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1. INTRODUCTION

Let
(
B, ‖ · ‖, µ)

denote a Gauss space in that
(
B, ‖ · ‖) is a Banach space which

carries a centered, Gaussian measure µ living on the Borel σ–field of B.
An old problem, which has received much recent attention, is to describe the rate

at which the µ–measure of a small balanced ball (in B) goes to zero, as the radius of
the ball decreases to zero. To make this precise, suppose p is a continuous semi–norm
on B. That is, p : B 7→ R such that

(i) For all x, y ∈ B, p(x+ y)6p(x) + p(y);
(ii) for all α ∈ R and all x ∈ B, p(αx) = |α|p(x);
(iii) whenever x→ y in B, p(x− y) → 0.

In particular, note that x 7→ p(x) is a (nonnegative) continuous map from B into
R+ .

The so–called small ball problem for µ consists of finding a good approximation to
the following:

µp(r) , µ
(
ω ∈ B : p(ω)6 r

)
, (1.1)
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as r → 0+. A major breakthrough is the recent work of Kuelbs and Li [11] relating
µp to a combinatorial problem on the reproducing kernel Hilbert space corresponding
to µ. The latter route typically leads one to long-standing open problems in functional
analysis; cf. [11] for details.

Throughout this paper, we only deal with the case when p is transient. Rather than
developing a theory for this, we define transience via the following technical assumption
which will prevail throughout the rest of the paper:

Assumption 1.1. We assume the following two conditions:
(a) p is transient in the sense that for some κ > 2,

lim sup
r→0+

r−κµp(r) <∞; and

(b) p is nondegenerate in the sense that 1 > µp(1) > 0.

Remark 1.1.1.
(a) Suppose dim(B) = d < ∞. In other words, B is finite dimensional with (topolog-

ical) dimension d. It is easy to see that as r → 0+, µp(r) ∼ Crd for some C > 0.
Therefore, Assumption 1.1(a) says that d > 2 in this case. This corresponds to the
well–known condition of transience in the classical sense.

(b) When p has rank > 3, p is transient; see [6] for details.
(c) If p is nondegenerate, there exists c > 0, such that 1 > µp(c) > 0. By considering

the semi–norm c−1p instead, we see that Assumption 1.1(b) is not an essential
restriction.

Motivated by the work of Erickson [6], this paper proposes a different approxima-
tion of µp. To begin, recall that the triple

(
B, ‖ · ‖, µ)

corresponds to a Wiener space C.
To define it, let C(B) denote the space of all continuous functions ω : [0, 1] 7→ B with
ω(0) = 0, endowed with the compact open topology. Let C denote the associated Borel
field. For all ω ∈ C(B), let Bt(ω) = ω(t). It is a well known fact that there exists a
probability measure P on the measure space

(
C(B),C

)
which renders the process B a

µ–Brownian motion; cf. Gross [8] or Üstünel [13] for a modern treatment as well as some
of the new developments in this area. In particular, we mention the following important
properties:

(i) with P–probability one, t 7→ Bt is continuous;
(ii) B has independent and stationary increments (under P);
(iii) for all x ∈ B∗, the random variable 〈x,Bt〉 has a one-dimensional Gaussian distri-

bution with mean 0 and variance t
∫
B
‖x‖2µ(dx) (under P);

(iv) B is a B–valued diffusion.
(v) B0 = 0, P–almost surely.

We will denote by E the expectation operator corresponding to the underlying
(Gaussian) probability measure P.
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It will be convenient to write our results in terms of the µ–Ornstein-Uhlenbeck
process O given by

Ot , e−t/2Bet , t> 0. (1.2)

We note in passing the elementary fact that O is a B–valued stationary diffusion whose
stationary measure is µ.

For any { > 1, define,

λp(r;{) , sup
{
a > 0 : µp(a)6{µp(r)

}
, r > 0. (1.3)

In the finite–dimensional case, it is possible to show that for any { > 0, as r → 0+,
λp(r;{) ∼ {

1/dr, where d> 3 is the dimension of B. In this connection, see also Remark
1.1.1(a).

The promised correspondence between µp and the process O can then be described
in terms of λp as follows:

Theorem 1.2. Suppose p : B 7→ R is a nondegenerate, transient semi–norm on B.
Then, for all T > 0, and all { > 1, there exists a constant c ∈ (1,∞) such that for all
r ∈ (

0, 1/c
)
,

µp(r)
c r2

6P
(

inf
06 t6T

p(Ot)6 r
)
6

c µp(r)(
λp(r;{)− r

)2 .

In fact, the proof of Theorem 1.2 can be used, with little change, to show the
following:

Corollary 1.3. Suppose p : B → R is a nondegenerate, transient semi–norm on B.
Then, for all λ > 0 and all { > 1, there exists a constant c ∈ (1,∞) such that for all
r ∈ (0, 1/c),

µp(r)
c r2

6

∫ ∞

0

e−λT
P
(

inf
06 t6T

p(Ot)6 r
)
dT 6

c µp(r)(
λp(r;{)− r

)2 .

Remark.
(a) The quantity,

∫ ∞

0

e−λT
P
(

inf
06 t6T

p(Ot)6 r
)
dT,

is the λ–capacity of the “ball”
{
ω ∈ B : p(ω)6 r

}
; cf. Üstünel [13] and Fukushima

et al. [7] for details. It turns out that under very general conditions, λp(r;{) − r has
polynomial decay rate; cf. Remark 1.1.1(a) above. Thus, Theorem 1.2 and its variants
provide exact (and essentially equivalent) asymptotics between the λ–capacity of a small
ball and the small ball probability µp given by (1.1).
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(b) In infinite dimensions – which is what is of interest here – the methods of Erickson
[6] provide an upper bound of µp

(
(1 + ε)r

)
for any ε > 0. In such cases, µp decays

exponentially fast. Therefore, Theorem 1.2 is an essential improvement.

A refinement of Theorem 1.2 is proved in Section 2. Section 3 contains an explicit
application. The methods of the latter section can be combined with those of [6] to
provide a host of other examples.

2. THE MAIN ESTIMATE

In this section, we provide bounds for the probability that O hits a small ball in
terms of the small ball probability µp defined by (1.1). The main result of this section
is the following probability estimate:

Theorem 2.1. Suppose p is a continuous, nondegenerate, transient semi–norm on B in
the sense of Assumption 1.1. Suppose further that g : R+ 7→ R+ is a bounded measurable
function satisfying: for some { > 1,

Ig , lim inf
r→0+

g(r)(
λp(r;{)− r

)2 > 0.

Then, there exists a constant c ∈ (1,∞) which depends only on {, supx g(x) and Ig,
such that for all r ∈ (

0, 1/c
)
,

µp(r)g(r)
c r2

6P
(

inf
06 t6 g(r)

p(Ot)6 r
)
6

c µp(r)g(r)(
λp(r;{)− r

)2 .

Remark 2.1.1.
(a) The special case when g(r) ≡ T immediately yields Theorem 1.2.
(b) Suppose g ≡ T and dim(B) = d < ∞. This is the finite dimensional version of

Theorem 2.1 and is well known. Namely, that in d > 2 dimensions, there exists a
constant c ∈ (1,∞) such that for all r small enough,

c−1rd−26P
(

inf
06 t6T

p(Ot)6 r
)
6 crd−2.

(Recall Remark 1.1.1(a) regarding transience in finite dimensions as well as the
estimates for λp.)

(c) The lower bound in Theorem 2.1 holds as long as g is bounded and measurable.
More precisely, the condition that Ig > 0 is only needed for the upper bound.

(d) According to Weber [14] (cf. also Albin [1] and Khoshnevisan and Shi [9]), there
is a connection between the modulus of continuity of a Gaussian process and its
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hitting probabilities. In our setting, the Gaussian process is infinite dimensional. In
some infinite dimensional cases, such moduli of continuity are found; cf. Csáki and
Csörgő [3] and Csáki et al. [4]. While it seems somewhat unlikely, one cannot help
but ask if there is a connection between our results and such moduli of continuity
in infinite dimensions.

The rest of this section is devoted to the proof of Theorem 2.1.

Lemma 2.2. Define,

Wt ,
Ot − e−t/2O0√

1− e−t
. (2.1)

For any fixed t> 0, Wt as an element of B is an independent copy of O0, satisfying,

Ot =
√

1− e−tWt + e−t/2O0.

Proof. By (1.2), Wt = e−t/2(Bet − B1) which is independent of O0 = B1. To verify
that Wt is distributed as O0, it suffices to show that for all x ∈ B∗,

〈x,Ot〉 − e−t/2〈x,O0〉 (d)
=
√

1− e−t〈x,O0〉.

This is a finite dimensional result which can be readily verified by checking means and
covariances. ♦

Lemma 2.3. Suppose r > 0 and t> 0 are fixed and p satisfies Assumption 1.1. Then
uniformly over all f ∈ B with p(f)6 r,

P
(
p(Ot)6 r

∣∣ O0 = f
)
6µp

(√
1 + e−t/2

1− e−t/2
r

)
.

Proof. Let Wt be as in (2.1). By properties of p,

√
1− e−tp(Wt)6 p(Ot) + e−t/2p(O0).

Therefore, conditional on
{
p(O0)6 r

}
,
{
p(Ot)6 r

}
implies

{
p(Wt)6 cr

}
, where

c ,

√
1 + e−t/2

1− e−t/2
.

Since by Lemma 2.2 p(Wt)
(d)
= p(O0), the result follows. ♦
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Lemma 2.4. Suppose p is a continuous semi–norm on B for which Assumption 1.1 is
verified. Then for any T > 0,

lim sup
r→0+

r−2

∫ T

0

µp

(√
1 + e−t/2

1− e−t/2
r

)
dt <∞.

Proof. Note that for all 0 < r < 1,√
1 + e−t/2

1− e−t/2
r6 1, if and only if t> 2 ln

(1 + r2

1− r2

)
.

Therefore, for all r > 0 small,

∫ T

0

µp

(√
1 + e−t/2

1− e−t/2
r

)
dt6 2 ln

(1 + r2

1− r2

)
+

∫ T

2 ln
(
(1+r2)/(1−r2)

) µp

(√
1 + e−t/2

1− e−t/2
r

)
dt.

As r → 0+, the first term behaves like 4r2. On the other hand, for t6T ,√
1 + e−t/2

1− e−t/2
6
c1√
t
,

for some constant c1. By Assumption 1.1(a), there exist c2, c3, c4 > 0, such that for all
r > 0 small, the second term is bounded above by

c2

∫ T

c3r2

( r√
t

)κ

dt6 c4r
2.

This concludes the proof. ♦

Lemma 2.4 is sharp. Indeed, using Assumption 1.1(b) instead of 1.1(a) in the proof
of Lemma 2.4, we immediately arrive at the following:

Lemma 2.5. Under the conditions of Lemma 2.4, for all T > 0,

lim inf
r→0+

r−2

∫ T

0

µp

(√
1 + e−t/2

1− e−t/2
r

)
dt > 0.

We are ready to prove Theorem 2.1.

Proof of Theorem 2.1. Fix { > 1 as given. The conditions on g imply the existence
of a constant c ∈ (1,∞), such that for all r ∈ (0, 1),

c−1
(
λp(r;{)− r

)2
6 g(r)6 c. (2.2)
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For all r> 0, define,
τ(r) , inf

{
s > 0 : p(Os)6 r

}
. (2.3)

Since p is continuous, p−1
(
[0, r]

)
is closed. Therefore, τ(r) is a stopping time for the

diffusion O. By (2.2) and the stationarity of O, for all r ∈ (0, 1),

g(r)µp(r) = E

[ ∫ g(r)

0

1l
{
p(Ot)6 r

}
dt

]

= E

[ ∫ g(r)

0

1l
{
p(Ot)6 r

}
dt 1l

{
06 τ(r) < g(r)

}]

6 E

[ ∫ c

0

1l
{
p(Ot)6 r

}
dt 1l

{
06 τ(r) < g(r)

}]
, (2.4)

where 1l{· · ·} is the indicator of whatever appears in the brackets. By Lemma 2.3,

P
(
p(Ot)6 r, τ(r) = 0

)
= P

(
p(Ot)6 r

∣∣ p(O0)6 r
)
P
(
τ(r) = 0

)
6µp

(√
1 + e−t/2

1− e−t/2
r

)
P
(
τ(r) = 0

)
.

Therefore,

E

[ ∫ c

0

1l
{
p(Ot)6 r

}
dt 1l

{
τ(r) = 0

}]
6 P

(
τ(r) = 0

) ∫ c

0

µp

(√
1 + e−t/2

1− e−t/2
r

)
dt. (2.5)

On the other hand, applying the strong Markov property at time τ(r), we arrive at the
following:

E

[ ∫ c

0

1l
{
p(Ot)6 r

}
dt 1l

{
0 < τ(r) < g(r)

}]

= E

[
1l
{
0 < τ(r) < g(r)

}∫ c−τ(r)

0

1l
{
p(Ot)6 r

}
dt ◦ θ(τ(r))]

6P
(
0 < τ(r) < g(r)

)
sup

f
E

[ ∫ c

0

1l
{
p(Ot)6 r

}
dt

∣∣∣∣ O0 = f

]
,

where θ is the shift functional on the paths of the diffusion O and the supremum is over
all f ∈ B with p(f)6 r. By Lemma 2.3,

E

[ ∫ c

0

1l
{
p(Ot)6 r

}
dt 1l

{
0 < τ(r) < g(r)

}]

6P
(
0 < τ(r) < g(r)

) · ∫ c

0

µp

(√
1 + e−t/2

1− e−t/2
r

)
dt.
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Together with (2.5) and (2.4), this proves the following:

g(r)µp(r)6P
(

inf
06 t6 g(r)

p(Ot)6 r
) · ∫ c

0

µp

(√
1 + e−t/2

1− e−t/2
r

)
dt.

By Lemma 2.4, for all r > 0 small, the right hand side is bounded above by a constant
multiple of r2P

(
inf06 t6 g(r) p(Ot)6 r

)
. In other words, we have proven the following:

lim inf
r→0+

r2

g(r)µp(r)
P
(

inf
06 t6 g(r)

p(Ot)6 r
)
> 0. (2.6)

This constitutes the first half of Theorem 2.1. We have also verified Remark 2.1.1(c).
The second half proceeds along different lines.

Recall the definition of λp from (1.3). Since µp is a decreasing function, one easily
deduces that

(i) r 7→ λp(r;{) is decreasing;
(ii) λp(r;{)> r.

Fix t> 0. By Lemma 2.2 (in its notation), using the properties of p,

p(Ot)6
√

1− e−tp(Wt) + e−t/2p(O0).

(This should be compared to the proof of Lemma 2.3). Observe that conditional on{
p(O0)6 r

}
,
{
p(Wt) < 1

}
implies the following:

p(Ot)6
√

1− e−t + r6 t1/2 + r.

Therefore, for all t6
(
λp(r;{)− r

)2,

inf
f
P
(
p(Ot)6λp(r;{)

∣∣ O0 = f
)
>P

(
p(Wt)6 1

)
= µp(1) > 0, (2.7)

where the infimum is taken over all f ∈ B which satisfy p(f)6 r. The rest of the proof
follows from stationarity and the strong Markov property at time τ(r), viz.,

3g(r)µp

(
λp(r;{)

)
= E

[ ∫ 3g(r)

0

1l
{
p(Ot)6λp(r;{)

}
dt

]

> E

[ ∫ 3g(r)

τ(r)

1l
{
p(Ot)6λp(r;{)

}
dt

∣∣∣∣ 06 τ(r)6 g(r)
]
· P(

06 τ(r)6 g(r)
)

> E

[ ∫ 2g(r)

0

1l
{
p(Ot)6λp(r;{)

}
dt ◦ θ(τ(r)) ∣∣∣∣ 06 τ(r)6 g(r)

]
· P(

06 τ(r)6 g(r)
)

> inf
f
E

[ ∫ g(r)

0

1l
{
p(Ot)6λp(r;{)

}
dt

∣∣∣∣ O0 = f

]
· P(

06 τ(r)6 g(r)
)
,
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where the infimum is taken over all f ∈ B such that p(f)6 r and θ is as before the shift
on the paths of O. By (2.2),

3g(r)µp

(
λp(r;{)

)
> inf

f
E

[ ∫ c−1(λp(r;{)−r)2

0

1l
{
p(Ot)6 r

}
dt

∣∣∣∣ O0 = f

]
P
(
06 τ(r)6 g(r)

)
,

where the infimum is taken over all f ∈ B with p(f)6 r. Since c > 1, (2.7) implies

3g(r)µp

(
λp(r;{)

)
>µp(1) c−1

(
λp(r;{)− r

)2
P
(
06 τ(r)6 g(r)

)
= µp(1) c−1

(
λp(r;{)− r

)2
P
(

inf
06 t6 g(r)

p(Ot)6 r
)
.

By Assumption 1.1(b), µp(1) > 0. By (1.3), we have proven the following:

P
(

inf
06 t6 g(r)

p(Ot)6 r
)
6

3c{
µp(1)

µp(r)g(r)(
λp(r;{)− r

)2 .

Together with (2.6), this proves Theorem 2.1. ♦

3. AN APPLICATION

Recall the µ–Brownian motion B = (Bt; t> 0) from Introduction. The goal of this
section is to provide some estimates of the escape rates of B when p is transient. In light
of Remark 1.1.1, it is not too difficult to convince oneself that under Assumption 1.1,
t 7→ p(Bt) is transient in that P–a.s., limt→∞ p(Bt) = ∞. It is the goal of this section
to estimate the rate at which this blow-up occurs. We improve results of Erickson [6]
concerning the following class of problems.

Assumption 3.1. We assume the existence of constants r0 > 0, K0 > 1, 0 < α6 2,
χ > 0 and β ∈ R such that for all 0 < r6 r0,

K−1
0 rβ exp

(
− χ

rα

)
6µp(r)6K0r

β exp
(
− χ

rα

)
. (3.1)

See Erickson [6], Li [12] and their combined references for many examples of when
this assumption is valid.

Note that under Assumption 3.1, B is forced to be infinite-dimensional; see Remark
1.1.1. Moreover, Assumption 3.1 implies Assumption 1.1.

Our result on escape rates is the following:
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Theorem 3.2. Suppose Assumption 3.1 is satisfied. Consider a measurable nonincreas-
ing function ψ : R+ 7→ R+ . Let

I1(ψ) ,
∫ ∞

1

ψβ−α(t) exp
(− χ

ψα(t)
)dt
t
,

I2(ψ) ,
∫ ∞

1

ψβ−2α−2(t) exp
(− χ

ψα(t)
)dt
t
.

Then

I1(ψ) = ∞ =⇒ P(p(Bt)> t1/2ψ(t), eventually for all t large) = 0, (3.2)
I2(ψ) <∞ =⇒ P(p(Bt)> t1/2ψ(t), eventually for all t large) = 1. (3.3)

Proof of (3.2). Assume I1(ψ) = ∞. Define the Erdős sequence, tk , exp(k/ log k). For
simplicity, write ψk , ψ(tk). Furthermore, define the measurable event,

Ek , {p(Btk
)6 t1/2

k ψk}.
According to an argument of Erdős [5], there exists a constant C > 1 such that,

C−1 (log log tk)−1/α6ψk 6C (log log tk)−1/α. (3.4)

By Brownian scaling,
P(Ek) = µp(ψk).

Since I1(ψ) = ∞, (3.4) and Assumption 3.1 together yield:∑
k

P(Ek) = ∞.

Suppose we could show

lim sup
N→∞

∑N
k=1

∑N−k
n=1 P(Ek ∩ En+k)(∑N
k=1 P(Ek)

)2 <∞, (3.5)

then, according to Kochen and Stone [10], P(Ek, infinitely often) > 0. The latter is a
tail event. By the classical 0–1 law of Kolmogorov, Bt has a trivial σ–field. Therefore,
(3.5) implies P(Ek, i.o.) = 1, which yields (3.2).

It remains to prove (3.5). By Anderson’s inequality (cf. [2]) and elementary Brow-
nian properties (cf. Introduction),

P(Ek ∩ En+k) = P(Ek ; p(Btn+k
−Btk

+Btk
)6 t1/2

n+kψn+k)

6P(Ek)P(p(Btn+k
−Btk

)6 t1/2
n+kψn+k)

= P(Ek)µp

(√ tn+k

tn+k − tk
ψn+k

)
.



ASYMP. METHODS IN PROB. STAT. (1998) B. Szyszkowicz (Editor) Elsevier Science B.V.

From here, we can apply a classical argument going back at least to Erdős [5], and
only provide its outline. Let Ci (16 i6 9) denote some unimportant constants. When
n6 log k,

√
tn+k/(tn+k − tk)ψn+k 6C1 n

−1/2, which implies

P(Ek ∩En+k)6C2 P(Ek) exp(−C3 n
α/2). (3.6)

For log k < n < (log k)2, we have tn+k/(tn+k − tk)6C4, which yields

P(Ek ∩En+k)6C5 P(Ek) exp(−C6 log k)6C5P(Ek) exp(−C6

√
n). (3.7)

Finally, if n>(log k)2, then tn+k/(tn+k − tk)6 1 + C7 (log(n+ k))/n. Hence

P(Ek ∩En+k)6C8 P(Ek)ψβ
n+k exp

(− χ

ψα
n+k

)
6C9 P(Ek)P(En+k). (3.8)

Combining (3.6)–(3.8) gives (3.5). ♦

To prove the other part of Theorem 3.2, we need a preliminary result.

Lemma 3.3. Under Assumption 3.1, there exist { > 1, r1 > 0 and K1 > 1 such that
for all 0 < r6 r1,

r +K−1
1 r1+α6 λp(r;{)6 r +K1r

1+α.

Proof. We will prove the upper bound for λp(r;{). The lower bound follows from
similar arguments. Fix any γ > 0. Two applications of (3.1) show that for all 0 < r6 r0
so small that r + γr1+α6 r0,

µp(r + γr1+α)6K0(r + γr1+α)β exp
(
− χ

(r + γr1+α)α

)
6K2

0

[
(1 + γrα

0 )β ∨ 1
]
µp(r)Q

where,
Q , exp

( χ

rα
− χ

(r + γr1+α)α

)
.

A little calculus shows that whenever α > 0, for all 0 < r6 r0,

1− 1
(1 + γrα)α

6
(
(1 + γr0)α−1 ∨ 1

)
αγrα.

Hence,
Q6 exp

(
χαγ

(
1 ∨ (1 + γr0)α−1

))
.
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Fix any { > K2
0 . Note that for all γ > 0 small,

K2
0

[
(1 + γrα

0 )β ∨ 1
]
exp

(
χαγ[1 ∨ (1 + γr0)α−1]

)
6{.

Thus, we have shown that µp(r + γr1+α)6{µp(r). That is, for any { > K2
0 and all

γ > 0 small enough, λp(r;{)> r + γr1+α. ♦

Corollary 3.4. Suppose that Assumption 3.1 holds. For K > 0, there exists a constant
c > 1 such that for all r ∈ (0, 1/c),

c−1 rβ+α−2 exp
(
− χ

rα

)
6P

(
p(Bt)6 t1/2r, for some t ∈ [1, 1 +K rα]

)
6 c rβ−α−2 exp

(
− χ

rα

)
.

We are now ready to complete the proof of Theorem 3.2.

Proof of (3.3). Assume I2(ψ) <∞. Let tk and ψk be as in the proof of (3.2). Define,

Uk , P
(
p(Bt)6 t

1/2
k+1ψk, for some t ∈ [tk, tk+1]

)
.

By Brownian scaling,

Uk6P
(
p(Bt)6 t1/2ϕk, for some t ∈ [1, tk+1/tk]

)
,

where ϕk , (tk+1/tk)1/2ψk. By (3.4), tk+1/tk = 1 + O(ϕα
k ). Therefore, Corollary 3.4

shows that

Uk 6C9 ϕ
β−α−2
k exp

(
− χ

ϕα
k

)
6C10 ψ

β−α−2
k exp

(
− χ

ψα
k

)
,

where C9 and C10 are two constants. Since I2(ψ) <∞, this yields
∑

k Uk <∞. By the
Borel–Cantelli lemma, for all k0 large enough (random but finite P–a.s.), the following
holds P–a.s. for all k> k0,

inf
tk 6 t6 tk+1

p(Bt)> t
1/2
k+1ψk.

Take any k> k0 and t ∈ [tk, tk+1]. Then, by monotonicity,

p(Bt)> t1/2ψ(t),

as desired. ♦
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3. E. Csáki and M. Csörgő (1992), Inequalities for increments of stochastic processes
and moduli of continuity, Ann. Prob. 20, 1031–1052.
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13. A.S. Üstünel (1995), An Introduction to Analysis on Wiener Space, Springer,
Berlin.

14. M. Weber (1983), Polar sets of some Gaussian processes, Probability in Banach
Spaces IV, Lecture Notes in Mathematics 990, Springer, Berlin, 204–214.


