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Abstract

This paper tests a¢ ne, quadratic and Black-type Gaussian models
on Euro area triple A Government bond yields for maturities up to 30
years. Quadratic Gaussian models beat a¢ ne Gaussian models both in
sample and out of sample. A Black-type model best �ts the shortest
maturities and the extremely low yields since 2013, but worst �ts the
longest maturities.

Even for quadratic models we can infer the latent factors from some
yields observed without errors, which makes quasi maximum likelihood
(QML) estimation feasible. New speci�cations of quadratic models �t
the longest maturities better than does the "classic" speci�cation of Ahn-
Dittmar-Gallant (2002), but the opposite is true for the shortest maturi-
ties. These new speci�cations are more suitable to QML estimation.

Overall quadratic models seem preferable to a¢ ne Gaussian models,
because of superior empirical performance, and to Black-type models,
because of superior tractability.

This paper also proposes the vertical method of lines (MOL) to solve
numerically partial di¤erential equations (PDE�s) for pricing bonds under
multiple non-independent stochastic factors. "Splitting" the PDE drasti-
cally reduces computations. Vertical MOL can be considerably faster and
more accurate than �nite di¤erence methods.

Key words: a¢ ne Gaussian models, quadratic Gaussian models, Black
model, vertical method of lines, sequential splitting, quasi-maximum like-
lihood, Extended Kalman Filter.

JEL classi�cation: G12; G13.

1



1 Introduction

This paper tests linear and non-linear Gaussian term structure models on Euro
area triple A rated Government bond yields for long term maturities up to 30
years. By Gaussian term structure models we mean that the short interest
rate is a function of latent factors whose stochastic process is Gaussian. The
exclusive focus on Gaussian models is due to their tractability and relevance
in practice. Moreover Gaussian models are not plagued by the "admissibility"
issues explained in Du¢ e-Kan (1996) for a¢ ne models whose factors�volatilities
are driven by "square roots" of the factors.
All the models we tests assume three Gaussian latent factors and are either

a¢ ne Gaussian models, or quadratic models or an extension of Black�s model
(1995). In this paper "a¢ ne Gaussian" model means that all model
factors are homoscedastic and Gaussian.
One question is whether a¢ ne Gaussian models, simple as they are, suf-

�ce or whether the complication of the non-linear Gaussian models is worth-
while. The main empirical �nding is that indeed the complication of non-linear
Gaussian models seems worthwhile, because of their superior �t to observed
yields. Quadratic Gaussian models beat a¢ ne Gaussian models both in sample
and out of sample, especially when yields are close to zero. The extended Black
model beats even quadratic models out of sample and seems the best model to
match the extremely low short term yields observed since 2013, but is the worst
model in �tting the longest maturities.
Another question is whether new speci�cations of quadratic models can bet-

ter �t yields than the "classic" speci�cation of Ahn-Ditmar-gallant (2002). In-
deed some of these new speci�cations better �t the longest yield ma-
turities than the "classic" speci�cation, but the "classic" speci�cation
better �ts the shortest maturities.
Estimation through quasi maximum likelihood (QML), which assumes that

some yields are observed without error, is feasible even for quadratic models,
especially under the new speci�cations, and largely con�rms the results
of Extended Kalman Filter estimation. However QML is not reliable for the
extended Black model.
Overall, to price Euro area default-free bonds, quadratic models seem prefer-

able to a¢ neGaussian models, because of superior empirical performance, and
to the Black-type models, for now, because of superior tractability.
This paper also proposes the vertical method of lines (MOL) to solve nu-

merically partial di¤erential equations (PDE�s) for pricing bonds according to
Black�s model. In the presence of multiple non-independent stochastic factors,
"splitting" the PDE drastically reduces computations and can be considerably
faster and more accurate than �nite di¤erence methods.
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2 Literature

The literature on dynamic term structure models cannot be here summarised.
Dai and Singleton (2003) give a good overview. This paper belongs to the
branch of such literature that focuses on Gaussian term structure models and
makes no reference to the macro-economy. To such branch belong also the
pioneering study of Langetieg (1980), the empirical Kalman �lter test of Babbs
and Nowman (1999), the work of Dai and Singleton (2002) and many others.
More recently Joslin et al. (2011) provide canonical identi�able a¢ ne Gaussian
models whereby the factors are observable portfolios of yields. Du¤ee (2011)
shows that the yields of a¢ ne Gaussian models cannot detect variation in US
Government bond risk-premia.
This paper also belongs to the branch of literature on quadratic Gaussian

models. After some studies on quadratic models in the nineties, e.g. Costan-
tinides (1992), Ahn et al. (2002), Leippold and Wu (2002, 2003) and Chen
et al. (2004) further develop quadratic models. Ahn et al. (2002) show the
empirical advantage of quadratic models over a¢ ne models. Gourieroux and
Sufana (2003) and Realdon (2006) present discrete time quadratic models. Li
and Zhao (2006) use quadratic models to provide evidence of unspanned sto-
chastic volatility in derivatives prices.
This paper is also directly related to Gaussian models of the type �rst pro-

posed by Black (1995). These are non-linear Gaussian models in which the short
rate cannot turn negative. Gorovoi and Linetski (2004) present a closed form
solution to Black�s model. Realdon (2009) tests a two factor version of Black�s
model. Kim and Singleton (2012) test various extensions of Black�s model.
We can contrast the present paper with the existing literature as follows.

Most of the term structure literature focuses on US Government yields, whereas
this study considers the triple A Government yields in the Euro area. This is
of interest, apart from the sheer size of the Euro area economy, because of
protracted periods of extremely low and even negative Euro yields.
Most of the term structure literature focuses on yield maturities up to ten

years, whereas this study considers maturities up to thirty years. This seems a
much more severe test for term structure models.
Most of the term structure literature focuses on a¢ ne or quadratic models,

whereas this study also focuses on a new extension of the Black (1995) model.
This paper also tests new speci�cations of quadratic models.
Most of the term structure literature that tests quadratic Gaussian mod-

els employs Kalman Filter estimation, whereas this study also employs Quasi
Maximum Likelihood (QML) estimation for quadratic models. QML assumes
that some yields are observed without error, so that the latent factors can be
inferred. It turns out this is feasible even for quadratic Gaussian models, not
only for a¢ ne ones.
The literature that implements the Black model tends to use �nite di¤er-

ence methods for pricing bonds. Finite di¤erence methods have been used for
decades, while in the past decade �nite element methods have become more
popular in �nance, a recent example of which is Rambeerich and others (2013).
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Finite di¤erence methods are easier to apply, since they typically involve the
intuitive discretisation of the partial derivatives of the pricing equations, but are
less stable and less e¢ cient than �nite element methods. Much of the interest in
�nite elements methods is due to the fact that they do not discretise the pricing
equations in the time dimension and that they use fast and accurate algorithms
for solving the resulting matrix exponential. This paper proposes an algorithm
to solve the bond pricing equations of the Black model by discretising the
partial derivatives in the space dimensions, as in �nite di¤erence methods,
but not in the time dimension, which again requires the solution of a ma-
trix exponential as in �nite element methods. As such the proposed algorithm
retains some of the key bene�ts of both �nite di¤erence methods and �nite
element methods. Such algorithm is the vertical method of lines (MOL) and
involves "sequential splitting" when the pricing equation involves more than one
stochastic factor. Vertical MOL poses no stability problems when the stochas-
tic factors are not instantaneously correlated. If the factors are instantaneously
correlated, vertical MOL is not unconditionally stable.

3 The extended Black model

We consider an extension of the Black (1995) model in which the time t default-
free instantaneous short interest rate rt is a function of the time t value of three
latent factors x1;t; x2;t; x3;t so that, in a �ltered probability space with the usual
properties,

rt = �+max (x1;t; 0)
q1 +max (x2;t; 0)

q2 +max (x3;t; 0)
q3 : (1)

dx1;t = �1 � (�1 + p � x2;t � x1;t) � dt+ �1 � dw
Q
1;t (2)

dx2;t = �2 � (�2 � x2;t) � dt+ �2 � dw
Q
2;t (3)

dx3;t = �3 � (�3 � x3;t) � dt+ �3 � dw
Q
3;t (4)

dwQ1;t � dw
Q
2;t = � � dt; dw

Q
1;t � dw

Q
3;t = dw

Q
2;t � dw

Q
3;t = 0: (5)

q1; q2; q3 � 1 are constants. � is also a constant and can be negative so as
to enable the model to match the slightly negative yields we observe in the
sample. Equation 1 implies that rt � � and yields for maturities longer than
the instantaneous maturity are guaranteed to be higher than �, even when the
factors have negative values. dx1;t is the stochastic di¤erential of the factor
x1 and dw

Q
1;t the stochastic di¤erential of a Wiener process in the risk-neutral

measure Q over the in�nitesimal time interval [t; t+ dt]. dx2;t, dw
Q
2;t, dx3;t,

dwQ3;t have similar meanings. The Wiener processes are not correlated except for

dwQ1;t�dw
Q
2;t = ��dt. �1; �1; �1; �2; �2; �2; �3; �3; �3 are all constant parameters. p

is a constant and links the long term mean reversion level of x1 to x2. Therefore
even when � = 0, x1 and x2 are not independent. All parameters are identi�able
in estimation.
Let V (�) with � = T � t be the value at time t of a discount bond with

maturity T and face value 1, so that V (0) = 1. Absent arbitrage, from the
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above assumptions it follows that, dropping unnecessary time subscripts,

V (�) = exp (�� � �) �W � U (6)

@W

@�
=
@2W

@x21

1

2
�21 +

@W

@x1
�1 (�1 � x1)�W �max (x1; 0)q1 (7)

+
@2W

@x1x2
��1�2 +

@2W

@x22

1

2
�22 +

@W

@x2
�2 (�2 � x2)�W �max (x2; 0)q2

@U

@�
=
@2U

@x23

1

2
�23 +

@U

@x3
�3 (�3 � x3)� U �max (x3; 0)

q3 (8)

lim
x1!�1

@W

@x21
! 0; lim

x1!1

@W

@x21
! 0; lim

x2!�1

@W

@x22
! 0; lim

x2!1

@W

@x22
! 0; W (0) = 1

lim
x3!�1

@U

@x23
! 0; lim

x3!1

@U

@x23
! 0; U (0) = 1:

W is a function of x1, x2 and � . U is a function of x3 and � . W (0) = U (0) = 1
are the values of W and U when � = 0. V tends to be linear in the factors
x1; x2; x3 as the factors tend to plus or minus in�nity. Discount bond yields
are computed as � lnV (�)

� . The fact that x3 is independent of the other factors
simpli�es the numerical solution to the bond pricing equation. Instead of solving
for V on a grid with three "space" dimensions, we solve forW and U on separate
grids. The grid forW has two "space" dimensions and the grid for U one "space"
dimension. In the empirical part the partial di¤erential equations for W and U
are each solved through the vertical method of lines (MOL). The next section
explains the details of vertical MOL. We also assume that in the physical
probability measure

dx1;t = �
�
1 � (��1 + p� � x2;t � x1;t) � dt+ �1 � dw�1;t

dx2;t = �
�
2 � (��2 � x2;t) � dt+ �2 � dw�2;t

dx3;t = �
�
3 � (��3 � x3;t) � dt+ �3 � dw�3;t

dw�1;t � dw�2;t = � � dt; dw�1;t � dw�3;t = dw�2;t � dw�3;t = 0:

dw�1;t; dw
�
2;t; dw

�
3;t are di¤erentials of Wiener processes in the physical probability

measure. The parameters with the superscript "�" signify that such parameters
refer to the real probability measure.
Let t = 0; 1; 2; 3; ::;M denote the set ofM dates on which we observe the yield

curve. � is the time between consecutive observations and is approximately
equal to the inverse of number trading days in one year. Therefore � = 1

261
since we observe about 261 daily prices per year in the data. Then in the empir-
ical tests we approximate, using the Euler discretisation, the above stochastic
di¤erential equations. As a result of the said discretisation, the approximate
physical conditional transition density of xt�� = (x1;t��; x2;t��; x3;t��)

0 given
x(t�1)�� =

�
x1;(t�1)��; x2;(t�1)��; x3;(t�1)��

�0
is
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N
�
� + (I3 � �)xt�1;��0

�
(9)

� =

0@ ���1 ��1 � p� 0
0 ���2 0
0 0 ���3

1A ��, � =
0@ ��1 � ��1
��2 � ��2
��3 � ��3

1A ��,
� =

0B@ �1 0 0

�12 � �2
p
1� �212 � �2 0

�13 � �3
�32��12��13p

1��212
� �3

q
1� �213 �

(�32��12��13)2
1��212

� �3

1CAp�
with � = �12; �13 = �32 = 0. N

�
� + (I3 � �)xt�1;��0

�
is the multivariate

normal density with mean �+(I3 � �)xt�1 and covariance ��0. I3 is the 3�3
identity matrix.

4 Vertical MOL

The above extended Black model has no closed form solution. When a pricing
partial di¤erential equation (PDE) cannot be solved in closed form, it is
solved numerically usually with some �nite di¤erence method, whereas this
paper proposes the vertical method of lines (MOL). Vertical MOL discretises
the PDE in the "space" dimensions, but not in the "time" dimension, whereas
horizontal MOL discretises the PDE in the "time" dimension, but not in the
"space" dimensions. The "space" discretisation of vertical MOL reduces
the pricing PDE to a system of ordinary di¤erential equations (ODE�s). When
the pricing PDE is linear, as is typically the case in �nance, the resulting ODE
system can be solved by computing a matrix exponential, which can be done
through well known and quick algorithms.
As a preliminary step, we consider how vertical MOL is an alternative to

�nite di¤erence methods for solving pricing PDE�s. As it involves no discretisa-
tion in the "time" dimension, vertical MOL can be quicker and more accurate
than �nite di¤erence methods. For pricing contracts whose value is driven by
one stochastic factor, only a single matrix exponential needs solving, posing no
stability issues. For contracts driven by two stochastic factors, vertical
MOL involves computing the exponential of very large matrixes, which can often
be prohibitive. For example, assuming 100 steps in both "space" dimensions,
the matrix exponential that needs solving is of size 10000� 10000. With a rel-
atively fast computer, Matlab can compute a 1000 � 1000 matrix exponential
in about 3 seconds, but a 10000 � 10000 matrix exponential takes about 340
seconds, which is prohibitively slow. To avoid this computation burden, this
paper uses "sequential equation splitting", which provides quick and uncondi-
tionally stable solutions, if the Wiener processes driving the two factors are
not instantaneously correlated. When the two Wiener processes are correlated,
"splitting" may sometimes provide unstable solutions and this seems the main
unsolved problem of vertical MOL. Vertical MOL with sequential splitting is

6



very convenient to price contracts when the factors may "jump" and when
parameters may "switch regime" over time.

4.1 Vertical method of lines (MOL) for PDE�s with one
space dimension

This section explains vertical MOL can be used to price U (x3; �), or more simply
U , whose value is driven by just one stochastic factor x3 and time to maturity
� = T�t. To simplify notation, in this section, and only in this section, we write
x to mean x3. Dropping subscripts, in the risk-neutral measure x satis�es the
stochastic di¤erential equation

dx = �3 (�3 � x) dt+ �3 � dw
Q
3 (10)

and we set c (x) = max (x; 0)q3 . x 2 (�1;1) but PDE 8 is solved in the �nite
region x1 � x � xI . We de�ne

xi = i � �x+ x0; �x =
xI � x0
I

ai = �3 (�3 � xi) ; bi = �3; ci = c (xi)
for i = 1; 2; ::; I:

x0 is the lower bound of the solution region. We approximate the exact solution
U to PDE 8 with the MOL solution ui (�) or more simply ui. ui (0) denotes ui
when � = 0, i.e. at maturity. Then PDE 8 and its conditions are approximated
as

@ui
@�

=
ui+1 � 2ui + ui�1

(�x)
2

(ai)
2

2
+
ui+1 � ui�1
2 � �x bi + ciui

ui (0) = 1; uI+1 = 2uI � uI�1; u0 = 2u1 � u2

for i = 1; ::; I giving the ordinary di¤erential equations (ODE) system

@ui
@�

= ui�1 � Ai + ui � Bi + ui+1 � Ci for i = 2; ::; I � 1 (11)

@uI
@�

= uI�1 (AI � CI) + uI (BI + 2CI)

@u1
@�

= u1 (2A1 + B1) + u2 (C1 �A1)

Ai =
ai

2 (�x)
2 �

bi
2 � �x ; Bi = ci �

ai

(�x)
2 ; Ci =

ai

2 (�x)
2 +

bi
2 � �x for i = 1; ::; I:
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Then we can rewrite ODE system 11 as

@u

@�
=M � u (12)

u (0) = (u1 (0) ; u2 (0) ; ::; uI (0))
0
= 1I

@u

@�
=

�
@u1
@�
;
@u2
@�
; ::;

@uI
@�

�0
u = (u1; u2; ::; uI)

0
:

1I is a column vector with I elements, each equal to 1. Also @u
@� and u are

column vectors with I elements. M is an I � I matrix, such that

M =

266664
(2A1 + B1) (C1 �A1) 0 0 0 :: 0

A2 B2 C2 :: :: :: 0
0 :: :: :: :: :: ::
:: :: :: :: AI�1 BI�1 CI�1
0 :: :: :: :: (AI � CI) (BI + 2CI)

377775 :
The solution to system 11 is

u (�) = exp (� �M) � u (0) : (13)

The matrix exponential exp (� �M) can easily be computed. For example Mat-
lab computes the matrix exponential with the Padé approximation with scaling
and squaring of Higham (2005), which proves quick and reliable.
The solution in 13 is more accurate and faster than �nite di¤erence methods

that use the same grid points in the space "dimension", because �nite di¤erence
methods discretise also in the "time" dimension and their computations grow
with the number of time steps. Moreover discretisation in the "time" dimension
may pose stability problems for some �nite di¤erence methods, but stability is
not an issue for the solution in 13.
As a preparation for what follows, we also consider the case whereby pricing

PDE 8 is non-homogeneous, so that

@U

@�
=
@2U

@x2
a (x)

2

2
+
@U

@x
b (x) + c (x)U + q (x) (14)

U (x; 0) = 1; lim
x!�1

@2U

@x2
! 0; lim

x!1

@2U

@x2
! 0:

where q (x) is a bounded function of x. Then the system of ODE�s that results
form applying vertical MOL becomes.

@u

@�
=M � u+ q (15)

q =(q (x1) ; q (x2) ; ::; q (xI�1) ; q (xI))
0

with solution

u (�) = �M�1 � (II � exp (� �M)) � q+ exp (� �M) � u (0) : (16)

This result is used below. II is the identity matrix of size I � I.
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4.2 PDE�s with two space dimensions: vertical MOL with
sequential splitting

To simplify notation, in this section, and only in this section, we write x to
mean x1 and y to mean x2. Thus W (x; y; �) or more simply W is a function of
x; y and � . Then, time dropping subscripts, in the risk-neutral measure x and
y are such that

dx = bx � dt+ ax � dwQx;t (17)

dy = by � dt+ ay � dwQy;t (18)

bx = �1 � (�1 + p � y � x) (19)

by = �2 � (�2 � y) (20)

ax = �1; ay = �2 (21)

dwQx;t � dw
Q
y;t = � � dt

c (x) + c (y) = max (x; 0)
q1 +max (y; 0)

q2 : (22)

Then PDE 7 and its conditions can be re-written as

@W

@�
=
@2W

@x@y
�axay +

@2W

@x2
a2x
2
+
@W

@x
bx +

@2W

@y2
a2y
2
+
@W

@y
by + (c (x) + c (y))W

(23)

W (x; y; 0) = 1; lim
x!�1

@2W

@x2
! 0; lim

x!1

@2W

@x2
! 0; lim

y!�1

@2W

@y2
! 0; lim

y!1

@2W

@y2
! 0

for x; y 2 (�1;1). However PDE 23 is solved over the �nite region [x1; xI ]�
[y1; yI ]. We de�ne

yj = j � �y + y0; �y =
yI � y0
I

ax;i;j = �1; bx;i;j = �1 � (�1 + p � yj � xi) ; ay;i;j = �2; by;i;j = �2 � (�2 � yj) ;
c (xi) = cx;i; c (yj) = cy;j

for i = 1; 2; ::; I and j = 1; 2; ::; I:

We now use vertical MOL to discretise the PDE in both "space" dimensions,
but not in the time dimension, and then we "sequentially split" the discretised
PDE. De�ne �k = k � �� for k = 0; 1; 2; ::;K. �� is the size of a time step.
[0;K � �� ] is the time interval over which PDE 23 is solved. Using vertical MOL
with sequential splitting, we approximate PDE 23 during the interval [�k; �k+1]
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as

@uk+1i;j

@�
=
�ax;i;jay;i;j

2

@2uk+1i;j

@x@y
+
uk+1i+1;j � 2u

k+1
i;j + uk+1i�1;j

(�x)
2

(ax;i;j)
2

2
+
uk+1i+1;j � u

k+1
i�1;j

2 � �x bx;i;j + cx;iu
k+1
i;j

@vk+1i;j

@�
=
�ax;i;jay;i;j

2

@2vk+1i;j

@x@y
+
vk+1i;j+1 � 2v

k+1
i;j + vk+1i;j�1

(�y)
2

(ay;i;j)
2

2
+
vk+1i;j+1 � v

k+1
i;j�1

2 � �y by;i;j + cy;jv
k+1
i;j

@2uk+1i;j

@x@y
w
uk+1i+1;j+1 (�k)� u

k+1
i�1;j+1 (�k)� u

k+1
i+1;j�1 (�k) + u

k+1
i�1;j�1 (�k)

4�x�y

@2vk+1i;j

@x@y
w
vk+1i+1;j+1 (�k)� v

k+1
i�1;j+1 (�k)� v

k+1
i+1;j�1 (�k) + v

k+1
i�1;j�1 (�k)

4�x�y

uk+1i;j (�k) = v
k
i;j(�k)

vk+1i;j (�k) = u
k+1
i;j (�k+1)

for i = 1; 2; ::; I and j = 1; 2; ::; I:

We can rewrite this system of equations as

@uk+1j

@�
=Mu (j) � uk+1j + qk+1j (u) (24)

uk+1j (�k) = v
k
j (�k)�

@vk+1;i

@�

�0
=Mv (i) �

�
vk+1;i

�0
+
�
qk+1;i (v)

�0
vk+1;i(�k) = u

k+1;i(�k+1)

for i = 1; 2; ::; I, j = 1; 2; ::; I and k = 0; 1; 2; ::;K with

uk+1j =

24 uk+11;j

::

uk+1I;j

35 vk+1j =

24 vk+11;j

::

vk+1I;j

35 @uk+1j

@� =

264
@uk+11;j

@�
::

@uk+1I;j

@�

375 @vk+1j

@� =

264
@vk+11;j

@�
::

@vk+1I;j

@�

375

Mu (j)=

266664
2Ax;1;j + Bx;1;j Cx;1;j �Ax;1;j 0 :: 0 0 0
Ax;2;j Bx;2;j Cx;2;j :: 0 0 0
:: :: :: :: :: :: ::
0 0 0 :: Ax;(I�1);j Bx;(I�1);j Cx;(I�1);j
0 0 0 :: 0 Ax;I;j � Cx;I;j Bx;I;j + 2Cx;I;j

377775

Mv (i)=

266664
2Ay;i;1 + By;i;1 Cy;i;1 �Ay;i;1 0 :: 0 0 0
Ay;i;2 By;i;2 Cy;i;2 :: 0 0 0
:: :: :: :: :: :: ::
0 0 0 :: Ay;i;(I�1) By;i;(I�1) Cy;i;(I�1)
0 0 0 :: 0 Ay;i;I � Cy;i;I By;i;I + 2Cy;i;I

377775
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Ax;i;j = 1
2

��ax;i;j
�x

�2 � bx;i;j
�x

�
; Ay;i;j = 1

2

��
ay;i;j
�y

�2
� by;i;j

�y

�
;

Bx;i;j = cx;i �
�ax;i;j

�x

�2
; By;i;j = cy;j �

�
ay;i;j
�y

�2
;

Cx;i;j = 1
2

��ax;i;j
�x

�2
+

bx;i;j
�x

�
; Cy;i;j = 1

2

��
ay;i;j
�y

�2
+

by;i;j
�y

�
;

Qk+1 (u) =
�
::;qk+1j (u) ; ::

�
Qk+1 (v) =

24 ::
qk+1;i (v)

::

35 Uk+1 =
�
::;uk+1j ; ::

�
Vk+1 =

24 ::
vk+1;i

::

35

qk+1j (u) =

2666666666664

0
�ax;2;jay;2;j

2

vk+13;j+1(�k)�v
k+1
1;j+1(�k)�v

k+1
3;j�1(�k)+v

k+1
1;j�1(�k)

4�x�y

::
�ax;i;jay;i;j

2

vk+1i+1;j+1(�k)�v
k+1
i�1;j+1(�k)�v

k+1
i+1;j�1(�k)+v

k+1
i�1;j�1(�k)

4�x�y

::
�ax;I�1;jay;I�1;j

2

vk+1I;j+1(�k)�v
k+1
I�2;j+1(�k)�v

k+1
I;j�1(�k)+v

k+1
I�2;j�1(�k)

4�x�y

0

3777777777775

qk+1;i (v) =

2666666666664

0
�ax;i;2ay;i;2

2

uk+1i+1;3(�k+1)�u
k+1
i�1;3(�k+1)�u

k+1
i+1;1(�k+1)+u

k+1
i�1;1(�k+1)

4�x�y

::
�ax;i;jay;i;j

2

uk+1i+1;j+1(�k+1)�u
k+1
i�1;j+1(�k+1)�u

k+1
i+1;j�1(�k+1)+u

k+1
i�1;j�1(�k+1)

4�x�y

::
�ax;i;I�1ay;i;I�1

2

uk+1i+1;I(�k+1)�u
k+1
i�1;I(�k+1)�u

k+1
i+1;I�2(�k+1)+u

k+1
i�1;I�2(�k+1)

4�x�y

0

3777777777775
:

uk+1j is the j-th column of Uk+1. vk+1;i is the i-th row of Vk+1. The cross

derivative term @2V
@x@y�axay in equation 23 gives rise to the non-homogeneous

terms Qk+1 (u) and Qk+1 (v) in ODE system 24. The solution to system 24 is

uk+1j = �Mu (j)
�1
(II � exp (�� �Mu (j))) � qk+1j (u) + exp (�� �Mu (j)) � vk+1j (�k)

(25)

vk+1;i (�k+1)
0
= �Mv (i)

�1
(II � exp (�� �Mv (i))) �

�
qk+1;i (v)

�0
+ exp (�� �Mv (i)) �

�
uk+1;i

�0
for i = 1; 2; ::; I and j = 1; 2; ::; I. II is the I � I identity matrix. qk+1j (u)
is known from the previous time step. We can assume that the cross deriv-
ative equals 0 on the boundaries, i.e. qk+11 (u) = qk+1I (u) = [0; ::; 0]

0 and
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qk+1;1 (v) = qk+1;I (v) = [0; ::; 0]. If � = 0, then Qk+1 (u) = Qk+1 (v) = 0I�I ,
where 0I�I is an I� I matrix whose elements are all equal to 0, and solution 25
is unconditionally stable and consistent, which is a known property of sequential
splitting (e.g. see Farago (2003) at page 8). If � 6= 0, solution 25 may be unsta-
ble, unless �� ! 0. The attraction of solution 25 is that the main computation
it involves is a set of matrix exponentials, which can be computed very quickly
and reliably.
Mu (j) depends on j and Mv (i) on i, but solution 25 is much quicker to

compute when Mu does not depend on j and Mv does not depend on i. This
is the case when in PDE 23 ax and bx only depend on x while ay and by only
depend on y. In this case computing solution 25 can become some 25 times
faster, as shown by unreported simulations, and even valuations in the presence
of three factors remain quite a¤ordable. Other things equal, when � = 0 solution
25 reduces to

uk+1j (�k+1) = exp (�� �Mu (j)) � vkj (�k)
vk+1;i (�k+1)

0
= exp (�� �Mv (i)) � uk+1;i (�k+1)0 :

When � = 0, Strang splitting may also be used rather than the sequential
splitting just illustrated.

4.3 Comparison between vertical MOL "with sequential
splitting" and the implicit �nite di¤erence method

Vertical MOL competes with implicit �nite di¤erence methods to solve PDE�s
with two stochastic factors. Fully implicit �nite di¤erence methods discretise
PDE�s also in the time dimension, are unconditionally stable and require solv-
ing a sparse system of linear equations at every time step. The system of
linear equations is typically solved through an iterative numerical method such
as successive over relaxation (SOR) or conjugate gradient (CG) or biconju-
gate gradient stabilised (BCGST) or quasi minimum residual (QMR), but such
numerical methods may not always converge to the solution, i.e. they may
"break down". Alternatively the mentioned system of linear equations can be
solved using an analytic method such as Gaussian elimination, but according
to Tavella and Randall (2000, page 98) when the pricing PDE involves multiple
space dimensions Gaussian elimination "is never feasible in practice". With two
"space" dimensions we could use the PDE splitting method of Yanenko (1971),
which is a �nite di¤erence method similar to 24 but that discretises PDE 23
also in the time dimension. Yanenko�s method involves solving a set of systems
of linear equations where each system only involves just one space dimension
and therefore could be solved through Gaussian elimination or other analytic
methods. However Yanenko�s method is guaranteed to be stable only when
bx = by = c (x) + c (y) = 0 in PDE 23. Instead vertical MOL "with sequential
splitting" is guaranteed to be stable whenever � = 0.
Table 1 reports results from using the fully implicit �nite di¤erence method

with SOR and vertical MOL "with sequential splitting". What is computed

12



is the price of a discount bond with face value 1 and time to maturity of one
year. The computation solves for W (x; y; �) assuming that bx = 0:5 � (y � x) ;
by = 0:5 � (0:1� y) ; c (x) = max (x; 0) ; c (y) = 0; �x = �y = 0:1; � = 0; � = 1,
100 steps in both the x and y dimensions. x tends to its long term mean y,
which is itself stochastic as y follows an Ornstein-Uhlenbeck process. y and x
vary between �1 and 1. The two panels assume 10 and 100 time steps per year.
MOL is clearly faster than the implicit �nite di¤erence method.

[TABLE 1 ABOUT HERE]

5 The quadratic models

For the quadratic and a¢ ne Gaussian models we adopt a discrete time setting.
The choice of discrete time, as explained below, implies fewer restrictions on
the parameters of quadratic models. Pn;t is the price at time t of a default-free
discount bond with n time periods to maturity; each time period is of length
�, thus the bond matures at time t + n � �. rt is the time t continuously
compounded default-free interest rate during the time interval [t; t+�], such
that

P1;t = e
���rt ; rt =

� lnP1;t
�

with � = 1
261 as before. The no-arbitrage risk-neutral valuation equation is

Pn;t = E
Q
t

�
e���rt � Pn�1;t+1

�
(26)

where EQt [::] denotes conditional expectation at time t under the risk-neutral
measure Q.

5.1 Quadratic model Q3.3

Here we introduce quadratic model Q3.3, which is a three factor model where

rt = �+ x
0
t	xt (27)

	 = I3 (28)

xt+1 � xt = ��� �xt +��
Q
t+1 (29)

�Qt+1 v N (03�1; I3) : (30)

I3 is the 3�3 identity matrix. �;�;� are made up of constant parameters. �;�
are 3� 3 square matrixes. � is a 3� 1 column vector. xt = (x1;t; x2;t; x3;t)0 is a
vector of latent stochastic factors. � is a scalar parameter. Equation 29 states
that xt follows a Gaussian auto-regressive process. Equation 30 states that, in
the risk-neutral measure Q, the random terms �Qt+1 are normally distributed
with mean 03�1 and covariance I3. 03�1 is a column vector of zeroes with 3
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entries. N (::; ::) denotes the multivariate normal density. Under these assump-
tions, following Realdon (2006) we �nd that the time t value of the default-free
zero coupon bond with n periods to maturity is

Pn;t = e
An+B

0
nxt+x

0
tCnxt

An = ����+An�1+
�
B0n�1 + �

0Cn�1
�
��+ln

jj
abs j�j+

3X
i=1

1

2

��
B0n�1 + 2 (��)

0
Cn�1

�
i
�2

(31)

B0n =
�
B0n�1 + 2�

0Cn�1
�
(I3 � �)+

3X
i=1

2
�
B0n�1 + 2 (��)

0
Cn�1

�
i

0
iCn�1 (I3 � �)

(32)

Cn = �� �	+ (I3 � �)0 Cn�1

 
I3 � �+ 2

3X
i=1

i
0
iCn�1 (I3 � �)

!
(33)

where i is the i-th column of the 3� 3 matrix

 =
��
��0

��1 � 2Cn�1��1=2 :
The terminal conditions are

A0 = 0; B0 = 03�1; C0 = 03�3:

03�3 is the 3 � 3 matrix made of zeroes. An; Bn; Cn only depend on n. The
time t one-period yield y1;t is

y1;t =
� lnP1;t
�

= �A1 �B01 � xt � x0tC1xt = �+ 003�1 � xt + x0t	xt = rt (34)

since A1 = �� ��, B1 = 03�1 and C1 = �	 ��. The process of xt under the
physical measure is

xt+1 = (I3 � ��)xt + ���� +���t+1 (35)

where again ��t+1 v N (03�1; I3). � is de�ned above and the parameters
�12; �13; �32 that appear in � now are arbitrary constants. �1

p
�; �2

p
�; �3

p
�

are respectively the conditional standard deviations of x1;t+1; x2;t+1; x3;t+1. As-
suming that � be lower triangular entails no loss in generality.
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5.2 Parameter identi�cation conditions

As the factors xt are not observable, we need to impose some parameter restric-
tions in order to be able to estimate the parameters. The parameter identi�-
cation conditions for quadratic term structure models in continuous time, i.e.
when �! 0, are provided by Ahn-Dittmar-Gallant (2002) and are:
- that 	 and Cn be symmetric;
- the normalisation 	 = I3;
- that �� � 03�1;
- that � be diagonal (triangular) and � be triangular (diagonal).
However an Appendix shows that for discrete time quadratic models the pa-

rameter identi�cation conditions are the same as in Ahn-Dittmar-Gallant (2002)
except that both � and � can be triangular matrixes at the same time, which is
an advantage of the discrete time version of the quadratic model over
the continuous time version of Ahn-Dittmar-Gallant (2002). The Ap-
pendix shows that this result holds even when 	 6= I3 as long as 	 is symmetric
and has all diagonal entries equal to 1. As in Ahn-Dittmar-Gallant (2002) we
concentrate on the case whereby the non-diagonal entries of 	 are all equal to
0.

5.3 Speci�cation of model Q3.1

Another key di¤erence between this paper and Ahn-Dittmar-Gallant (2002) is
that	may also be a diagonal matrix with diagonal entries equal to 0 or 1 and
therefore not all equal to 1. When some of the diagonal entries of 	 are equal
to 0, we have a "separation" between the factors that drive the short rate rt,
whose corresponding diagonal entries are equal to 1, and the factors that drive
the central tendency of the short rate, whose corresponding diagonal entries are
equal to 0. This "separation" is supported by the empirical analysis of Japanese
yields by Kim and Singleton (2012). This "separation" implies that long term
yields can be relatively high even when the short rate is extremely close to 0, and
that short and long term yields move quite independently. This "separation"
seems of interest especially when yields are very low, as has been be case in
most Western countries since 2008. However this "separation" entails additional
parameter identi�cation conditions on the �matrix as shown in the Appendixes:
for each 0 entry in the diagonal of 	 we need to impose one restriction on the
parameters of �, while both � and � can be triangular matrixes at the same
time.
In particular we test a subfamily of quadratic models, which we name Q3.1,

which are three factor models in which only one factor drives rt and the other
factors drive the central tendency of rt. We consider three such model variants,
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namely Q3.1.1, Q3.1.2 and Q3.1.0. Q3.1.1 is such that

rt =

0@ x1;t+1
x2;t+1
x3;t+1

1A00@ 0 0 0
0 0 0
0 0 1

1A0@ x1;t+1
x2;t+1
x3;t+1

1A
0@ x1;t+1
x2;t+1
x3;t+1

1A =

0@ x1;t
x2;t
x3;t

1A+
0@ �1 0 0
��2 �2 0
0 ��3 �3

1A�
0@0@ 0

0
�3

1A�
0@ x1;t
x2;t
x3;t

1A1A+� � �Qt+10@ x1;t+1
x2;t+1
x3;t+1

1A =

0@ x1;t
x2;t
x3;t

1A+
0@ ��1 0 0
���2 ��2 0
0 ���3 ��3

1A�
0@0@ 0

0
��3

1A�
0@ x1;t
x2;t
x3;t

1A1A+� � ��t+1
so that

	 =

0@ 0 0 0
0 0 0
0 0 1

1A ; xt+1 =

0@ x1;t+1
x2;t+1
x3;t+1

1A ; � =

0@ 0
0
�3

1A ;

� =

0@ �1 0 0
��2 �2 0
0 ��3 �3

1A�; �� =

0@ ��1 0 0
���2 ��2 0
0 ���3 ��3

1A�
�1; �2; �3; �

�
1; �

�
2; �

�
3 are three scalar parameters. Q3.1.2 is the same as Q3.1.1

except for

� =

0@ �1 0 0
0 �2 0
��3 ��3 �3

1A�; �� =

0@ ��1 0 0
0 ��2 0
���3 ���3 ��3

1A�:
Q3.1.0 is the same as Q3.1.1 except for

� =

0@ �1 0 0
��2 �2 0
��3 ��3 �3

1A�; �� =

0@ ��1 0 0
���2 ��2 0
���3 ���3 ��3

1A�:
The Appendix proves that the parameters in Q3.1.0, Q3.1.1, Q3.1.2 are identi�-
able. Speci�cations Q3.1.0, Q3.1.1 and Q3.1.2 are new, since they are
not included in previous speci�cations of quadratic models appeared
in past literature, and are maximally �exible under the normalisation
rt=x

2
3;t. Instead Ahn-Dittmar-Gallant (2002) focused on the normali-

sation rt = x21;t + x
2
2;t + x

2
3;t.
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6 The a¢ ne Gaussian models

We also test a¢ ne Gaussian models where

rt = �
0 � xt (36)

xt+1 � xt = � � �xt +��
Q
t+1 + ju � d�(�) (37)

xt+1 � xt = �� � ��xt +���t+1 + ju � d�(��) (38)

�Qt+1 v N (03�1; I3) ; ��t+1 v N (03�1; I3) (39)

�;�;��; ju are 3 � 1 vectors of constants. ju is the jump size of xt+1 such
that ju s N (03�1;SS), d�(�) is the increment of a Poisson process with

probability
�
1� e���

�
in the risk-neutral measure and S =

24 0 0 0
0 0 0
0 0 �j

35.
Only one jump is possible during the period �. In the only model
with jumps we consider below, rt = x3;t while only factor x3;t may
jump, with jump size distributed according to a Gaussian density
with mean 0 and standard deviation �j. Jump event risk is priced,
while for simplicity jump size risk is not priced. d�(��) is the in-
crement of a Poisson process with probability

�
1� e����

�
in the real

measure, where �� 6= �. Since the model is in discrete time and the
tests rely on daily data, jumps can only take place at the end of
each trading day, rather than during the day, and this seems an ac-
ceptable approximation. For such a¢ ne model discount bond prices
can easily be computed, as shown below, and no ordinary di¤eren-
tial equation needs solving numerically, unlike in the continuous time
model of Baz and Das (1996). Possible jumps entail that the condi-
tional probability density of the factors is a mixture of two Gaussian
densities. Including jumps gives the a¢ ne Gaussian model one more
chance to compete with the quadratic and Black models. Under these
assumptions

Pn;t = e
An+B0nxt

An = An�1 + B0n�1 � � +
1

2
� B0n�1 ���0 � Bn�1 + ln

�
e��� +

�
1� e���

�
� e 12 �B

0
n�1�SS

0�Bn�1
�

(40)

Bn = �� ��+ (I3 � �) � Bn�1 (41)

A0 = 0; B0 = 03�1: (42)

We consider three speci�cations of this a¢ ne model where �� = � = 0, namely
A3.1.1, A3.1.2 and A3.1.0 that correspond to and can be directly compared with
Q3.1.1, Q3.1.2 and Q3.1.0 respectively. All these a¢ ne and quadratic models
have the common feature that one factor drives rt and the other factors drive
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the central tendency of rt. By model A3.1.1 we mean

rt =
�
0; 0; 1

�0@ x1;t+1
x2;t+1
x3;t+1

1A
0@ x1;t+1
x2;t+1
x3;t+1

1A =

0@ x1;t
x2;t
x3;t

1A+
0@ �1 � �1

0
0

1A��
0@ �1 0 0
��2 �2 0
0 ��3 �3

1A�
0@ x1;t
x2;t
x3;t

1A+� � �Qt+10@ x1;t+1
x2;t+1
x3;t+1

1A =

0@ x1;t
x2;t
x3;t

1A+
0@ ��1 � ��1

0
0

1A��
0@ ��1 0 0
���2 ��2 0
0 ���3 ��3

1A�
0@ x1;t
x2;t
x3;t

1A+� � ��t+1
so that

� =

0@ 0
0
1

1A ; �=
0@ �1 � �1

0
0

1A�; � =
0@ �1 0 0
��2 �2 0
0 ��3 �3

1A�; �� =
0@ ��1 0 0
���2 ��2 0
0 ���3 ��3

1A�:
By model A3.1.2 we mean the same model as A3.1.1 but for

� =

0@ �1 0 0
0 �2 0
��2 ��3 �3

1A�; �� =
0@ ��1 0 0

0 ��2 0
���2 ���3 ��3

1A�:
By model A3.1.0 we mean the same model as A3.1.1 but for

� =

0@ �1 0 0
��2 �2 0
��3 ��3 �3

1A�; �� =
0@ ��1 0 0
���2 ��2 0
���3 ���3 ��3

1A�:
All parameters in models A3.1.1, A3.1.2 and A3.1.0 are identi�able. We also
test model A3.3, which is the same as A3.1.1 except for � =

�
1; 1; 1

�0
.

Model A3.3 is directly comparable with model Q3.3. Finally we also test
model AJ3.1.0, which is the same as A3.1.0 except for �� 6= � 6= 0.

6.1 Comparison with Cheng and Scaillet (2007)

The quadratic and a¢ ne models of this paper are in discrete time,
but as the time step tends to zero, they converge to continuous time
models that are special cases of the linear-quadratic jump-di¤usion
pricing model of Cheng and Scaillet (2007). The quadratic and a¢ ne
models of this paper correspond respectively to the three factor mod-
els LQ30 (3) and LQ

0
0 (3) according to the notation in Cheng and Scail-

let. For these models no admissibility conditions are needed. As
Cheng and Scaillet (2007) stated at page 583, the speci�cation analy-
sis of LQ30 (3) had already been studied in the quadratic Gaussian lit-
erature. Indeed Ahn-Dittmar-Gallant (2002) provided identi�cation
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conditions for continuous time quadratic models. The speci�cation
of LQ00 (3) was studied in Joslin, Singleton and Zhu (2011) and the
above speci�cation of the a¢ ne model follows Joslin, Singleton and
Zhu (2011) with minor changes.

7 Empirical tests

We estimate and test the models illustrated above through Quasi Maximum
Likelihood Extended Kalman �lter (QML-EKF) estimation as well as through
Quasi Maximum likelihood (QML) and maximum likelihood (ML) estimation.
QML requires "inferring" the latent factors from the observed yields for any
observation date. This is problematic to do for the extended Black model,
but can be done quite easily for the three factor a¢ ne and quadratic models,
if we assume that some of the yields are observed without error. QML-EKF
estimation assumes that all yields are observed with errors. For the EKF we
assume that the starting values for the latent factors are normally distributed
as N (��; Cov (x)) for quadratic models, as N

�
(��1; �

�
2; �

�
3)
0
; Cov (x)

�
for the

Black model and as N
�
(��1; 0; 0)

0
; Cov (x)

�
for the a¢ ne models. Cov (x) is the

unconditional covariance matrix of x, which in vec form is

vec (Cov(x)) = (Im2 � (Im � �)
 (Im � �))�1 � vec (�0�))

Im2 is the identity matrix of size m2 �m2. Im has similar meaning. m = 3 is
the number of factors.

7.1 Quasi Maximum Likelihood (QML) estimation

We also estimate quadratic models using QML, whereas for a¢ ne models we
employ maximum likelihood estimation. QML poses the problem of inferring
the latent factors on any observation date. We solve such problem as explained
below. We employ the following notation:
- bxt is the forecast of xt conditional on information at time t� 1;
- Et�1 [::] is the expectation operator conditional on time t� 1 information

under the physical probability measure;
- yt = (y1;t; y2;t; ::; y30;t)

0 are the discount bond yields observed in the market
at time t for maturities of 1, 2, .., 30 years;
- z (xt) = (z1 (xt) ; z2 (xt) ; ::; z30 (xt))

0 is the time t vector of discount bond
yields computed using the model;
- "t is the vector of observation errors at time t, which is normally distributed

such that "t s N (030�1;H); 030�1 is a column vector of 30 zeroes; H is a 30�30
diagonal matrix;
- the observation errors "t are not correlated with each other, with xt, with

lags of xt and with lags of "t;
- x0 denotes the initial estimates of the latent factors and we set x0 = � for

the quadratic models, x0 = (�1; 0; 0)
0 for the a¢ ne models and x0 = (��1; �

�
2; �

�
3)
0

for the Black model.
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We use a �rst order Taylor�s series approximation so that

yt = z (xt) + "t w z (bxt) +Dtxt �Dtbxt + "t (43)

Dt =

�
@z (xt)

@x0t

�
xt=bxt : (44)

Dt is a 30 � 3 matrix, z (xt) is a 30 � 1 vector and xt is a 3 � 1 vector. Then
the expected value of yt conditional on information at time t� 1 is

byt = Et�1 (yt) = z (bxt) +Dtbxt �Dtbxt = z (bxt) : (45)

Then, assuming the yields for maturities of 1, 10 and 30 years are observed
without error, we set

bxt = Et�1 [xt] = � (�� xt�1) for quadratic models (46)bxt = Et�1 [xt] = � � �xt�1 for a¢ ne models (47)

Ft = Dt�D
0
t +H (48)

�t =

264
@(z1(xt))
@x1;t

@(z1(xt))
@x2;t

@(z1(xt))
@x3;t

@(z10(xt))
@x1;t

@(z10(xt))
@x2;t

@(z10(xt))
@x3;t

@(z30(xt))
@x1;t

@(z30(xt))
@x2;t

@(z30(xt))
@x3;t

375
xt=bxt

(49)

0@ x1;t
x2;t
x3;t

1A =

0@ bx1;tbx2;tbx3;t
1A+��1t �

0@ y1;t
y10;t
y30;t

�
by1;tby10;tby30;t

1A : (50)

As the disturbances "t are all normally distributed, we can derive the conditional
quasi-likelihood function of yt, which is

l (yt j yt�1) s N (byt;Ft) (51)

where N (byt;Ft) denotes the multivariate normal density with mean byt and
covariance matrix Ft. As the vector yt is made up 30 entries, we can write the
log of l (yt j yt�1) as

ln l (yt j yt�1) = �
30

2
ln (2�)� 1

2
ln (abs (jFtj))�

1

2
(yt � byt)0F�1t (yt � byt) :

(52)
abs (jFtj) denotes the absolute value of the determinant of Ft. Then the quasi
log-likelihood to be maximised in order to estimate the model parameters is

lk = �Mt=1 ln l (yt j yt�1) : (53)

where M is the number of in-sample observation dates, which is 2; 286 as ex-
plained below. The time step � is the time between consecutive observations.
We observe around 261 trading days in one year, so that � = 1=261.
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7.2 Empirical results

The sample is made up of daily yields for AAA-rated Euro area Government
bonds for yearly maturities from one year up to thirty years. The yields are pro-
vided by the European Central Bank�s web-site and are the result of a Svensson-
type daily interpolation to the market prices of the AAA-rated Government
bonds in the Euro area. The "in-sample" period is from 6-9-2004 to 2-8-2013
and is made up of 2286 trading days with 30 yields for each day. This is the sam-
ple used to estimate the parameters for each model, either though EKF-QML
or though QML. The "out-of-sample" period is from 5-8-2013 to 8-10-2014 and
is made up 301 trading days with 30 yields for each day. This sample is used to
test each model, whose parameters have already been estimated "in-sample".
Table 2 presents summary statistics for the yield data in the sample. For

every yield maturity the mean, standard deviation, minimum and maximum
are computed, both in sample and out of sample. For all yield maturities the
average and the standard deviation are much lower during the out-of-sample
period. This fact is important to interpret the empirical �t of the models.
For the shortest maturities the minimum observed yields are negative both in
sample and out of sample. Therefore in QML estimation quadratic models must
be adjusted so as to predict slightly negative one year yields.

[TABLE 2 ABOUT HERE]

Table 3 presents the results of EKF-QML estimation and Table 4 the re-
sults of QML estimation. The columns headed "param" report the paremeter
estimates and the columns headed "stdev" report the respective standard de-
viations of the parameter estimates computed with the BHHH estimator. All
optimisation of the quasi likelihood functions if carried out with the Nelder-
Mead Simplex Method. The row Average h provides overall measures of the
goodness of �t of the di¤erent models under EFK-QML. h is the estimated stan-
dard deviation of observation errors in the measurement equation of the Kalman
Filter for every single maturity. Average h is the simple average of h across
all maturities for a single model. Average h in the range 0:0013 � 0:0015 in
Table 3 for the a¢ ne models reveal that a¢ ne models worst �t observed yields.
Quadratic models of the type Q3.1 perform better with Average h of 0:0008,
while the Black and Q3.3 models perform best with Average h of 0:0005 and
0 :0006 respectively. The rows AIC and AICc respectively compute the Akaike
information criterion and the corrected Akaike information criterion. According
to AIC and to the log-likelihood function lk, model Q3.1.1 is the best and
the di¤erences with the AIC of other models are signi�cant.

[TABLE 3 ABOUT HERE]

Table 4 presents the results of QML estimation. The postscript "ne" next to
the name of each model means "no error" and reminds us that such models under
QML are estimated while assuming no error in our observations of the one year,
ten year and thirty year maturities. According to QML estimation Average
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h is in the range 0:0008 � 0:0009 for a¢ ne models and 0 :0005 for quadratic
models, except for Q3.3 whose Average h is 0:0007. Thus in Table 3 Average
h is higher for Q3.1 than for Q3.3, while the opposite is true in Table
4. Also QML estimation suggests that quadratic models perform better than
a¢ ne ones. As explained below, QML estimation results are not reported for
the Black model. According to AIC and to the log-likelihood function lk,
model Q3.1.1ne is the best and the di¤erences with the AIC of other models are
signi�cant. This result con�rms that in Table 3.

[TABLE 4 ABOUT HERE]

Table 5 presents RMSE (Root Mean Squared Errors) for all models and
maturities, both under EKF-QML and under QML, both in sample and out
of sample. The columns headed "in sam" report in sample RMSE and the
columns headed "out of sam" report out of sample RMSE. RMSE tend to be
higher than the corresponding standard deviations of errors h, since the errors
are not "white noise" and are not distributed according to Gaussian densities.
For example under EKF-QML estimation for the Q3.1.1 model h1 = 0:0055
and the in sample RMSE for the one year maturity is 0 :0056 . Av-
erage RMSE tend to higher than the corresponding Average h for the various
models, but also Average RMSE con�rm that quadratic models perform better
than a¢ ne ones both under EKF-QML and under QML estimation, while the
Black model seems to perform best. In Table 5 RMSE are positive even for
the perfectly observed maturities of one year, ten years and thirty years under
QML estimation. The reason is that RMSE refer to errors that are di¤erences
between observed yields and model predicted yields, where the prediction is
based on previous day information. In other words even for perfectly observed
maturities there are prediction errors, while observation errors are absent.
Table 5 shows that for the a¢ ne models RMSE as per EKF-QML are higher

out sample than in sample for the shorter maturities, while for longer maturities
RMSE are similar in sample and out of sample. This seems due to the di¢ culty
of a¢ ne model in matching the very low short term yields of the "out of sample"
period. A similar consideration is also applicable to quadratic models, but to a
lesser extent.

[TABLE 5 ABOUT HERE]

The tables show that all models have at least some factors that are negatively
correlated. It is a strength of quadratic Gaussian models and of the extended
Black model the fact that the latent factors may be negatively correlated and yet
pose no admissibility problems, while yields are guaranteed to be non negative
(or only slightly negative). A¢ ne models in which factor volatility depends
on "square roots" of the factors can accommodate negative correlation if only
admissibility is sacri�ced or if the short rate is allowed to turn negative.
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7.3 A¢ ne Gaussian vs quadratic Gaussian models

The conclusion that a¢ ne Gaussian models perform worse than quadratic and
Black models is supported by Tables 3, 4 and 5. In Table 5 average RMSE
(Root Mean Square Errors) for EKF-QML across all maturities con�rm these
conclusions both in sample and out of sample. In Table 5 all a¢ ne Gaussian
models have higher RMSE than their corresponding quadratic counterparts both
in sample and out of sample. For example Average RMSE for A3.1.1 are 0:0021
both in sample and out of sample, signi�cantly higher than 0 :0011 and 0 :0012
respectively in sample and out of sample for Q3.1.1. We draw similar conclusions
comparing A3.1.2 with Q3.1.2, A3.1.0 with Q3.1.0 and A3.3 with Q3.3. More-
over we draw similar conclusions both under QML estimation and EKF-QML
estimation. A3.1.1ne has average RMSE of 0:0009 in sample and 0:0014 out of
sample, while Q3.1.1ne has average RMSE of 0:0007 in sample and out of sam-
ple. Similar are the conclusions when comparing A3.1.2ne with Q3.1.2ne
and A3.1.0ne with Q3.1.0ne. One exception is Q3.3, which out of sample per-
forms much worse than A3.3 under QML estimation. The reason is explained
below and is due to problems of model Q3.3 rather than to merits of model
A3.3.
Overall Table 5 shows that quadratic models beat a¢ ne ones both in sample

and out of sample, both under EKF-QML estimation and QML estimation (with
the exception of model Q3.3). The superior performance of quadratic models
is partly due to the fact that yields are very close to zero during the sample
period. In such setting yields are likely to turn negative according to a¢ ne
Gaussian models, but not according to quadratic Gaussian models. Low yields
expose this notorious drawback of a¢ ne Gaussian models and this notorious
merit of quadratic Gaussian models. However during the sample period we do
observe negative yields for short maturities and for relatively protracted periods.
German and French Government bond yields were negative for some time. In
spite of negative yields, a¢ neGaussianmodels clearly under-perform quadratic
models.
Quadratic models are more complicated than a¢ ne Gaussian models, but

such complication seems worthwhile because of superior empirical �t to observed
yields.

7.4 Speci�cations for a¢ ne Gaussian models

The results shed light on the performance of alternative speci�cations of a¢ ne
models, namely A3.3, A3.1.0, A3.1.1, A3.1.2 and AJ3.1.0. According to Average
h as per EKF-QML and QML estimation in Tables 3 and 4, all a¢ ne Gaussian
models, except for A3.3, �t yields similarly well. Both EKF-QML and QML
show that the standard deviations of errors h across the di¤erent a¢ ne models
are very similar for any given maturity. For the a¢ ne Gaussian models there
seems to be no speci�cation that clearly dominates the others. Table 5 con�rms
this. AJ3.1.0 is the same as A3.1.0 except that rt may "jump". Jumps
improve the empirical performance of the model, as con�rmed in Ta-
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bles 4 and 5. For example in Table 4 AIC is �819; 332 for AJ3.1.0
and �815; 125 for A3.1.0: a signi�cant di¤erence in favour of "jumps".
However Tables 4 and 5 also con�rm that quadratic models still per-
form clearly better than all the a¢ ne Gaussian models, even with
"jumps".

7.5 Speci�cations for quadratic models

Under both EKF-QML and QML estimation the di¤erent versions of Q3.1
have similar empirical �t. According to AIC in Tables 3 and 4 model
Q3.1.1 is the best and models Q3.1 beat Q3.3 both under EKF-QML
estimation and QML estimation. AIC penalises Q3.3 for its greater
number of parameters than models Q3.1.
EKF-QML estimation shows that Q3.3 �ts shorter term yields better and

longer term yields worse than do the versions of Q3.1. This is the e¤ect in
models Q3.1 of "separating" the variables into the one that drives the short
rate rt and those that only drive the central tendency of the short rate. Q3.3
"lays the burden" of matching both short term and long term yields on all three
factors, while Q3.1 models "lay the burden" of matching shorter yields mainly
on the one factor that drives rt and leave the other factors "more free" to match
long term yields. Testing the models on maturities up to 30 years highlights
this e¤ect of "separating" the variables in Q3.1 models. Furthermore we recall
that Q3.3 has more parameters than the Q3.1 models.
According to QML estimation in Table 4 Q3.3 performs worse than do the

Q3.1 models. This is even more apparent in Table 5 where Average RMSE out
of sample are 0 :0860 for Q3.3: the reason is that Q3.3 �nds it more di¢ cult
to match the very low short term yields out-of-sample; since in Q3.3 all three
factors drive the short rate rt, all three factors must be close to 0 at the
same time in order to match low short term yields, which makes it di¢ -
cult for Q3.3 to match the relatively higher long term yields at the
same time. This di¢ culty of Q3.3 is more apparent under QML estimation
out of sample, to the point that out of sample Q3.3 cannot match
the one year yield, which is one of three maturities assumed to be observed
without error. Hence RMSE out of sample "explode" to 0 :0860 for Q3.3 un-
der QML estimation. In sample RMSE do not explode because the parameter
� = �0 :0038 enables Q3.3 to match very low or even negative yields, but out
of sample even such a low value of � does not su¢ ce to enable Q3.3 to match
one year yields, because during the out of sample period short term yields
reached record low levels. Unlike the Q3.3 model, Q3.1 models under QML do
not "su¤er" when yields are very low, precisely because only one factor drives
rt, so that only that factor needs to be close to zero when the one year yield is
close to zero.
The results in Tables 3 and 4 con�rm the merits of the "new" speci�-

cation of quadratic models, namely Q3.1, as opposed to Q3.3 according to
Ahn-Dittmar-Gallant (2002).
For the maturities observed without errors, i.e. 1; 10; 30 years, and
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for some "neighboring" maturities, RMSE as per QML estimation in
Table 5 tend to be higher in sample than out of sample. This is not
surprising since those maturities are observed without errors both in
sample and out of sample. Moreover yields tend to be lower out of
sample, implying lower RMSE out of sample.

7.6 The Black model

Discount bond prices according to the Black model are computed using
MOL with "sequential splitting" on a grid of 100 steps in each space dimension
(the solution region is [�1; 1] in each "space" dimension) and with 20 time steps
per year. According to EKF-QML estimation in Table 3 and Table 5 the Black
model achieves the best overall empirical �t to observed yields. What is striking
for the Black model in Table 5 are the extremely low RMSE out of sample, which
are much lower than the out of sample RMSE of any other model, even of model
Q3.3. The Black model performs very well, indeed better than all other models,
when yields are very close to zero and for short term yields, as is apparent from
the RMSE in Table 5 for the out-of-sample period. A relative weakness of the
Black model is in matching the longest maturities. For these maturities in Table
3 all other models have lower h�s, i.e. lower standard deviations of observation
errors.
The disappointing performance of the Black model for long term

yields is due to the fact that the short rate is non-linear in the factors,
so that the higher factor volatility is, the lower bond prices are and the
higher bond yields are; this e¤ect is stronger for longer maturities.
To match low long term yields, the estimated long term mean of
factors is lowered, but lowering such long term mean below zero will
not reduce model predicted long term yields by much, because of
the zero lower bound for the short rate. For these two reasons the
Black model tends to overestimate long term yields, when these are
particularly low as is the case in our sample. This is a shortcoming
of the Black model.
The RMSE of the Black model for almost all maturities are lower out of

sample than in sample. This outstanding result is observed only for the Black
model and can be explained by the fact that observed yields are lower out of
sample than in sample, as well as by good model performance. Lower
yields tend to be associated with lower RMSE.
The estimated parameters p, p� and � of the Black model in Table 3 are

signi�cant and indicate that the latent factors x1 and x2 are not independent.
Therefore it seems worthwhile to use vertical MOL with sequential splitting, as
explained above, in order to compute W , where W re�ects the fact that x1 and
x2 are not independent. The parameter q1 is estimated at 58; 15 and this means
that, for example, when x1 = 0:5, r � 0:558;15 = 3 �10�18 w 0. The Black model
is capable to match extremely low yields.
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7.7 EKF-QML vs QML estimation

Quadratic models can predict negative yields if only � < 0. � is like the "�oor"
of the short rate rt. � < 0 is necessary in QML estimation of quadratic models
because of negative yields in the sample, otherwise quadratic models could not
match negative one year yields, which are assumed to be perfectly observed.
To gauge the accuracy of equations 49 and 50 in inferring the latent factors

for quadratic models, Table 6 is provided. Table 6 displays the mean absolute
value of errors (MAE) across both the in sample and out of sample periods,
which total 2:587 trading days. For example for the one year maturity MAE is

�2587t=1

jy1;t � z1 (xt)j
2587

where xt is computed as in equations 49 and 50 for every trading day. MAE
reveal the disappointing performance of model Q3.3, which has problems in
matching the record low one year yields during the out of sample period, as
explained before. Instead MAE show that for models Q3.1 equations 49 and
50 provide an accurate way to infer the latent factors. The yields predicted on
the basis of the latent factors almost coincide with the perfectly observed yields
used to infer the latent factors themselves.

[TABLE 6 ABOUT HERE]

All models have smaller average RMSE, both in sample and out of sample,
when estimated through QML rather than through EKF-QML. This is not sur-
prising as QML estimation is such that each model every day perfectly matches
the one year, ten year and thirty year maturities. RMSE tend to higher (lower)
for maturities that are further from (nearer to) the one year, ten year and thirty
year maturities.
The results of QML estimation for the Black model are not displayed, be-

cause such results were unreliable. One problem is that the QML algorithm
tends to "push" the latent factors outside the bounded solution region, which
is [�1; 1] for the MOL algorithm for the Black model. Another problem is
that MOL only provides approximations to the partial derivatives of model pre-
dicted yields with respect to the latent factors. Such approximations seem too
imprecise to infer the latent factors through equations 49 and 50 of the QML
algorithm. This is a drawback of the Black model.

7.8 The term structures of errors

We test all models on yields up to thirty years, not up to ten years. This
is a tough test that better highlights the de�ciencies of models. EKF-QML
estimation shows that all models have more di¢ culty in matching the extreme
ends of the yield curve, i.e. the shortest or the longest maturities. For all
models h�s and RMSE are highest for the shortest maturities, such as one year,
and gradually decrease for the longer maturities. For some models, such as
Black or the quadratic models, h�s and RMSE tend to rise again for the longest
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maturities. A¢ ne models do not �t the longest maturities worse than the other
models.
Under EKF-QML the Black model has the lowest h�s for the shortest ma-

turities, such as one year, followed by Q3.3, whereas the a¢ ne models have the
highest h�s for such maturities. This fact re�ects the merits of the models that
do not permit the short rate to turn negative. For the longest maturities, such
as thirty years, a¢ ne and Q3.1 models perform similarly and the Black model
performs worst.

7.9 Calibration and unreported results

We also carry out some model calibration for a¢ ne and quadratic models, which
is the same as QML estimation described above, i.e. still uses equations 49 and
50 for every trading date, except for the fact that model parameters are found
by minimising the sum of squared pricing errors

SSE = �Mt=1 (yt � z (xt))
0
(yt � z (xt)) (54)

rather than the log-likelihood lk, and except for the fact that for all models
we set bxt = xt�1. Calibration is of interest because it does not depend on the
physical probability measure of the factors. Notice that byt = z (bxt) 6= z (xt).
Therefore in equation 54 the errors we mimimise for any date t are the di¤erences
between observed yields and the cross section of model predicted yields, where
yields are predicted given that we already know the value of the latent factors
xt for date t. Calibration makes no assumption about the distribution of the
errors and no assumption about the processes for the latent factors under the
real probability measure. Through calibration the pricing model predicts only
the cross section and not the time series of yields. For simplicity we do not
report the calibration results, but the gist of the results is that Q3.1 models
have lower SSE than a¢ ne models, except for model A3.1.0. Again the Q3.1
quadratic models beat a¢ ne models, except for a¢ ne model A3.1.0.
Finally, for simplicity and because of their disappointing empirical perfor-

mance with respect to the other models, we do not report the results of EKF-
QML estimation of Q3.2, which is a new speci�cation of the quadratic model
described in the Appendix whereby two factors drive the short rate and the
third factor only drives the central tendency of the short rate.

7.10 Residual considerations

The low yields in the sample a¤ect the performance of the tested
models. Low yields highlight the merits of speci�cation Q3.1, whereby
long term yields can be relative high even while short term yields are
almost zero, and the merits of the Black model, which can match
very low short term yields. Low yields also stress the shortcomings
of a¢ ne Gaussian models, which cannot rule out negative yields. In
a sample with higher yields the merits of Q3.1 and Black model may

27



become less apparent, while a¢ ne Gaussian models may well become
more competitive.
Low Government bond yields have been observed for a number of

countries beyond the Eurozone after 2008. Also for these countries
we could expect better empirical performance of quadratic Gaussian
models and Black models in comparison to a¢ ne Gaussian models.
Also for these countries Q3.3 can be expected to �beat�Q3.1 on short
term yields and to �lose� on long term yields, for the same reasons
given above for the Eurozone. Less obvious for non-Euro countries is
the comparative empirical performance of quadratic Gaussian models
and Black models, however these models �t US Government yields
similarly well according to preliminary evidence not reported in the
paper.

8 Conclusion

This paper has tested a¢ ne Gaussian, quadratic Gaussian and Black-typeGaussian
models on the term structure of Euro area triple A Government bond yields for
maturities up to 30 years. Quadratic Gaussian models "beat" a¢ ne Gaussian
models both in sample and out of sample. Quadratic models better �t observed
yields for the shortest maturities. An extended version of the Black (1995)
model beats all other Gaussian models out-of-sample and seems the best model
to match the extremely low Euro yields observed since 2013.
Estimation through Quasi Maximum Likelihood (QML), which assumes that

some yields are observed without error, is feasible even for quadratic models.
This paper has tested promising new speci�cations of quadratic term struc-

ture model, whereby only one factor drives the short rate and the other factors
drive the central tendency of the short rate. These new speci�cations are more
suitable to QML estimation than the "classic" speci�cation of quadratic mod-
els as per Ahn-Dittmar-Gallant (2002). However the "classic" speci�cation �ts
short term yields slightly better than the new speci�cations.
This paper has also introduced the vertical method of lines (MOL) to solve

bond pricing equations for the Black model. MOL seems preferable to im-
plicit �nite di¤erence methods for bond pricing. For pricing bonds driven by
two or more stochastic factors, vertical MOL involves computing exponentials
of large matrixes, which can be prohibitive. However equation "splitting"
can dramatically alleviate the burden of computations. "Sequential splitting"
provides quick and unconditionally stable numerical solutions as long as the
Wiener processes of the two factors are not correlated: when they are corre-
lated, sequential splitting still provides quick solutions, but these no longer are
unconditionally stable. This seems the main unsolved problem of vertical MOL.
Overall, the e¤ort to pass from a¢ ne Gaussian term structure models to

quadratic ones seems worthwhile, at least for Euro area yields. The e¤ort to
pass from quadratic Gaussian models to extensions of the Black model may
also be worthwhile on the grounds of superior empirical �t to very low short
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term yields. However in practice the tractability of quadratic models remains
an important advantage over the Black model.

A Derivation of identi�cation conditions of the
Ahn-Dittmar-Gallant (ADG) model and of
model Q3.3

Ahn-Dittmar-Gallant (2002) derive as follows the conditions for the identi�ca-
tion of the model parameters. They consider linear invariant transformations
of x, as x has Gaussian distribution and only linear transformations of x will
retain a Gaussian distribution. A transformation is invariant if it does not alter
model predicted yields. Denote the generic invariant linear transformation as
x =
y +�, where � and y are 3 � 1 vectors and 
 is an 3 � 3 matrix. 
�1
is assumed to exist. � is a scalar constant. Since rt = � + �0xt + x

0
t	xt and

xt+1 = (I3 � �)xt + ��+��t+1, it follows that

rt = �+ �
0�+�0	�+ �0
yt + y

0
t


0	�+�0	
yt + y
0
t


0	
yt(55)

yt+1 � yt = 
�1 (��� � (�+
yt)) +
�1��t+1: (56)

Then only if � = 03�1 do we need to impose � = 03�1 in order for the
transformation to be invariant. Only if � = 03�1 can � be uniquely identi�ed.
Since 	 is symmetric and � = � = 03�1, it follows that

rt = �+ y
0
t


0	
yt (57)

yt+1 � yt = 
�1 (��� �
yt) +
�1��t+1. (58)

Then, in order for the transformation to be invariant, we need to constrain 
 to
be equal to the identity matrix I3. Notice that 
 must be diagonal either when
� is diagonal and � is triangular or when � is triangular and � is diagonal.
Of our interest is only the case where � is triangular. If � is triangular, so
is 
�1� provided 
 is triangular. Indeed in order for the transformation to
be invariant, 
�1� needs to be triangular if so is �. Then if 
 is triangular
and if � is diagonal, 
�1�
 will be diagonal and indeed, in order for the
transformation to be invariant, 
�1�
 needs to be diagonal if so is �. Finally

0	
 must have all diagonal entries equal to 1 and 
�1�� � 03�1 in order for
the transformation to be invariant. Since in the Ahn-Dittmar-Gallant (ADG)
model 	 has all diagonal entries equal to 1 and �� � 03�1, then 
 = I3.
However, unlike in the Ahn-Dittmar-Gallant (2002) continuous time setting,

in discrete time � need not be diagonal. Notice that if 
 is lower triangular,
then
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0	
 =

0@ 
1;1 
2;1 
3;1
0 
2;2 
3;2
0 0 
3;3

1A0@ 1 0 0
0 1 0
0 0 1

1A0@ 
1;1 0 0

2;1 
2;2 0

3;1 
3;2 
3;3

1A
=

0@ 
21;1 +

2
2;1 +


2
3;1 
2;1
2;2 +
3;1
3;2 
3;1
3;3


2;1
2;2 +
3;1
3;2 
22;2 +

2
3;2 
3;2
3;3


3;1
3;3 
3;2
3;3 
23;3

1A
=

0@ 1 0 0
0 1 0
0 0 1

1A
which implies that 
3;3 = 
1;1 = 
2;2 = �1 and 
3;1 = 
3;2 = 
2;1 = 0.

2;1 is the element of 
 in the second row and �rst column. The
other elements of 
 have similar interpretation. Finally if �� � 03�1,
then 
�1�� � 03�1 if 
3;3 = 
1;1 = 
2;2 = 1. Thus the transformation
is invariant without additional restrictions on � and �, therefore in
the discrete time both � and � can be triangular, unlike in continuous time.
The key reason is that in discrete time estimation depends on the conditional
covariance matrix of xt+1, which is ��

0 and does not depend on �. Instead in
continuous time the factors conditional covariance also depends on � so that
parameter identi�cation entails that � be diagonal if � is triangular.
More generally in Ahn-Dittmar-Gallant (2002) continuous time setting 	 is

symmetric with all diagonal entries equal to 1 so that 	 =

0@ 1 g1 g2
g1 1 g3
g2 g3 1

1A.
g1; g2; g3 are constants. Then it can be shown that imposing this de�nition of
	 in model Q3.3 gives

0@ 
1;1 
2;1 
3;1
0 
2;2 
3;2
0 0 
3;3

1A0@ 1 g1 g2
g1 1 g3
g2 g3 1

1A0@ 
1;1 0 0

2;1 
2;2 0

3;1 
3;2 
3;3

1A =

0@ 1 g1 g2
g1 1 g3
g2 g3 1

1A :
which implies that 
 =I. Therefore for the Q3.3 model in discrete time para-
meter identi�cation allows both � and � to be triangular whatever the values
of g1, g2, g3.

B Appendix: conditions for the identi�cation of
parameters of models Q3.1

We consider the linear transformation xt = 
yt+�, where � is a 3� 1 vector
of parameters and 
 is a 3�3 matrix of parameters. 
�1 is assumed to exist. x
and y are 3� 1 vectors of variables that change over time. The transformation
is invariant if and only if 
 = I3 and � = 03�1. I3 is the 3� 3 identity matrix.
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03�1 is the 3� 1 vector of zeros. Then, since

rt = �+ x
0
t	xt

xt+1 = (I3 � �)xt + ��+��t+1

we can employ the linear transformation to write

rt = �+�
0	�+ y0t


0	�+�0	
yt + y
0
t


0	
yt (59)

yt+1 � yt = 
�1 (��� ��� �
yt) +
�1��t+1: (60)

The said transformation is invariant only if �0	�+ y0t

0	�+�0	
yt = 0,

i.e. if and only if � = 03�1. The fact that � = 03�1 entails that �� can be
uniquely identi�ed and that

rt = y
0
t


0	
yt (61)

yt+1 � yt = 
�1 (��� �
yt) +
�1��t+1. (62)

Hereafter we impose conditions that entail that 
 = I3 so that the transfor-
mation be invariant. As � is lower triangular, 
�1� should also be triangular
and 
�1� can only be lower triangular if 
 is also lower triangular, i.e. if

1;2 = 
1;3 = 
2;3 = 0 so that


 =

0@ 
1;1 0 0

2;1 
2;2 0

3;1 
3;2 
3;3

1A :
Since 
 is lower triangular and since the transformation is invariant if only if


0	
 = 	, it follows that when 	 =

0@ 0 0 0
0 0 0
0 0 1

1A the transformation is

invariant if and only if0@ 
1;1 
2;1 
3;1
0 
2;2 
3;2
0 0 
3;3

1A0@ 0 0 0
0 0 0
0 0 1

1A0@ 
1;1 0 0

2;1 
2;2 0

3;1 
3;2 
3;3

1A =

0@ 
23;1 
3;1
3;2 
3;1
3;3

3;1
3;2 
23;2 
3;2
3;3

3;1
3;3 
3;2
3;3 
23;3

1A
=

0@ 0 0 0
0 0 0
0 0 1

1A :
This condition is satis�ed only when 
3;3 = 1, 
3;1 = 
3;2 = 0, i.e. when 
 is
such that


 =

0@ 
1;1 0 0

2;1 
2;2 0
0 0 1

1A :
Then we notice that
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�1�
 =

0B@
1


1;1
0 0

� 1

1;1


2;1

2;2

1

2;2

0

0 0 1

1CA
0@ �1;1 0 0
��2;1 �2;2 0
0 ��3;2 �3;3

1A0@ 
1;1 0 0

2;1 
2;2 0
0 0 1

1A

=

0B@ �1;1 0 0

2;1

2;2

�2;2 �
�

1

2;2

�2;1 +
1


1;1


2;1

2;2

�1;1

�

1;1 �2;2 0

�
2;1�3;2 �
2;2�3;2 �3;3

1CA
therefore 
2;1 = 0 in order for the transformation to be invariant, in which case


�1�
 =

0@ �1;1 0 0

�
1;1

2;2

�2;1 �2;2 0

0 �
2;2�3;2 �3;3

1A :
Finally, only if �2;1 = �2;2 and �2;2 = �3;3 can we impose that 
1;1 = 
2;2 = 1 in
order for the transformation to be invariant. Then 
 = I3, the transformation
x = 
y + � does not alter the bond yields we observe (is observationally
invariant), we can uniquely identity the model parameters and infer the values
of the latent factors x. We have considered the case of Q3.1.1. Other things
equal, for model Q3.1.0 we impose that


�1�
 =

0B@
1


1;1
0 0

� 1

1;1


2;1

2;2

1

2;2

0

0 0 1

1CA
0@ �1;1 0 0
��2;1 �2;2 0
��3;1 ��3;2 �3;3

1A0@ 
1;1 0 0

2;1 
2;2 0
0 0 1

1A

=

0B@ �1;1 0 0

2;1

2;2

�2;2 �
�

1

2;2

�2;1 +
1


1;1


2;1

2;2

�1;1

�

1;1 �2;2 0

�
1;1�3;1 � 
2;1�3;2 �
2;2�3;2 �3;3

1CA
so that the transformation is invariant if

�3;1 = �3;2 = �3;3

�2;1 = �2;2

�� � 0:

Notice that if �2;1 = 0 and �3;1 = �3;2 = �3;3 still 
 = I3: this is the case of
Q3.1.2. The case where �2;1 = 0 and �3;1 = 0 is of no interest.

C Speci�cation of model Q3.2

In another subfamily of three factor quadratic models, namely Q3.2,
two factors drive rt and the third factor only drives the central tendency of
rt so that
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rt =

0@ x1;t+1
x2;t+1
x3;t+1

1A00@ 0 0 0
0 1 0
0 0 1

1A0@ x1;t+1
x2;t+1
x3;t+1

1A
0@ x1;t+1
x2;t+1
x3;t+1

1A =

0@ x1;t
x2;t
x3;t

1A+
0@ �1;1 0 0
��2;1 �2;2 0
��3;1 ��3;2 �3;3

1A�
0@0@ 0

0
�3

1A�
0@ x1;t
x2;t
x3;t

1A1A+��
0B@ �Q1;t+1
�Q2;t+1
�Q3;t+1

1CA
� is the same as in model 3.1 above. In the text we do not consider this model
because of its disappointing empirical performance. Q3.2 is here mentioned
just to complete the theoretical analysis of the possible speci�cations of three
factor quadratic models. What follows shows that the only condition needed for
parameter identi�cation is �2;1 = �2;2. Under Q3.2, all else as in model Q3.1,
we have

0@ 
1;1 
2;1 
3;1
0 
2;2 
3;2
0 0 
3;3

1A0@ 0 0 0
0 1 0
0 0 1

1A0@ 
1;1 0 0

2;1 
2;2 0

3;1 
3;2 
3;3

1A =

=

0@ 
22;1 +

2
3;1 
2;1
2;2 +
3;1
3;2 
3;1
3;3


2;1
2;2 +
3;1
3;2 
22;2 +

2
3;2 
3;2
3;3


3;1
3;3 
3;2
3;3 
23;3

1A =

0@ 0 0 0
0 1 0
0 0 1

1A :
which implies that 
2;2 = 
3;3 = 1;
3;2 = 
3;1 = 
2;1 = 0, so that


 =

0@ 
1;1 0 0
0 1 0
0 0 1

1A :
What is left to determine is 
1;1. Then we notice that


�1�
 =

0@ 1

1;1

0 0

0 1 0
0 0 1

1A0@ �1;1 0 0
��2;1 �2;2 0
��3;1 ��3;2 �3;3

1A0@ 
1;1 0 0
0 1 0
0 0 1

1A =

0@ �1;1 0 0
�
1;1�2;1 �2;2 0
�
1;1�3;1 ��3;2 �3;3

1A :
Therefore 
1;1 = 1 in order for the transformation to be invariant and, to this
e¤ect, we can impose �2;1 = �2;2.

References

[1] Ahn D., Dittmar R., Gallant R., 2002, "Quadratic term structure models:
theory and evidence", The Review of �nancial studies 15, n.1, 243-288.

[2] Babbs S.H. and Nowman B.K., 1999, "Kalman �ltering of generalised Va-
sicek term structure models", Journal of Financial and Quantitative Analy-
sis 34, 115-130.

33



[3] Baz J and Das S.R., 1996, �Analytical Approximations of the
Term Structure for Jump-Di¤usion Processes: A Numerical
Analysis,� Journal of Fixed Income 6, n.1, 78-86.

[4] Black F., 1995, "Interest rates as options", Journal of Finance 50, 1371-
1376.

[5] Chen L., Filipovic D. and Poor V., 2004, "Quadratic term structure models
for risk-free and defaultable rates", Mathematical Finance, 14, n.4, 515-536.

[6] Cheng P. and Scaillet O., 2007, "Linear-quadratic jump-di¤usion
modeling", Mathematical Finance 17, n.4, 575-598.

[7] Constantinides G., 1992, "A theory of the nominal term structure of interest
rates", The Review of Financial Studies 5, n.4, 531-552.

[8] Dai Q. and Singleton K., 2003, "Term structure dynamics in theory and
reality", The Review of Financial Studies 16, n.3, 631-678.

[9] Du¤ee G., 2011, "Information in (and not in) the Term Structure", Review
of Financial Studies 24, n.9, 2895-2934.

[10] Du¢ e D. and Kan R., 1996, "A yield factor model of interest rates", Math-
ematical Finance 6, 379-406.

[11] Farago I., 2003, "Splitting method", August 2003 lecture notes at
http://www.cs.elte.hu/~faragois/phdcourse/lecture�2.pdf.

[12] Gourieroux C. and Sufana R., 2003, "Wishart quadratic term structure
models", Working paper CREF HEC Montreal.

[13] Joslin S., Singleton K.J. and Zhu H., 2011, "A New Perspective on Gaussian
Dynamic Term Structure Models", Review of Financial Studies 24, 926-970.

[14] Kim D.H. and Singleton K.J., 2012, "Term structure models and the zero
bound: An empirical investigation of Japanese yields", Journal of Econo-
metrics 170, 32-49.

[15] Higham N. J., 2005, "The Scaling and Squaring Method for the Matrix
Exponential Revisited," SIAM Journal Matrix Anal. Appl. 26, n.4, 1179-
1193.

[16] Langetieg T.C., 1980, "A multivariate model of the term structure", Jour-
nal of Finance 35, 71-97.

[17] Leippold M. and Wu L., 2002, "Asset pricing under the quadratic class",
Journal of Financial and Quantitative Analysis 37, n.2, 271-294.

[18] Leippold M. and Wu L., 2003, "Design and estimation of quadratic term
structure models", European Finance Review 7, 47-73.

34



[19] Rambeerich N., Tangman D.Y., Lollchund M.R., Bhuruth M. , 2013, "High-
order computational methods for option valuation under multifactor mod-
els", European Journal of Operational Research 224, 219�226.

[20] Randall C. and Tavella D., 2000, Pricing �nancial instruments: The �nite
di¤erence method, John Wiley & Sons (New York).

[21] Realdon M., 2006, "Quadratic term structure models in discrete time",
Finance Research Letters 3, n.4, 277-289.

[22] Realdon M., 2009, �Extended Black�term structure models�, International
Review of Financial Analysis 18, 232-238.

[23] Yanenko, N.N., 1971, "The method of fractional steps", Springer-Verlag,
Berlin.

35


