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1 Introduction

The mean curvature flow of an immersion F : M −→ M of a hypersurface M in a n + 1
dimensional Riemannian manifold (M, g) looks for solutions of the equation

∂F

∂t
= ~H = HN,

where H is the mean curvature of the immersion, and we have used the following convention
signs for the mean curvature H, the Weingarten map A and the second fundamental form (h
for the scalar version and α for its tensorial version), for a chosen unit normal vector N , are:

AX = −∇XN , α(X,Y ) =
〈
∇XY,N

〉
N = 〈AX,Y 〉N , h(X,Y ) = 〈α(XY ), N〉 and H =

trA =
∑n

i=1 h(Ei, Ei), ~H =
∑n

i=1 α(Ei, Ei) = H N for a local orthonormal frame E1, ..., En
of the submanifold, where ∇ denote the Levi-Civita connection on M .

A new concept of mean curvature appears in the more general setting of a manifold with
density a continuous function f = eψ : M −→ R, which is used to define the volume Vψ(Ω)
and the area or perimeter Aψ(Ω) of a measurable set Ω ⊂M by

Vψ(Ω) =
∫

Ω
f dvg, Aψ(Ω) =

∫
∂Ω
f dag,

where dvg and dag are the volume and the area elements induced by g in the usual way.
Gromov ([5]) studied manifolds with densities as “mm-spaces”, and mentioned the natural
generalization of mean curvature in such spaces obtained by the first variation of the perimeter.
According to [5], [6] and [7] it is denoted by Hψ and given (when ∇ψ has sense) by

Hψ = H −
〈
∇ψ,N

〉
.

When working in the setting of a manifold with density, it is then natural to consider
mean curvature flows governed by Hψ instead of H. We shall call this flow

∂F

∂t
= ~Hψ = Hψ N, (1.1)

the mean curvature flow with density.
It is natural to start the study of this flow in the Euclidean space Rn+1 and when ψ is a

radial function, that is

ψ(x) = ϕ(r(x)), where r(x) := |x| and ϕ : R −→ R is smooth. (1.2)
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In this case equation (1.1) becomes

∂F

∂t
=
(
H − ϕ′

r
〈F,N〉

)
N (1.3)

Without relating it with densities, this flow has been studied in [8] for ϕ satisfying certain
conditions. Under them, they show that convexity is not necessarily preserved and that
bounded strictly starshaped hypersurfaces not cutting the origin evolve, under this flow, to a
sphere of some radius determined by the function ϕ.

One of the more interesting examples (with applications to Probability and Statistics) of

densities in Rn+1 is the Gaussian density f(x) =
( γ

2π

)n
2
e−

γ|x|2
2 .

Gaussian density is radial, but it does not satisfy the hypotheses on ϕ considered in [8].
However it shares with a few densities the property that (1.1) is equivalent, up to some
“singular time”, and with appropriate rescaling of time, to an ordinary mean curvature flow
(cf. Remarks 1 and 2 and equation (2.5)). This can be used to do a very simple study of
(1.1) in this case. This is which we do in this note. We consider the mean curvature flow
with density for ψ(x) = ε1

2nµ
2|x|2, µ ∈ R+ (ε = ±1), and will see that it has big differences

with that considered in [8]. For instance: convexity is preserved and, when ε = 1 no compact
hypersurface converges to a sphere and, when ε = −1, the only compact convex hypersurfaces
which evolve to a sphere are the spheres of radius 1/µ . Before giving more details, let us
recall that A circumscribed ball (or circumball) of F0(M) is a ball in Rn+1 containing the
domain Ω bounded by F0(M) and with minimum radius. Its radius is called circumradius of
Ω. The boundary of a circumball is called a circumsphere. We shall prove

Theorem 1 In Rn+1 with density eε
1
2
nµ2|x|2, let F0 : M −→ Rn+1 be a convex hypersurface

which evolves under (1.1). Then its evolution Ft remains convex for all time t ∈ [0, T [ where
it is defined. Moreover,

a) For ε = +1,

1. T ≤ 1
2nµ2

ln(1 + µ2R2), R being the circumradius of F0(M).

2. F0 evolves to a “round” point pT as t→ T and

|pT | ≤ e−nµ
2T

(
1
µ

√
µ2R2 + 1− e2nµ2T + max

x∈M
|F0(x)|

)
.

b) For ε = −1, we shall consider three situations:

bi) If α ≥ µg and in some vector v at some point α(v, v) > µ|v|2, there is a point p0

inside the convex domain bounded by F0(M) such that F̃0(M) = F0(M) − p0 is

contained in the ball B1/µ centered at the origin of radius
1
µ

(and we shall take

p0 = 0 in the case M0 ⊂ B1/µ). Then:

1. T <∞ and α > µg for t ∈]0, T [,
2. the motion Ft decomposes as Ft = F̃t + enµ

2tp0, where F̃t remains contained in
B1/µ all time and shrinks to a “round” point p̃T ∈ B1/µ when t→ T and
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3. F0 evolves to a “round” point pT = p̃T + enµ
2T p0.

bii) If α ≤ µg and in some vector v at some point α(v, v) < µ|v|2, there is a point
p0 inside the convex domain bounded by F0(M) such that F̃0(M) = F0(M) − p0

contains the ball B1/µ (and we shall take p0 = 0 in the case M0 ⊃ B1/µ). Then
1. T =∞ ,
2. Ft evolves as Ft = F̃t + enµ

2tp0, where F̃t contains B1/µ all time and expands
to infinity on all directions when t→∞,

3. F̃t (then, also Ft) converges, after rescaling, to a convex hypersurface that, in
most cases, is not a sphere,

4. as t→∞, and without rescaling, the domain Ωt bounded by Ft(M) converges,
to the empty set, or to all the space Rn+1, or to a halfspace with boundary
limt→∞ Ft(M) a hyperplane through the origin.

biii) The sphere of normal curvature µ moves just by the translation Tt(x) = x+enµ
2tp0,

where we can take as p0 the center of the sphere at time 0 and t ∈ [0,∞[. Then the
sphere of radius 1/µ centered at the origin is the unique fixed point for this flow.

Along the rest of the paper, by Mt we shall denote both the immersion Ft : M −→ Rn+1

and the image Ft(M), as well as the Riemannian manifold (M, gt) with the metric gt induced
by the immersion. Analogous notation will be used when we have a single immersion F :
M −→ Rn+1.

At the end of the paper we shall discuss the normalized mean curvature flow associated
to a Type I singularity as a Gaussian mean curvature flow.

Acknowledgments: We thank E. Cabezas-Rivas for pointing us the references [9] and
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mean curvature flow with densities and the ordinary mean curvature flow.
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of Valencia in 2008, supported by a “ayuda del Ministerio de Educación y Ciencia SAB2006-
0073.” He wants to thank that university and its Department of Geometry and Topology by
the facilities they gave him.
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65852.

2 Some lemmas and remarks

A tangent vector field X on a Riemannian manifold M is called conformal if each φs of its
1-parametric local group of diffeomorphims is a conformal transformation. This is equivalent
(cf. [10] page 25) to S(∇X[) = λg for some function λ : M −→ R, where X[ is the 1-
form corresponding to X by the canonical isomorphim determined by the metric and S(∇X[)
means the symmetrized of ∇X[. In the last paragraph of [9] the following observation is made

Remark 1 ([9], paragraph after (4.28)) Let X be a conformal field on M . If φs is the 1–
parameter family of conformal deformations belonging to X and Ft is the solution of the flow

∂F

∂t
= ~H −X⊥ (2.1)
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in M , then the rescaled immersions F̂t := φt ◦ Ft solve the mean curvature flow in M with a
different time scale and an additional tangential deformation (that does not affect the geometry
and merely corresponds to a diffeomorphism on the evolving hypersurface).

No details are given in [9] on the proof of Remark 1 and, in fact, at some values of the new
reparametrized time, they could appear some singularities in the tangential diffeomorphism
giving the equivalence (see the proof of Lemma 2). We shall give the proof and the details for
the particular case which comes from our interest on equation (1.3) (that is X = ϕ′∇r) and
the following remark, which may be well known, but we write it in detail for the convenience
of the reader.

Remark 2 Let ψ be a radial function on Rn+1. ∇ψ is a conformal field if and only if
ψ(x) = −1

2µ
2|x|2 (eψ is a Gaussian type density) or ψ(x) = 1

2µ
2|x|2.

Proof Since ψ(x) = ϕ(|x|), then ∇ψ = ϕ′∇r, and the condition for ∇ψ being conformal,
that is ∇2

ψ = λg for some function λ, translates into

ϕ′′∇r ⊗∇r + ϕ′∇2
r = λg,

but, in the euclidean space, ∇2
r =

1
r

(
g −∇r ⊗∇r

)
, and substitution of this in the above

equation gives

ϕ′′ = λ and
1
r
ϕ′ = λ, that is, ϕ′′ =

1
r
ϕ′,

which solution is

lnϕ′ = ln r + lnC, that is ϕ′ = Cr and ϕ =
1
2
Cr2 +D (2.2)

When C = −nµ2 and D = 0 we have the Gaussian type density. The constant D has no
influence on the flow, because it disappears when computing ∇ψ. tu

Then, for the flows with density eε
1
2
nµ2|x|2 (and only for that), taking X(x) = εnµ2x in

(2.1), we can apply the idea of Remark 1. We start stating and proving a precise version of
that remark for X(x) = εnµ2x which has into account the possible singularities skipped in
Remark 1.

Lemma 2 The evolution equation

∂F

∂t
=
(
H − εnµ2 〈F,N〉

)
N (2.3)

is equivalent, up to tangential diffeomorphisms, with the parameter change

t̂ =
ε

2nµ2

(
eε2nµ

2t − 1
)
, (2.4)

(the last summand is in order t = 0 if and only if t̂ = 0) to

∂F̂

∂t̂
= ĤN̂ (for t̂ < 1/(2nµ2) if ε = −1). (2.5)
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Proof The 1-parameter family φs associated to X(x) = εnµ2x is the solution of the ODE

dφ

ds
= εnµ2φ

which has, as solution satisfying φ0 = Id,

φs(x) = eεnµ
2sx

Then, if F flows by mean curvature with density eε
1
2
nµ2|x|2 , the flow F̂ indicated in Remark

1 would be
F̂ = eεnµ

2tF (2.6)

To check that this is true and to find the convenient reparametrization of time, we compute
the evolution of F̂ defined by (2.6) when F evolves by (2.3)

∂F̂

∂t
= εnµ2eεnµ

2tF + eεnµ
2t(H − εnµ2 〈F,N〉)N

= εnµ2eεnµ
2tF> + eεnµ

2tHN (2.7)

But, from (2.6) it follows that the second fundamental forms α̂ of F̂ and α of F are related
by α̂ = eεnµ

2tα, then Ĥ = e−εnµ
2tH, and the evolution equation for F̂ is

∂F̂

∂t
= εnµ2F̂> + eε2nµ

2tĤN̂ (2.8)

Then, if we define t̂ by (2.4),
dt

dt̂
=

(
dt̂

dt

)−1

= e−ε2nµ
2t and

∂F̂

∂t̂
=
∂F̂

∂t

dt

dt̂
= εnµ2e−ε2nµ

2tF̂> + ĤN̂ =
1

2(t̂+ ε/(2nµ2))
F̂> + ĤN̂ , (2.9)

which is, up to a tangential diffeomorphism (cf. [2]), equivalent to the mean curvature flow
(2.5) for every t̂ when ε = 1 and for t̂ < 1/(2nµ2) when ε = −1, because in this case at
t̂ = 1/(2nµ2) the tangencial diffeomorphism giving the equivalence is not well defined, then
we only have the equivalence with ordinary mean curvature flow until this time t̂. But this
time t̂ corresponds in (2.4) to t = ∞, then the equivalence is for all time if we look at the
natural time for the evolution of F . tu

It will be also convenient to have in mind the following converse of (2.4)

t =
1

ε2nµ2
ln(1 + ε2nµ2 t̂ ) (2.10)

and also the converse of (2.6)

F = e−εnµ
2tF̂ =

1√
1 + ε2nµ2t̂

F̂ (2.11)
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Lemma 3 Let us consider a point p0 in Rn+1. Then the motion of Ft(M) of F0(M) is the
composition of the motion F̃t(M) of F0(M)−p0 by the flow (2.3) with the translation of vector
p(t) = e−εnµ

2tp0, that is Ft(X) = e−εnµ
2tp0 + F̃t(x).

Proof As it is well known (see again [2]), the flow (1.1) is geometrically equivalent to the
flow 〈

∂F

∂t
,N

〉
= Hψ. (2.12)

Choose some p0 ∈ Rn+1. Let u =
p0

|p0|
, write p(t) = ρ(t)u, F = p+ F̃ , and let H̃ψ the gaussian

mean curvature of F̃ . Thus (2.12) becomes〈
∂F̃

∂t
+
∂p

∂t
,N

〉
= Hψ = H − εnµ2 〈F,N〉 = H̃ − εnµ2

〈
p+ F̃ , N

〉
, (2.13)

which can be decomposed in two equations〈
∂F̃

∂t
,N

〉
= H̃ − εnµ2

〈
F̃ , N

〉
, (2.14)

∂ρ

∂t
〈u,N〉 = −εnµ2ρ 〈u,N〉 . (2.15)

Since the second fundamental form is invariant by translation, H̃ = H, and equation (2.14) is
equivalent to the evolution by the flow (2.3) of F̃0(M) = F0(M)−p0. Moreover the solution of
(2.15) with the initial condition ρ(0) = |p0| is ρ(t) = |p0|e−εnµ

2t, which gives p(t) = e−εnµ
2tp0.

tu

Remark 3 From (1.1), computing like in the mean curvature flow, one obtains for the evo-
lution of the metric gt on M

∂g

∂t
= −2Hψα = −2(H − εnµ2 〈F,N〉)α, (2.16)

and, for the evolution of the riemannian volume form agt induced by gt,

∂ag
∂t

= −HHψag = −H(H − εnµ2 〈F,N〉)ag, (2.17)

from which we obtain, for the area A(M)t of Mt,

∂A(M)
∂t

=
∂

∂t

∫
M
ag = −

∫
M
H(H − εnµ2 〈F,N〉)ag = −

∫
M
H2ag + εnµ2

∫
M
H 〈F,N〉 ag

= −
∫
M
H2ag − εn2µ2A(M) = −

∫
M

(H2 + εn2µ2)ag, (2.18)
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that is, for ε = 1 the area is always decreasing, whereas for ε = −1 (Gaussian mean curvature
flow), area is decreasing if |H| > nµ and increasing if |H| < nµ.

This remark makes natural the evolution p(t) = e−εnµ
2tp0 of p0:

For ε = 1, it says that if, originaly, the point p0 is not the origin, then the point is
approaching, and this is a natural consequence of the area decreasing with flow because, in this
measure, the density is minimum at the origin.

For ε = −1, if, originaly, the point p0 is not the origin, then the point is going far away
from the origin as time grows. When |H| > nµ, this is a natural consequence of the fact that,
in this case, the area decreases and, with the Gaussian measure, the area is lower when we
are far from the origin. When |H| < nµ the area increases, then the motion of p(t) looks
counterintuitive, but this bizarre behavior has a consequence: Mt has to expand in some way
in order that the area loss by the translation be compensated by the expansion of Mt.

3 The proof of the Theorem

From lemmas 2 and 3 it is clear how to transfer any result on mean curvature flow to a
result on the flow (2.3): just state the evolution under mean curvature flow, add the behaviour
of p(t) given by lemma 3 and have into account the relation between t̂ and t. First we shall
do it to prove Theorem 1 a) and bi) using the classical result of Huisken ([3]) on the evolution
of compact convex hypersurfaces.

First, we take as p0 the center of a circumball of F0(M). Let R be its radius. Then
F̃0(M) = F0(M)− p0 ⊂ BR, the ball of radius R centered at the origin. According to Lemma

3, equation (2.14), F̃t evolves in shape under (2.3), then ̂̃F evolves under (2.9), which, for the

shape of ̂̃F , is equivalent to (2.5) ( for t̂ ∈ [0, 1/(2nµ2)[ when ε = −1). Moreover, from (2.6) it

follows that ̂̃F and F̃ coincide at t = 0 = t̂, then the convexity condition is also satisfied by ̂̃F
at t̂ = 0, and, from Huisken’s result on the evolution of compact convex hypersurfaces (cf. [3]
), the avoidance principle and the evolution of a sphere of radius R (cf. [11]) it follows that̂̃
Fbt(M) is well defined and remains convex for t̂ in a maximal interval [0, T̂ [ with T̂ ≤ R2

2n
,

shrinks to a “round” point ̂̃pbT when t̂→ T̂ and

̂̃
Fbt(M) ⊂ B√

R2−2nbt for every t̂ ∈ [0, T̂ [. (3.1)

By the relations between Ft, F̃t,
̂̃
Fbt, t and t̂ and the the Lemma 3 giving the evolution of p(t),

we have

Ft(x) = F̃t(x) + e−εnµ
2tpo = e−εnµ

2t

(̂̃
F t(x) + p0

)
, (3.2)

which exists for t ∈ [0, T [, where

T =


ln(1 + ε2nµ2T̂ )

ε2nµ2
if ε = 1 or ε = −1 and T̂ ≤ 1

2nµ2

∞ if ε = −1 and T̂ ≥ 1
2nµ2

. (3.3)
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Then, in the cases “ε = 1” or “ε = −1 and T̂ < 1
2nµ2 ”, when t→ T ,

pT = lim
t→T

Ft(x) = e−εnµ
2T

(
limbt→bT

̂̃
Fbt(x) + p0

)
= e−εnµ

2T
(̂̃pbT + p0

)
(3.4)

and p̃T = lim
t→T

F̃t(x) = e−εnµ
2T ̂̃pbT . (3.5)

On the other hand, obviously |p0| ≤ maxx∈M |F0(x)|. Moreover, from (3.1) and (2.4),

|̂̃pbT | ≤
√
R2 − 2nT̂ =

1
µ

√
µ2R2 + ε

(
1− eε2nµ2T

)
. (3.6)

Taking ε = 1 in all the remarks contained in the previous paragraph we have part a) of
Theorem 1.

Now, let us consider the more interesting case ε = −1 (gaussian mean curvature flow).
In the case bi) of the theorem, the condition “α ≥ µg and there is some vector v at some

point α(v, v) > µ|v|2” is also satisfied by the immersion ̂̃F 0 and, for the mean curvature flow it
is known that it follows from the strong maximum principle that this initial condition implies

that the immersions ̂̃F t satisfy α̂ > µ ĝ for t̂ ∈]0, T̂ [ (cf. [11] pages 22-23 and [1] page 186).
Moreover, α ≥ µg also implies that R ≤ 1

µ , then T̂ ≤ 1
2nµ2 , which corresponds to T =

− 1
2nµ2 ln(1 − 2nµ2 T̂ ) ≤ ∞. But we have to prove T < ∞, that is T̂ < 1

2nµ2 . This is
a consequence of the following standard argument: The evolution of the sphere of radius
1/µ under mean curvature flow is the sphere of radius rµ(t̂) satisfying the equation r′µ(t̂) =

−n/rµ(t̂), and the function r(x, t̂) := | ̂̃F (x, t̂)| evolves by ∂r
∂bt = Ĥ

〈
N,∇r

〉
. Moreover, the

laplacian on Mbt of a half of the square of the distance to the origin in Rn+1 is given by

∆
(

1
2r

2
)

= Ĥ
〈
N̂ , r∇r

〉
+ n. Define f(x, t̂) := 1

2

(
r2
µ(t̂)− r2(x, t̂)

)
.

∂f

∂t̂
= −n− Ĥ

〈
N̂ , r∇r

〉
= −n−∆

(
1
2
r2

)
+ n = ∆f (3.7)

Since F̃0(M) ⊂ B1/µ, we have f(x, 0) = 1
2

(
rµ(0)2 − r(x, 0)2

)
≥ 0, and since there is a vector

v at a point x ∈ M where α̂(v, v) ≥ µ|v|2, there must be a point x′ ∈ M where r(x′, 0) <
rµ(0) = 1

µ , then the application of the strong maximum principle to (3.7) gives minx∈M f(x, t̂)

not decreasing with t̂ and minx∈M f(x, t̂) > 0 for t̂ ∈]0, T̂ [, then the time T̂ where r(x, t̂) vanish
is strictly lower that the time 1

2nµ2 where rµ vanish and, as a consequence, T <∞. Then part

bi) follows from these facts and the substitution of R ≤ 1
µ

in (3.6), (3.5) and (3.4).

In the case bii), instead of taking R the circumradius and p0 the center of a circumball, we
take R the inradius and p0 the center of a inball of F0(M) (a ball of maximal radius contained

in the domain limited by F0(M)). Now R ≥ 1
µ

and the avoidance principle and the evolution

of a sphere of radius imply that ̂̃Fbt(M) is well defined and remains convex for t̂ in a maximal
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interval [0, T̂ [ with T̂ ≥ R2

2n
≥ 1

2nµ2
, shrinks to a “round” point ̂̃pbT when t̂→ T̂ and

̂̃
Fbt(M) ⊃ B√

R2−2nbt for every t̂ ∈ [0, T̂ [. (3.8)

Moreover, the condition “α ≤ µg and there is some vector v at some point such that
α(v, v) < µ|v|2” allows us to define the function f(x, t) as before and compute and apply the
strong maximum principle in a similar way to conclude that T̂ > 1

2nµ2 . Then the motion of

Ft finishes at T = ∞ which corresponds to the value t̂ =
1

2nµ2
< T̂ where ̂̃Fbt is not yet a

“round” point. Then, from (3.2) it follows that

i After the renormalization usually done on ̂̃Fbt to transform the limit point into a sphere,
the limit limt→∞ Ft(M) is a convex hypersurface which may be different from a sphere.

ii If 0 ∈ p0 + ̂̃
F 1/(2nµ2)(M), the domain Ωt bounded by Ft(M) will expand to all Rn+1

when 0 is an interior point of the domain bounded by p0 + ̂̃F 1/(2nµ2)(M) or to a halfspace
when 0 is on its boundary.

iii If 0 /∈ p0 + ̂̃
F 1/(2nµ2)(M), all the set bounded by the hypersurface goes to the infinity.

This finishes the proof of part bii) of the theorem.
Case biii) is obvious from all the above.

4 Normalized mean curvature flow for singularities of type I
as a gaussian mean curvature flow

Usually, the equation for the normalized flow associated to a type I singularity is written

(following [4]) under the form
∂F

∂t
= HN + F . So written, the flow corresponding to a

singularity of type I converges to a sphere of radius
√
n when time goes to ∞. With a small

change of parameters t =
1
nµ2

t and F =
1

µ
√
n
F , the convergence is to a sphere of radius

1
µ

and the equation for the flow is
∂F

∂t
= HN + nµ2F, which is equivalent, up to tangential

diffeomorphisms, to the gaussian mean curvature flow (2.3) with ε = −1. The fact that
the flow corresponding to a singularity of type I converges to a sphere of radius 1/µ is not
in contradiction with our results, because it corresponds to an unnormalized flow of type I
which shrinks to a point at time T̂ given by (2.4) when t = ∞, that is T̂ = 1/(2nµ2), which
is beyond the time where the motions given by Theorem 1 (for ε = −1) finish.

Then, what the mean curvature flow of a type I singularity ending at time T gives is a
gaussian density e−

1
4T
|x|2 for which the corresponding gaussian mean curvature flow converges

to a sphere of radius
1
µ

=
√

2nT .
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