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Mahalanobis distance
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Abstract—In this paper, the expectation-maximization (EM)
algorithm for Gaussian mixture modeling is improved via three
statistical tests. The first test is a multivariate normality criterion
based on the Mahalanobis distance of a sample measurement
vector from a certain Gaussian component center. The first test
is used in order to derive a decision whether to split a component
into another two or not. The second test is a central tendency
criterion based on the observation that multivariate kurtosis
becomes large if the component to be split is a mixture of two
or more underlying Gaussian sources with common centers. If
the common center hypothesis is true, the component is split
into two new components and their centers are initialized by the
center of the (old) component candidate for splitting. Otherwise,
the splitting is accomplished by a discriminant derived by the
third test. This test is based on marginal cumulative distribution
functions. Experimental results are presented against seven other
expectation-maximization variants both on artificially generated
data-sets and real ones. The experimental results demonstrate
that the proposed EM variant has an increased capability to find
the underlying model, while maintaining a low execution time.

Index Terms—Expectation maximization algorithm (EM),
Gaussian mixture models (GMM), normality criterion, distribu-
tion of Mahalanobis distance, multivariate kurtosis.

I. I NTRODUCTION

T HE Expectation-Maximization algorithm (EM) is widely
used to find the parameters of a mixture of Gaussian

probability density functions (pdfs) or briefly Gaussian com-
ponents that fits the sample measurement vectors in maximum
likelihood sense [1].

However, the EM algorithm is not limited only to find
the parameters of a density mixture model. It can be used
to 1) detect samples that deviate from a priori known dis-
tributions [1], [2]; 2) find the weight parameters in there-
weight least squaresmethod [1]; 3) calculate the parameters
of Hidden Markov Models (HMMs) withBaum-Welchor
forward-backwardalgorithm [3]; 4) select features, i.e. to find
a feature subset that achieves the lowest prediction error [4].

Let X = {xi}
N
i=1 be the observed data, i.e.X is a set of

random vectors (R.Vs.)xi, wherexi belongs to an arbitrary
sample spaceX . Let alsog(X|Ξ) be a certain function ofX
and parametersΞ, which is often called aslikelihood function.
The log-likelihood function, i.e. the natural logarithm ofg(X |
Ξ) is preferred instead ofg(X | Ξ) in order to avoid over- or
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underflow errors, i.e.

Λ1(X|Ξ) = ln

N∏

i=1

f(xi|Ξ)

︸ ︷︷ ︸

g(X|Ξ)

=

N∑

i=1

ln f(xi | Ξ), (1)

where f(x|Ξ) is the pdf of x. The target is to find the
optimal parameter vectorΞ, denoted asΞ∗, so thatΛ1(X|Ξ)
is maximized. Since a closed solution forΞ

∗ can not be found
in general, the EM algorithm is used to iteratively findΞ by
applying two steps, the so-called expectation step (E-step) and
the maximization step (M-Step).

By introducingunobserved variableshq(xi) to denote the
probability of a sample measurement vectorxi belongs to the
qth component,q = 1, 2, . . . , Q, the conditional expectation
of the log-likelihood function is defined as

Λ2(X|Ξ) =

N∑

i=1

Q
∑

q=1

hq(xi) ln
[
πqfq(xi | Ξq)

]
, (2)

where fq(xi | Ξq) is the pdf of theqth component with
parametersΞq ⊂ Ξ, and πq ∈ [0, 1] are the priors of each
density function subject to

∑Q
q=1 πq = 1. The EM algorithm

can be considered as a “soft” version of thek-means clustering
[5]. In k-means, each sample measurement vector is assigned
to a cluster with probability either 0 or 1, whereas in EM,
the probability hq(xi) that a sample measurement vector
xi ∈ X belongs to theqth Gaussian component lies in[0, 1].
In the special case where each density functionfq(x|Ξ) is a
Gaussian one denoted as

p(x | µq,Sq) = (2π)−D/2(||Sq||)
−0.5·

exp{−
1

2
(x− µq)

T
S
−1
q (x− µq)} (3)

where||·|| is the determinant of the matrix inside the delimiters
and D is the dimension cardinality ofx, the pdf ofx is the
Gaussian mixture model (GMM)

p(xi | Ξ) =

Q
∑

q=1

πq p(xi | µq,Sq). (4)

The following parameters should be estimated for each com-
ponent: the priorπr

q , the sample mean vectorµr
q, and the

sample dispersion matrixSr
q, wherer denotes therth iteration

of the EM algorithm. The parameters of the GMM can be
collected to a parameter vectorΞr = {πr

q ,µr
q,S

r
q}

Q
q=1. The

initial parameter vectorΞ1 is randomly chosen or selected
by the methods analyzed in Section I-C. Next, the parameters
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πr
q ,µr

q,S
r
q for r ≥ 2 are re-estimated using the E- and M-

Steps [1]:
E-step: The probability that each vectorxi belongs toqth
component is calculated by

hr
q(xi) =

πr−1
q p(xi | µ

r−1
q ,Sr−1

q )
Q∑

q′=1

πr−1
q′ p(xi | µ

r−1
q′ ,Sr−1

q′ )

, (5)

M-step: The prior, the sample mean vector, and the sample
dispersion matrix of each component are recalculated by using
hr

q(xi):

πr
q =

1

N

N∑

i=1

hr
q(xi), (6)

µ
r
q =

N∑

i=1

hr
q(xi) xi

N∑

j=1

hr
q (xj)

, (7)

S
r
q =

N∑

i=1

hr
q(xi)(xi − µ

r
q)(xi − µ

r
q)

T

N∑

j=1

hr
q(xj)

. (8)

The E- and M-steps alternate until the conditional expectation
of the log-likelihood function of the GMM defined as

L(X | Ξr) =

N∑

i=1

Q
∑

q=1

hr
q(xi) ln

(

πr
q p(xi | µ

r
q,S

r
q)

)

(9)

reaches a local maximum.
For convenience, the EM algorithm for Gaussian mixture

modeling is abbreviated as EM algorithm. However, EM is
not a panacea, it suffers from two drawbacks: a) the number
of Gaussian componentsQ is usually set a priori, and b) the
initialization of the parameters of the Gaussian components
Ξ

1 affects the final result. Therefore, EM converges to a
local optimum of the parameter space. Several techniques
have been used in order to escape from local optima. These
techniques can be divided into three levels according to the
part of the EM algorithm are applied to. These levels are
shown in Figure 1. In the 3rd level, techniques for estimating
the number of componentsQ can be found. In the 2nd level,
there are techniques that use other EM steps than the standard
EM steps in order to escape from local optima. Finally, in
level 1, techniques that initialize the Gaussian component
parameters are met. Examples of the techniques from each
level will be described next. The examples will be used for
the comparison between the state-of-the-art methods against
the proposed method in Section V-B.

A. Estimation of the number of componentsQ (3rd level)

The number of componentsQ can be found by parsimonious
criteria or by split-merge operations applied to components.

Parsimonious criteriarelate the log-likelihood function of
the model with the number of free parameters in order to pre-
vent an infinite number of mixture components. The forward

3rd level: Estimation of the number of componentsQ

• Forward or backward logic to find the minimum of parsi-
monious criteria (AIC [6], MDL/BIC [7], ICL [8], MDL2

[9], NEC [10]);
• Number of components found with split-merge criteria

(Kullback-Leibler distance [11], regression ofhq(xi) vari-
ables [12]);

2nd level: Alternative EM steps
• Deterministic Annealing EM (DAEM) [13];
• Component-wise EM for Mixtures (CEMM) [14];

1st level: Initialization of component variables:
• k-means [15];
• Random;
• Partially random [16];
• Re-sampling [17].

Fig. 1. Techniques to avoid local maxima of the log-likelihoodfunction in
EM algorithm.

logic starts from one component in the GMM and increases
the number of components by one whenever EM convergences,
whereas the backward logic starts from many components and
removes one component after the convergence of EM [9]. The
initial number of componentsQ in the backward logic can be
found as follows. The probability that a componentq is not
represented in the random initialization is(1−πq)

Q. So, if the
desirable probability of successful initialization is at least1−ǫ,
whereǫ is a small positive number, then the initial number of
componentsQ should be [9]:

Q =
log ǫ

log(1− πmin)
, where πmin =

Q

min
q=1
{πq}. (10)

The drawback in (10) is thatπmin should be known a priori.
Parsimonious criteria are outlined in Table I, whereν is the
dimensionality ofΞ. L

∗(X | Ξ) is given by (9), whereas for
a certainxi the greatesthq(xi) attains the value 1, and the
remaininghq(xi) tend to zero.

Split-Merge operationsare criteria that are used to decide
whether a component should be split or a merger of two
components should occur. A split criterion could be based on
the multivariate (MV) kurtosis, because a low or a high MV
kurtosis value is an indication that a component should be split
[21], [22]. However, the confidence intervals for multivariate
kurtosis are accurate only asymptotically, i.e. when the number
of sample measurement vectors tends to infinity [23]. A merge
criterion of two componentsq, q′ is the inner product [12]

Jmerge(q, q
′) = [hq(x1), hq(x2), . . . , hq(xN )]T ·

[hq′(x1), hq′(x2), . . . , hq′(xN )]. (11)

However, this criterion may not yield a merger of two non-
Gaussian components to a single Gaussian one. It is recom-
mended only for components with similar parameters, and in
addition, the confidence intervals for this criterion have not
been found yet. Sequences of split-merge operations can cause
oscillations around a number of components, a fact which can
increase the execution time.

The goal of this paper is to present a split technique
that does not require any component merging. The proposed
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TABLE I
PARSIMONIOUS CRITERIA USED TO PENALIZE THE LOG-LIKELIHOOD FUNCTION

Name Penalty function to minimize Reference
Akaike Information criterion (AIC) −L(X | Ξ) + 2ν [6], [18]
Minimum description length or Bayesian Informa-
tion Criterion (MDL/BIC)

−L(X | Ξ) + ν
2

ln(N) [19], [9], [20]

Integrated Completed likelihood −L∗(X | Ξ) + ν
2

ln(N) [19]

Minimum Description Length variant (MDL2) −L(X | Ξ) + Q

2
ln N

12
+ ν+Q

2
+ ν

2Q

Q∑

q=1
ln

Nπq

12
[9]

Negative Entropy Criterion (NEC) E(X|Ξ)
L(X|Ξ)−L(X|Ξ,Q=1)

, E(X|Ξ) = −
Q∑

q=1

N∑

n=1
hq(xi) ln hq(xi) [10]

splitting criterion can be considered simply as a transformation
of aD-dimensional space onto an one dimensional space. Sub-
sequently, a univariate distribution test in the one dimensional
space is derived. The transformation from many dimensions
to one dimension is accomplished through the Mahalanobis
distance of each sample measurement vector from the mean
vector of a certain Gaussian component, which will be called
hereafter as Mahalanobis distance. The component where
each sample measurement vector belongs to is found by an
assignment that uses the unobserved variables. Such a criterion
has been extensively used for assessing multivariate normality
[24], [25], but it has not been explored yet as a plug-in
criterion for splitting non-Gaussian components in EM. The
Mahalanobis distance can be treated as a random variable (r.v.)
that follows a certain beta pdf as it is proven in a lemma
in [26]. Since the proof of this lemma is rare to find, it is
rather complex, because it contains a series of theorems, and
it can be easily confused with other proofs for several types
of Mahalanobis distances, we revise a great part of the proof
in the Appendix.

B. Alternative EM steps (2nd level)

Two methods that use different E- and M-Steps than the
standard ones in order to escape from local optima have been
reported, namely the deterministic annealing EM (DAEM)
[13] and the component-wise EM (CEMM) [14]. In DAEM
the E-Step is modified by a parameter1/β ∈ [1,∞), called
temperature. Specifically, the unobservable variableshq(xi)
are found by

hq(xi) =
[πqfq(x | Ξq)]

β

Q∑

q′=1

[πq′fq′(x | Ξq′)]β
. (12)

As 1/β increases,hq(xi)→ 1/Q, i.e. a sample measurement
vector is more likely to belong to all components. Therefore,
component parameters become similar and the chance to
escape from a local optimum in the parameter space is high. A
usual strategy is to setβ = 0.9 until convergence of DAEM, to
increaseβ by 0.05, i.e.β ← β + 0.05, and re-apply DAEM.
The procedure stops whenβ = 1, where DAEM becomes
actually the standard EM.

In the CEMM, the M-Step is altered as follows. In the
rth iteration of EM, only the component indexed byq =
mod (r,Q) + 1 is updated. This results to an M-Step that
maximizes the log-likelihood function with a slower rate than

that of the standard M-Step and it follows a longer path in
the parameter space in order to converge to the final solution,
which might yield better estimates ofΞ [14].

C. Initialization methods (1st level)

Several initialization methods for the parameters of each
component can be found in the literature. Inrandom initial-
ization for GMMs, the component priors are equal to1/Q, the
centers are randomly chosen sample measurement vectors, and
the covariance matrices of the components denoted asSq are
initialized as [9]

Sq =
1

10D
trace(S) (13)

whereS is the covariance matrix of the entireX. Initialization
through k-means algorithm is also widely used [15], [13].
k-means, however, is itself sensitive to local optima of the
parameter space and might yield a biased initilization. In
partial randominitialization, a component is randomly added
in the GMM after convergence of the EM algorithm, and the
parameters of the new component as well as the priors of the
old components are refined with the EM algorithm. During
this procedure the old component centers and old covariance
matrices are kept fixed [16].Re-sampling techniquesuse
random [16], bootstrap [27] or cross-validation estimates[17]
of the likelihood function by sampling the initial sample set
in order to find the best initialization for EM, which, however,
may not yield the global optimum ofΞ.

The contribution of this paper in the initialization level is
in the initialization of two new components after splittingan
old one. Splitting is accomplished either by a discriminant
or by initializing the centers of the new components by
setting them equal to the center of the old component. The
MV kurtosis is used as a switch for deciding among the
aforementioned split methods. A large multivariate kurtosis
value of sample measurement vectors that belong to the old
component indicates that this cluster of sample measurement
vectors is an outcome of a leptokurtic distribution. Since we
assume that only Gaussians exist in the mixture, the leptokurtic
distribution can result when two or more Gaussian sources
with common centers are present. Otherwise, if kurtosis value
is small, then the cluster is an outcome of a platykurtic
distribution. Platykurtic distributions could be obtained then,
if two or more Gaussian sources with separate centers exist.
Therefore, the old cluster is split by a discriminant. In the
following, the outline of this paper is presented.
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D. Outline

The outline of this paper is as follows. In Section II, the 5
steps of the proposed algorithm are described. The second
and the third steps are detailed in separate sections. The
second step of the proposed algorithm uses amultivariate
normality criterionbased on the Mahalanobis distance of each
sample measurement vector from the component center to
decide if a component should be split, as it is detailed in
Section III. The third step of the proposed algorithm employs a
central tendency criterion based on the expected MV kurtosis
of the Gaussian density to initialize the centers of the two
components during splitting, which is described in SectionIV.
Experimental results on artificially generated and real data-sets
as well as comparisons against other EM variants are given in
Section V. Finally, conclusions are drawn in Section VI.

II. A LGORITHM DESCRIPTION

The general idea of the proposed algorithm is to begin with
a single cluster, split the cluster into two clusters, splitthe two
clusters into three clusters and so on, until every cluster is the
outcome of a single multivariate Gaussian source. The cluster
to be split is found via a multivariate normality test based on
the Mahalanobis distance of each sample measurement vector
from the component center it belongs to. The cluster with the
worst fit with respect to the Mahalanobis distance distribution
is split into two clusters that will be called as new clusters
hereafter. If the MV kurtosis of the old cluster is significantly
large, the centers of the new clusters are set both equal to the
old cluster center initially, otherwise the old cluster is split
with a discriminant perpendicular to an axis.

Let the set ofD-dimensional sample measurement vectors
X be modeled by a mixture of Gaussian multivariate densities.
That is, X is considered as the union ofQ clustersLq, q =
1, 2, . . . , Q, and each clusterLq is a realization of Gaussian
pdf Gq. The goal is to find{Gq}

Q
q=1. For readers’ convenience,

a flow chart of the algorithm is sketched in Figure 2. Let us
assume the null hypothesisH0 = {Lq ∼ Gq}

Q
q=1, i.e. X is

modeled byQ componentsGq where each component fits the
clusterLq.

Initially, we make the hypothesis thatH0 = L1 ∼ G1,
whereL1 = X, i.e. L1 is the outcome of a single Gaussian
sourceG1. The parameters ofG1 are the the sample mean
vector x and sample dispersion matrixS of X. Let DL1

be
the criterion that measures the normality of clusterL1. DL1

is the number of sample measurement vectors ofL1 that are
outside a proper confidence interval for the distribution ofthe
Mahalanobis distance.DL1

will be analytically described in
Section III. For the time being, it is sufficient to test whether
DL1

> (1 − λ)|L1|, where |L1| is the cardinality of sample
measurement vectors that belong toL1, in order to reject the
hypothesis thatL1 is the outcome of a single Gaussian source
at λ=99% confidence level.

If DL1
> (1 − λ)|L1|, the hypothesisH0 = L1 ∼ G1

is rejected. Accordingly,L1 = X should be split intoL1

andL2 clusters so thatX = ∪2
q=1Lq. We proceed to testing

the hypothesisH0 = {Lq ∼ Gq}
2
q=1. The general hypothesis

H0 = {Lq ∼ Gq}
Q
q=1 with Q > 1, is described next.

A) Assignment. Each sample measurement vector is as-
signed to a clusterL1, . . . ,LQ as follows. Let us assume that
hq(xi) is the probability that a sample measurement vector
belongs to componentGq. hq(xi) are obtained by the EM algo-
rithm after its convergence. Realizations̺i, i = 1, 2, . . . , N of
a r.v. uniform in[0, 1] are created. For everyi = 1, 2, . . . , N ,

if ̺i ∈
[ q−1

∑

q′=1

hq′(xi),

q
∑

q′=1

hq′(xi)
]

, thenxi ∈ Lq. (14)

This assignment results to Gaussian distributed clusters,even
if their components overlap. An example of 2 components is
depicted in Figures 3(a) and 3(b).

B) Find the cluster to be split. Let q∗ denote the index
of the cluster to be split, whereq∗ ∈ {1, 2, . . . , Q}. Formally
Lq∗ is the cluster that satisfies

q∗ = argmax
q=1,2,...,Q

[

DLq
− (1− λ)|Lq|

]

. (15)

If DLq
< (1 − λ)|Lq|, ∀q = 1, 2, . . . , Q, the algorithm stops

because no cluster deviates from the MV normal distribution.
Only one Gaussian is chosen to be split, because otherwise the
algorithm starts splitting clusters that are modeled well by MV
Gaussian densities. Such an example forQ = 2 components,
namelyG1 andG2, is depicted in Figures 4(a), 4(b), and 4(c).
An over-splitting case is shown in Figure 4(b), where bothG1

andG2 are split. IfG2 is only split, as shown in Figure 4(c),
then the correct number of Gaussian components is found.

C) Kurtosis switch: The splitting of Lq∗ into clusters
L′

q∗ and L′
Q′ , with Q′ = Q + 1 is performed either by a

discriminant or by initializing both new component centers
with the old component center. The choice of the splitting
method depends on the value of MV kurtosis for clusterLq∗

denoted asK(Lq∗) [28]. A largeK(Lq∗) value indicates that
Lq∗ is the outcome of a leptokurtic distribution. Since, only
Gaussians exist in the mixture, the leptokurtic distribution
could be the outcome of two or more Gaussian sources with
common centers. An example of high MV kurtosis value
is depicted in Figure 5, whereLq∗ is the outcome of two
Gaussian sources with common centers. Figure 5(b) shows
the initialization of EM, whenLq∗ is split by a discriminant,
whereas in Figure 5(d) the initialization of EM with the centers
of the new components initially set equal to the old center is
presented. From the comparison of the GMMs in Figures 5(c)
and 5(e), it can be inferred that the best GMM is found by
initializing the centers of the new components with the center
of the original component.

Let K0 be the first-order moment of the kurtosis of the MV
Gaussian distribution derived in Section IV. Splitting is done
according to:

if K(Lq∗) > K0, (16)

Da) initializing the centers of the new components with
the old component center:Lq∗ is split into clustersL′

q∗

and L′
Q′ , where Q′ = Q + 1, by initializing µ

′
q∗ ← µq∗

andµ
′
Q′ ← µq∗ . Additionally, the priorsπ′

q∗ andπ′
Q′ of the

new components are both set to one half of the initial a priori
probability of the cluster, i.e.|Lq∗ |

2|X| . The covariance matrices
S
′
q∗ ,S′

Q′ are randomly initialized. A random initialization of
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In : X

Out : {G}Qq=1

A) Assign sample vectors to
clusters by transforming the soft
labels of EM to hard labels

B) Find the cluster to
be split with respect to
MV normality criterion

C) Significantly large
multivariate kurtosis
for clusterq∗ ?

Da) Split q∗ into two
clusters initialized
with the same centers

Db) Split q∗ with
a discriminant

E) Apply the EM
algorithm with
Q′ = Q + 1

No split

q∗
Yes

No

Fig. 2. Steps of the proposed algorithm.
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Fig. 3. a) Two Gaussian densities that overlap when the probability for a sample measurement vectorxi belongs to componentq = 1, 2 is hq(xi); b)
Proposed hard assignment with the help of a random variable, so that clustersL1 andL2 are the outcome of two Gaussians.
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Fig. 4. a) GMM withQ = 2 components whereDL2
− 0.01|L2| > DL1

− 0.01|L1| > 0; b) BothL1 andL2 are split; c) A better initialization for EM
algorithm is obtained whenL2 is split only.

covariance matrices is done by settingS
′
q∗ ,S′

Q′ equal to two
differentD×D diagonal matrices, respectively. The diagonal
elements of each matrix are realizations of the r.v.s, where

s2 2D(|Lq∗ | − 1)

||Sq∗ ||
∼ χ2

|Lq∗ |−1. (17)

The random initialization of the covariance matrix stems from
the theorem stating that marginal variance should follow the
χ2 distribution with |Lq∗ | − 1 degrees of freedom. We used
(17) which produces different covariance matrices insteadof
(13) that results to identical covariance matrices in orderto
avoid creating two new components, which would have the

same covariance matrices on the top of the same centers and
the same a priori probabilities. If the two new components,
created after a split, had the same covariance matrices, then
according to (5)-(8), the component parametersΞ

r+1 would
be equal toΞr, i.e. Ξ would not be optimized. Otherwise, a
Db) discriminant is applied: That is, Lq∗ is split into
clustersL′

q∗ andL′
Q′ , whereQ′ = Q + 1, by a discriminant

hyperplane found with respect to marginal statistics. The
discriminant hyperplane is the value of vectorxi∗ ∈ Lq∗ along
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(c) Convergence
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(d) Initialization
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(e) Convergence

Fig. 5. Example of splitting clusterLq∗ .

axis Xd∗ found by

xi∗d∗ = argmax
d = 1, 2, . . . , D

i = 1, 2, . . . , |Lq∗ |

FXd
(xid)− F̂Xd

(xid), (18)

whereFXd
(xid) is the theoretical marginal Gaussian cumula-

tive distribution function (cdf) with parameters estimated by
the marginal sample mean and variance, andF̂Xd

(xid) is the
empirical marginal cdf onXd-axis calculated from themass
function [29]. The theoretical marginal Gaussian cdf is found
via the error function. The hyperplanexi∗d∗ is perpendicular
to Xd∗ -axis and has the property of dividing a cluster into
two separate clusters. For example, in Figure 6(a),xi∗d∗ is
chosen as valuexi∗ ∈ X onto axis X2, because, as it is
seen from the comparison of Figures 6(b) and 6(c) the highest
distanceFXd

(xid) − F̂Xd
(xid) is observed ford = 2 . After

splittingLq∗ into clustersL′
q∗ andL′

Q′ , their centers, sample
dispersion matrices, and priors are used to initialize the EM
algorithm. By making the initialization as in Figure 6(d),
the EM converges to the most descriptive GMM shown in
Figure 6(e).

E) Apply the EM algorithm. The EM algorithm refines the
GMM model iteratively, with initialΞ

′1 = {π
′1
q ,µ

′1
q ,S

′1
q }

Q′

q=1

set as

π
′1
q =

|L′
q|

N
, q = 1, 2, . . . , Q′, where N = |X|, (19)

µ
′1
q =

1

|L′
q|

∑

xi∈L′

q

xi, and (20)

S
′1
q =

1

|L′
q| − 1

∑

xi∈L′

q

(xi − µ
′1
q )(xi − µ

′1
q )T . (21)

The EM algorithm stops when

|L(x | Ξ
′r+1)− L(X | Ξ

′r)| < 10−5|L(X | Ξ
′r)|. (22)

Obviously (22) is a heuristic method to find the local max-
imum of the log-likelihood function used many times in

literature [9], [16]. It has been employed in the experiments
reported in Section V-B. The absolute values in (22) are
necessary, becauseL(X | Ξ) can be negative, since it involves
the logarithmic operator.

Steps (A) to (E) are repeated with the newly found pa-
rameters, i.e.Lq ← L

′
q, Gq ← G

′
q for q = 1, 2, . . . , Q′, and

Q← Q′. The algorithm stops when no cluster diverges from
the MV Gaussian. The proposed algorithm is summarized in
Figure 7.

III. H YPOTHESISTESTING FORMV NORMALITY WITH

RESPECT TOMAHALANOBIS DISTANCE

A process to establish a hypothesis that a random vector
(R.V.) x = [X1, X2, . . . , XD]T is distributed according to
the multivariate Gaussian distribution is presented. LetX =
{xi}

N
i=1 be a set ofN sample measurement vectorsxi ∈ R

D

of the R.V. x. For example,N sample measurement vectors
of a D-dimensional R.V. are depicted in Figure 8, whereD
is limited to 2. The Mahalanobis distance ofxi ∈ X from the
center ofX is defined as

ri = (xi − x)T
S
−1(xi − x). (23)

The empirical cdf of the r.v.Ri admitting valuesri, denoted
as F̂Ri

(ri), is found via the mass function, i.e. by sorting
{ri}

N
i=1 in ascending order and by lettinĝFRi

(ri) = i/N .
Let FRi

(ri) be the theoretical cdf ofRi given the mean
vector x and the sample dispersion matrixS of X, which is
revised in the Appendix. IfNri

denotes the number of sample
measurement vectors inside theri-equiprobable ellipse, then
it can be inferred thatNri

is a binomial r.v. with parameters
N andFRi

(ri), i.e.

P (Nri
= k) =

(
N

k

)
(
FRi

(ri)
)k(

1− FRi
(ri)

)N−k
, (24)

becauseFRi
(ri) is also the probability of having a sample

measurement vector inside the ellipse with Mahalanobis dis-
tance equal tori.
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Fig. 6. a) Modeling a set of 2D sample measurement vectors, b) comparison between the marginal normal cdf and empirical marginal cdf forX1, c) the
same forX2, d) splitting by a discriminant, and e) GMM after EM convergence.

Input isL1 ← X and initial hypothesis isH0 = L1 ∼ G1. Set number of componentsQ← 1.
- Estimate the MV normality criterionDL1 according to algorithm summarized in Figure 9.
- If DL1 < (1− λ)|L1| stop, else splitL1 according to steps (C-D).

A) Assign sample sample measurement vectors to clusters
- Create realizations̺i, i = 1, 2, . . . , N of a r.v. uniform in[0, 1] and apply (14).

B) Test whetherH0 = {Lq ∼ Gq}
Q
q=1.

- Find q∗ = argmax
q=1,2,...,Q

[
DLq − (1− λ)|Lq|

]
.

- If DLq∗
< (1− λ)|Lq∗ | stop, else splitLq∗ according to steps (C-D).

C-D) Split Lq∗ into L′
q∗ andL′

Q′ , whereQ′ ← Q + 1.
C) Find K(Lq∗) from (33), andK0 from (35).

Da) If K(Lq∗) > K0, then initializeµ
′
q∗ ← µq∗ andµ

′
Q′ ← µq∗ . Covariance matrices of new componentsS

′
q∗ ,S′

Q′ are randomly

initialized according to (17). Also setπ′
q∗ ←

|Lq∗ |

2|X|
andπ′

Q′ ←
|Lq∗ |

2|X|
.

Db) Else if K(Lq∗) < K0, split Lq∗ into L′
q∗ andL′

Q′ by the discriminant found with (18).

-The remaining clusters remain intact, i.e.L′
q ← Lq for q = 1, 2, . . . , q∗ − 1, q∗ + 1, . . . , Q.

E) Initialize EM with {L′
q}

Q′

q=1, and repeat E- and M-Steps until convergence according to (22).

- Refine GMM by settingLq ← L
′
q, Gq ← G

′
q, for q = 1, 2, . . . , Q′, andQ← Q′ and go to step (A).

Fig. 7. Proposed clustering algorithm based on EM.

Let kl
i;λ ∈ [0, N ] be the low confidence limit ofNri

at 100λ% confidence level. Letkh
i;λ ∈ [0, N ] be the high

confidence limit ofNri
for i = 1, 2, . . . , N . The confidence

limits should satisfy

N∑

k=kh
i;λ

(
N

k

)
(
FRi

(ri)
)k(

1− FRi
(ri)

)N−k
=

kl
i;λ∑

k=0

(
N

k

)
(
FRi

(ri)
)k(

1− FRi
(ri)

)N−k
=

1− λ

2
, (25)

whereλ ∈ {0.90, 0.95, 0.99} in most cases [29]. Starting with
the results in [29], we revise the algorithm to find the con-
fidence interval(kl

i;λ, kh
i;λ) for a binomial r.v., subsequently.

The novelty in this section is the derivation of(kl
i;λ, kh

i;λ),
which is the confidence interval for the number of sample
measurement vectors inside the ellipse defined byri at 100λ%
level of confidence.

First, if N is large enough andFRi
(ri) is neither near 0

nor near 1, i.e.,

NFRi
(ri)(1− FRi

(ri))≫ 1, (26)
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Fig. 8. ri defines an ellipse that separates the sample set into two populations.

according to the DeMoivre-Laplace theorem the binomial dis-
tribution can be approximated by a Gaussian distribution with
meanNFRi

(ri) and varianceNFRi
(ri)(1−FRi

(ri)) [29]. A
typical value for this assumption isNFRi

(ri)(1−FRi
(ri)) >

25 [30]. So,

(kl
i;λ, kh

i;λ) =
(

[NFRi
(ri)− zλ

√

2NFRi
(ri)(1− FRi

(ri))],

[NFRi
(ri) + zλ

√

2NFRi
(ri)(1− FRi

(ri))]
)

, (27)

where [ ] denotes the closest integer to the number inside
delimiters, andzλ equals to 1.16, 1.39, 1.82, forλ =
0.9, 0.95, 0.99, respectively.

Second, if (26) is violated, then the confidence interval
(kl

i;λ, kh
i;λ) is estimated by

kl
i;λ = argmin

k1=0,1,...,N

∣
∣
∣

k1∑

k=0

(
N

k

)
(
FRi

(ri)
)k(

1− FRi
(ri)

)N−k

−
1− λ

2

∣
∣
∣, (28)

kh
i;λ = argmin

k2=N,...,1,0

∣
∣
∣

N∑

k=k2

(
N

k

)
(
FRi

(ri)
)k(

1− FRi
(ri)

)N−k

−
1− λ

2

∣
∣
∣. (29)

The hypothesis test should validate if

Nri
∈ (kl

i;λ, kh
i;λ) ⇒

Nri

N
∈

(kl
i;λ

N
,
kh

i;λ

N

)

⇒

F̂Ri
(ri) ∈

(kl
i;λ

N
,
kh

i;λ

N

)

, (30)

∀ i = 1, 2, . . . , N . So we formulate the following null
hypothesis

H0 = X ∼ G: The hypothesisX stems fromG is accepted at
100λ% confidence level if

F̂Ri
(ri) ∈ (

kl
i;λ

N ,
kh

i;λ

N ) for at leastλ|X| out of |X| times.

For example, a set of sample measurement vectorsX =
{(xi1, xi2)

T }200i=1 that stems from a mixture of two Gaussians
is artificially generated and plotted in Figure 10. Let one
Gaussian be fitted ontoX. The ellipse corresponds tor = 1.2.
Let us assume thatri are sorted in ascending order. The MV
test is applied to test null hypothesisH0 = X ∼ G. In Figure
11, the empirical cdf ofri, i.e. F̂Ri

(ri) = i/N , is plotted
and compared against its confidence intervals estimated from
(27)-(29). F̂Ri

(ri) is significantly lower than the theoretical

oneFRi
(ri), whenr < 1.2. That is, less sample measurement

vectors than expected are inside the corresponding ellipse. The
MV normality criterion valueDX counts how many times

F̂Ri
(ri) falls outside(

kl
i;λ

N ,
kh

i;λ

N ), i.e.

DX =
∑

F̂Ri
(ri)−

kh
i;λ
N

>0 or
kl

i;λ
N

−F̂Ri
(ri)<0

1. (31)

If DX > (1 − λ)N , thenH0 = X ∼ G is rejected at100λ%
significance level. For example, ifλ = 0.95 and N = 100,
DX should be greater than 5 in order to rejectH0 = X ∼ G.

The value ofλ is chosen according to the value ofN due
to quantization, i.e. sinceDX ∈ {0, 1, 2, . . . , N} ⇒ DX/N ∈
{0, 1/N, 2/N, . . . , 1}, so λ ∈ {0, 1/N, 2/N, . . . , 1}. If N is
small (e.g. ifN = 20), thenλ ∈ {0, 0.05, 0.1, . . . , 1}, soλ can
not be 0.99. In order to avoid such discrepancies, we propose

λ =







0.99 if N ≥ 100,

0.95 if 20 ≤ N < 100,

0.9 if 10 ≤ N < 20.

(32)

If N < 10, X is not split, because according to (32) the sig-
nificance levelλ should be below 0.9. The proposed algorithm
for testing whether a set of measurement vectors stems from
a single multivariate Gaussian component is summarized in
Figure 9.

1) Estimateri = (xi − x)T
S
−1(xi − x) for each i =

1, 2, . . . , N ;
2) Sort{ri}

N
i=1 in ascending order, and set̂FRi(ri) = i/N ;

3) Evaluate the confidence intervals(kl
i;λ, kh

i;λ) using (27),
(28), and (29).

4) The hypothesisH0 = X ∼ G that the sample setX stems
from the multivariate GaussianG is rejected at100λ%
confidence level ifDX > (1−λ)N , whereDX andλ are
given by (31) and (32), respectively.

Fig. 9. The MV normality criterion.
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Fig. 10. A set of 2D sample measurement vectors.

The MV kurtosis and the expected MV kurtosis for the
Gaussian case, that are used in the proposed EM algorithm,
will be explained next.

IV. M ULTIVARIATE KURTOSIS TEST

The multivariate (MV) kurtosis of a set of realizationsX =
{xi}

N
i=1 of the D-dimensional R.V.x = [X1, X2, . . . ,XD]T
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Fig. 11. Multivariate normality criterion for the set of sample measurement
vectors shown in Figure 10.

is defined by K. Mardia as [28]

K(X) =
1

N

N∑

i=1

r2
i , (33)

whereri is the Mahalanobis distance estimated by (23).
Multivariate kurtosis is a measure of the peakedness of a

cluster [31]. It is experimentally found that it can be used to
detect if a clusterX is the result of two or more MV Gaussian
sources with common centers. This observation is supported
by the following reasoning: Large kurtosis indicates thatX

stems from a leptokurtic distribution, whereas a low kurtosis
denotes thatX stems from a platykurtic distribution. Since it is
assumed that Gaussian sources only underlie the sample mea-
surement vectors, a leptokurtic distribution happens onlyif two
or more Gaussian densities share a common center, whereas a
platykurtic distribution happens when the distance between the
centers of the underlying Gaussian sources is large. From (33),
it is evident that the domain ofK(X) is (0,∞). Let us assume
that a MV Gaussian density has expected kurtosis (or first-
order moment)K0 and [K0;0.025,K0;0.975] is its confidence
interval at 95% level of significance. By definition the order
of these values is

0 < K0;0.025 < K0 < K0;0.975 <∞. (34)

Three cases exist, namely

• H0 : if K(X) ∈ [K0;0.25,K0;0.975], X is distributed
according to the MV Gaussian pdf;

• H1 : if K(X) ∈ (0,K0;0.25), thenX is platykurtic;
• H ′

1 : if K(X) ∈ (K0;0.975,∞), X is leptokurtic.

We wish to establish ofH ′
1 is true or not. The following

mathematical reasoning is applied. By using the multivariate
normality test based on Mahalanobis distance described in
Section III, the necessary information to establish whether H0

is valid or not is obtained. IfH0 is not valid, eitherH1 or
H ′

1 will be valid. To check which of the alternativesH1 or
H ′

1 is valid, we examine whetherK(X) > K0 holds or not. If
K(X) > K0 > K0;0.025 is valid, then alsoK(X) > K0;0.025

is valid. So H1 can not be valid, and by reduction ad
absurdumH ′

1 should be valid. Thus, it is established that
X is leptokurtic without having to estimateK0;0.975. K0 can
be easily estimated. To the opposite, only approximations for
K0;0.975 exist, whenN is great [23]. More specifically, Mardia
estimatedK0 [23]. According to the following derivations we

found thatK0, as is estimated by Mardia, is inaccurate for
small N . Therefore we propose a better estimate than that of
Mardia.

Theorem 1: The first-order moment of MV kurtosis is

K0 = E(K) =
(

1−
1

N

)2 N − 1

N + 1
D(D + 2). (35)

Proof: Let us assume thatri are realizations of r.vs.Ri.
By applying the average operator to both sides of (33), we
obtain

E(K) =
1

N
E

( N∑

i=1

R2
i

)

. (36)

It is known from Appendix thatRi are identically distributed
r.vs. according to

N

(N − 1)2
Ri ∼ fBeta(ri |

D

2
,
N −D − 1

2
), i = 1, 2, . . . , N,

(37)
and it is also known that if r.v.X ∼ fBeta(x | a, b), then [30]

E(XM ) =

M−1∏

m=0

a + m

a + b + m
. (38)

So from (37) and (38), it can be inferred that,

E
( NM

(N − 1)2M
RM

i

)

=

M−1∏

m=0

D
2 + m

N−1
2 + m

, (39)

or

E(RM
i ) =

(N − 1)2M

NM

M−1∏

m=0

D + 2m

N − 1 + 2m
, ∀i = 1, 2, . . . , N,

(40)
for all ordersM = 1, 2, . . .

From (40), it is deduced that

E(RM
i ) = E(RM

j ) if j 6= i, (41)

for i, j = 1, 2, . . . , N andM = 1, 2, . . ..
By using (41), (36) becomes

E(K) =
1

N

N∑

i=1

E(R2
i ) = E(R2

i ). (42)

For M = 2, (40) yields (35).
The usefulness of the proposed estimator (35) is demonstrated
in the following lines.

V. EXPERIMENTAL RESULTS

Experiments are divided into three sets. Experimental evi-
dence to validate the accuracy of (35) is included in subsection
V-A. Comparisons of the proposed GMM method against other
GMM variants are performed in subsection V-B, and finally
the initialization offered by the proposed MV kurtosis testin
typical clustering cases is demonstrated in subsection V-C.
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Fig. 12. The first-order moment of the multivariate kurtosisE(K) of a MV Gaussian distributed cluster with respect to the number of sample measurement
vectorsN , and for feature dimension (a)D = 2 (b) D = 5, and (c)D = 10.

A. Experiments on the proposed estimate of expected MV
kurtosis (35)

By comparing the proposed estimate (35) of MV kurtosis
to

E(K) =
N − 1

N + 1
D(D + 2), (43)

derived by Mardia [23, eq. 3.16], it is easily seen that the two
estimates differ by the factor(1− 1

N )2. As lim
N→∞

(1− 1
N )2 = 1,

the difference becomes negligible. In Figure 12, the proposed
estimate (35) of the average of multivariate kurtosis for feature
dimensionD = 2, 5, and 10, and varyingN , is compared
against the standard estimate (43), and the empirical estimate
found with Monte-Carlo repetitions. The latter is found by
averaging the kurtosisK(X) for 1000 artificially generated
sets X. As can be seen in Figures 12(a), (b), and (c), the
proposed estimate (35) is closer to the empirical one for all
values ofN , whereas the one suggested by Mardia (43) is
accurate only for largeN .

B. Comparison of the proposed method for GMM against
other GMM methods.

The proposed algorithm is compared against 7 other EM
variants according to 4 evaluation criteria for 5 data-setsover
1000 repetitions of the same experiment.

Data-sets: Three artificially generated data-sets and two real
data-sets were used. The artificially generated data-sets are
proposed as benchmark data for testing EM variants in other
investigations [13], [9], [11]. The parameters for each of the
three artificial generated data-sets as well as one realization
of each data-set can be found in Figures 13(a), 13(b), and
13(c), respectively. SetA is composed of few well separated
components. SetB is a mixture of few heavily overlapped
components with different priors. SetC is a set of many
partially overlapping components with equal priors.

The two real data sets are utterances extracted from the
Speech Under Simulated and Actual Stress data collection
[32]. The utterances are 35 isolated words such as “break”,
“go”, “one”, expressed from 9 male military persons in a
studio environment. Each utterance is expressed two times
by each speaker. The first real data-set, denoted as SetD,
contains 1890 utterances equally separated to 3 speech styles
(classes), namely slow, neutral, and fast. Each style is modeled
as a mixture of Gaussians, where feature vectors extracted
contain 5 features, namely the maximum duration of pitch
contour plateaux at maxima, the median of durations for the
rising slopes of pitch contour, the median of durations for the
falling slopes of pitch contour, the maximum energy value,

and the energy in the band 1-2.8 kHz normalized by the
duration of each utterance. SetE is the second real data-set
that contains a total of 1890 utterances in anger, neutral, and
soft speech styles. A two dimensional feature vector was used
consisting of the energy values within the falling slopes of
energy contours and the energy in the frequency band 3.5-
3.95 kHz.

Methods compared: According to the categorization in
Figure 1, we term the EM variants according to the following
template: “3rd level technique - 2nd level technique - 1st
level technique”. For example, “Forward MDL-EM-Random”
is the EM variant that employs the forward logic with the
MDL criterion to estimate the number of components, and
the standard EM steps to refine a randomly initialized GMM.
By using the aforementioned terminology seven EM variants,
those listed in the second column of Table II, are included in
our comparative study. The convergence of each EM variant
is judged according to (22). In 5th, 6th, and 7th methods,
we chose to estimate the number of componentsQ with the
MDL criterion, because the authors do not define a method
to estimate it. In methods 1 to 6, the random initialization is
preferred thank-means, so that results are comparable.

Evaluation criteria : The comparison is perform according
to the following criteria:

• Correctness(in %): Correctness is the ratio of the times a
correct GMM is found in 1000 Monte-Carlo repetitions.
In each Monte-Carlo repetition of the experiment, a new
realization of the data-set is generated.Correctness is
evaluated only for artificially generated data-sets, be-
cause the true underlying Gaussian sources in real data-
sets are unknown.

• Prediction error (in %): The classification error of the
Bayes classifier when each class conditional pdf of real
data is modeled by a mixture of Gaussians in 1000 cross-
validation repetitions, where 90% of the available data
was used for designing the GMMs and 10% for evaluating
the prediction error [33].Prediction error is used instead
of correctness in order to evaluate the performance of
EM methods for real data. The confidence intervals
for the prediction error are estimated from the variance
of prediction error in 1000 cross-validation repetitions,
where it is assumed that the prediction error follows the
Gaussian distribution.

• Average number of EM iterations: It is the average
number of EM iterations required for an EM method to
converge in 1000 Monte-Carlo repetitions.It is not used
in real data-sets, where the true model is unknown.
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2

]

,

Σ1=Σ2=Σ3=
[
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]

.
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N = 1000, Q = 4, D = 2,
π1 = π2 = π3 = 0.3, π4 = 0.1

µ1 = µ2 =
[
−4
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]

,
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2

]

, µ4 =
[
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]

,

Σ1=
[
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[
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−1 2

]

,Σ4=
[
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]

(b) SetB
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N = 2000, Q = 8, D = 2,
πi = 1/8, i = 1, 2, . . . , 8,

µ1=
[
1.5
0

]

, µ2=
[
1
1

]

, µ3=
[

0
1.5

]

, µ4=
[
−1
1

]

,

µ5=
[
−1.5

0

]

, µ6=
[
−1
−1

]

, µ7=
[

0
−1.5

]

,

µ8=
[

1
−1

]

,Σ1=Σ5=
[
.01 0
0 .1

]

,

Σ3=Σ7=
[
.1 0
0 .01

]

,Σ2=Σ4=Σ6=Σ8=
[
.1 0
0 .1

]

.

(c) SetC

Fig. 13. Three artificially generated data-sets.

• Average execution time(in sec): It is the average execu-
tion time measured over 1000 Monte-Carlo repetitions for
artificially generated data or from 1000 cross-validation
repetitions for real data.It is more indicative about the
computational needs of each EM method than the average
number of EM steps. The experiments are conducted on
a PC with Pentium 4 CPU at 3 GHz and 1 Gb RAM at
400 MHz, by using Matlab 7.1.

From the results for artificially generated data presented in
Table II, it can be inferred that the proposed method is
the most accurate one for SetA with 91.8% correctness,
while maintaining the second lowest execution time, i.e. 0.72
sec. The 3rd and 6th methods follow with 85% and 77.9%,
respectively. However, method 6 with 846 iterations is rather
slow, which is due to the temperature parameter involved,
which takes three values, namely10.9 , 1

0.95 , 1. High execution
time is observed for method 4, because it begins withQ = 28
components to reach finallyQ = 3. The lowest execution time
has been measured for method 7. However, the partial random
initialization leads to local optima of the EM algorithm and
correctness drops to59.2%.

For SetB, methods 1, 2, 5, and 6 find only two components
instead of four. This is due to the fact that the parsimonious
criteria yield local minima with respect toQ, that are confused
with the global minimum. A solution would be to inspect all
possibleQ. This strategy is followed by method 4, which
however is rather slow, as it is seen from its execution time.
It is confirmed that ICL [8] and MDL2 [9] criteria employed
in methods 3 and 4, respectively, are not so sensitive to local
minima as MDL and AIC criteria used in methods 1, 2, 5
and 6. Correctness for each EM method drops for this set,
since the prior of the fourth component is small, i.e. 0.1,
and greatly overlaps with another component. The proposed
method achieved 65.9% correctness, the highest one for this
set, but its execution time is 1.27 sec, which is rather long

compared to 0.31 sec of method 7.
Methods 4 and 7 achieved 86.8% and 96.3% correctness

against 77.8% achieved by the proposed method for SetC.
Method 4, however requires 17.94 sec execution time, which
is three times bigger than 5.67 sec needed for by the proposed
method. For this data-set, method 7 has shown the highest
accuracy with 96.3% and the lowest execution time at 2.09
sec.

The prediction error and execution time results for real data-
sets are presented in Table III. In addition, the prediction
error when the design set is used also for testing is given
inside the parentheses. In the last two columns the execution
time of each method when 10% is used for testing is shown.
Execution times that correspond to prediction error results
inside parentheses are omitted. It can be seen that the proposed
method has achieved the lowest prediction error for SetD,
i.e. 42.0±0.3%. Method 7 follows with 42.7±0.3%. From the
comparison with the prediction error achieved by a single
Gaussian model, it is inferred that the proposed method
improves prediction error by 6.5%. As regards SetE , method
7 achieved about the same prediction error with the proposed
method, i.e. about 47.4%. However, method 7 was three times
faster than the proposed one can be seen from the last column.
From the results inside parentheses, it is seen that methods4,
7, and the proposed one achieved 36.9%, 39.9%, and 39.8% for
SetD, whereas the single Gaussian model achieves 47.5%. As
regards SetE , only method 7 and the proposed one improved
the 48.9% achieved by a single Gaussian component modeling.

C. Initialization offered by the proposed MV kurtosis test

Experiments that demonstrate the advantages of the MV
kurtosis test when it is used as a switch between splitting a
cluster with a discriminant vs. setting the new cluster centers
equal to the center of the cluster to be split are conducted. Four
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TABLE II
COMPARISON WITH OTHEREM VARIANTS FOR ARTIFICIAL DATA

Correctness (%) Average EM itera-
tions

Average execution
time (sec)

# Method/Data-set A B C A B C A B C

1 Forward MDL-EM-Random 71.3 2.2 23.1 329 96 512 1.13 0.34 7.45
2 Forward AIC-EM-Random 76.6 4.4 22.5 380 107 532 1.29 0.37 7.07
3 Forward ICL-EM-Random [8] 85 32.1 22.1 381 208 546 1.25 0.87 7.26
4 Backward MDL2-EM-Random [9] 71.2 57.7 86.8 606 452 685 5.86 5.25 17.94
5 Forward MDL-CEMM-Random [14] 71.1 0 15.9 324 41 1663 0.83 0.12 14.96
6 Forward MDL-DAEM-Random [13] 77.9 0.5 0 846 196 245 3.16 0.72 1.74
7 Forward MDL-EM-Partial Random [16] 59.2 57.1 96.3 52 42 164 0.29 0.31 2.09
8 Split-EM-Discriminant (Proposed) 91.8 65.9 77.8 80 115 267 0.72 1.27 5.67

TABLE III
COMPARISON WITH OTHEREM VARIANTS FOR REAL DATA

Prediction error (%) Average execution time (sec)

# Method/Data-set D E D E

1 Forward MDL-EM-Random 43.7± 0.3, (41.6) 49.8± 0.2 , (49.8) 1.05± 0.03, 0.97± 0.03
2 Forward AIC-EM-Random 44.2± 0.3, (40.9) 49.6± 0.2, (49.5) 1.83± 0.05, 1.10± 0.05
3 Forward ICL-EM-Random [8] 44.0± 0.3, (41.4) 49.9± 0.2, (49.7) 1.26± 0.03, 1.18± 0.05
4 Backward MDL2-EM-Random [9] 42.9± 0.2, (36.9) 49.7± 0.2, (48.8) 2.93± 0.06, 20.24± 0.29
5 Forward MDL-CEMM-Random [14] 44.2± 0.3, (41.9) 49.7± 0.2 , (49.8) 3.12± 0.08, 3.43± 0.10
6 Forward MDL-DAEM-Random [13] 45.5± 0.3, (43.8) 49.2± 0.2, (49.3) 0.41± 0.01, 1.28± 0.04
7 Forward MDL-EM-Partial Random [16] 42.7± 0.2, (39.9) 47.2± 0.2, (46.1) 0.89± 0.02, 0.96± 0.02
8 Split-EM-Discriminant (Proposed) 42.0± 0.3, (39.8) 47.4± 0.2 , (47.1) 2.66± 0.26, 3.51± 0.10
9 Single Gaussian modeled pdf 48.5± 0.2, (47.5) 49.0± 0.2 , (48.9) 0.004±4 · 10−5 0.004±6 · 10−5

TABLE IV
INITIALIZATION EXAMPLES

Case 1:K = 13.789 Case 2:K = 7.452 Case 3:K = 10.104 Case 4:K = 6.029
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Abbreviations: Corr. stands for averaged correctness, and Time stands for averaged execution time, both estimated for 1000 Monte Carlo repetitions of the experiment.

typical cases are shown in Table IV. The first case, shown
in Figures (a) and (b) inside Table IV, depicts a clustering
problem of two sources with common centers. The second
case (Figures (c) and (d)) is a clustering problem when sources
greatly overlap. The third case, presented in Figures (e) and
(f), is another clustering problem involving two sources with
common centers, which is not so symmetrical as the first case.
Finally, the fourth case represents a clustering problem when
sources do not overlap. The number of samplesN in each
case is 600 equally distributed between the sources. The MV
kurtosis value for each case is shown in the first line of Table
IV. From (35), it is inferred thatK0 which is employed in the
MV kurtosis test equals 7.946 forN = 600 and D = 2. In

the second and the third lines of Table IV, the initialization
results offered by the discriminant and the common centers
methods are shown, respectively. The average correctness and
the execution time of EM for 1000 Monte Carlo repetitions are
included for each initialization. It is seen that the initializations
that result to the highest correctness and lowest executiontime
are those presented in Figures (b), (c), (f), and (g). From the
comparison of the MV kurtosis values of the first line with the
decision thresholdK0 = 7.946, it is inferred that the proposed
method selects the best initialization for each case.
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VI. CONCLUSIONS

An algorithm based on expectation-maximization algorithm
for clustering sample measurement vectors for any dimension
has been proposed. The basic idea behind the algorithm
is to employ multivariate statistical tests as plug-in criteria
for splitting non-Gaussian distributed clusters to Gaussian
distributed ones.

From the experiments, it is inferred that the proposed
method as well as methods 4 [9] and 7 [16], are the most
accurate ones. Method 7, however, sometimes fails to initialize
correctly the GMM because, the partial random initialization
is accomplished by keeping the old components of the GMM
fixed, while refining the new component. Method 4 is found
rather slow, because it assumes initially a great number of
components in the mixture. The proposed method has been
found to suffer sometimes from over-splitting. This problem
may be solved by changing the calculation of the confidence
limits of F̂Ri

(ri) in Section III, or by employing also the
angle information between a sample measurement vector and
the center of a component. The information related to the angle
of a sample measurement vector from the component center
is lost either in the multivariate normality test that is based
on the Mahalanobis distance of each sample measurement
vector from the component center or the multivariate kurtosis
which is simply the sum of squares of the aforementioned
Mahalanobis distances. Therefore, the proposed method canbe
extended with statistical tests based on the angle information
to assess multivariate normality [28], [34].

APPENDIX

The assumption that Mahalanobis distance can be treated as
a r.v. Ri that follows a beta distribution was extensively used
in Sections II, III, and IV. The proof of this assumption is
rather complex, so it will be revised here.

Let us assume thatx = [X1, X2, . . . , XD]T is a
D-dimensional vector that is distributed according to the
multivariate (MV) normal distributionMVND(µ,Σ) with
probability density function (pdf)

p(x | µ,Σ) =
1

(2π)
D
2 (||Σ||)

1
2

exp{−
1

2
(x−µ)T

Σ
−1(x−µ)}

(44)
where ||Σ|| is the determinant of non-singular positive semi-
definite covariance matrixΣ. The Mahalanobis distance be-
tweenx andµ is defined as

r = (x− µ)T
Σ

−1(x− µ). (45)

In most cases, the mean vectorµ and the covariance matrixΣ
are unknown, and therefore, they are replaced by the sample
mean vectorx and the sample dispersion matrixS of a set of
sample measurement vectorsX = {xi}

N
i=1 defined as

x =
1

N

N∑

j=1

xj , (46)

S =
1

N − 1

N∑

j=1

(xj − x)(xj − x)T . (47)

Accordingly (45) becomes

ri = (xi − x)T
S
−1(xi − x). (48)

Let Ri be r.v.s that admit valuesri given by (48) for i =
1, 2, . . . , N . The distribution of Mahalanobis distance is the
distribution of the r.v.Ri. In this Appendix, we will revise the
following proof which is attributed to S. S. Wilks [26]. Ifx
is distributed as in (44), thenRi obeys

N

(N − 1)2
Ri ∼ fBeta

( N

(N − 1)2
ri |

D

2
,
N −D − 1

2

)

, (49)

wherefBeta(x | a, b) is the beta distribution with parameters
a and b, and D < N . The cumulative distribution function
(cdf) of Ri is necessary for testing MV normality hypothesis
in Section III.FRi

(ri) according to (49) is

FRi
(ri) = I Nri

(N−1)2

(D

2
,
N −D − 1

2

)

, (50)

whereIx(a, b) is the incomplete beta function.
The logical sequence of the proof is summarized in Figure

14. The proof that N
(N−1)2 Ri is distributed asfBeta( N

(N−1)2 ri |

Theorem 2: Wishart 1928 Theorem 3: Hotelling 1931

Lemma 1 Theorem 4: Wilks 1963

Lemma 2: pdf ofRi

Fig. 14. Logical sequence of steps to arrive at the distribution of Mahalanobis
distance.

D
2 , N−D−1

2 ) is given in Lemma 2. However, before dealing
with Lemma 2, first some additional theorems and lemmata
should be proven. Theorem 2 defines the distribution of the
sample dispersion matrix of a multivariate Gaussian R.V..

Theorem 2: The matrixS follows the Wishart distribution
WD(Σ, N) with scale matrixΣ and degrees of freedomN .
The pdf ofA = (N − 1)S is

f(A) =
||A||

N−D−2
2 exp

(

− 1
2 tr(Σ−1

A)
)

2
(N−1)D

2 π
D(D−1)

4 ||Σ||
(N−1)

2

D∏

i=1

Γ(N−i
2 )

(51)

whereΓ( ) is the Gamma function.
Proof: See [35].

The next theorem defines the distribution of the scaled Eu-
clidean distance where relationships across dimensions are
taken into account.

Theorem 3: If T 2 = Y
T
S
−1

Y where Y and S are
independent and distributed according toMVND(0, Σ) and
WD(Σ, N) respectively, thenT 2 obeys the Hotelling distri-
bution:

fT 2(t2) =
Γ(N

2 )

(N − 1)Γ(N−D
2 )Γ(D

2 )

( t2

N − 1

)D
2 −1

(

1 +
t2

N − 1

)−N
2

. (52)
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Proof: See [36], [37].
Let us prove the following lemma that will be subse-

quently exploited in the proof of Theorem 4.

Lemma 1: If
N∑

i=1(ξ)

denotes the sum fromi = 1 to N

excludingξ and

A(ξ) ,

N∑

i=1(ξ)

(xi − x(ξ))(xi − x(ξ))
T , (53)

where

x(ξ) =
1

N − 1

N∑

i=1(ξ)

xi, (54)

then

A(ξ) = A−
N

N − 1
(xξ − x)(xξ − x)T . (55)

Proof: It is known that

A = (

N∑

i=1

xix
T
i )−Nx x

T =

(
N∑

i=1(ξ)

xix
T
i ) + xξx

T
ξ −Nx x

T , (56)

A(ξ) = (

N∑

i=1(ξ)

xix
T
i )− (N − 1)x(ξ)x

T
(ξ), (57)

Nx = (N − 1)x(ξ) + xξ. (58)

Then

A−A(ξ) = xξx
T
ξ −Nxx

T + (N − 1)x(ξ)x
T
(ξ). (59)

By replacingx(ξ) with (58), (55) is obtained.

Theorem 4: Let

R(ξ) ,
||A(ξ)||

||A||
(60)

be called as one-outlier scatter ratio for sample measurement
vector xξ, i.e. it denotes how much the dispersion of the
whole set differs from the same set, whenxξ is excluded.
R(ξ) follows the beta distributionfBeta(r(ξ) |

N−D−1
2 , D

2 ).
Proof: If ajk and ajk(ξ), j, k = 1, 2, . . . ,D are the

elements ofA andA(ξ) respectively, then according to Lemma
1

ajk = ajk(ξ) +
N

N − 1
(xξj − xj)(xξk − xk), (61)

wherexj denotes thejth element ofx. Let us denote||A|| =
||ajk|| the determinant of a matrix, then from (61)

||ajk|| = ||ajk(ξ) +
N

N − 1
(xξj − xj)(xξk − xk)||. (62)

So

||ajk|| = ||ajk(ξ)||[1+
N

N − 1

D∑

j,k=1

ajk(ξ)(xξj−xj)(xξk−xk)],

(63)

whereajk(ξ) is the cofactor ofjkth element inA−1
(ξ). There-

fore,

R(ξ) =
1

1 + N
N−1

D∑

j,k=1

ajk(ξ)(xξj − xj)(xξk − xk)

=

1

1 + N
N−1 (xξ − x)T A

−1
(ξ)(xξ − x)

. (64)

Since,A(ξ) = (N − 2)S(ξ) ⇒ A
−1
(ξ) = 1

(N−2)S
−1
(ξ), then

R(ξ) =
1

1 + N
(N−1)(N−2) (xξ − x)T S

−1
(ξ)(xξ − x)

. (65)

Sincexξ − x ∼MV ND(0, N−1
N Σ):

xξ − xN =
N − 1

N
xξ −

x1 + . . . + xξ−1 + xξ+1 + . . . + xN

N

∼ MVND

(N − 1

N
µ, (

N − 1

N
)2Σ

)

−

1

N
MVND

(

(N − 1)µ, (N − 1)Σ
)

= MVND(0,
N − 1

N
Σ),

(66)

by assuming thatdξ =
√

N
N−1 (xξ − x), then dξ ∼

MV ND(0,Σ). Therefore, (65) becomes

R(ξ) =
1

1 + 1
N−2d

T
ξ S−1

(ξ)dξ

. (67)

According to Theorem 3 and given thatdξ ∼MV ND(0,Σ)
andS(ξ) ∼ WD(Σ, N − 1), wheredξ andS(ξ) are indepen-
dently distributed, becausedξ is not involved in the estimation
of S(ξ), it is inferred that the distribution ofT 2

(ξ) = d
T
ξ S−1

(ξ)dξ

is

fT 2
(ξ)

(t2(ξ)) =
Γ(N−1

2 )

(N − 2)Γ(N−D−1
2 )Γ(D

2 )

( t2(ξ)

N − 2

)D
2 −1

(

1 +
t2(ξ)

N − 2

)−N−1
2

. (68)

By using the fundamental theorem for functions of one r.v.
[29], the distribution ofR(ξ) = 1

1+
T2
(ξ)

N−2

is found as follows:

fR(ξ)
(r(ξ)) =

fT 2
(ξ)

(t2(ξ))

|
dg(t2

(ξ)
)

dt2 |
, (69)

where

g(t2(ξ)) =
1

1 +
t2
(ξ)

N−2

, (70)

dg(t2(ξ))

dt2(ξ)
=

(

1 +
t2(ξ)

N − 2

)−2 1

N − 2
, (71)

t2(ξ) = (N − 2)
( 1

r(ξ) − 1

)

. (72)
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So,

fR(ξ)
(r(ξ)) = (1 +

t2(ξ)

N − 2
)2

(N − 2)Γ(N−1
2 )

(N − 2)Γ(N−D−1
2 )Γ(D

2 )
( 1

r(ξ)
− 1

)D
2 −1( 1

r(ξ)

)−N−1
2

= (73)

Γ(N−1
2 )

Γ(N−D−1
2 )Γ(D

2 )
(1− r(ξ))

D
2 −1r

N−1
2 −2+1−D

2

(ξ) , (74)

which is thefBeta(r(ξ) |
N−D−1

2 , D
2 ) distribution.

Lemma 2: If R(ξ) ∼ fBeta(r(ξ) |
N−D−1

2 , D
2 ) then

N

(N − 1)2
Ri ∼ fBeta(

N

(N − 1)2
ri |

D

2
,
N −D − 1

2
). (75)

Proof: From (61), we obtainajk(ξ) = ajk −
N

N−1 (xξj −
xj)(xξk − xk). Then

||ajk(ξ)||

||ajk||
= 1−

N

N − 1

D∑

i,j=1

ajk(xξj − xj)(xξk − xk), (76)

whereajk is the cofactor ofjkth element inA−1. Hence,

R(ξ) = 1−
N

N − 1
(xξ − x)T

A
−1(xξ − x). (77)

Given thatA−1 = 1
N−1S

−1, it is inferred that

R(ξ) = 1−
N

(N − 1)2
(xξ − x)T

S
−1(xξ − x) =

1−
N

(N − 1)2
Rξ ⇒

N

(N − 1)2
Rξ = 1−R(ξ). (78)

Since R(ξ) ∼ fBeta(r(ξ) |
N−D−1

2 , D
2 ) ⇒ 1 − R(ξ) ∼

fBeta(1 − r(ξ) |
D
2 , N−D−1

2 ) [30]. Therefore from (78), it is
deduced that

N

(N − 1)2
Rξ ∼ fBeta

( N

(N − 1)2
rξ |

D

2
,
N −D − 1

2

)

.

(79)
By replacingξ with i, the proof is concluded. The result (79)
is valid for every value ofN andD with D < N <∞.
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