a mean zero Gaussian field with covariance

kernel (h1, h2) �→ IVφ,k
(g, f,h1h2) (here μ

g
λ,φ,k := μ

g
λ,φ,k − E[μg

λ,φ,k]).
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(iv) (Law of large numbers, limits are distribution free) Our approach (see
also [31]) also yields a weak law of large numbers, namely

n−1〈h, ν
g
n,φ,k〉 L2−→ IMφ,k

(g, f,h) ∀h ∈ B(A),φ ∈ F .

By taking h ≡ 1, we obtain a weak law of large numbers for the k-nearest neigh-
bors spacing statistic N

g
n,φ,k . Combining this with Theorem 2.1 and taking g = f ,

we see from (2.5) that the limiting mean of n−1〈h, ν
f
n,φ,k〉 and the limiting vari-

ance and distribution of n−1/2〈h, ν
f
n,φ,k〉 do not depend on f for h ≡ 1 (and, in

fact, for any h). Therefore, the nearest neighbor functionals are asymptotically
distribution free under the null hypothesis g = f and have asymptotic variance
Vφ,k(1) − (�φ,k(1))2. A possible goodness-of-fit test would be to take the den-
sity g to be tested, compute the functional N

g
n,φ,1 and see whether the cumulative

distribution function is close to the N(0,Vφ,1(1) − (�φ,1(1))2) cumulative distri-
bution function.

(v) (Voronoi cells) Volumes of nearest neighbor cells are computationally at-
tractive and have correlations decaying exponentially with the distance between
cell centers. Defining point measures analogous to (2.3) based on cells generated
by any locally defined Euclidean graph (e.g., Voronoi cells) leads to similar CLTs,
adding to the laws of large numbers given in [24].

(vi) (Properties of limiting variance) In most of our examples, �φ,k is strictly
positive, showing that Poissonization leads to a larger limiting variance. When Vφ,k

is convex, which is the case when k = 1, φ(x) = xr, r ∈ [1,∞) or when φ(x) =
x logx (see Section 3.1), then inequality (2.6) implies that the limiting variance
over Poisson samples is minimized when g = f .

2.4. Asymptotic normality of sum functions of spacings. In dimension d = 1,
if g is a probability density with distribution function G on [c1, c2], then the gen-
eralization to k-spacings of the empirical φ-divergence defined at (1.1) is the clas-
sical k-spacing statistic defined by

S
g
n,φ,k :=

n−k∑
i=1

φ
(
n
[
G

(
X(i+k)

) − G
(
X(i)

)])
.(2.18)

Developing the limit theory for S
g
n,φ,k over continuous samples is important in

goodness-of-fit tests. We can apply the general theory of Section 2.3 by putting
d = 1 and K = (0,∞). Then the width of CK

k (x,X) is the distance between x

and its kth nearest neighbor in X “to the right.” Thus, the k-nearest neighbors
spacing statistic N

g
n,φ,k , defined by (2.3), is the same as S

g
n,φ,k but with the sum

in (2.18) extended to n terms and with X(j) := c2 if j > n.
To better match the existing literature, we consider a modified version of

Theorem 2.1 in which we redefine CK
k (x,X) to be the empty set whenever
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card(X ∩ (x + K) \ x) < k, and set φ(0) = 0. Denote by ν∗
n,φ,k the analog of

ν
g
n,φ,k under this modification (here we suppress the dependence on g), that is,

ν∗
n,φ,k :=

n−k∑
i=1

φ
(
n
[
G

(
X(i+k)

) − G
(
X(i)

)])
δXi

.(2.19)

The corresponding centered measure is then denoted ν̄∗
n,φ,k . If d = 1 and K =

(0,∞), the total measure of ν∗
n,φ,k is indeed equal to S

g
n,φ,k .

THEOREM 2.2 (Gaussian limit for sum functions of spacings). Let A :=
[c1, c2], K = (0,∞) and φ ∈ F . Then the conclusion of Theorem 2.1 holds with
ν

g
n,φ,k replaced by ν∗

n,φ,k . Moreover, in this case, Vφ,k(β) is given by (2.13).

The proof of Theorem 2.2 is a straightforward modification of the proof of The-
orem 2.1; see Theorem 2.2 of [4] for details.

Applications of Theorem 2.2 are given in Section 3. This result, like our main
result, shows that sum functions of spacings are asymptotically distribution free
under the null hypothesis f = g.

REMARKS. (i) Darling [13] undertook the first systematic study of the func-
tionals Sn,φ,k when k = 1, but restricted attention to uniform samples. Theorem 2.2
generalizes Holst [21], as well as earlier work of Cressie [8], who proves asymp-
totic normality (but not convergence of ν∗

n,φ,k against bounded test functions) for
sum functions of k-spacings over uniform points. Holst uses a generalization of
LeCam’s method and a CLT for k-dependent random variables. In d = 1, Holst
and Rao [22] prove asymptotic normality of S

g
n,φ,k under “somewhat stringent

conditions” on f and g. Mirakhmedov [28] considers the error term in the CLT
for the functionals Sn,φ,k when F and G are the uniform distribution on [0,1].
For nonuniform samples, the asymptotics of S

g
n,φ,k have been widely studied un-

der the assumption that G runs through a sequence of alternatives Gn approach-
ing the uniform distribution; see Hall [20], Kuo and Rao [27] and del Pino [34].
Khashimov [26] establishes asymptotic normality of S1

n,φ,k under rather technical
differentiability conditions on φ and f .

(ii) The approach used here also yields a weak law of large numbers, namely
convergence in mean-square of n−1S

g
n,φ,k to IMφ(g, f ). This extends the corre-

sponding weak laws in [25]; see also [17]. Analogous results hold for nonoverlap-
ping k-spacings [39].

2.5. Divergences based on cells of fixed radius. Instead of considering point
measures based on spacings, we now consider using cells of fixed radius depending
on a continuous g :A → R

+ and a parameter t . Thus, given φ ∈ F and t > 0, we
define

H
g,t
n,φ := 1

2

∑
x∈Xn

φ
(
card

{
Xn ∩ Bt(ng(x))−1/d (x)

} − 1
)
.
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When φ(x) ≡ x and g ≡ 1, then H
g,t
n,φ counts the total number of pairs of points

in Xn distant at most n−1/d t from each other.
The following CLT is obtained by modifying the proof of Theorem 2.1; we refer

to Theorem 2.3 of [4] for details.

THEOREM 2.3 ([4]). (Gaussian limit for the number of pairs of points within
distance t). For all continuous g :A → R

+, t > 0, and φ ∈ F , there is a constant
σ 2

t,φ,g(f ) such that as n → ∞ we have n−1 Var[Hg,t
n,φ] → σ 2

t,φ,g(f ) and

n−1/2(H
g,t
n,φ − EH

g,t
n,φ)

D−→ N(0, σ 2
t,φ,g(f )).

REMARKS. The limiting variance σ 2
t,φ,g(f ) takes the form of the right-hand

side of (2.10) with h ≡ 1 and with the functions Vφ,k and δφ,k suitably modified;
see [4] for details.

Various authors have studied H
g,t
n,φ when φ(x) ≡ x and g ≡ 1; see Chapter 3

of [30] and references therein. Jammalamadaka and Zhou [23] and also L’Écuyer
et al. [16] consider H

g,t
n,φ from the point of view of goodness-of-fit tests, (the lat-

ter reference only for uniform samples). Penrose [30] (Chapter 4) proves that the
finite-dimensional distributions of the process H

g,t
n,φ, t > 0, converge to those of a

Gaussian process.

3. Applications.

3.1. Classical spacing statistics. For many tests involving goodness-of-
fit (Dudewicz et al. [15], Blumenthal [7], Cressie [8], Holst and Rao [22],
del Pino [34], Weiss [42]) and parametric estimation (Ghosh and Jammala-
madaka [19]), it is important to know the asymptotic distribution of S

g
n,φ,k [de-

fined at (2.18)] for arbitrary g and f and for various choices of φ. The following
provides some illustrative examples. For simplicity of exposition, we have chosen
to state our central limit theorems for the statistic S

g
n,φ,k; the results for associ-

ated random point measures (2.19) are given in [4]. Throughout Section 3.1, we
write V S

φ,k for the value of Vφ,k given by (2.13).

3.1.1. Limit theory for logarithms of spacings. Let

S
g
n,log,k :=

n−k∑
i=1

log
(
n
[
G

(
X(i+k)

) − G
(
X(i)

)])
denote the sum of the logarithmic k-spacings. Setting φ(x) = logx in Theorem 2.2
and appealing to (2.8) and (2.13), we find a CLT for logarithms of k-spacings as
follows.

Let ψ be the di-gamma function with ψ(k) := ∑k−1
i=1 i−1 −γ, where γ is Euler’s

constant, and let ψ ′(k) := −∑k−1
i=1 i−2 + π2/6.
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By Cressie [8] and Holst [21],

k−1∑
j=1

Cov
(
log�k, log(�k+j − �j)

) = k(k − 1)ψ ′(k) − (k − 1).

Also, E[log�k] = ψ(k), so we have 2kE[log�k](E log�k − E log�k+1) =
−2ψ(k). Also, E[log2 �k] = ψ ′(k) + (ψ(k))2. So, combining terms and us-
ing (2.13) for φ(x) = logx gives

V S
log,k(1) = ψ ′(k) + (ψ(k))2 − 2ψ(k) + 2[k(k − 1)ψ ′(k) − (k − 1)].(3.1)

By (2.8), we have �log,k(1) = (k + 1)ψ(k) − kψ(k + 1) = ψ(k) − 1.

Using simple relations such as Cov(logβX, logβY) = Cov(logX, logY), it is
straightforward to deduce that V S

log,k(β) = V S
log,k(1) + log2 β + 2 logβ(ψ(k) − 1)

and �log,k(β) = �log,k(1) + logβ . Substituting this into Theorem 2.2, putting
τk := (2k2 − 2k + 1)ψ ′(k) − 2k + 1, and rearranging terms yields the following
corollary.

COROLLARY 3.1 (CLT for logarithmic k-spacings). Let X,X1,X2, . . . be
i.i.d. with density f on [0,1]. As n → ∞, n−1 Var[Sg

n,log,k] → τk + Var[log(
f (X)
g(X)

)]
and

n−1/2(S
g
n,log,k − ES

g
n,log,k)

D−→ N

(
0, τk + Var

[
log

(
f (X)

g(X)

)])
.

REMARKS. When A = [0,1] and f ≡ g ≡ 1, the CLT for S
g
n,log,k was es-

tablished by Darling (Section 7 of [13]) for k = 1 and later by Holst [21] and
Cressie [8] for general k. When the Xi have a step density, Cressie shows as-
ymptotic normality of S

g
n,log,k including cases when k → ∞. Czekała (Theorem 1

of [12]) apparently rediscovered Cressie’s result. Shao and Hahn [40] treat gen-
eral densities for k = 1, although their proof depends upon interchanging limits in
order to pass from step densities to arbitrary densities. When k = 1, Blumenthal
(Theorem 2 of [7]), proves Corollary 3.1 for densities f satisfying special condi-
tions. Corollary 3.1 extends all of these results to f and g bounded away from zero
and infinity, resolving a conjecture of Darling ([13], page 249) affirmatively.

3.1.2. Information gain of order r . Let φ(x) = xr, r > 0. We write S
g
n,r,1 to

denote S
g
n,φ,1, also known as Rényi’s information gain (I-divergence) of order r in

d = 1, that is,

S
g
n,r,1 :=

n−1∑
i=1

(
n
[
G

(
X(i+1)

) − G
(
X(i)

)])r
.
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Let wr := −2r�2(r + 1) + �(2r + 1) and tr := �(r + 1)(1 − r). It is a simple
matter to verify via (2.13) and (2.8), respectively, that for all β > 0,

V S
φ,1(β) := wrβ

2r and �φ,1(β) := 2E[φ(β�1)] − E[φ(β�2)] = trβ
r .

Put

σ 2
r (f, g) := wr

∫
A

(
g(x)

f (x)

)2r

f (x) dx − t2
r

(∫
A

(
g(x)

f (x)

)r

f (x) dx

)2

.

Theorem 2.2 yields the following corollary.

COROLLARY 3.2 (Gaussian limits for information gain). Let X1,X2, . . . be
i.i.d. with density f on A := [c1, c2]. As n → ∞, we have for all h ∈ B(A)

n−1 Var[Sg
n,r,1] → σ 2

r (f, g)

and n−1/2(S
g
n,r,1 − ES

g
n,r,1)

D−→ N(0, σ 2
r (f, g)).

REMARKS. It is easy to verify using [5] that σ 2
r (f, g) > 0 except when

r = 1. Corollary 3.2 extends upon the CLTs of Darling [13] (uniform case) and
Weiss [42]. Moran [29] proved a CLT for the functional S

g
n,1,1 over uniform ran-

dom variables.

3.1.3. Limit theory for log-likelihood ratio. Let φ(x) = x logx. Consider the
log-likelihood point measure

ν
g
n,φ,1 :=

n−1∑
i=1

φ
(
n
[
G

(
X(i+1)

) − G
(
X(i)

)])
δXi

and let S
g
φ denote the total mass of this measure, also called the log-likelihood

statistic. Again, denoting Euler’s constant by γ , we have for β > 0 that

E[β�1 log(β�1)] = β logβ + β(1 − γ );
E[β�2 log(β�2)] = 2β logβ + β(3 − 2γ );

E[(β�1 log(β�1))
2] = β2[2(logβ)2 + (6 − 4γ ) logβ + 2 + π2/3 − 6γ + 2γ 2].

Using these in (2.13) and (2.8), respectively, it is easily verified that

V S
φ,1(β) :=

(
π2

3
− 2

)
β2 and �φ,1(β) := 2Eφ(β�1) − Eφ(β�2) = −β.

Put

σ 2
φ(f, g) :=

(
π2

3
− 2

)∫
A

g2(x)

f (x)
dx −

(∫
A

g(x) dx

)2

.
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Let X have density f and note that since g is a density we have

σ 2
φ(f, g) =

(
π2

3
− 2

)
Var

[
g(X)

f (X)

]
+ π2

3
− 3.

Using the above values for Vφ,1, �φ,1, σ 2
φ(f, g), and applying Theorem 2.2 for

φ(x) = x logx yields the following corollary.

COROLLARY 3.3 (Gaussian limit for log-likelihood). Let X1,X2, . . . be i.i.d.
with density f on A := [c1, c2]. As n → ∞, n−1 Var[Sg

n,φ,1] → σ 2
φ(f, g) and

n−1/2(S
g
n,φ,1 − ES

g
n,φ,1)

D−→ N(0, σ 2
φ(f, g)).

REMARKS. Corollary 3.3 extends the results of Gebert and Kale [18], who
assume uniformity of Xi and Czekała (Theorem 2 of [12]), who assumes that Xi

have a step density. van Es [41] establishes asymptotic normality for S
g
φ whenever

k,n → ∞, k = o(n1/2), and f :A → [0,∞) is Lipschitz.

3.2. Information gain and log-likelihood in high dimensions. In this section,
we put k = 1 and K = R

d .

3.2.1. Information gain of order r . Let φ(x) = xr, r ∈ R
+, so that N

g
n,φ,1 de-

fined by (2.3) yields Rényi’s information gain (I-divergence) of order r . For all
r ∈ R

+, define the constant

Kr := r2
∫ ∞

0

∫ ∞
0

sr−1t r−1e−(s+t)[Jd(s, t) − max(s, t)]ds dt,

with Jd(s, t) given by (2.14). Since φ satisfies the conditions of Proposition 2.2
and since E[φ2(�1)] = �(2r + 1), the following is immediate.

LEMMA 3.1. For all β > 0 and for φ(x) = xr, r > 0, we have that Vφ,1(β) =
β2r [�(2r + 1) + Kr ].

Note that β2r = φ2(β). Combining Lemma 3.1 with Theorem 2.1 yields the
following CLT for N

g
n,φ,1.

COROLLARY 3.4. Let φ(x) = xr, r > 0. Then as n → ∞ n−1 Var[Ng
n,φ,1]

converges to [�(2r + 1) + Kr ]Iφ2,1(g, f ) − (I�φ,1(f, g))2, and

n−1/2(N
g
n,φ,1 − EN

g
n,φ,1)

D−→ N
(
0, [�(2r + 1) + Kr ]Iφ2,1(g, f ) − (I�φ,1(g, f ))2)

.
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3.2.2. Log-likelihood. When φ(x) = x logx, N
g
n,φ defined by (2.3) yields the

log-likelihood statistic. To apply Theorem 2.1, we define the constants

I1 :=
∫ ∞

0

∫ ∞
0

(log s + 1)(log t + 1)e−(s+t)[Jd(s, t) − max(s, t)]ds dt,

I2 :=
∫ ∞

0

∫ ∞
0

(log s + 1)e−(s+t)[Jd(s, t) − max(s, t)]ds dt

and

I3 :=
∫ ∞

0

∫ ∞
0

e−(s+t)[Jd(s, t) − max(s, t)]ds dt.

Also, set K1 := 2 + π
3 − 6γ + 2γ 2 + I1, K2 := 6 − 4γ + 2I2 and K3 := 2 + I3.

The following is an easy consequence of Proposition 2.2.

LEMMA 3.2. For φ(x) = x logx, Vφ,1(β) = β2(K1 +K2 logβ+K3(logβ)2),

β > 0.

Theorem 2.1 yields a CLT for the log-likelihood functional N
g
n,φ,1. Put

σ 2
φ(f, g) :=

∫
A

(
g(x)

f (x)

)2[
K1 + K2 log

(
g(x)

f (x)

)
+ K3

(
log

g(x)

f (x)

)2]
f (x) dx.

COROLLARY 3.5. Let φ(x) = x logx. Then as n → ∞, n−1 Var[Ng
n,φ,1] →

σ 2
φ(f, g) − (I�φ,1(g, f ))2 and

n−1/2(N
g
n,φ,1 − EN

g
n,φ,1)

D−→ N
(
0, σ 2

φ(f, g) − (I�φ,1(g, f ))2)
.

4. Proof of Theorem 2.1. The proof of Theorem 2.1 involves expressing the
Poissonized measure μ

g
λ,φ,k [see (2.16)] as a sum of weakly spatially dependent

terms, allowing us to establish convergence of the variance of the measure μ
g
λ,φ,k

(Proposition 4.1). Although the measures in question share neither the same rep-
resentation nor the same scaling properties as those considered in previous work
[5, 31–33], once we have shown the crucial variance convergence for measures
defined in terms of Poisson samples, we can draw upon some well-established
dependency graph techniques [31–33] to deduce a Poissonized version of Theo-
rem 2.1. Using arguments in [32], we may de-Poissonize and deduce Theorem 2.1
when φ is bounded on (0,1]. Deducing Theorem 2.1 for general φ requires extra
technical effort.

Recall that for all a > 0, Ha is a homogeneous Poisson point process of in-
tensity a on R

d . Suppose we fix the set A ⊂ R
d , the densities f and g and their

corresponding distributions F and G on R
d , as described in Section 2.1.
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For all λ > 0, x ∈ R
d , and all finite X ⊂ R

d , we lighten the notation and write
C(x,X) for CK

k (x,X) given by (2.2). For all Borel B ⊂ R
d , define the numbers

�λ(x,X) = �
g
λ(x,X) and ξλ(x,X,B) := ξ

g
λ (x,X,B) by

�λ(x,X) := φ(λG(C(x,X)); ξλ(x,X,B) := �λ(x,X)δx(B).

Recalling that Xn := {X1, . . . ,Xn}, we have

ν
g
n,φ,k(B) =

n∑
i=1

ξg
n (Xi,Xn,B).

The (signed) point measure ξλ(x,X, ·) is determined by x and X, in a similar
manner to the measures considered in [32], but here, unlike in [32], the measure
ξλ(x,X, ·) is not obtained by scaling the measure ξ1 (because the function g enters
in a more complicated way into the definition of ξλ here) so we cannot directly
apply results from [32]. We write 〈h, ξλ(x,X)〉 for

∫
Rd h(y)ξλ(x,X, dy).

For locally finite X ⊂ R
d and x ∈ A, we define

ξg,x∞ (X) := ξg,x,k∞ (X) := φ(g(x)|C(0,X)|).(4.1)

For all x ∈ A and given k ∈ N, let t0(x) denote the infimum of all t with the
property that BK

u (x) ∩ A is the same for all u ≥ t . Given also a locally finite set
X ⊂ A and K , and writing #(·) for card(·) and X \ x for X \ {x} here, define

R1(x,X)

:=
{

inf
{
t ∈ R

+ : #
(
BK

t (x) ∩ X \ x
) ≥ k

}
, if #

(
(x + K) ∩ X \ x

) ≥ k,
t0(x), otherwise.

Thus, R1(x,X) is the distance between x and its kth nearest neighbor in X in the
direction of the cone K or if no such neighbor exists, the furthest one has to look
from x to ascertain that this is the case. For λ > 0, let Rλ(x,X) := λ1/dR1(x,X).
The following lemma establishes the equivalent of the “exponential stabilization”
conditions discussed in [32]. For a proof, see [4].

LEMMA 4.1 ([4], Lemma 4.3). It is the case that

lim sup
t→∞

sup
x∈A,λ≥1

t−1 logP [Rλ(x,Pλ) > t] < 0(4.2)

and

lim sup
t→∞

sup
x∈A,λ≥1,(λ/2)≤n≤(3λ/2),A∈S3

t−1 logP [Rλ(x,Xn ∪ A) > t] < 0.(4.3)

Recall (2.16) that μ
g
λ,φ,k denotes the Poissonized version of ν

g
λ,φ,k . The fol-

lowing is a Poissonized version of Theorem 2.1 for φ ∈ F0 and is of independent
interest.
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PROPOSITION 4.1. Let φ ∈ F0 and h ∈ B(A). Then as λ → ∞
λ−1 Var[〈h,μ

g
λ,φ,k〉] →

∫
A

h2(x)Vφ,k

(
g(x)

f (x)

)
f (x) dx = IVφ,k

(g, f,h2)(4.4)

and λ−1/2μ
g
λ,φ,k converges in law as λ → ∞ to a mean zero Gaussian field with

covariance kernel (h1, h2) �→ IVφ,k
(g, f,h1)IVφ,k

(g, f,h2).

PROOF. For simplicity, we first assume that h is a.e. continuous. It is the case
that

λ−1 Var[〈h,μ
g
λ,φ,k〉]

= λ

∫
A

∫
A

h(x)h(y){E[�λ(x,Pλ ∪ y)�λ(y,Pλ ∪ x)]
(4.5)

− E[�λ(x,Pλ)]E[�λ(y,Pλ)]}f (x)f (y) dx dy

+
∫
A

h2(x)E[�2
λ(x,Pλ)]f (x) dx.

We will sketch an argument (see Proposition 4.1 of [4] for details) showing that
λ−1 Var[〈h,μ

g
λ,φ,k〉] converges to∫

A

∫
Rd

h2(x)
[
Eξg,x∞

(
Hf (x) ∪ z

)
ξg,x∞

(−z + (
Hf (x) ∪ 0

))
− (

Eξg,x∞
(
Hf (x)

))2]
f 2(x) dz dx(4.6)

+
∫
A

h2(x)E
[(

ξg,x∞
(
Hf (x)

))2]
f (x) dx.

Putting y = x+λ−1/dz in the right-hand side in (4.5) reduces the double integral
to

=
∫
A

∫
−λ1/dx+λ1/dA

h(x)h(x + λ−1/dz){· · ·}f (x)f (x + λ−1/dz) dz dx(4.7)

where

{· · ·} := {
E[�λ(x,Pλ ∪ {x + λ−1/dz})�λ(x + λ−1/dz,Pλ ∪ x)]

− E[�λ(x,Pλ)]E[�λ(x + λ−1/dz,Pλ)]}.
By using Lemma 4.1, we may show (see [4] for details) that {· · ·} converges to
the bracketed expression in the first term of (4.6), and that the integrand in (4.7) is
dominated by an integrable function of z over R

d . The convergence of the double
integral in (4.5) to that in (4.6) now follows by dominated convergence, the con-
tinuity of h and fourth moment bounds on �λ. To show convergence of general
h ∈ B(A), we refer to [32].

Similar but easier methods show convergence of
∫
A h2(x)E[�2

λ(x,Pλ)]f (x) dx,
completing the proof that (4.5) converges to (4.6).
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For all x ∈ A, we define V
ξ
φ,k(x,0) := 0 and for all a > 0, we put

V
ξ
φ,k(x, a) := E[ξg,x∞ (Ha)

2]

+ a

∫
Rd

[
Eξg,x∞ (Ha ∪ z)ξg,x∞

(−z + (Ha ∪ 0)
) − (Eξg,x∞ (Ha))

2]
dz.

Using (4.1), it is easy to see that

V
ξ
φ,k(x, a) = E

[
φ

(
g(x)

a
�k

)2]
+

∫
Rd

[
E

[
φ

(
g(x)

a
|C(0,H ∪ y)|

)

× φ

(
g(x)

a
|C(y,H ∪ 0)|

)]
(4.8)

−
(

E

[
φ

(
g(x)

a
�k

)])2]
dy

and in particular, by definition of Vφ,k [recall (2.9)], we have

V
ξ
φ,k(x, f (x)) = Vφ,k

(
g(x)

f (x)

)
.

By combining this with (4.6), we thus obtain the desired limiting variance (4.4).
The proof of the second part of Proposition 4.1 (i.e., convergence to the normal)

follows from arguments similar to those used in Theorem 2.2 of [32], which it-
self follows dependency graph arguments in [33]. Here, we note that ξ

g,x∞ (Hf (x))

corresponds in our setting to the limiting expression from Lemma 3.4 of [32],
and consequently appears in expressions for limiting variances arising from fol-
lowing the proofs in [32], where all expressions for limits are obtained through
Lemmas 3.4 and 3.5 of [32]. �

To obtain Theorem 2.1, we shall de-Poissonize Proposition 4.1 by suitably
adapting the proofs of Theorems 2.1, 2.2 and 2.3 of [32], and then extend the
result to all φ ∈ F by using truncation arguments.

PROPOSITION 4.2. Suppose φ ∈ F0. Then the conclusions of Theorem 2.1
hold.

PROOF. Taking Proposition 4.1 as our starting point, we can follow nearly
verbatim the de-Poissonization argument of Section 5 of [32] which is used there
to prove Theorem 2.3 of [32]. See Proposition 4.2 of [4] for details.

To obtain the limiting variance in the present setting, it suffices to consider the
corresponding limits obtained in Lemmas 3.4 and 3.5 of [32]. That is, analogously



GAUSSIAN LIMITS FOR GENERALIZED SPACINGS 175

to the definition of δ(x, a) in [32], we define for all x ∈ A and all a > 0

�
ξ
φ,k(x, a) := E[ξg,x∞ (Ha)] + a

∫
Rd

[Eξg,x∞ (Ha ∪ y) − ξg,x∞ (Ha)]dy

= E

[
φ

(
g(x)

a
�k

)]

+ a

∫
Rd

E
[
φ

(
g(x)|C(0,Ha ∪ y)|) − φ(g(x)|C(0,Ha)|)]dy.

Changing variables y → a1/dy, using (2.7) and the equivalence a1/dHa
D= H ,

yields

�
ξ
φ,k(x, a)

= Mφ,k

(
g(x)

a

)
(4.9)

+
∫

Rd
E

[
φ

(
g(x)

a
|C(0,H ∪ y)|

)
− φ

(
g(x)

a
|C(0,H)|

)]
dy.

We now show that �
ξ
φ,k(x, a) reduces to �φ,k(g(x)/a) defined by (2.8). Put β :=

g(x)/a and bd := |BK
1 (0)|. Since |C(0,H)| D= �k , (4.9) yields

�
ξ
φ,k(x, a) − Mφ,k(β)

=
∫
K

E
[(

φ
(
β|C(0,H ∪ y)|) − φ

(
β|C(0,H)|))1{bd |y|d ≤ �k}]dy

(4.10)
=

∫
K

E
[(

φ(β max(bd |y|d,�k−1)) − φ(β�k)
)
1{bd |y|d ≤ �k}]dy

= E

∫ �k−1

0
φ(β�k−1) ds + E

∫ �k

�k−1

φ(βs) ds − E[�kφ(β�k)],

where we put s := |BK|y|(0)|. The third term in the right-hand side of (4.10) is

E[�kφ(β�k)] =
∫ ∞

0
sφ(βs)

sk−1

(k − 1)!e
−s ds = kE[φ(β�k+1)](4.11)

and likewise, the first term is (k − 1)Eφ(β�k). Recalling that �k = ∑k
i=1 �1,i and

setting t = s − �k−1, we find that the middle term in the right-hand side of (4.10)
is

E

∫ ∞
0

φ
(
β(�k−1 + t)

)
1{t≤�1,k} dt = E

∫ ∞
0

φ
(
β(�k−1 + t)

)
e−t dt

= E[φ(β�k))] = Mφ,k(β).
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Combining these expressions for terms in the right-hand side of (4.10) yields

�
ξ
φ,k(x, a) = (k + 1)Mφ,k(β) − kMφ,k+1(β) := �φ,k(β).

The result (2.12) then follows from the proof of Theorem 2.3 of [32]. �

We now extend Theorem 2.1 to cases with φ ∈ F \F0 (i.e., where φ “blows up”
at 0) via a truncation argument. Given ε > 0, define the functions φε : R+ → R and
φε : R+ → R by

φε(x) :=
{

φ(x), if x ≥ ε,
0, otherwise,

φε(x) :=
{

φ(x), if x < ε,
0, otherwise.

To prove Theorem 2.1 for φ ∈ F when either K = R
d or d = 1, we will use the

following lemma, whose proof is given in [4].

LEMMA 4.2 ([4], Lemma 5.1). Given h ∈ B(Rd) and δ > 0, there exists ε0 >

0 and n0 > 0 such that for ε ∈ (0, ε0) and n ≥ n0 we have n−1 Var[〈h, ν
g
n,φε,k

〉] ≤ δ.

Before stating the next lemma, we define for all β > 0, y ∈ R
d , φ ∈ F and

ε > 0

ψ(β,y) := E
[
φ

(
β|C(0,H ∪ y)|)φ(

β|C(y,H ∪ 0)|)] − (Eφ(β�k))
2(4.12)

and

ψε(β, y) := E
[
φε(β|C(0,H ∪ y)|)φε(β|C(y,H ∪ 0)|)] − (Eφε(β�k))

2.(4.13)

We also define aK := E[φ∗(�k/K)2] + E[φ∗(K�k)
2] for K > 0, and observe

for any K > 1 that aK < ∞. Also, if K−1 ≤ β ≤ K , then since φ∗ is decreasing
on (0,1) and increasing on (1,∞),

E[φ∗(β�k)
2] = E[φ∗(β�k)

21{�k ≤ 1/β}] + E[φ∗(β�k)
21{�k > 1/β}]

≤ E[φ∗(�k/K)21{�k ≤ 1/β}]
(4.14)

+ E[φ∗(K�k)
21{�k > 1/β}]

≤ aK.

The proof of the next lemma is technical and is given in [4].

LEMMA 4.3. ([4], Lemma 5.2). Let K > 1. Then there exists a Lebesgue inte-
grable function ψ∗

K : Rd → [0,∞), such that

|ψε(β, y)| ≤ ψ∗
K(y) ∀y ∈ R

d \ {0}, ε ∈ (0,1], β ∈ [1/K,K].(4.15)
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Our next two lemmas, proved in detail in [4], show that Vφε,k(β) and �φε,k(β)

defined by (2.9) and (2.8), respectively, converge to Vφ,k(β) and �φ,k(β) as ε ↓ 0.

LEMMA 4.4 ([4], Lemma 5.3). For all β > 0 and k ∈ N, Vφ,k(β) satisfies

lim
ε↓0

Vφε,k(β) = Vφ,k(β).(4.16)

Moreover, given K ∈ [1,∞), it is the case that

sup{|Vφε,k(β)| : 0 < ε ≤ 1,1/K ≤ β ≤ K} < ∞.(4.17)

LEMMA 4.5. For any β > 0 and k ∈ N, we have

lim
ε↓0

�φε,k(β) = �φ,k(β).(4.18)

Also, given K ∈ [1,∞), it is the case that

sup{|�φε,k(β)| : 0 < ε ≤ 1,1/K ≤ β ≤ K} < ∞.(4.19)

PROOF. Let φ∗ be the dominating function given by (2.1). If β > 0, then it is
straightforward (see (5.24) of [4]) to see that φ∗(β�k)

2 is a nonnegative integrable
random variable which dominates φε(β�k)

2, so by the dominated convergence
theorem, as ε ↓ 0 we have

E[φε(β�k)] → E[φ(β�k)].(4.20)

By (2.8) and (4.20), we obtain (4.18). Also, (2.8) implies |�φε,k(β)| ≤ (k +
1)E[φ∗(β�k)] + kE[φ∗(β�k+1)] and the bound (4.19) easily follows from this
with (4.14). �

Given h ∈ B(A), let Lh(φ) be the limiting variance in the statement of Theo-
rem 2.1, that is, let

Lh(φ) :=
∫
A

h2(x)Vφ,k

(
g(x)

f (x)

)
f (x) dx

(4.21)

−
(∫

A
h(x)�φ,k

(
g(x)

f (x)

)
f (x) dx

)2

.

LEMMA 4.6. Given h ∈ B(A), it is the case that

lim
ε↓0

Lh(φ
ε) = Lh(φ).(4.22)

PROOF. By assumption, (g(x)/f (x), x ∈ A) is bounded away from 0 and ∞,
and f is bounded. Hence by (4.17), the integrand in the first integral in the expres-
sion (4.21) for Lh(φ

ε) is bounded by a constant, not depending on ε. Similarly,
by (4.19), the integrand in the second integral in the expression (4.21) for Lh(φ

ε)
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is bounded by a constant, not depending on ε. By (4.16) and (4.18), for both inte-
grals the integrand converges, as ε ↓ 0, to the corresponding integrand for Lh(φ).
So, by the dominated convergence theorem, the integrals converge and (4.22) fol-
lows. �

PROOF OF THEOREM 2.1. Let h ∈ B(A). Given δ > 0, by Lemmas 4.2
and 4.6, we can find ε0 > 0 and n0 > 0 such that for ε < ε0 and n ≥ n0, we have

|Lh(φ
ε) − Lh(φ)| < δ(4.23)

and n−1 Var[〈h, ν
g
n,φε,k

〉] ≤ δ. The function φε lies in the class F0, so by Proposi-
tion 4.2,

lim
n→∞n−1 Var[〈h, ν

g
n,φε,k〉] = Lh(φ

ε)(4.24)

and hence by the Cauchy–Schwarz inequality, for large enough n, we have

n−1|Var (〈h, ν
g
n,φ,k〉) − Var(〈h, ν

g
n,φε,k〉)|

= |n−1 Var(〈h, ν
g
n,φε,k

〉) + 2 Cov(n−1/2〈h, ν
g
n,φε,k〉, n−1/2〈h, ν

g
n,φε,k

〉)|
≤ δ + 2δ1/2(n−1 Var〈h, ν

g
n,φε,k〉)1/2 ≤ δ + 2δ1/2(

Lh(φ) + δ
)1/2

.

Using (4.23) and (4.24), for large enough n, we thus have

|n−1 Var[〈h, ν
g
n,φ,k〉] − Lh(φ)| ≤ 3δ + 2δ1/2(

Lh(φ) + δ
)1/2

and since δ > 0 is arbitrary, this shows that

n−1 Var[〈h, ν
g
n,φ,k〉] → Lh(φ) as n → ∞,

which is the first part of the statement of Theorem 2.1.
To prove the stated asymptotic normality of n−1/2〈h, ν

g
n,φ,k〉, it suffices to show

that for any h ∈ B(A),

n−1/2〈h, ν
g
n,φ,k〉 D−→ N(0,Lh(φ)).(4.25)

Let t ∈ R. Set Xn := n−1/2〈h, ν
g
n,φ,k〉 and for ε > 0 set Xε

n := n−1/2〈h, ν
g
n,φε,k〉.

Since φε is in F0, Proposition 4.2 shows that Xε
n

D−→ N(0,Lh(φ
ε)) as n → ∞.

Hence,

E[exp(itXε
n)] − exp

(−t2Lh(φ
ε)/2

) → 0 as n → ∞.(4.26)

Given δ > 0, by Lemmas 4.2 and 4.6, we can choose ε > 0 such that for large n,

E[| exp(itXn) − exp(itXε
n)|] ≤ E[|t (Xn − Xε

n)|] ≤ δ

and also |e−t2Lh(φ)/2 − e−t2Lh(φε)/2| ≤ δ so that combining with (4.26), we have
for large n that ∣∣E[exp(itXn)] − e−t2Lh(φ)/2∣∣ ≤ 3δ

and since δ is arbitrary, this implies (4.25). �
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5. Proofs of Propositions 2.1 and 2.2.

5.1. Proof of Proposition 2.1. First, we identify Vφ,1(β) when K �= R
d ,

which implies −y /∈ K for all y ∈ K . The integral in (2.9) has contributions only
from y ∈ K and from 0 ∈ (y +K), and these contributions are equal by a symme-
try argument. Let bd := |BK

1 (0)|.
Consider y ∈ K . Then |C1(0,H ∪ y)| has the distribution of min(�1, bd |y|d)

and |C1(y,H ∪ 0)| has the distribution of �1, and they are independent. Hence,
the integral in (2.9) is equal to

2
∫
K

E[φ(β�1)](E[φ(β min(�1, bd |y|d)) − φ(β�1)])dy

= 2Mφ,1(β)

∫ ∞
0

E[φ(β min(�1, s)) − φ(β�1)]ds

= 2Mφ,1(β)E

∫ �1

0

(
φ(βs) − φ(β�1)

)
ds.

In the last expectation, the first term is equal to
∫ ∞

0 φ(βs)P [�1 ≥ s] which comes
to Mφ,1(β). The second term comes to Mφ,2(β) as in (4.11). Thus, the integral
in (2.9) is equal to to 2Mφ,1(β)(Mφ,1(β) − Mφ,2(β)) and substituting in (2.9) we
find that Vφ,1(β) is given by case k = 1 of formula (2.13) when K �= R

d .
To complete the proof of Proposition 2.1, we need to show that Vφ,k is given

by (2.13) in the case when d = 1 (for arbitrary k, but still assuming K �= R
d ).

There are only two possibilities for K and by symmetry it suffices to consider the
case with K = (0,∞). In this case, the expression (2.9) becomes

Vφ,k(β) := Mφ2,k(β) +
∫ ∞
−∞

cβ(0, y) dy(5.1)

where

cβ(0, y) := E[φ(βC0)φ(βCy)] − (E[φ(β�k)])2,

where C0 (resp., Cy) denotes the length of the k-spacing starting at the origin
(resp., starting at y) with respect to the augmented point set H ∪ 0 ∪ y.

We proceed to evaluate the integral in (5.1). Write ek := E[φ(β�k)]. Then

cβ(0, y) = E
[(

φ(βC0)φ(βCy) − φ(β�k)ek

)
(1{y ≤ �k} + 1{y > �k})]

= E
[(

φ(βC0)φ(βCy) − φ(β�k)ek

)
1{y ≤ �k}].

Integrating over y and setting �0 := 0, we have that

∫ ∞
0

cβ(0, y) dy =
(

k∑
j=1

Ij

)
−

∫ ∞
0

E[φ(β�k)ek1{y ≤ �k}]dy,(5.2)
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where we set

Ij := E

∫ ∞
�j−1

(
φ(βC0)φ(βCy) · 1{y ≤ �j })dy.

Recall that �j = ∑j
i=1 �1,i . We now compute Ij in the case with 1 ≤ j ≤ k − 1.

For such j , if �j−1 < y < �j then C0 = �k−1 and Cy = �j+k−1 − y; setting
w = y − �j−1, we have for 1 ≤ j ≤ k − 1 that

Ij = E

∫ ∞
0

φ

(
β

(
�j−1 + w + (�1,j − w) +

k−1∑
i=j+1

�1,i

))

× φ

(
β

(
�1,j − w +

j+k−1∑
i=j+1

�1,i

))
1{�1,j ≥ w}dw.

Now take the expectation inside the integral. Since �1,j is exponential, we have
P [�1,j ≥ w] = e−w , and by conditioning on this event, using the memoryless
property of the exponential distribution and independence of �1,j from the other
random variables in the expression, we obtain

Ij =
∫ ∞

0
Eφ

(
β

(
�j−1 + w + �1,j +

k−1∑
i=j+1

�1,i

))

× φ

(
β

(
�1,j +

j+k−1∑
i=j+1

�1,i

))
e−w dw.

Now take the integral back inside the expectation. Letting �1,0 be a further inde-
pendent exponential random variable with density function e−w,w ≥ 0, we have
that

Ij = E

[
φ

(
β

(
�j−1 + �1,0 + �1,j +

k−1∑
i=j+1

�1,i

))

× φ

(
β

(
�1,j +

j+k−1∑
i=j+1

�1,i

))]

(5.3)

= E

[
φ

(
β

(
k−1∑
i=0

�1,i

))
φ

(
β

(k+j−1∑
i=j

�1,i

))]

= E
[
φ(β�k)φ

(
β(�k+j − �j )

)]
.

To deal with Ik, we modify the preceding argument as follows. If �k−1 < y < �k,

then C0 = y and Cy = �2k+1 − y. Setting w = y − �k−1, we have that

Ik = E

∫ ∞
0

φ
(
β(�k−1 + w)

)
φ

(
β

(
�1,k − w +

2k−1∑
i=k+1

�1,i

))
1{�1,k ≥ w}dw.
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Conditioning on the event that �1,k ≥ w using the memoryless property of the
exponential distribution and independence of �1,k from the other random variables
in the expression, we obtain

Ik = E

∫ ∞
0

φ
(
β(�k−1 + w)

)
φ

(
β

(
�1,k +

2k−1∑
i=k+1

�1,i

))
e−w dw.

Letting �1,0 be a further independent exponential random variable, we have that

Ik = E

[
φ

(
β(�k−1 + �1,0)

)
φ

(
β

(
�1,k +

2k−1∑
i=k+1

�1,i

))]

= E

[
φ

(
β

(
k−1∑
i=0

�1,i

))
φ

(
β

(2k−1∑
i=k

�1,i

))]
= e2

k .

Now as in (4.11) the last term in (5.2) is

ek

∫ ∞
0

E[φ(β�k)1{y < �k}]dy = kekE[φ(β�k+1)].
Combining this with the preceding expressions for Ij (j < k) and for Ik , we may
rewrite (5.2) as∫ ∞

0
cβ(0, y) dy =

(
k−1∑
j=1

E[φ(β�k)φ(β�k+j − β�j )]
)

+ e2
k − kekek+1

=
(

k−1∑
j=1

(
E[φ(β�k)φ(β�k+j − β�j )] − e2

k

)) + kek(ek − ek+1)

= kek(ek − ek+1) +
k−1∑
j=1

Cov
(
φ(β�k),φ(β�k+j − β�j )

)
.

By symmetry, for all β, we have
∫ 0
−∞ cβ(0, y) dy = ∫ ∞

0 cβ(0, y) dy, and thus
from (5.1) we obtain for all β > 0 that Vφ,k(β) is given by (2.13). This completes
the proof of Proposition 2.1.

5.2. Proof of Proposition 2.2. We deduce Proposition 2.2 as follows. From the
definition (2.9), we obtain

Vφ,1(β) = Mφ2,1(β) +
∫

Rd
c(0, y) dy,

where c(0, y) := E[φ(β|C1(0,H ∪y)|)φ(β|C1(y,H ∪ 0)|)]− (E[φ(β�1)])2. For
all s, t ∈ R

+, let p(s, t) := P [|C1(0,H ∪ y)| > s, |C1(y,H ∪ 0)| > t]. Then for
all s, t ∈ [0, |y|dωd ], we have

p(s, t) = e−(s+t)+I (s,t,|y|).
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Otherwise, p(s, t) = 0. Hence, for y ∈ R
d , by the fundamental theorem of cal-

culus, the assumption that φ is differentiable with limt↓0 φ(t) = 0, and Fubini’s
theorem,

c(0, y) = E

∫ ∞
0

∫ ∞
0

β2φ′(βs)φ′(βt)1{|C1(0,H∪y)|>s,|C1(y,H∪0)|>t} ds dt

−
(

E

∫ ∞
0

βφ′(βu)1{�1>u} du

)2

= β2
∫ ∞

0

∫ ∞
0

φ′(βs)φ′(βt)
[
p(s, t) − e−(s+t)]ds dt.

Since p(s, t) vanishes whenever (s, t) /∈ [0, |y|dωd ]2, we obtain

c(0, y) = β2
∫ |y|dωd

0

∫ |y|dωd

0
φ′(βs)φ′(βt)

[
e−(s+t)+I (s,t,|y|) − e−(s+t)]ds dt

− β2
∫ ∫

max(s,t)≥|y|dωd

φ′(βs)φ′(βt)e−(s+t) ds dt.

Therefore,∫
Rd

c(0, y) dy

= β2
∫

Rd

∫ |y|dωd

0

∫ |y|dωd

0
φ′(βs)φ′(βt)

[
e−(s+t)+I (s,t,|y|) − e−(s+t)]ds dt dy

− β2
∫

Rd

∫ ∫
max(s,t)≥|y|dωd

φ′(βs)φ′(βt)e−(s+t) ds dt dy

and letting u := |y|dωd , the above becomes∫ ∞
0

c(0, y) dy

= β2
∫ ∞

0

∫ u

0

∫ u

0
φ′(βs)φ′(βt)e−(s+t)[eI (s,t,(u/ωd)1/d ) − 1

]
ds dt du

− β2
∫ ∞

0

∫ ∫
max(s,t)≥u

φ′(βs)φ′(βt)e−(s+t) ds dt du.

Finally, change the order of integration to obtain∫ ∞
0

c(0, y) dy

= β2
∫ ∞

0

∫ ∞
0

φ′(βs)φ′(βt)e−(s+t)
∫ ∞

max(s,t)

[
eI (s,t,(u/ωd)1/d ) − 1

]
duds dt

− β2
∫ ∞

0

∫ ∞
0

φ′(βs)φ′(βt)e−(s+t)
∫ max(s,t)

0
duds dt,

which is exactly the desired limit. This proves Proposition 2.2.
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