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Quantum coherence and its dephasing by coupling to a dissipative environment play an important
role in time-resolved nonlinear optical response as well as nonadiabatic transitions in the condensed
phase. We have discussed nonlinear optical processes on a multi-state one-dimensional system with
Morse potential surfaces in a dissipative environment. This was based on a numerical study using
the multi-state quantum Fokker–Planck equation for a colored Gaussian–Markovian noise bath,
which was expressed as a hierarchy of kinetic equations. This equation can treat strong system-bath
interactions at a low temperature heat bath, where quantum effects play a major role. The approach
applies to linear absorption measurements as well as four-wave mixing including pump-probe
spectroscopy. Laser induced photodissociation and predissociation have been studied for the
potential surfaces of Cs2 . We have calculated nuclear wave packets in Wigner representation and
their monitoring by femtosecond pump-probe spectroscopy for various displacements of potentials
and heat-bath parameters. Numerical calculations of probe absorption spectra for strong pump pulse
are also presented and discussed. The results show dynamical Stark splitting, but, in contrast to the
Bloch equations which contain an infinite-temperature dephasing, we find that at finite temperature
their peaks have different heights even when the pump pulse is on resonance. ©1997 American
Institute of Physics.@S0021-9606~97!52230-6#
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I. INTRODUCTION

Femtosecond spectroscopy, such as impulsive Ram
optical Kerr, and pump-probe spectroscopy, provides a di
means for studying nuclear dynamics in the conden
phase.1–6 The understanding of such highly resolved me
surements demands theoretical descriptions which go far
yond simple models. Tremendous insight has been gaine
comparing qualitative arguments,7 quantitative analytical
calculations8–11 and numerical studies12–19 with experiment.
The response function approach,20 which is based on a per
turbative expansion of the optical polarization in powers
the laser fields, has been successfully applied to st
four-wave21,22 and six-wave mixing experiments.23,11 Calcu-
lation of the response functions involves integration over
nuclear degrees of freedom. Thus, one could obtain the
sponse function only for a system with harmonic poten
surfaces. It is possible to include a non-Condon dipole in
action or a weak anharmonicity into theNth-order response
function by using a nonequilibrium generating function
which is obtained by the path-integral approach.10,24,11 Ap-
plicability of this approach is, however, still limited.

Alternatively, optical processes can be calculated usin
direct integration of the equations of motion in the prese
of the fields. By calculating the relevant wave function25 or
density matrix elements26–33 it becomes possible to explor
optical processes for a system with arbitrary potential s
faces. A difficulty with this approach is the proper treatme
of dephasing processes induced by a heat bath. These c
incorporated using equations of motion for a reduced den
matrix, such as the quantum master equation or the quan
J. Chem. Phys. 107 (6), 8 August 1997 0021-9606/97/107(6)/17
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Fokker–Planck equation. Effects of the bath are then ta
into account by introducing a damping operator, which c
be obtained by assuming Gaussian-white noise fluctuat
and a bilinear system-bath interaction expressed asHSB

5RScnxn5Scn(a11a2)(bn
11bn

2), wherea6 andbn
6 are

the creation and annihilation operators corresponding to
system and bath coordinates, respectively. We should no
that the reduced density matrices equation with the bilin
interaction can be applied only for the high temperature s
tem, i.e.,\vc /kBT!1, wherevc is the characteristic fre-
quency of the system. If one applies these equations bey
this limitation, then one obtains unphysical results such
the negative probability of density matrix elements. For t
master equation, this phenomenon is known as breakin
dynamic positivity,34 which is the limitation of the reduced
equation of motion approach. If one modifies the interact
in the resonant form~or the rotating wave approximatio
form!, i.e., HSB8 5Scn(a1bn

21a2bn
1) then this temperature

limitation can be relaxed. We should notice, however, t
this modification of the Hamiltonian alters the dynamics d
scribed by the original Hamiltonian, though the obtain
equation of motion can be applied to the low temperat
system.

We can relax this temperature limitation without mod
fying HSB by employing the colored Gaussian–Markovia
noise bath instead of the Gaussian-white noise bath.
time correlation function of noise fluctuation,V(t), in the
Gaussian-white noise is expressed as^V(t)V(t8)&5d(t
2t8), whereas ^V(t)V(t8)&5exp@2g(t2t8)# in the
Gaussian–Markovian case. If the characteristic time scal
177979/15/$10.00 © 1997 American Institute of Physics
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1780 Y. Tanimura and Y. Maruyama: Nonlinear spectroscopy of a Morse potentials system
the system, 1/vc , is much longer than the correlation time
noise,t51/g, then one may regard the noise as thed func-
tion in t. In the present case of femtosecond experime
however, the noise must be treated as a finitely correla
function of time. Thus, the generalization to the Gaussia
Markovian is also a requirement of describing a system
the realistic condition.

We could obtain a hierarchy of kinetic equations for r
duced density matrices which can describe the system in
acting with the colored Gaussian–Markovian noise bat35

Physically, one can think of this hierarchy of equations
dealing with a set of density matrices modeling the vario
numbers of phonon excited states in very special way. T
equation was originally obtained for a discrete two-level s
tem, and can be regarded as a generalization of the qua
master equation or the generalized quantum master equa
We then showed that a similar hierarchy of kinetic equatio
could be obtained for a system in the coordinate represe
tion, which can be regarded as a generalization of the qu
tum Fokker–Planck equation.36,37 In principle, we can
choose any representation to describe quantum dynamic
a system. Practically, however, the coordinate representa
has some advantages for studying a system with anharm
potential surfaces. First, the coordinate description allows
to make direct interpretations of the dynamics. Thus, we m
easily discuss the classical and the quantum systems on
same basis. Second, we can suppress the open boundary
ditions, where the wave packet can go out from the edge
potential. In the discrete state representation, the eigens
become coetaneous for an open boundary system, w
makes it impossible to integrate the equation of moti
Thus, if one has to deal with the problem on an open bou
ary such as the problem of photo dissociation, one need
adapt the coordinate space representation. Third, calcula
are easier. One has to calculate a number of eigenstates
eigenenergies to describe a system in the discrete states
resentation. Various interactions, such as laser interact
and the system-bath interactions are then expressed as m
ces in this basis. Such calculations are computationally
tensive except for a system with harmonic potential surfac
In the coordinate representations, we can avoid such ca
lations for any shape of potentials and interactions.

The quantum Fokker–Planck equation was origina
aiming to study a single potential surface system. By
simple and straightforward generalization, then, we can
rive the multi-state quantum Fokker–Planck equation to
ply to a system with multi-potential surfaces.38 In this paper,
we present a comprehensive study of the various regime
optical transition for a Morse potentials system using
multi-state Fokker–Planck equation for a Gaussia
Markovian noise bath. The present model permits the
tailed study of nuclear wave packets in Wigner represe
tion and their monitoring by femtosecond pump-pro
spectroscopy for various displacements of potentials
heat-bath parameters. Special attention is paid to a large
placement case, where laser induced photodissociation
predissociation play an important role.

The organization of this paper is as follows: We pres
J. Chem. Phys., Vol. 107
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the procedure for calculating the linear absorption and
pump-probe spectrum in Sec. II. The multi-state Fokke
Planck equation is presented in Sec. III. In Secs. IV and
the linear absorption and pump-probe spectra are calcul
for various displacements and heat-bath parameters. In
VI, numerical results of pump-probe spectra for a stro
Gaussian pump pulse, which show optical Stark splitting,
presented and discussed. Section V is devoted to conclu
remarks.

II. LINEAR ABSORPTION AND PUMP-PROBE
SPECTROSCOPY

We consider a molecular system with electronic sta
denoted byu j &. The Hamiltonian of the system is

HS
0~ t !5

p2

2M
1(

j
(

k
u j &U jk~q;t !^ku. ~2.1!

Here,q is a nuclear coordinate strongly coupled to the el
tronic state andp is its conjugate momentum. The diagon
elementU j j (q) is the potential surface of thej th electronic
surface, and the off-diagonal elementU jk(q) with j Þk rep-
resents the diabatic coupling between thej th and thekth
states. In this paper, we study a pump-probe experiment
three-level or four-level system with Morse potential su
faces denoted byug&, ue&, ue8& and u f &. ~Fig. 1!. The transi-
tion frequency betweenge and e f are denoted byvge and
ve f , respectively. We assume that the system is initially
the ground equilibrium stater̂g5ug&rg^gu, whererg is the
equilibrium distribution function of the ground potential su
face. In addition, the primary nuclear coordinate is coup
to a bath. The total Hamiltonian is then expressed as

HS~ t !5HS
0~ t !1H8, ~2.2!

where the HamiltonianH8 describes coupling of the molecu
lar system to a bath of nuclear degrees of freedom. At

FIG. 1. Potential surfaces of the displaced Morse oscillators system.~a! is
for the three-level system denoted byug&, ue&, and u f &, respectively. We
display theue& state for three different displacements;d51 ~dashed line!,
d53 ~solid line! and d57 ~dotted line!. The resonant frequency betwee
ug& andue&, andue& andu f & are, respectively, expressed byvge andve f . ~b!
is for the system with the anti-bonding state (ue8&). In this case, we only
probe between theug& and ue& states.
, No. 6, 8 August 1997
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1781Y. Tanimura and Y. Maruyama: Nonlinear spectroscopy of a Morse potentials system
point, we need not specifyH8 any further. In a pump-probe
experiment, the system is subjected to two light pulses
pump and a weak probe whose frequencies and wave ve
are denoted byV1 , k1 andV2 , k2 , respectively. We assum
that the pump laser carrier frequencyV1 is close to the elec-
tronic transition frequency betweeng ande. The probe fre-
quencyV2 is chosen to~i! V2'vge for a measurement be
tweeng ande, and~ii ! V2've f for a measurement betwee
e and f . The total Hamiltonian is then given by

HA~ t !5HS~ t !1E1~ t !~eik1r2 iV1tm̂1
11e2 ik1r1 iV1tm̂1

2!

1E2~ t !~eik2r2 iV2tm̂2
11e2 ik2r1 iV2tm̂2

2!, ~2.3!

where E1(t) and E2(t) are the temporal envelopes of th
pump and probe pulses, andm̂1

15ue&^gu andm̂1
25ug&^eu are

the dipole operators of the pump. The dipole of the prob
chosen to bem̂2

15ue&^gu and m̂2
25ug&^eu for ~i! and m̂2

1

5u f &^eu and m̂2
25ue&^ f u for ~ii !.

The observable in optical measurements is the polar
tion defined by

P~r ,t ![tr $m̂2r̂~r ,t !%, ~2.4!

wherem̂2[m̂2
21m̂2

1 and r̂(r ,t) is the total density matrix.
The r dependence comes through the laser interactions.
next expand the polarization ink space

P~r ,t !5(
k

eikr Pk~ t !. ~2.5!

Optical measurements are most commonly carried out u
one of the following two detection schemes. First, in hom
dyne detection one simply measures the outgoing field
specified directionk j ; ~1! S(t)5uPk f

(t)u2. Second, in the
heterodynedetection mode, the outgoing field is mixed wi
a reference field denoted the local oscillatorELO , and the
signal is given by~2! S(t)5Im@ELO(k f ,t)Pk f

(t)#. Examples
of ~1! are four-wave mixing and coherent Raman which
observed in thek j52k12k2 direction, whereas the pump
probe experiment withk j5k12k11k2 corresponds to het
erodyne detection. In this paper, we calculate the pum
probe spectrum.

We calculate the optical signal to the lowest order of
probe field,E2(r ,t), but to arbitrary order of the pump field
E1(r ,t). The probe absorption spectrum is commonly d
tected by spectrally dispersing the transmitted probe, and
signal is measured as a function of the dispersed freque
v2 .21 The dispersed spectrum is given by

S~v2!522Im$E2@v2#Pk2
@v2#%, ~2.6!

where

E2@v2#5
1

A2p
E

2`

`

dt exp~ iv2t !E2~ t !, ~2.7!

and

Pk2
@v2#5

1

A2p
E

2`

`

dt exp~ iv2t !Pk2
~ t !. ~2.8!
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We assume a weak probe and expand the polarization to
order in E2 . The polarization in thek2 direction is then
given by

Pk2
~ t !52

i

2E2`

t

dt8E2~ t8!e2 iV2t8^@m̂2
2~ t !,m̂2

1~ t8!#&

1c.c., ~2.9!

where

^@m̂2
2~ t !,m̂2

1~ t8!#&

[tr$@m̂2
2~ t !,m̂2

1~ t8!#r̂g%

5trH m2
2 exp
← S 2

i

\Et8

t

dtHA
0 D

3m̂2
1 exp
← S 2

i

\E2`

t8
dtHA

0 D r̂g
exp
→ S i

\E2`

t

dtHA
0 D J

2trH m2
2 exp
← S 2

i

\ E
2`

t

dtHA
0 D r̂g

exp
→ S i

\ E
2`

t8
dtHA

0 D
3m̂2

1 exp
→ S i

\ E
t8

t

dtHA
0 D J , ~2.10!

where the exponents with the arrows indicate time orde
exponential andm̂6(t) are the operators in the interactio
picture

m̂6~ t ![exp
→ S i

\ E
2`

t

dtHA
0 D m̂6exp

← S 2
i

\ E
2`

t

dtHA
0 D .

~2.11!
Here,

HA
0~ t ![HS~ t !1E1~ t !~eik1r2 iV1tm̂1

11e2 ik1r1 iV1tm̂1
2!.

~2.12!

Expression~2.9! together with Eqs.~2.6–2.8! is commonly
used for a measurement driven by a strong continuous w
~cw! laser39–41

A. Linear absorption spectroscopy

The linear absorption spectrum is a probe absorpt
without the presence of the pump-pulse. We can obtain
signal only in case~i!, since u f &^eur̂g50. Then, by setting
E1(t)50 in Eq. ~2.9! with Eq. ~2.12!, we have

Pk2
~ t !52

i

2E2`

t

dt8E2~ t8!e2 iV2t8

3trH m̂2
2 exp
← S 2

i

\ E
t8

t

dtHSD
3m̂2

1r̂g
exp
→ S i

\ E
t8

t

dtHSD J 1c.c. ~2.13!

The correlation function part can be calculated by integrat
the Liouville equation
, No. 6, 8 August 1997
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1782 Y. Tanimura and Y. Maruyama: Nonlinear spectroscopy of a Morse potentials system
d

dt
r̂~ t !52

i

\
@HS~ t !,r̂~ t !#, ~2.14!

until time t with the initial condition r̂(0)5m̂2
1r̂g and by

taking the element tr$m̂2
2r̂(t)%.

B. Pump-probe spectroscopy for an arbitrary shape
and strength of pump pulses

Vibrational wave packets have proven to be an effect
probe of interatomic potentials.42 In the pump-probe spec
troscopy, the pump transfers a small fraction of the grou
state distribution to the excited state, thereby creating a ‘‘p
ticle’’ in the excited state and a ‘‘hole’’ in the ground stat
The particle and the hole then evolve during the delay pe
t, which are detected by the probe absorption signal. It w
be convenient in the following calculations to express
spectrum using expectation values rather than a correla
function. This can be done as follows. Let us consider
evolution of the system subject only to the pump field. T
Hamiltonian is given by Eq.~2.12! and the corresponding
solution of the Liouville equation is denotedr̂0(t):

d

dt
r̂0~ t !52

i

\
@HA

0~ t !,r̂0~ t !#. ~2.15!

We next introduce a modified Hamiltonian which includ
only the negative frequency component ofE2

HA8 ~ t ![HA
0~ t !1E2~ t !e2 iV2tm̂2

1 . ~2.16!

The solution of the Liouville equation with this Hamiltonia
will be denotedr̂8(t):
J. Chem. Phys., Vol. 107
e

d
r-

d
ll
e
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e
e

d

dt
r̂8~ t !52

i

\
@HA8 ~ t !,r̂8~ t !#. ~2.17!

If we expandr̂8(t) to first order in the probe, we obtain43

Pk2
~ t !'2tr$m̂2

2~ r̂8~ t !2 r̂0~ t !!%

52 i E
2`

t

dt8E2~ t8!e2 iV2t8

3tr$@m̂2
2~ t !,m̂2

1~ t8!#r̂g%1 . . . . ~2.18!

The probe absorption spectrum@Eq. ~2.6!# can then be recas
in the form

S~v2!52A8

p
ImH E2@v2#E

2`

`

dteiv2t

3tr@m̂2
2~ r̂8~ t !2 r̂0~ t !!#J . ~2.19!

We can thus calculate the absorption spectrum of a w
probe by subtracting two solutions of the Liouville equatio
This scheme can be applied to a system driven by pu
pulses of arbitrary number, shape, and strength.

C. Impulsive pump-probe spectroscopy

If the pump and probe pulses are weak and impulsi
we can further simplify the procedures. We expand the c
relation function in Eq.~2.18! by the pump interaction. In
case~i!, by taking up to the second order in pump intera
tions, we have
tr$@m2
2~ t !,m2

1~ t8!#rg%5E
0

t

dt8E
0

t8
dt9E1~t8!E1~t9!e2 iV1~t82t9!(

j 51

4

Rj~t8,t9,t8,t !, ~2.20!

where

R1~ t,t8,t8,t9!5trH m̂2
2 exp
← S 2

i

\ E
t9

t

dtHSD m̂1
1 exp
← S 2

i

\ E
2`

t9
dtHSD r̂g

3 exp
→ S i

\ E
2`

t8
dtHSD m̂1

2 exp
→ S i

\ E
t8

t8
dtHSD m̂2

1 exp
→ S i

\ E
t8

t

dtHSD J ,

R2~ t,t8,t8,t9!5trH m̂2
2 exp
← S 2

i

\ E
t8

t

dtHSD m̂1
1 exp
← S 2

i

\ E
2`

t8
dtHSD r̂g

3 exp
→ S i

\ E
2`

t9
dtHSD m̂1

2 exp
→ S i

\ E
t9

t8
dtHSD m̂2

1 exp
→ S i

\ E
t8

t

dtHSD J ,

~2.21!

R3~ t,t8,t8,t9!5trH m̂2
2 exp
← S 2

i

\ E
t8

t

dtHSD m̂2
1 exp
← S 2

i

\ E
2`

t8
dtHSD r̂g

3 exp
→ S i

\ E
2`

t9
dtHSD m̂1

2 exp
→ S i

\ E
t9

t8
dtHSD m̂1

1 exp
→ S i

\ E
t8

t

dtHSD J ,
, No. 6, 8 August 1997
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R4~ t,t8,t8,t9!5trH m̂2
2 exp
← S 2

i

\ E
t8

t

dtHSD m̂2
1 exp
← S 2

i

\ E
t8

t8
dtHSD m̂1

2 exp
← S 2

i

\ E
t9

t8
dtHSD m̂1

1

3 exp
← S 2

i

\ E
2`

t9
dtHSD r̂g

exp
→ S i

\ E
2`

t

dtHSD J .

Equation~2.21! is a commonly used description of the response functions for a two-level system.21

In case~ii !, we have

tr$@m̂2
2~ t !,m̂2

1~ t8!#rg%5E
0

t

dt8E
0

t8
dt9E1~t8!E1~t9!e2 iV1~t82t9!(

j 53

4

Rj8~t8,t9,t8,t !, ~2.22!

where

R38~ t,t8,t8,t9!5trH m̂2
2 exp
← S 2

i

\ E
t8

t

dtHSD m̂2
1 exp
← S 2

i

\ E
t9

t8
dtHSD m̂1

1

3 exp
← S 2

i

\ E
2`

t9
dtHSD r̂g

exp
→ S i

\ E
2`

t8
dtHSD m̂1

2 exp
→ S i

\ E
t8

t

dtHSD J ,

~2.23!

R48~ t,t8,t8,t9!5trH m̂2
2 exp
← S 2

i

\ E
t8

t

dtHSD m̂2
1 exp
← S 2

i

\ E
t8

t8
dtHSD m̂1

1

3 exp
← S 2

i

\ E
2`

t8
dtHSD r̂g

exp
→ S i

\ E
2`

t9
dtHSD m̂1

2 exp
→ S i

\ E
t9

t

dtHSD J .
ar
e
fo

q.

um
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m

-

om
In the impulsive limit, the pump and the probe pulses
short compared with the dynamical time scales of the solv
and solute nuclear degrees of freedom. We can there
make the following assumption,

E1~ t !5u1d~ t !, E2~ t !5u2d~ t2t!, ~2.24!

where u1 and u2 are their areas and we takeu15u251.
Then Eq.~2.9! with Eqs.~2.21! or ~2.23! reduces to

Pk2
~ t !5ImH eiV2t(

j 51

4

Ri~ t,t!J ~2.25!

with

R1~ t,t!5R2~ t,t!5trH m̂2
2 exp
← S 2

i

\ E
t

t

dtHSD r̂e~t!m2
1

3 exp
→ S i

\ E
t

t8
dtHSD J , ~2.26!

R3~ t,t!5R4~ t,t!5trH m̂2
2 exp
← S 2

i

\ E
t

t

dtHSDm2
1r̂g

3 exp
→ S i

\ E
t

t

dtHSD J , ~2.27!

or

Pk2
~ t !5ImH eiV2t(

i 53

4

Ri8~ t,t!J ~2.28!

with
J. Chem. Phys., Vol. 107
e
nt
re

R38~ t,t!5R48~ t,t!5trH m̂2
2 exp
← S 2

i

\ E
t

t

dtHSDm2
1r̂e~t!

3 exp
→ S i

\ E
t

t

dtHSD J , ~2.29!

respectively, where

r̂e~t![ exp
← S 2

i

\ E
0

t

dtHSD m̂1
1r̂gm̂1

2 exp
→ S i

\ E
0

t

dtHSD .

~2.30!

In case~i! m̂2
15ue&^gu andm̂2

25ug&^eu, both Eqs.~2.26! and
~2.27! contribute to the spectrum. The contribution from E
~2.27! does not depend on the pulse durationt and coincides
with the expectation value in the linear absorption spectr
Eq.~2.13!. Thus, we can evaluate it using the same proced
as explained for the linear absorption. The contribution fro
Eq. ~2.26! can be calculated by the following steps;~1! Cal-
culate the initial equilibrium distributionrg . ~2! Calculate
r̂e(t) by integrating the Liouville equation~2.14! from t

50 to t5t with the initial conditionr̂e(0)5ue&rg^eu. ~3!

Calculater̂eg(t) by integrating the Liouville equation~2.14!
from t5t to t5t with the initial condition r̂eg(t)
5 r̂e(t)m̂2

1 . The element ofr̂eg(t) agrees with the contribu
tion Eq. ~2.26!, i.e., R1(t,t)5R2(t,t)5reg(t).

The contribution Eq.~2.29! of ~ii ! can be calculated from
the same procedure as Eq.~2.26! of ~i!. Once we calculate
Pk(t), the probe absorption spectrum is then obtained fr
Eq. ~2.8!.
, No. 6, 8 August 1997
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III. QUANTUM FOKKER–PLANCK EQUATION FOR A
MULTI-STATE SYSTEM INTERACTING WITH A
GAUSSIAN–MARKOVIAN NOISE BATH

The multi-state density matrix for the Hamiltonian E
~2.1! may be expanded in the electronic basis set as

r̂~ t !5(
j ,k

u j &r jk~q,q8;t !^ku. ~3.1!

Here,r jk(q,q8;t) is expressed in the coordinate represen
tion. Alternatively, we can switch to the Wigner~phase
space! representation

Wjk~P,R;t ![
1

2p\E2`

`

dreiPr /\r jk~R2r /2,R1r /2;t !,

~3.2!

and the density matrix may then be written as

Ŵ~ t !5(
j ,k

u j &Wjk~P,R;t !^ku. ~3.3!

The Wigner representation has the following advantag
first it allows us to compare the quantum density matrix
rectly with its classical counterpart. Second, using ph
space distribution functions, we can further easily impose
necessary boundary conditions~e.g., periodic or open bound
ary conditions!, where particles can move in and out of th
system. This is much more difficult in the coordinate rep
sentation.

We now specify the heat-bath Hamiltonian. We consid
an environment consisting of a set of harmonic oscillat
with coordinatesxn and momentapn . The interaction be-
tween the system and thenth oscillator is assumed to b
linear with a coupling strengthcn . The total Hamiltonian is
then given by

HA~ t !5HA
0~ t !1H8, ~3.4!

where

H85(
n

F pn
2

2mn
1

mnvn
2

2 S xn2
cnq

mnvn
2D 2G . ~3.5!

The character of the heat bath is specified by the spe
distribution: All information about the bath which is require
for a reduced description of the system dynamics, is c
tained in its initial temperature and its spectral density

J~v![v(
n

S cn
2

4mnvn
2D ~d~v2vn!1d~v1vn!!. ~3.6!

J(v) is related to the symmetric correlation function of
collective bath coordinate (X5Scnxn),

1

2
^X~ t !X1XX~ t !&5\E dvJ~v!cothS b\v

2 D cos~vt !,

~3.7!

whereb51/kBT is the inverse temperature of the bath, a
the time evolution ofX is determined by the pure bat
Hamiltonian @Eq.~3.5! with q50]. We assume an Ohmi
dissipation with the Lorentzian cutoff,
J. Chem. Phys., Vol. 107
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-
e
e

-

r
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-

J~v!5
Mz

2p

vg2

g21v2 . ~3.8!

With the assumption of the high temperature bathb\g<1,
this spectral density represents a Gaussian—Markov
noise where the symmetric correlation function of the no
induced by the heat bath, is given by

1

2
^X~ t !X1XX~ t !&5

Mzg

b
e2gt. ~3.9!

Thus,z and g correspond to the friction and the relaxatio
time of the noise, respectively. In this case, one can tr
over the heat-bath degrees of freedom and obtain the e
tion of motion in the hierarchy form.35–37 The important
point is that the restriction does not involve the system f
quencies~which can be small or large compared tob21), but
only a high temperature requirement with respect to the b
which is much easier to meet. For thenth member of hier-
archy,Wjk

(n) , wherej andk represent nonadiabatic states, t
equation of motion is expressed as38

]

]t
Wjk

~0!~P,R;t !

52
P

M

]

]R
Wjk

~0!~P,R;t !2
1

\E dP8

2p\

3(
m

@Xjm~P2P8,R;t !Wmk
~0!~P8,R;t !

1Xmk* ~P2P8,R;t !Wjm
~0!~P8,R;t !#1

]

]P
Wjk

~1!~P,R;t !,

~3.10!

]

]t
Wjk

~1!~P,R;t !

52
P

M

]

]R
Wjk

~1!~P,R;t !2
1

\E dP8

2p\

3(
m

@Xjm~P2P8,R;t !Wmk
~1!~P8,R;t !

1Xmk* ~P2P8,R;t !Wjm
~1!~P8,R;t !#2gWjk

~1!~P,R;t !

1
]

]P
Wjk

~2!~P,R;t !1zgS P1
M

b

]

]PDWjk
~0!~P,R;t !,

~3.11!

and
, No. 6, 8 August 1997
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]

]t
Wjk

~n!~P,R;t !

52
P

M

]

]R
Wjk

~n!~P,R;t !2
1

\E dP8

2p\

3(
m

@Xjm~P2P8,R;t !Wmk
~n!~P8,R;t !

1Xmk* ~P2P8,R;t !Wjm
~n!~P8,R;t !#2ngWjk

~n!~P,R;t !

1
]

]P
Wjk

~n11!~P,R;t !

1nzgS P1
M

b

]

]PDWjk
~n21!~P,R;t !. ~3.12!

Here,z is the friction constant and

Xi j ~P,R;t !5 i E
2`

`

dr exp~ iPr /\!Ui j ~R2r /2;t !,

~3.13!

Xi j* ~P,R;t !52 i E
2`

`

dr exp~ iPr /\!Ui j ~R1r /2;t !,

are the Fourier transform representation of the poten
terms which are convenient for studying the quantum effe
The hierarchy elementsWjk

(n) are defined in the path integra
form.36,37 The equation of motion is derived by performin
time derivative of these hierarchy elements. Physically,
can think of this hierarchy of equations as dealing with a
of Wigner functions, modeling the states of the system w
various number of phonons excited in the bath. In this f
mulation,Wjk

(0) includes all order of the system-bath intera
tion and is the exact solution for the Hamiltonian Eq.~3.4!.
Then Wjk

(1) ,Wjk
(2) , . . . ,Wjk

(n) describe the distribution func
tions with a smaller set of the system-bath interaction, c
responding to the complete set of the system-bath inte
tions minus 1st, 2nd, . . . ,nth order of the system-bat
interaction, respectively. Thus, one can think that this form
lation takes the opposite direction to the conventional per
bative expansion approaches, where the 0th member doe
include any system-bath interaction, then the first, seco
third, etc, members gradually take into account the high
order interactions and approach to the exact solution.
shall be interested only in the 0th member of the hierar
Wjk

(0) which is identical toWjk defined in Eq.~3.3!. The other
elementsnÞ0 are not directory relate to the physical obse
able and introduced for computational purposes. For d
hierarchyNg@vc wherevc is the characteristic frequenc
of the system such as the frequency of the harmonic po
tial, the above hierarchy can be terminated by36

]

]t
Wjk

~N!~P,R;t !

52
P

M

]

]R
Wjk

~N!~P,R;t !2
1

\E dP8

2p\
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3(
m

@Xjm~P2P8,R;t !Wmk
~N!~P8,R;t !

1Xmk* ~P2P8,R;t !Wjm
~N!~P8,R;t !#2NgWjk

~N!~P,R;t !

1GWjk
~N!~P,R;t !1NzgS P1

M

b

]

]PDWjk
~N21!~P,R;t !,

~3.14!

where

G[z
]

]PS P1
M

b

]

]PD . ~3.15!

Using this hierarchal structure we may deal with stro
system-bath interactions in addition to a colored noise. In
white noise limitg@vc we may terminate the hierarchy o
Eqs.~3.10!–~3.14! by settingN50, obtaining the multi-state
quantum Fokker–Planck equation for a Gaussian-white n
bath:

]

]t
Wjk

~0!~P,R;t !52
P

M

]

]R
Wjk

~0!~P,R;t !

2
1

\E dP8

2p\(
m

@Xjm~P2P8,R;t !

3Wmk
~0!~P8,R;t !1Xmk* ~P2P8,R;t !

3Wjm
~0!~P8,R;t !#1GWjk

~0!~P,R;t !.

~3.16!

If we consider a system with a single potential surface, th
the above equation further reduces to the quantum Fokk
Planck equation that was obtained by Caldeira and Legge44

Since we have assumedb\g<1, the temperature require
ment of the Gaussian-white case is more stringent than
Gaussian–Markovian case.

IV. NUMERICAL CALCULATIONS OF LINEAR
ABSORPTION SPECTRUM

We consider the displaced Morse potentials system
fined by ~see Fig. 1!;

Ugg~R!5Ee$12e2a~R2D1!%2,

Uee~R!5Ee$12e2a~R2D2!%21\vge ,
~4.1!

U f f~R!5Ee$12e2a~R2D1!%21\~vge1ve f!,

whereEe , a, andD j are the dissociation energy, the curv
ture of the potential, and the displacement, respectively.
the end of the next section, we will also include the an
bonding state,e8 and the diabatic coupling betweene and
e8 described by

Ue8e8~R!5Eee
22a8~R2D2!1\vge ,

Uee8~R!5Ae2D~R2D3!2
. ~4.2!
, No. 6, 8 August 1997
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Hereafter, we employed the dimensionless coordinate
momentum defined byr[RAMv0 /\ and p[PA1/M\v0,
respectively, wherev0[AUgg9 (R)/M . The displacemen
and curvature of the potential,D1 , D2 , a, etc. are also mea
sured in this unit. We setEe53649.5 @cm21#, a50.6361,
and D1540.598 ~4.64788 @Å#! as the ground state of th
Cs2 molecule,45,46 which has been studied by a variety
spectroscopic techniques.47–50The fundamental frequency i
then given byv0538.7 @cm21#. We calculate linear absorp
tion and pump-probe spectra for various displacemend
[D22D1 . For the anti-bonding state, the parameters w
chosen to bea850.6361, D51.0, A5300 @cm21#, and d8
[D32D1511.09, respectively. We have used two values
friction z50.16@cm21# ~weak! andz547.8@cm21# ~strong!
and have chosen the inverse correlation timeg54.8
@cm21#,and the initial temperatureT5300 K, which satisfies
the conditionb\g[\g/kBT50.023!1.

We first calculate the initial equilibrium state by inte
grating the equation of motion from timet52t i to t50
with the temporally initial condition,

Wgg
~0!~p,r ;2t i !)5exp@2b~p21Ugg~r !!#,

Wgg
~n!~p,r ;2t i !50. ~4.3!

Note that Eq.~4.3! is the equilibrium state of the system
itself, but, it is not the equilibrium state of the total syste
since it neglects the system-bath interaction. In the pre
formalism, such interaction can be taken into account by
nonzero hierarchy elements, i.e.,Wjk

(n)(p,r ;t)Þ0. By inte-
grating the equation of motion from timet52t i to t50, the
density matrix comes to the ‘‘true’’ equilibrium state d
scribed by the full set of hierarchyWgg

(n)(p,r ;t50), if we set
ut i u for a sufficiently longer time than the characteristic tim
of the system. In the following, we use the calculated full
of hierarchyWgg

(n)(p,r ;t50) as the true initial condition.
The numerical integrations of these kinetic equatio

were performed by using second-order Runge–Kutta met
for finite difference expressions of the momentum and
coordinate space. The size of mesh was chosen to b
3231-13031601 in the mesh range210,p,10 and 34
,r ,57–234,p,34 and 34,r ,106. On the mesh, the
kinetic operatorp]W/]r is approximated by a left-hand dif
ference,pi(W(pi ,r j )2W(pi ,r j 21))/Dr for pi.0 and by a
right-hand differencepi(W(pi ,r j 11)2W(pi ,r j ))/Dr for pi

,0.51 The discrete Fourier expression is used for the pot
tial kernel Eq. ~3.13!. We have taken into account abo
11–24 hierarchy elements forW(n). The accuracy of the cal
culations was checked by changing the mesh size and
number of terms in the hierarchy.

After obtaining the equilibrium state, we calculate t
linear absorption by integrating the equation of motion E
~3.10!–~3.14! instead of the Liouville equation Eq.~2.14!
following the procedure explained in Sec. II.

In Fig. 2 we present the linear absorption spectra
tween theg and e state for different displacements:~a! the
small d51; ~b! the intermediated53; and ~c! the larged
J. Chem. Phys., Vol. 107
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57. The linear absorption with and without the anti-bondi
state (e8 state! give the same result. In each figure, we ha
calculated two cases of frictionz50.16 @cm21# ~weak! and
z547.8 @cm21# ~strong!, respectively. Since we assume
that the probe pulse connects only between theg and e
states, the contribution of the linear absorption is only fro
Weg(p,r ;t). Figure 2a is for small displacement. Each pea
represent the transitions between the vibrational levels of
ground and the excited states. Since the Morse potentia
the vicinity of potential minimum is well approximated b
the harmonic surface, in this small displacement case,
absorption spectra resemble those from the displaced
monic oscillator system with the fundamental frequencyv0

538.7@cm21#. Ford53, transitions to the higher vibrationa
levels in thee state can take part in. Thus, we observe ma
peaks in the weak damping case. Due to the anharmon
of the potential, the interval of vibronic lines decreases
frequency increases. In the strong damping case, each
bronic line is broadened and we simply observe the envel
of the spectrum. Because the resonant frequency betwee

FIG. 2. Linear absorption spectra for different displacement. In each fig
we display spectra for the weak damping case~solid line! and the strong
damping case~dashed line!.
, No. 6, 8 August 1997
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1787Y. Tanimura and Y. Maruyama: Nonlinear spectroscopy of a Morse potentials system
ground and excited state is not linear function of coordin
~see Fig. 1a! such like a displaced harmonic oscillators sy
tem, the envelope of peaks is not symmetric Gaussian su
way that the blue side of the spectrum is amplified at
expense of the red side. Ford57, the transition mainly oc-
curs between the ground state and continuum dissocia
states and the spectrum is widely spread out.52 The shape of
spectra in the weak and strong damping cases are al
identical and overlapped. This is because, in this large

FIG. 3. Impulsive pump-probe spectra of the two-level system for differ
displacement in the weak damping case. Here, we probe between thug&
and ue& states.
J. Chem. Phys., Vol. 107
e
-

a
e

on

ost
s-

placement case, a laser excitation brings the wave pack
the continuous dissociation states, where the wave pa
cannot show coherent oscillations.

V. NUMERICAL CALCULATIONS OF IMPULSIVE
PUMP-PROBE SPECTRUM

Next we present the impulsive pump-probe spectra
various displacement betweeng ande states as a function o
the frequency and the time. We have carried out the ca

tFIG. 4. Impulsive pump-probe spectra of the three-level system for diffe
displacement in the weak damping case. Here, we probe between theue& and
u f & states.
, No. 6, 8 August 1997
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FIG. 5. The time-evolution of the wave packet of theue& state for the displacementd53 in the weak damping case.
th
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e-
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lation for the weak and strong damping, however, since
difference of them is mostly the existence of vibronic lin
as seen in Fig. 2, hereafter we present the results for
weak damping (z50.16 @cm21#! only. We show the resul
for ~i! probe absorption betweeng ande in Fig. 3 and for~ii !
the probe absorption betweene and f in Fig. 4.

We calculated the signal following the procedure e
plained in Sec. III by integrating the equation of motion Eq
~3.10!–~3.14! instead of the Liouville equation Eq.~2.14!. In
case ~i!, both the particle@Eq. ~2.26!# and the hole@Eq.
~2.27!# contributes to the signal. Figure 3a shows the sp
trum for small displacementd51. As mentioned in Sec. IV
J. Chem. Phys., Vol. 107
e

he

-
.

c-

the system is well approximated by the displaced harmo
oscillator, if the displacement is small, and the pump-pro
spectrum is therefore similar to the displaced harmonic
cillators case. The height of each peak changes periodic
with T51/v05861 @fs# corresponding to the coherent mo
tion of the particle created by the pump-pulse. Figure
shows the pump-probe spectrum for intermediate displa
mentd53.0. The small peaks in the figure correspond to
vibronic bands as observed in Fig. 2b. The envelope of th
small peaks reflects the shape of excited wave packet and
peak of the envelope shows oscillating motion with the p
riod about 1000@fs#. Since the resonant frequency betwe
FIG. 6. The time-evolution of the wave packet of theue& state for the displacementd57 in the weak damping case.
, No. 6, 8 August 1997
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1789Y. Tanimura and Y. Maruyama: Nonlinear spectroscopy of a Morse potentials system
FIG. 7. Impulsive pump-probe spectrum of the system with anti-bond
state for the displacementd53 in the weak damping case~see Fig. 1b!.
Here, we probe between theug& and ue& states.
also

J. Chem. Phys., Vol. 107
the ground and excited state (dv5Uee(r )2Ugg(r )2veg) is
not a linear function ofr , the shape of the envelope as th
function of dv is quite different from the original shape o
the wave packet. For instancedv is a rapidly decreasing
function of r in the ranger ,a, wherea is about 50 ford
53, but gradually increases forr .a after it has attained its
minimum (dv52380 @cm21# for d53) at r'a. Thus, if
the wave packet is in the area ofr ,50, the envelope corre
sponding to the wave packet is broadened and mo
quickly, but if the wave packet is inr .50, the envelope
becomes sharp and moves slowly, compared with its ac
shape and speed. Figure 3c is for the large displacemed
57. In this case, the kinetic energy of the wave packe
larger than the dissociation energy and the wave packet
escape from the potential. Compared with Fig. 3b, the hi
est peak shifts from2380 @cm21# to 2880@cm21#, since the
minimum of dv now becomes2880 at r'a554 for d
57. Corresponding to the dissociation processes, we
have a new peak about 0@cm21#, which agrees with the

g

FIG. 8. The time-evolution of the wave packet of theue& state~the bonding state! andue8& state~the anti-bonding state! for the displacementd53 in the weak
damping case. In each figure, the upper one is forue& whereas the lower one is forue8&.
, No. 6, 8 August 1997
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1790 Y. Tanimura and Y. Maruyama: Nonlinear spectroscopy of a Morse potentials system
energy differences between the excited and the ground
at larger .

Figure 4 shows~ii ! the probe absorption spectrum b
tweene and f . As explained in Sec. II, the absorption b
tween e and f is a particle part of~i!. Since we fixed the
position of thef state just above of thef state, the displace
ment between thee and f becomes2d. Thus, absorption
peaks appear in the opposite direction ofDv compared with
case~i!. As seen from Figs. 4a, we observe the coher
motion of the envelope more clearly than the case of~i!,
since the spectra of~i! involve the time-dependent particl
and the time-independent hole contributions, whereas
spectra of~ii ! involve only the time-dependent particle co
tribution.

Figure 5 shows the time-evolution of the wave pac
Wee(p,r ;t) for intermediate displacementd53.0 and the
weak dampingz50.16 @cm21#. At time t50, the wave
packet with the shape of the ground equilibrium state is c
ated by the pump pulse, then it moves in the positive co
dinate direction. At timet50.4@ps#, the wave packet reache
to the right-hand side of a potential wall and then bounced
the negative coordinate direction (t50.6@ps#!. Due to the
strong anharmonicity of the potential, distribution functio
with different energy have different eigen frequencies. Th
anharmonic effects lead to a destruction of the initially loc
ized wave packet as seen in figures at timet50.6,0.8 and
1.0@ps#.

Figure 6 showsWee(p,r ;t) for large displacementd
57.0. In this case, the wave packet is quickly broken in
small wave packets because of anharmonicity as explaine
Fig. 5. The small wave packets appearing at larger have
larger energy and some of them can escape from the po
tial. This is seen from the figure at timet50.6– 1.0@ps#.

We next show the result with the anti-bonding sta
(e8 state!. Figure 7 is for the intermediate displacementd
53.0 and the weak dampingz50.16 @cm21#. Compared
with Fig. 3b, the peak at2380 @cm21# and t51.4@ps# is
noticeably small. This is because the population of wa
packet in thee state decreased after passing the cross
point due to the predissociation process. This can be s
from the time-evolution of the wave packet shown in Fig.
In each figure, the upper one is forue& ~the bonding state!
whereas the lower one is forue8& ~the anti-bonding state!. At
t50.0@ps#, the wave packet in thee state moves in the posi
tive coordinate direction. The wave packet in thee state,
then, reaches (t50.2@ps#! and passes (t50.4@ps#! the curve
crossing point~about r 550). The transition mainly take
place in the vicinity of the curve crossing point, and thee8
population suddenly increases when thee state wave packe
passes the crossing point (t50.4@ps#!. This is because we
considered the diabatic coupling betweene and e8 in the
localized form @see Eq.~4.2!#. After passing the crossing
point, the transferred wave packet starts to move in thee8
state potential surface (t50.6@ps#!. Since thee8 potential is
not stable, the wave packet in thee8 state quickly moves to
the positive direction and then goes out from the edge
potential (t50.8 and 1.0@ps#!.
J. Chem. Phys., Vol. 107
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VI. NUMERICAL CALCULATIONS OF PROBE
ABSORPTION FOR STRONG PUMP PULSE: OPTICAL
STARK SPECTROSCOPY

The present Fokker–Planck equation approach can
applied to a system with any shape of potentials driven
pulses of arbitrary number, shape and strength. Thus,
present approach can generalize the earlier study of op
Stark spectroscopy for a displaced harmonic oscillat
system.43 Following the prescription discussed in Sec. II
here, we have calculated the pump-probe spectrum for
displaced Morse potential system under the strong pu
pulse. We assume that pump and probe pulses are Gaus

E1~ t !5u1 exp@2~ t/t1!2#,

E2~ t !5u2 exp@2~ t2t!2/t2
2#, ~6.1!

with resonance central frequencies, i.e.,V15V25vge .
Thus, we measure the transition between theug& and ue&
states only. The pulse durations were taken to bet15700
@fs# and t2530 @fs# and the time delay was varied betwee
t522.0 @ps# to t51.0 @ps#, i.e., the pump and the prob
pulses are overlapped. The pump intensity wasmu154.77
@THz# and the probe was weakmu251.59 @GHz#. In this
study we have calculated spectra in the case of Fig. 1a~with-
out the antibonding state! with intermediate displacementd
53 for a weak couplingz50.16 @cm21#.The other param-
eters were same as the impulsive case.

FIG. 9. Pump-probe spectrum for a strong excitation (mu154.77@THz#! for
different pulse delayst ~ps!.
, No. 6, 8 August 1997
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FIG. 10. The time-evolution of the wave packet of theug& andue& states for strong pump excitation. In each figure, the upper one is forue& whereas the lower
one is forug&.
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In Fig. 9, we show the pump-probe spectrum for t
strong pulse excitation. The curve att522.0 @ps# is similar
to the linear absorption spectrum~Fig. 2b!, since the pump is
weak and its effects are small at this early stage. The
bronic side-band peaks are observed in the probe absor
spectrum corresponding to various vibronic absorpti
emission processes. Due to anharmonicity of potential
thermal effects, the vibronic transitions yield an asymme
line shape. The peak about2380 @cm21# corresponds to the
absorption atdv5Uee(r )2Ugg(r )52380@cm21# and is at-
tributed to the movement of the wave packet during n
impulsive probe detection.

The curves att521.5 and21.0 @ps# show the dips
about 0@cm21# caused by the unbalance between the po
lation and the coherent contribution of an absorption sp
trum ~the coherent dips!.53 When the pump pulse become
stronger, the coherent dips are broadened. Each vibr
transition shows a Stark splitting whose magnitude is giv
by the proper Rabi frequencyDVnm5ADvnm

2 1(mE1(t))2,
whereDVnm is the Rabi frequency between thenth vibra-
tional state ofUg and mth vibrational state ofUe with the
J. Chem. Phys., Vol. 107
i-
ion
-
d

c
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n

energy differenceDvnm . In the early time periods the split
ting of the peaks near the center are larger than for the
peaks~see curves fort51.5 and21.0@ps# in Fig. 9!. This is
because the corresponding Rabi frequencyDVnm changes
significantly for smallmE1(t) if Dvnm is small. The Stark
peak of the origin (Dv50), which corresponds to zero vi
bronic line then splits to the blue and to the red. The St
shifted peaks of the vibronic side bands can be obser
outside of the Stark peaks of the zero vibronic line. For b
tween t50.0 and 1.0@ps#, the vibronic mode seems to b
decoupled from the optical transition and we observe
spectra similar to the one from the two-level system alo
This can be explained using an argument first employed
Brewer;54,55,41under strong excitation, the relevant frequen
of the atomic system is notveg or v0 , but rather Rabi fre-
quency DVnm'mE1(t), which represents the ‘‘dressed
states.56 For very strong excitation, this frequency is muc
larger thang andv0 . Thus the oscillator cannot respond
the system and the absorption spectrum approaches th
the isolated two-level system. This decoupling at stro
fields can potentially be used to eliminate intramolecular
, No. 6, 8 August 1997
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brational relaxation and to enhance the selectivity of la
induced processes. Fort51.0 @ps#, the pump excitation be
comes weak enough and the structure of vibronic band
recovered.

In Fig. 9, the blue Stark peak gives an absorptive con
bution, whereas the red one gives gain contribution and
comes negative aftert520.5 @ps#. In contrast, the Bloch
equations39,40 or the stochastic Liouville equations41 predict
both peaks to be identical in this resonant excitation ca
This phenomenon had been discussed in a study of displ
harmonic oscillator system;43 because of the Stark effect, th
system has two Stark shifted excited states~dressed states!. If
the pump field is on resonance, and the temperature of
heat bath is infinite, then the populations of these two sta
are the same as predicted by the Bloch or the stocha
Liouville equations. However, if the temperature of the ba
is finite, the population of upper Stark level can relax to t
lower one which gives a gain of absorption from the low
level to the ground state.

Figure 10 shows the time-evolution of the wave pac
Wgg(p,r ;t) and Wee(p,r ;t) for this case. Since we consid
ered the Gaussian~non impulsive! excitation, the shape o
the ground state wave packet is also changed. Fort520.5
@ps#, the population of the excited state increases due to
strong pump pulse, then, fort50.0, 0.5 and 1.0@ps#, it
slightly decreases and increases because of Rabi flopp
Compare with the weak excitation case~Fig. 5!, the wave
packet in the excited state seems to be bounded due to
Stark effects.

VII. CONCLUSIONS

In this paper we present a rigorous procedure for ca
lating the absorption and the pump-probe spectra, and ca
late the spectra for a displaced Morse oscillators system
using multi-state quantum Fokker–Planck equation fo
Gaussian Markovian bath. In the dissociation process reg
we show the correspondence between the pump-probe s
trum and the wave packet dynamics. For small displacem
the spectra are similar to those obtained in the displa
harmonic oscillators case. When displacement beco
large, then we observe the movement of wave packet as
shift of the envelope of absorption peak. Then for large d
placement, we observe the peak corresponding to the d
ciation. It is shown that for weak damping, the wave pac
collapses into small packets with different eigen frequen
due to the anharmonicity of the potential which looks like
tail of the wave packet.

We have also presented numerical calculations of pu
probe spectra for a strong Gaussian pump pulse. The re
show interplay between vibronic transitions and dynami
Stark splitting. In contrast to the results from the conve
tional Bloch equations which contain an infinite-temperat
dephasing, we find that at finite temperature, the Stark pe
may have different heights even when the pump pulse is
resonance.

In conclusion, the present multi-state quantum Fokke
Planck approach provides a powerful means for the stud
J. Chem. Phys., Vol. 107
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various chemical processes, including the coherent contro
molecules, where quantum effects play a major role. One
generalize the present approach to study a two-dimensi
system, where the interplay between internal energy re
ation and chaotic dynamics with various quantum effe
plays an important role. One can also use the present
proach to study off-resonant and resonant fifth-order sp
troscopy, which have been the subject of rece
research.57–62,23,11 The advent of fast computers equippe
with several hundred megabytes of memory make it poss
to study such problems with dissipation. We leave them
future studies.
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