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Abstract: In this article, we review the theory of Gaussian multiplica-
tive chaos initially introduced by Kahane’s seminal work in 1985. Though
this beautiful paper faded from memory until recently, it already contains
ideas and results that are nowadays under active investigation, like the
construction of the Liouville measure in 2d-Liouville quantum gravity or
thick points of the Gaussian Free Field. Also, we mention important exten-
sions and generalizations of this theory that have emerged ever since and
discuss a whole family of applications, ranging from finance, through the
Kolmogorov-Obukhov model of turbulence to 2d-Liouville quantum gravity.
This review also includes new results like the convergence of discretized Li-
ouville measures on isoradial graphs (thus including the triangle and square
lattices) towards the continuous Liouville measures (in the subcritical and
critical case) or multifractal analysis of the measures in all dimensions.
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1. Introduction

Log-normal multiplicative martingales were introduced by Mandelbrot [114] in
order to build random measures describing energy dissipation and contribute
explaining intermittency effects in Kolmogorov’s theory of fully developed tur-
bulence (see [35, 136, 141, 36, 66] and references therein). However, his model
was difficult to define mathematically and this is why he proposed in [115] the
simpler model of random multiplicative cascades whose detailed study started
with Kahane’s and Peyrière’s notes [86, 125], improved and gathered in their
joint paper [87].

From that moment on, multiplicative cascades have been widely used as ref-
erence or toy models in many applications as they feature beautiful stochastic
scaling relations, modeling a phenomenon that is commonly called intermit-
tency. Let us roughly explain this point. Consider a multiplicative cascade M
constructed on a dyadic tree. It is a random measure over the interval [0, 1]. If
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you look at the measure at a dyadic scale 2−n, you observe the same object as
M up to an independent stochastic factor:

M
[ k

2n
,
k + 1

2n

]

law
= eΩnM [0, 1],

where Ωn is a random variable independent of M , the law of which depends
on the scale 2−n. However, multiplicative cascades are constructed on a dyadic
(or p-adic) tree and therefore possess many drawbacks: they do not possess
stationary fluctuations and present discrete (p-adic) scaling relations.

Gaussian multiplicative chaos, introduced by Kahane [85] in 1985, is born
from the need of making rigorous Mandelbrot’s initial model of energy dissipa-
tion [114], the so-called Kolmogorov-Obukhov model. It is about constructing
a continuous parameter theory of suitable multifractal random measures. Ka-
hane’s efforts were followed by several authors [5, 12, 21, 64, 129, 130, 135, 136]
coming up with various generalizations at different scales. These measures have
found many applications in various fields of science, especially in mathemati-
cal finance (or equivalently boundary Liouville quantum gravity), 2d-Liouville
quantum gravity and 3d-turbulence.

In dimension d, a standard Gaussian multiplicative chaos is a randommeasure
on a given domain D of Rd that can be formally written, for any Borel set A as:

Mγ(A) =

∫

A

eγX(x)−γ2

2 E[X
2(x)] σ(dx) (1.1)

where X is a centered Gaussian “field” and σ is a Radon measure on D. In the
situations of interest, X is rather badly behaved and cannot be defined as a
random function: it is a random distribution (in the sense of Schwartz), like the
Gaussian Free Field (GFF for short, see [137] for an overview about the GFF)
for instance. In his seminal work, Kahane focused on the case where X possesses
a covariance kernel of the form:

E[X(x)X(y)] = ln+
1

|x− y| + g(x, y), (1.2)

with ln+(u) = max(ln u, 0) and g a continuous bounded function over D × D.
Surprisingly, it turns out that this is the only situation of interest since this
family of kernels can be thought of as a transition, separating the family of
kernels for which (1.1) is trivially converging from the family of kernels for which
(1.1) is trivially vanishing. The covariance kernel thus possesses a singularity
and it is now clear that giving sense to (1.1) is not straightforward (how do you
define the exponential of a distribution?). The standard approach consists in
applying a “cut-off” to the distribution X , that is in regularizing the field X in
order to get rid of the singularity of the covariance kernel and get a nicer field.
The regularization usually depends on a small parameter that stands for the
extent to which the field has been regularized. The measure (1.1) is naturally
understood as the limit that you get when the regularization parameter goes
to 0. Kahane’s paper [85] is about making this sketch of construction rigorous.
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When σ is the Lebesgue measure for instance, it turns out that it produces non
trivial limiting objects when the parameter γ is less than some critical value
γc =

√
2d. These are the foundations of Kahane’s theory. Several questions are

then raised like:

– Does the limiting measure Mγ depend on the chosen cut-off procedure?
– What are the geometrical and statistical properties of the measure Mγ?
– What are the regularity properties of the measure Mγ?
– How can we characterize the measure Mγ?
– What happens at γc? and what about γ > γc?

In this review, we will discuss the above questions as well as possible gener-
alizations and applications of the theory of Gaussian multiplicative chaos in the
light of recent progresses. Among the main points that we will address are the
convolution techniques used to produce a Gaussian multiplicative chaos. The
situation may be summarized as follows: given a Gaussian distribution X with
covariance kernel of the type (1.2), what if we regularize X by convolution with
a smoothing family of functions (θǫ)ǫ, converging towards the Dirac mass at 0
when ǫ → 0? If we formally define:

Xǫ(x) =

∫

X(y)θǫ(x− y) dy,

it turns out that, under weak conditions, the family of random measures:

Mǫ,γ(A) =

∫

A

eγXǫ(x)−γ2

2 E[X
2
ǫ (x)] dx (1.3)

weakly converges in law towards the same measure as that produced by Ka-
hane’s theory. Convolution techniques were first introduced in [134, 135], where
convergence in law is established. In the particular case when X is a Gaussian
Free Field (GFF), a particular convolution technique was also studied in [57],
i.e. convolution of the field by a circle, where almost sure convergence along
subsequences is established (see section 3).

We will also discuss multifractality of Gaussian multiplicative chaos and re-
lated scaling relations. Roughly speaking, multifractal analysis is the study of
objects, like measures or functions, possessing several levels of local regularity:
for instance, the local Hölder exponent may vary spatially. In particular, we
will explain why the (nowadays called) thick points of the GFF are very closely
related to a general theory called multifractal analysis, which at least goes back
to Kahane’s paper when applied to Gaussian multiplicative chaos (see subsec-
tion 2.3). Nowadays, there is a huge amount of literature on multifractal analysis
and it is far beyond the scope of this review to cite or discuss all the related
mathematical achievements (in the case of Mandelbrot’s multiplicative cascades
see [14, 15, 22] and references therein).

The applications that we will mention range from mathematical finance to
fully developed turbulence through 2d-Liouville quantum gravity or decaying
Burgers turbulence. On the one hand, some of them are rather well established
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so that we will just recall the basic framework and give references. On the
other hand, we feel important to devote a considerable part of the paper to 2d-
Liouville quantum gravity. Roughly, it can be seen as an attempt to construct a
canonical “Riemannian” random metric on the sphere. Since Polyakov’s original
work [128], physicists have understood that such a metric takes on the form of
the exponential of a GFF [48, 128]. Interestingly, they have also understood
that such metrics can be discretized by randomly triangulated surfaces (see [6]
for instance), a recent field of mathematical research that culminated with the
construction of the so-called Brownian map (see [106, 107, 108, 117]) in the
special case of pure gravity. While constructing properly a metric is presently
out of reach, Gaussian multiplicative chaos theory gives straightforwardly a way
of defining the associated volume form, called the Liouville measure. Non spe-
cialists of Gaussian multiplicative chaos will find in subsection 5.2 the different
constructions suggested in the literature, i.e. white noise decomposition/circle
average/H1-expansion of the GFF, as well as a proof that they all produce the
same measure in law. Let us mention here the remarkable works of Duplantier-
Sheffield [57] and Sheffield [138] where the authors state an impressive series
of conjectures, which can be seen as a starting point to understand the physi-
cist picture (see also the nice review for mathematicians [71]). In particular, this
ambitious program could give a rigorous geometrical framework to the Knizhnik-
Polyakov-Zamolodchikov formula (KPZ for short, see [94]). For instance, such
a KPZ formula has already been used by physicists [55] to predict the exact
values of the Brownian intersection exponents and has been rigorously checked
to hold in some special cases (see [26]). We will explain the geometrical KPZ
formulae rigorously proved in [57, 131] (see also [27, 17]).

Furthermore, as pointed out in [131], the theory of Gaussian multiplicative
chaos allows us to deal with much more general situations concerning construc-
tions of measures or the KPZ formula. We stress here that the theory of Gaussian
multiplicative chaos in [85] and the KPZ relation proved in [131] (or [17]) is valid
in any dimension when applied to log-correlated Gaussian fields. In particular,
boundary Liouville measures are discussed since they are nothing but Gaussian
multiplicative chaos along 1d Riemannian manifolds. Also, in dimension d one
can consider situations where the field X has correlations given by the kernel
(m2 − ∆)−d/2 (with possibly m = 0) since such correlations are logarithmic
(see [60]). We do not detail this situation here, first because we cannot explain
in great details all the situations where the theory of Gaussian multiplicative
chaos applies and second, because it could be instructive for the reader to check
that the framework drawn in [85] for the construction of measures or in [131, 17]
for the KPZ formula applies (the reader may also consult [39] on this topic).
Finally, as a new result, we explain how to combine the results in [38, 135] to
prove that the discrete Liouville measures on isoradial graphs converge towards
the Liouville measure as the mesh of the graph converges to 0.

The last part of this review (section 6) will be devoted to possible general-
izations of Kahane’s theory. We will discuss how to renormalize the vanishing
measure (1.1) for γ2 ≥ 2d (when σ is the Lebesgue measure). This yields new
qualitative behaviours of the limiting measure that may be classified in two
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categories: Critical Gaussian Multiplicative Chaos or Atomic Gaussian Multi-
plicative Chaos. We discuss the associated relations with duality in 2d-Liouville
quantum gravity, the frozen phase of logarithmically correlated Gaussian poten-
tials or the maximum of log-correlated Gaussian fields (including in particular
the maximum of the GFF). Other possible generalizations are mentioned, like
taking matrix-valued fields X in (1.1).

Finally, we mention that a preceeding review on multiplicative chaos has
already appeared [63]. The reader may find in [63] some further fields of appli-
cations including Dvoretzy covering, percolation on trees, random cascades and
Riesz products that we do not review here for the sake of non-overlapping. Con-
cerning multiplicative cascades, the reader may consult the recent review [16].

1.1. A word on quantum field theory (QFT) and the Hoegh-Krohn
model

To our knowledge, the first mathematical occurence of measures of the form (1.1)
appeared in Hoeg-Krohn’s work [81]. In the context of constructive Euclidean
field theory (a probabilist approach of Quantum field theory: see [139]), Hoegh-
Krohn focused on the case where X is the two dimensional massive free field
and σ the Lebesgue measure (to be precise, the point of view is not exactly
that of random measures). More precisley, if Λ is some fixed box in R2, one is
interested for all n ≥ 1 in defining the so-called (finite box) Schwinger functions
Sn,Λ of the Hoegh-Krohn model which are given by the following expression for
distinct x1, . . . , xn

Sn,Λ(x1, . . . xn) =
1

ZΛ
E[X(x1) · · ·X(xn)e

−µ
∫
Λ
eγX(x)− γ2

2
E[X(x)2]dx]

where µ ≥ 0 and ZΛ = E[e−µ
∫
Λ
eγX(x)− γ2

2
E[X(x)2]dx] is anormalization constant.

The above expression is reminiscent of the Gibbs formalism in classical sta-

tistical physics and Mγ(Λ) =
∫

Λ eγX(x)−γ2

2 E[X(x)2]dx is to be interpreted as a
Hamiltonian. It is easy to see that the Schwinger functions are Euclidean (in the
sense that they correspond to the Schwinger functions of some Gaussian field)
if and only if Mγ(Λ) = 0. One must then take the limit Λ → R2 to constuct
the full volume Schwinger functions. These functions satisfy the so-called (OS)
conditions (see [139]) which ensure that the corresponding physical fields (which
are obtained by Wick rotation, i.e. an analytic continuation argument) satisfy
the axioms of quantum field theory.

Hoegh-Krohn showed that the random variable Mγ(Λ) is non trivial for
γ2 < 2 (and therefore the Schwinger functions non Euclidean), thus working
below the L2-threshold; under the assumption γ2 < 2, one can perform L2-
computations which considerably simplifies the study of Gaussian multiplica-
tive chaos measures (see subsection 2.1). This work led to other works [2, 3] in
dimension 2 which generalized some of the initial results of [81]. In fact, it was
soon realized by specialists of constructive Euclidean field theory that the work
of Kahane enables to show that the Schwinger functions of the Hoegh-Krohn
model are non Euclidean if and only if γ2 < 4: see [98].
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Nonetheless, it seems that none of the works in QFT focused on building a
general theory applicable to a wide range of random measures in all dimensions.

1.2. Notations

The truncated logarithm ln+ is the function ln+(x) = max(0, lnx). The relation
f ≍ g means that there exists a positive constant c > 0 such that c−1f(x) ≤
g(x) ≤ cf(x) for all x under consideration.

We denote by (D, ρ) a metric space D equipped with its metric ρ. This metric
space is endowed with its Borelian sigma algebra B(D).

Given a domain D of Rd, we denote by H1
0 (D) the classical Sobolev space

defined as the Hilbert space closure with respect to the Dirichlet inner product
of the set of smooth compactly supported functions on D. Finally, γ will denote
the intermittency parameter. We will suppose that γ ≥ 0.

2. State of the art since Kahane

2.1. The seminal work of Kahane in 1985

The theory of multiplicative chaos was first defined rigorously by Kahane in
1985 in the article [85] to which the reader is referred for further details or
definitions. More specifically, Kahane built a theory relying on the notion of σ-
positive type kernel. Consider a locally compact metric space (D, ρ). A function
K : D ×D → R+ ∪ {∞} is of σ-positive type if there exists a sequence (Kk)k
of continuous nonnegative and positive definite kernels Kk : D ×D → R+ such
that:

∀x, y ∈ D, K(x, y) =
∑

k≥1

Kk(x, y). (2.1)

It is worth pointing out here that Kahane’s theory uses nonnegativeness of
the kernels (Kk)k for the only sake of an easy formulation of a uniqueness crite-
rion (see Theorem 2.3 below). If the reader is not interested in the uniqueness
part of Gaussian multiplicative chaos theory, he may skip this assumption of
nonnegativeness as we will discuss in section 3 a more elaborate uniqueness
criterion. If K is a kernel of σ-positive type with decomposition (2.1), one can
consider a sequence of independent centered Gaussian processes (Yk)k≥1 with
covariance kernels (Kk)k. Then the Gaussian process

Xn =

n
∑

k=1

Yk

has covariance kernel
∑n

k=1 Kk. Given a Radon measure σ on D, it is proved in
[85] that the sequence of random measures (Mn)n given by:

∀A ∈ B(D), Mn,γ(A) =

∫

A

eγXn(x)−γ2

2 E[Xn(x)
2]σ(dx) (2.2)
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converges almost surely in the space of Radon measures (equipped with the
topology of weak convergence) towards a random measure Mγ , which is called
Gaussian multiplicative chaos1 with kernel K acting on σ. Basically, this con-
vergence relies on the fact that for each compact set A, the sequence (Mn,γ(A))n
is a nonnegative martingale. This martingale structure ensuring the almost sure
convergence of (2.2) at low cost is the main motivation for considering kernels
of σ-positive type.

Then Kahane established a whole set of properties of this chaos that he
derived from the following comparison principle:

Theorem 2.1. Convexity inequalities (Kahane, 1985). Let (Ai)1≤i≤n and
(Bi)1≤i≤n be two centered Gaussian vectors such that:

∀i, j, E[AiAj ] ≤ E[BiBj ].

Then for all combinations of nonnegative weights (pi)1≤i≤n and all convex (resp.
concave) functions F : R+ → R with at most polynomial growth at infinity

E

[

F
(

n
∑

i=1

pie
Ai− 1

2E[A
2
i ]
)]

≤ (resp. ≥)E
[

F
(

n
∑

i=1

pie
Bi− 1

2E[B
2
i ]
)]

. (2.3)

Remark 2.2. Note that Theorem 2.1 is very general and can be useful for
instance in the study of random Gibbs measures where the Hamiltonian is a
Gaussian variable. This is for instance the case in the Sherrington-Kirkpatrick
(SK) model of statistical physics. In an important work, the authors of [80]
rederived (2.3) with F (x) = lnx in the context of the SK model and used this
inequality to compare the model of size N with two independent subsystems of
size N1 and N2 with N = N1 + N2. As a consequence, they noticed that the
expected finite size free energy was subadditive with respect to its size hence
obtaining the existence of the limiting free energy as the size of the system goes
to infinity.

This ingenious inequality sheds some light on the mechanism of Gaussian
multiplicative chaos. For instance, let us stress that a kernel K of σ-positive
type admits infinitely many decompositions of the form (2.1): you can obtain
other decompositions by changing the order of the kernels Kk, by gathering
them, etc... so there are possibly quite different kernels (K ′

k)k whose sum is K.
Thus, the important question is: does the law of the limiting measure M depend
on the choice of the decomposition (Kk)k in (2.1)?

Theorem 2.3. Uniqueness (Kahane, 1985). The law of the limiting measure
Mγ does not depend on the sequence of nonnegative and positive definite kernels
(Kk)k≥1 used in the decomposition (2.1) of K.

1Private communication with J.P. Kahane: the terminology multiplicative chaos was
adopted since this theory may be seen as a multiplicative counterpart of the additive Wiener
chaos theory. Actually, it is Paul Lévy himself who suggested to J.P. Kahane in the seven-
ties to construct a multiplicative theory of random variables, arguing that this should be as
fundamental as the additive theory of random variables. It took Kahane almost ten years to
build his theory of Gaussian multiplicative chaos.
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Thus, the theory enables to give a unique and mathematically rigorous defi-
nition to a random measure Mγ in D defined formally by:

∀A ∈ B(D), Mγ(A) =

∫

A

eγX(x)−γ2

2 E[X(x)2] σ(dx). (2.4)

where (X(x))x∈D is a centered “Gaussian field” whose covariance K is a σ-
positive type kernel. To show the usefulness of Theorem 2.1, it is worth giving a
few words about the proof of Theorem 2.3. It works roughly as follows. Assume
that you have two decompositions (Kk)k≥1 and (K ′

k)k≥1 of K with associated
Gaussian process sequences (Xn)n and (X ′

n)n and associated measures (Mn)n
and (M ′

n)n. Both sequences (
∑n

k=1 Kk)n and (
∑n

k=1 K
′
k)n converge pointwise

towardsK in a nondecreasing way. Therefore, if we choose a compact set T ⊂ D
then, for each fixed p ≥ 1 and ǫ > 0, the Dini Theorem entails that

p
∑

k=1

Kk ≤ ǫ +

q
∑

k=1

K ′
k

for q large enough on T × T . Since
∑q

k=1 K
′
k (resp.

∑p
k=1 Kk) is the covariance

kernel of X ′
q (resp. Xp), we can apply Kahane’s convexity inequalities and get,

for each bounded convex function F : R+ → R:

E[F (Mp(A))] ≤ E[F (e
√
ǫγZ− ǫγ2

2 M ′
q(A))],

where Z is a standard Gaussian random variable independent of M ′. By taking
the limit as q tends to ∞, and then p → ∞, we obtain

E[F (M(A))] ≤ E[F (e
√
ǫγZ− ǫγ2

2 M ′(A))].

Since ǫ > 0 can be chosen arbitrarily small, we deduce

E[F (M(A))] ≤ E[F (M ′(A))].

The converse inequality is proved in the same way, showing E[F (M(A))] =
E[F (M ′(A))] for each bounded convex function F . By choosing F (x) = e−λx

for λ > 0, we deduce that the measures M and M ′ have the same law.

However, the simplicity of the convergence does not solve the question of
non-degeneracy of the limiting measure Mγ : it is possible that Mγ identically
vanishes. A 0–1 law argument straightforwardly shows that the event “Mγ is
identically null” has probability 0 or 1. It seems difficult to state a general deci-
sion rule to decide whether Mγ is degenerate or not. It depends in an intricate
way on the covariance structure, i.e. the kernel K, and on the measure σ. So
Kahane focused on the situation when the kernel K and the measure σ are
intertwined via the metric structure of D. More precisely, he assumed that K
can be written as

∀x, y ∈ D, K(x, y) = ln+
T

ρ(x, y)
+ g(x, y) (2.5)
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where T > 0, g : D ×D → R is a bounded continuous function and σ is in the
class R+

α (denoted Mα+ in Kahane’s paper):

Definition 2.4. For α > 0, a Borel measure σ is said to be in the class R+
α

if for all ǫ > 0 there is δ > 0, C < ∞ and a compact set Aǫ ⊂ D such that
σ(D \Aǫ) ≤ ǫ and:

∀O open set, σ(O ∩ Aǫ) ≤ Cǫdiamρ(O)α+δ, (2.6)

where diamρ(O) is the diameter of O with respect to ρ.

For instance, the Lebesgue measure of Rd, restricted to any bounded domain
of Rd equipped with the Euclidean distance ρ, is in the class R+

α for all α < d.
The above definition looks like a Hölder condition for measures. It is inti-

mately related to the notion of measure with finite β-energy: a Borel measure
σ is said to be of finite β-energy if

Iβ(σ) =

∫

D

∫

D

1

ρ(x, y)β
σ(dx)σ(dy) < +∞. (2.7)

Indeed, if σ has a finite β-energy then σ ∈ R+
α for all α < β. Conversely, if σ is

in the class R+
α , then the measure σAǫ(dx) = 1Aǫ(x)σ(dx) has finite β-energy

for all β < α+ ǫ.
To have a flavor of the forthcoming results, let us treat the following simple

situation, which we call the “below L2-threshold” case. It is about formulating
a criterion ensuring that the martingale (Mn(A))n is bounded in L2 for some
given bounded set A, and therefore uniformly integrable. A straightforward
computation shows that:

E[Mn,γ(A)
2] =

∫

A

∫

A

E[eγXn(x)−γ2

2 E[Xn(x)
2]eγXn(y)− γ2

2 E[Xn(y)
2]]σ(dx)σ(dy)

≤
∫

A

∫

A

eγ
2K(x,y) σ(dx)σ(dy)

≤ C

∫

A

∫

A

1

ρ(x, y)γ2 σ(dx)σ(dy).

Therefore, if the measure 1A(x)σ(dx) has finite γ2-energy, the martingale
(Mn(A))n is bounded in L2 and therefore converges towards a non trivial limit.
In the case when σ is the Lebesgue measure of Rd and ρ the Euclidean distance,
this condition simply reads γ2 < d.

Kahane proved the following highly deeper result:

Theorem 2.5. Non-degeneracy (Kahane, 1985). Assume that the kernel
K takes on the form (2.5) and that the measure σ is in the class R+

α for some
α > 0. If γ2 < 2α then for each compact set A the sequence (Mn,γ(A))n is a
uniformly integrable martingale. Hence

γ2 < 2α ⇒ Mγ is non degenerate.
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As a by-product of his proof, Kahane also shows the following result concern-
ing the dimension of the carrier of the measure Mγ :

Theorem 2.6. Structure of the carrier (Kahane, 1985). Assume that the
kernel K takes on the form (2.5) and that the measure σ is in the class R+

α for
some α > 0. If γ2 < 2α, the measure Mγ is non degenerate and is almost surely
in the class R+

α− γ2

2

.

Note that Theorem 2.6 implies that the measure Mγ cannot give positive

mass to a set of Hausdorff dimension less or equal than α − γ2

2 . Therefore the
measure Mγ cannot possess atoms if σ is in some class R+

α . We will see in

subsection 4.1 that the Hausdorff dimension of the carrier is exactly d − γ2

2
when σ is the Lebesgue measure on a domain of Rd.

Remark 2.7. Stronger versions of Theorem 2.5 and Theorem 2.6 were proved
recently in [132].

Remark 2.8. If σ is the Lebesgue measure on some domain D ⊂ Rd equipped
with the Euclidean metric, then σ is in the class R+

d−ǫ for all ǫ > 0 hence, if

γ2 < 2d, the measure Mγ is non degenerate and in the class R+

d− γ2

2 −ǫ
for all

ǫ > 0.

Partial converses of Theorem 2.5 are more intricate. Kahane first gave a
general necessary condition:

Theorem 2.9. Necessary condition of non-degeneracy (Kahane, 1985).
Assume (D, ρ) is a locally compact metric space and:

– the function (t, s) 7→ ρ(t, s)2 is of negative type,
– σ has the doubling property, namely that there exists a constant C such
that

∀x ∈ T, ∀r > 0, σ(B(x, 2r)) ≤ Cσ(B(x, r)),

– the kernel K takes on the form (2.5).

Denote by dim(D) the Hausdorff dimension of D. If γ2 > 2dim(D) then Mγ is
degenerate.

As pointed out by Kahane, for a squared distance of negative type, the as-
sumptions of the above Theorem are satisfied when the triple (D, ρ, σ) admits a
Lipschitz immersion into a finite-dimensional space. Let us also stress that the
critical situation γ2 = 2dim(D) is not settled by this Theorem. Nevertheless, he
reinforced his assumptions to prove:

Theorem 2.10. Necessary and sufficient condition of non-degeneracy
(Kahane, 1985). Assume (D, ρ) is a d-dimensional manifold of class C1 and
let σ be its volume form (or any Radon measure absolutely continuous w.r.t the
volume form with a bounded density). Assume that the kernel K takes on the
form (2.5). Then

Mγ is non degenerate ⇒ γ2 < 2d.
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(a) γ = 0.2 (b) γ = 1

(c) γ = 1.8

Fig 1. Influence of the intermittency parameter γ: we plot the “density profile” of a 2-
dimensional multiplicative chaos illustrating the “clustering” of the activity of the chaos when
γ grows.

More results in the Euclidean space

When the metric space (D, ρ) is an open subset of Rd for some d ≥ 1 equipped
with the Euclidian distance and σ is the Lebesgue measure, the previous results
can be strengthened. We first point out that Theorem 2.10 applies and the
non-degeneracy necessary and sufficient condition reads γ2 < 2d.

Kahane’s convexity inequalities (Theorem 2.1) allow us to give a complete
description of the moments of Mγ :

Theorem 2.11. Positive Moments (Kahane, 1985). If the measure Mγ is
non degenerate, that is γ2 < 2d, the measure Mγ admits finite positive moments
of order p for all p ∈ ]0, 2d

γ2 [ . More precisely, for all compact set A ⊂ D and

p ∈ ]0, 2d
γ2 [ , we have E[Mγ(A)

p] < +∞.

Basically, it suffices to prove the finiteness of the moments for your favorite
kernel K of the type (2.5) and deduce that the conclusions remain valid for all
the kernels of the type (2.5) via Theorem 2.1.



Gaussian multiplicative chaos and applications: A review 327

We know turn to the existence of negative moments which was not investi-
gated by Kahane. We have:

Theorem 2.12. Negative Moments. If the measure Mγ is non degenerate,
that is γ2 < 2d, the measure Mγ admits finite negative moments of order p
for all p ∈ ]−∞, 0[ . More precisely, for any compact nonempty Euclidean ball
A ⊂ D and p ∈ ]−∞, 0[ , we have E[Mγ(A)

p] < +∞.

The finiteness of moments of negative order is proved in [118] in the case of
discrete cascades. By adapting the argument of [118] and using the convexity
inequalities 2.3, Theorem 2.12 is proved in [135].

Let us also point out an important result in [18] where the authors compute
the tail distributions of the measureMγ in dimension 1 with the kernelK(x, y) =
ln+

1
|x−y| (which is of σ-positive type, see Proposition 2.15 below):

Theorem 2.13. Distribution tails (Barral and Jin, 2012). If A is some
nonempty segment of R then there exists a constant c > 0 such that

lim
x→+∞

x
2
γ2
P(Mγ(A) > x) = c.

We conclude this theoretical background by pointing out some further inter-
esting properties that can be exhibited when the integrating measure σ in (2.4)
is the Lebesgue measure. The first observation that can be made is that the
measure Mγ is stationary in space as soon as we consider a stationary Gaussian
distribution X . This is due to the translation invariance of the Lebesgue mea-
sure and the stationarity of X . Furthermore, when M is non-degenerate, it can
be shown that the support of Mγ is almost surely the whole of Rd. This results
from the 0–1 law of Kolmogorov: if you consider a ball B, the 0–1 law tells you
that the event {Mγ(B) > 0} has probability 0 or 1. Indeed, we have

inf
x∈B

eγXn(x)−γ2

2 E[X
2
n(x)]Mγ,n(B) ≤ Mγ(B) ≤ sup

x∈B
eγXn(x)−γ2

2 E[X
2
n(x)]Mγ,n(B),

(2.8)
where Mγ,n(B) is the Gaussian multiplicative chaos

Mγ,n(dx) = lim
k→∞

eγ(Xk−Xn)(x)−γ2

2 E[(Xk−Xn)
2(x)] dx.

Since for k > n:

Xk −Xn =

k
∑

p=n+1

Yp,

we may say that we have just removed the dependency on the first n fields
Y1, . . . , Yn. Therefore (2.8) entails that for any n ≥ 0

{Mγ(B) > 0} = {Mγ,n(B) > 0}.
Since the event {Mγ,n(B) > 0} is independent of the fields Y1, . . . , Yn, we deduce
that the event {Mγ(B) > 0} belongs to the asymptotic sigma-algebra generated
by the fields (Yn)n in such a way that it has probability 0 or 1. When Mγ is non-
degenerate, it has clearly probability 1. This argument can be reproduced for
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every ball chosen among a countable family of balls (Bn)n generating the open
sets of Rd. Therefore, the event

⋂

n{Mγ(Bn) > 0} has probability 1, proving
that almost surely the support of Mγ is the whole of Rd.

2.2. Examples of kernels of σ-positive type

In this section, we give a few important examples of σ-positive kernels.

2.2.1. Exact kernels

We consider for T > 0 the kernel

∀x, y ∈ R
d, K(x, y) = ln+

T

|x− y| . (2.9)

It is of σ-positive type in dimension d = 1, 2 and is involved in exact scaling
relations as explained in subsection 2.3.

2.2.2. Star scale invariant kernels

A simple way of constructing σ-positive kernels on Rd is to consider

∀x, y ∈ R
d, K(x, y) =

∫ ∞

1

k
(

(x − y)u
)

u
du, (2.10)

where k is a continuous function of positive type with k(0) = 1. Such kernels are
related to the notion of star scale invariance (see subsection 2.3). Whole plane
massive Green functions are star scale invariant.

2.2.3. Green functions

If we consider a bounded domainD of R2, the Green function G of the Laplacian
with 0-boundary condition is of σ-positive type. The corresponding Gaussian
distribution X with covariance G is the Gaussian Free Field (GFF for short).
The associated Gaussian multiplicative chaos is called the Liouville measure.
More details about these claims are given in subsection 5.2.

2.3. Different notions of stochastic scale invariance

In this subsection, we consider the Euclidian framework. More precisely, we
consider an open set D of Rd and Gaussian multiplicative chaos of the type

∀A ∈ B(D), Mγ(A) =

∫

A

eγX(x)−γ2

2 E[X(x)2] dx (2.11)

where the Gaussian distribution X has covariance kernel of the form:

K(x, y) = ln+
T

|x− y| + g(x, y) (2.12)
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for some continuous and bounded function g over D2. Then the power-law spec-
trum of such Gaussian multiplicative chaos presents some interesting features,
such as non-linearity (in the parameter q in the following Theorem):

Theorem 2.14. Assume that the kernel K takes on the form (2.5) with γ2 < 2d.
Choose a point x ∈ D. For each q ∈ [0, 2d

γ2 [ we have

E
[

Mγ(B(x, r))q
]

≍ rξ(q) as r → 0

where ξ is the structure exponent of the measure M :

∀q ∈ [0,
2d

γ2
[ , ξ(q) =

(

d+
γ2

2

)

q − γ2

2
q2.

Heuristic proof. For simplicity, assume that T = 1 in (2.12). By making a change
of variables, we get:

Mγ(B(x, r)) =

∫

B(x,r)

eγX(y)−γ2

2 E[X(y)2] dy

= rd
∫

B(0,1)

eγX(x+ry)−γ2

2 E[X(x+ry)2] dy.

Then we observe that the field (X(x+ ry))y has a covariance structure approx-
imatively given for r ≤ 1 by:

E[X(x+ ry)X(x+ rz)] ≃ ln+
1

r|y − z|

= ln
1

r
+ ln+

1

|y − z|

≃ ln
1

r
+ E[X(x+ y)X(x+ z)].

The above relation gives us the following (good) approximation in law

(X(x+ ry))y∈B(0,1) ≃ Ωr + (X(x+ y))y∈B(0,1)

where Ωr is a centered Gaussian random variable independent of the field (X(x+
y))y∈B(0,1) and with variance ln 1

r . Therefore

Mγ(B(x, r)) = rd
∫

B(0,1)

eγX(x+ry)−γ2

2 E[X(x+ry)2] dy

≃ rdeγΩr−γ2

2 E[Ω
2
r ]

∫

B(0,1)

eγX(x+y)−γ2

2 E[X(x+y)2] dy

= rdeγΩr−γ2

2 E[Ω
2
r ]Mγ(B(x, 1)).

By taking the q-th power and integrating, we get as r → 0

E
[

Mγ(B(x, r))q
]

≃ rξ(q)E[Mγ(B(x, 1)q],

thus explaining the Theorem. Actually, the rigorous proof of this result is very
close to the heuristic developed here.
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Notice that the quadratic structure of the structure exponent is intimately
related to the Gaussian nature of the random distribution X . Random measures
with a non-linear power-law spectrum are often called multifractal. That is why
Gaussian multiplicative chaos (and other possible extensions) are sometimes
called Multifractal Random Measures (MRM for short) in the literature. It is
also natural to wonder if some specific choice of the covariance kernelK may lead
to replacing the symbol ≍ in Theorem 2.14 by the symbol =. It turns out that
this question is related to some specific scaling relation, which we describe below.

Exact stochastic scale invariance

The notion of “exact stochastic scale invariance” relies on the additive properties
of the logarithm function. Roughly speaking, in order to produce kernels with
exact scaling relations, kernels K of the type (2.5) with g = 0 (and ρ the
Euclidian distance) must be considered. So we first focus on the σ-positive type
of such kernels:

Proposition 2.15. For d ≤ 2 and T > 0, the function

x ∈ R
d 7→ λ2 ln+

T

|x| (2.13)

is of σ-positive type.

Proof. A straightforward computation yields:

ln+
T

|x| =
∫ +∞

0

(t− |x|)+νT (dt)

where νT is the measure (δT is the Dirac mass at T ):

νT (dt) = 1[0,T ](t)
dt

t2
+

1

T
δT (dt).

Hence for any µ > 0, we have:

ln+
T

|x| =
1

µ
ln+

T µ

|x|µ =

∫ +∞

0

(t− |x|µ)+νTµ(dt).

By using a Chasles relation in the integral of the right-hand side, proving that
this kernel is of σ-positive type thus boils down to considering the possible
values of µ > 0 such that the function (1− |x|µ)+ is of positive type: this is the
Kuttner-Golubov problem (see [77]).

For d = 1, it is straightforward to see that (1 − |x|)+ is of positive type
(compute the inverse Fourier transform). In dimension 2, Pasenchenko [124]
proved that the function (1 − |x|1/2)+ is of positive type on R2. We can thus
write

ln+
T

|x| =
∑

n≥1

Kn(x)
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with

Kn(x) =

∫ 1
n−1

1
n

(t− |x|µ)+νTµ(dt)

with µ = 1 in dimension 1 and µ = 1/2 in dimension 2.

Theorem 2.16. Exact stochastic scale invariance (Bacry and Muzy,
2003). Let K be the covariance kernel given by (2.13) in dimension d = 1 or
d = 2. The associated Gaussian multiplicative chaos Mγ is exactly stochastic
scale invariant:

∀λ ∈ ]0, 1], (M(λA))A⊂B(0,T/2)
law
= λdeΩλ− 1

2E[Ω
2
λ](M(A))A⊂B(0,T/2), (2.14)

where Ωλ is a Gaussian random variable, independent of the measure
(M(A))A⊂B(0,T/2), with mean 0 and variance γ2 ln 1

λ .

We stress that the above equality in law is to be understood in the sense

(

M(λA1), . . . ,M(λAp)
) law
=
(

λdeΩλ− 1
2E[Ω

2
λ]M(A1), . . . , λ

deΩλ− 1
2E[Ω

2
λ]M(Ap)

)

for all possible choice A1, . . . , Ap of Borelian subsets of the ball B(0, T/2).
Notice that such a scaling property makes obvious several computations re-

lated to the measureMγ . The reader may, for instance, observe that the heuristic
proof of Theorem 2.14 becomes rigorous for such a measure. It is also not dif-
ficult to see that this scaling relation is necessarily valid only locally (over a
ball) and cannot hold on the whole space: the logarithm is not of positive type
over the whole of Rd. Exact scaling relations were introduced in [12] in dimen-
sion 1 together with further generalizations in the case of log-infinitely divisible
random measures.

It is natural to wonder how to construct such measures in dimension higher
than 3. The procedure is somewhat complicated by the following observations:
for d = 3, it is an open question to know whether the kernel (2.13) is of σ-positive
type and for d ≥ 4, it is even not of positive type.

Another approach has therefore been suggested in [130]. The main ideas are
the following: what only matters to construct exactly stochastic scale invariant
measures is that the covariance kernel must be the logarithm function over a
ball centered at 0. The way of “truncating” the logarithm does not matter in
order to obtain the scaling relation (2.14) but may be sensitive to the dimension
when regarding positive definiteness: truncating the logarithm with the function
ln+ does not resist increasing the dimension. In [130], another truncation is
suggested: we can find an isotropic function g : Rd → R that is constant on a
neighborhood of 0 and such that the kernel

K(x) = ln+
T

|x| + g(x) (2.15)

is of σ-positive type. Briefly, the construction is the following: let us denote by
S the sphere of Rd and by σ the unique uniform measure on the sphere such
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that σ(S) = 1. This (probability) measure is invariant under rotations. Let us
define the function

K(x) =

∫

S

ln+
T

|〈x, s〉|σ(ds), (2.16)

where 〈·, ·〉 stands for the canonical inner product of Rd. Since σ is invariant
under rotations, the function K is isotropic. Fix x ∈ Rd such that |x| ≤ T and
write x = |x|e where e ∈ S. Then we have

K(x) =

∫

S

ln
T

|x||〈e, s〉|σ(ds) = ln
T

|x| +
∫

S

ln
1

|〈e, s〉|σ(ds).

By invariance under rotations of σ, the second term in the right-hand side does
not depend on x and turns out to be finite: this can be seen by noticing that,
under σ, the random variable 〈e, s〉 has the law of the first entry of a Haar
vector. K thus coincides with the logarithm over a neighborhood of 0, up to an
additive constant. Gaussian multiplicative chaos with associated kernel (2.16)
are exactly stochastic scale invariant in the sense of (2.14). It remains an open
question to know to which extent the notion of exact stochastic scale invariance
uniquely determines the covariance structure of the associated kernel K.

Star scale invariance

As explained above, the notion of exact stochastic scale invariance is a local
notion (valid only over a ball). We now present a global notion of stochastic
scale invariance, called star scale invariance in [5] in reference of earlier works
by Mandelbrot in the case of multiplicative cascades on trees. It stems from the
need of characterizing Gaussian multiplicative chaos with functional equations.
Indeed, tractable functional equations may provide efficient tools in identifying
Gaussian multiplicative chaos as, for instance, scaling limits of discrete models.

Definition 2.17. Log-normal star scale invariance. A random Radon mea-
sure M on Rd is said lognormal star scale invariant if for all 0 < ε ≤ 1, M obeys
the cascading rule

(

M(A)
)

A∈B(Rd)

law
=
(

∫

A

eωε(x)M ε(dx)
)

A∈B(Rd)
(2.17)

where ωε is a Gaussian process, which is assumed to be stationary and continu-
ous in probability, and M ε is a random measure independent from Xε satisfying
the scaling relation

(

M ε(A)
)

A∈B(Rd)

law
=
(

M(
A

ε
)
)

A∈B(Rd)
. (2.18)

Equations (2.17)+(2.18) are called star equation (M is the unknown) in ref-
erence to the terminology introduced by Mandelbrot for multiplicative cascades
(the star equation and its generalization is nowadays better known under the
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name of “smoothing transform”, see [109, 29, 61] for instance). Notice that the
process ωε is unknown. Roughly speaking, we look for random measures that
scale with an independent lognormal factor on the whole space. This property is
shared by a large class of Gaussian multiplicative chaos. And for those Gaussian
multiplicative chaos that do not share this property, they are very close to sat-
isfying it. If the reader is familiar with branching random walks (BRW), here is
an explanation that may help intuition. If we consider a BRW the reproduction
law of which does not change with time (i.e. is the same at each generation), the
law of the branching random walk will be characterized by a discrete version
of the above star scale invariance called “fixed point of the smoothing trans-
form” (in the lognormal case of course, see [61, 29, 109]). If the reproduction
law evolves in time, then we have to change things a bit to adapt to this time
evolution. The same argument holds for the log-normal star scale invariance: it
characterizes these Gaussian multiplicative chaos that do not vary along scales.

It is proved in [5] that E[eωε(r)] = εd as soon as the measure M possesses
a moment of order 1 + δ for some δ > 0. Furthermore, up to weak regularity
conditions on the covariance kernel of the process ωε summarized in the defini-
tion below, all the log-normal star scale invariant random measures with enough
moments can be identified.

Definition 2.18. We will say that a stationary random measure M satisfies
the good lognormal star scale invariance if M is lognormal star scale invariant
and for each ǫ < 1, the covariance kernel kǫ of the process ωǫ involved in (2.17)
is continuous and satisfies:

|kǫ(r)| → 0 as |r| → +∞, (2.19)

∀r, r′ ∈ R
d \ {0}, |kǫ(r) − kǫ(r

′)| ≤ Cǫθ
(

min(|r|, |r′|)
)

|r − r′| (2.20)

for some positive constant Cǫ and some decreasing function θ : ]0,+∞[ → R+

such that
∫ +∞

1

θ(u) ln(u) du < +∞. (2.21)

Lognormal star scale invariant random measures are then characterized as:

Theorem 2.19. (Allez, Rhodes, and Vargas, 2011). Let M be a good
lognormal star scale invariant stationary random measure. Assume that

E[M([0, 1]d)1+δ] < +∞
for some δ > 0. Then M is the product of a nonnegative random variable Y ∈
L1+δ and an independent Gaussian multiplicative chaos:

∀A ⊂ B(Rd), M(A) = Y

∫

A

eγX(x)−γ2

2 E[X(x)2] dx (2.22)

with associated covariance kernel given by the improper integral

∀x ∈ R
d \ {0}, K(x) =

∫ +∞

1

k(xu)

u
du (2.23)

for some continuous covariance function k such that k(0) = 1 and γ2 ≤ 2d
1+δ .
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Conversely, given some datas k and Y as above, the relation (2.22) defines a
lognormal star scale invariant random measure M with finite moments of order
1 + β for every β ∈ [0, δ).

It is plain to see that the covariance structure (2.23) can be rewritten as

∀x ∈ R
d \ {0}, K(x) = ln+

1

|x| + g(x) (2.24)

for some continuous bounded function g, thus making the connection with Ka-
hane’s theory presented in subsection 2.1.

The first star scale invariant kernel appearing in the literature goes back to
Kahane’s original paper [85] in order to approximate the kernel ln+

T
|x−y| in

dimension 3 but he did not study the related scaling relations. Kahane chose
the kernel

K(x) =

∫ +∞

1

e−u|x|

u
du.

Another example was exhibited in [21]. It corresponds to the choice

K(x) =

∫ +∞

1

k(ux)

u
du with k(x) = (1 − |x|

T
)1[0,T ](|x|)

and is based on a one dimensional geometric construction. Also, the authors in
[21] made the connection with star scale invariance.

To sum up, the solutions of the star-equation are now well identified in what
is called the subcritical regime, which can be characterized by the fact that
associated solutions possess enough moments (larger than 1). It remains to
investigate the characterization of solutions with only few moments (smaller
than 1): we will see in section 6 that new types of solutions are then involved,
giving rise to quite new structures of the chaos.

3. Extensions of the theory

3.1. Limitations of Kahane’s theory

In view of natural applications, Kahane’s theory appears unsufficient. Here are
a few points that the theory does not address:

• A kernel K of σ-positive type is nonnegative and positive definite. Is the
reciprocal true?

• What happens if one works with convolutions of K instead of nondecreas-
ing approximating series?

• Kahane’s theory is a theory which ensures equality in distribution. Can
one build a theory that ensures almost sure equality?

The first point raised above is still an open question. The two following points
have been addressed recently as we will now describe in the next two subsections.
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Remark 3.1. At the time of publishing this review, the authors learned from
an ongoing work by Alexander Shamov, which investigates a necessary and suf-
ficient condition on the covariance kernel K to ensure existence and uniqueness
of a Gaussian multiplicative chaos associated to K.

3.2. Generalized Gaussian multiplicative chaos

Kahane’s theory of Gaussian multiplicative chaos relies on the notion of kernels
of σ-positive type. However, on the one hand it is not always straightforward
to check such a criterion and on the other hand it seems natural to think that
the theory should remain valid for kernels of positive type. A way of getting
rid of σ-positive typeness has been developed in [134, 135]. The idea is to make
a convolution product of the covariance kernel with a sequence of continuous
functions approximating the Dirac delta function in order to smooth down the
singularity of the kernel.

More precisely, consider a positive definite function K in R
d (or a bounded

domain of Rd) such that

K(x) = ln+ T

|x| + g(x) (3.1)

and g(x) is a bounded continuous function. Let θ : Rd → R be some continuous
function with the following properties:

1. θ is positive definite,
2. θ has compact support and is α-Hölder for some α > 0,
3.
∫

Rd θ(x)dx = 1.

Here is the main Theorem of [135]:

Theorem 3.2. (Robert and Vargas, 2008). Let γ2 < 2d. For all ǫ > 0, we
consider the centered Gaussian field (Xǫ(x))x∈Rd defined by the convolution:

E[Xǫ(x)Xǫ(y)] = (θǫ ∗K)(y − x),

where θǫ = 1
ǫd θ(

.
ǫ). Then the associated random measure

∀A ∈ B(Rd), Mǫ,γ(A) =

∫

A

eγXǫ(x)−γ2

2 E[Xǫ(x)
2]dx

converges in law in the space of Radon measures (equipped with the topology of
weak convergence) as ǫ goes to 0 towards a random measure Mγ, independent
of the choice of the regularizing function θ with the properties 1., 2., 3. above.

This Theorem is useful to define a Gaussian multiplicative chaos associated
to the kernel K(x) = ln+ T

|x| in dimension 3 and hence give a rigorous meaning

to the Kolmogorov-Obukhov model. Indeed, remind that this kernel is of σ-
positive type in dimension 1 and 2. In dimension d = 3, the function ln+ T

|x| is
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positive definite (see [135]) but it is an open question whether it is of σ-positive
type. Therefore, we are bound to apply Theorem 3.2 instead of Kahane’s theory
to define the associated chaos in dimension 3. In dimension greater than 4, the
kernel ln+ T

|x| is no more positive definite. Let us also mention that it is proved

in [135] that in dimension 1, 2, 3 the random variable Mγ(B(0, r)) (for r < T )
possesses a C∞ density with respect to the Lebesgue measure.

Remark 3.3. Starting with a Gaussian field (X(x))x∈Rd whose covariance is
given by (3.1), one could also state Theorem 3.2 in an equivalent way in terms
of the fields Xǫ = θǫ ∗X where θ is a function of average 1 (but not necessarily
of positive type) and which satisfies a decreasing condition at infinity.

3.2.1. Extension to open domains and non-stationary smooth fields

In what follows, we explain why the generalized Gaussian multiplicative chaos
theory straightforwardly extends to the situation of bounded domains and pos-
sibly non stationary covariance kernels. Let D be an open set of Rd. For all
δ > 0, we set:

D(δ) = {x ∈ D; dist(x, ∂D) ≥ δ}
By convention, if D = R

d, we set D(δ) equal to the Euclidean ball of center 0 and
radius 1

δ . We consider a positive definite kernel K (non necessarily stationary)
satisfying:

∀x, y ∈ D, K(x, y) = ln+ T

|x− y| + g(x, y) (3.2)

where γ2 < 2d and g is a bounded continuous function over D(δ) for all δ > 0.
Let X be a random centered Gaussian distribution with covariance given by
(3.2). We introduce the following notion of smooth approximation which will
play a central role in the rest of the review:

Definition 3.4. Smooth Gaussian approximations. We say a that a se-
quence of centered Gaussian fields (Xǫ)ǫ>0 is a smooth Gaussian approximation
of K if:

• for all x, y ∈ D, E[Xǫ(x)Xǫ(y)] converges to K(x, y) as ǫ goes to 0.
• for all δ > 0, there exists some constant C > 0 and α > 0 such that for all
ǫ > 0:

∀x, y ∈ D(δ), E[(Xǫ(x) −Xǫ(y))
2] ≤ C|x− y|αǫ−α.

Remark 3.5. In the above definition, the second point is a technical assump-
tion. By standard results on Gaussian processes (see [105] for example), this
assumption implies the following useful property: for all δ > 0 and A > 0, there
exists C > 0 such that for all x ∈ D(δ):

P( sup
y; |y−x|≤Aǫ

|Xǫ(y)−Xǫ(x)| ≥ t) ≤ Ce−C t2

2 , t ≥ 0

It is in fact this property implied by the second point which is crucial in the
proofs of the results where smooth Gaussian approximations appear.
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For example, the convolution constructions of the previous section are smooth
Gaussian approximations. It is not very difficult to see that convolutions of X
with circles, balls or smooth bounded domains are smooth Gaussian approxi-
mations of K. In fact, the techniques of [135] can be straightforwardly adapted
to give:

Theorem 3.6. Assume that we are given two smooth Gaussian approximations
(Xǫ)ǫ>0 and (X̄ǫ)ǫ>0 of K such that:

1) for some γ2 < 2d, the random measure Mǫ,γ(dx) := eγXǫ(x)− γ2

2 E[Xǫ(x)
2]dx

converges almost surely (possibly along some subsequence) to some random Radon
measure Mγ in the sense of weak convergence of measures.

2) for all δ > 0 and A > 0,

sup
x,y∈D(δ),
|x−y|≤Aǫ

∣

∣

∣
E[Xǫ(x)Xǫ(y)]− E[X̄ǫ(x)X̄ǫ(y)]

∣

∣

∣
≤ C̄A.

where C̄A > 0 is some constant independent from ǫ.

3) for all δ > 0,

CA = lim
ǫ→0

sup
x,y∈D(δ),
|x−y|≥Aǫ

∣

∣

∣
E[Xǫ(x)Xǫ(y)]− E[X̄ǫ(x)X̄ǫ(y)]

∣

∣

∣

goes to 0 as A goes to infinity.
Under the above assumptions, the random measure

M̄ǫ,γ(dx) = eγX̄ǫ(x)−γ2

2 E[X̄ǫ(x)
2]dx

converges in law as ǫ goes to 0 in the space of Radon measures on D (equipped
with the topology of weak convergence) towards the random measure Mγ.

Let us mention here a simple and straightforward consequence of this theo-
rem. Let X be a random centered Gaussian distribution with covariance given
by (3.2). We consider a function θ of class C1 such that

∫

Rd

θ(x)dx = 1 (3.3)

and compactly supported in the ballB(0, 1). Then we define the ǫ-approximation
of X by:

X̄ǫ(x) =

∫

Rd

X(x) ∗ θǫ(x− y) dy.

Of course, the field X̄ǫ only makes sense for x ∈ D(ǫ). Then the law of the
limiting measure

Mγ = lim
ǫ→0

eγXǫ(x)−γ2

2 E[Xǫ(x)
2]dx

does not depend on the choice of the regularizing function θ.
We will see in subsection 5.2 another application of this theorem in the case

of the so-called Liouville measure.
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3.3. Duplantier-Sheffield’s approach in dimension 2

After the two aforementioned theories (Gaussian multiplicative chaos [85] and
its generalized version [134, 135]), the authors of [57] came up with another
contribution to Gaussian multiplicative chaos theory in the special case when
the Gaussian distribution X in (2.4) is the GFF in a bounded domain and σ the
Lebesgue measure. The situation can be roughly summarized as follows. Assume
for instance that you are given a two-dimensional GFF X on a bounded domain
D and you want to define the approximations (Xn)n in (2.2) almost surely as
measurable functions of the whole distribution X . For instance, you may define
Xn as the projections of X along the first n vectors of an orthonormal basis of
the Sobolev space H1

0 (D) and obtain a first way of defining almost surely the as-
sociated multiplicative chaos, called Liouville measure, as a measurable function
of the whole GFF distribution. This falls under the scope of Kahane’s theory
since you are adding independent Gaussian fields. To be precise, the vectors of
the basis are not necessarily nonnegative so that the construction of the mea-
sure works but you do not get the uniqueness property of Theorem 2.3 (except
in some special cases: for instance, the Haar basis is composed of nonnegative
functions and therefore in this case you are strictly within Kahane’s framework).

A second way of defining cutoff approximations of X that are measurable
functions of the whole GFF distribution is to use convolution techniques: you
may also define Xǫ(x) as the average value of X over the circle of radius ǫ
centered at x (or any other regularizing function) and plug this quantity in
place of Xn in (2.2). The approximating measures

Mǫ,γ(dx) = eγXǫ(x)−γ2

2 E[Xǫ(x)
2]dx

are then measurable functions of the GFF. Though convergence in law follows
from the techniques of the generalized Gaussian multiplicative chaos theory
[134, 135], it is important to focus on almost sure convergence of these measures.

Theorem 3.7. (Duplantier and Sheffield, 2008). The approximating mea-
sures (Mǫ,γ)ǫ almost surely converge as ǫ → 0 for the topology of weak conver-
gence of measures along suitable deterministic subsequences.

Another important point is the following. We have now at our disposal two
ways to produce the Liouville measure as the almost sure limit of suitable ap-
proximations: H1

0 (D) expansions or circle average. In this formulation, it is
implicitly assumed that these two approximations yield the same limiting ob-
ject. Is it really the case? Let us first stress that the two above constructions
have the same law, and they also have the same law as the Liouville measure
based on a white noise decomposition of the GFF introduced in [131] (see The-
orem 5.5 below). There is another important contribution in [57] to the theory
of Gaussian multiplicative chaos

Theorem 3.8. (Duplantier and Sheffield, 2008). The Liouville measures
constructed via an expansion along an orthonormal basis of H1

0 (D) or circle
average approximations are almost surely the same measures.
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Though carried out in the case of GFF, this uniqueness result makes sense in
a more general context: to which extent can we prove that Gaussian multiplica-
tive chaos constructed with different approximations almost surely defined as
measurable functions of the whole Gaussian distribution coincide almost surely?

4. Multifractal analysis of the measures

The purpose of this section is to give a brief insight into multifractal analysis.
More precisely, Kahane proved that the carrier of a Gaussian multiplicative

chaos has Hausdorff dimension greater or equal to d− γ2

2 . It is natural to wonder
whether further pieces of information can be given about the structure of this
carrier. We will relate this question to the Parisi-Frisch formalism [123]. Consider
a smooth cutoff approximation (Xǫ)ǫ of the field X with covariance K given by
(3.2) on a domain D and such that Xǫ′ −Xǫ is independent from σ{Xu; u ≥ ǫ}
for all ǫ′ < ǫ. We suppose that there exists a constant C > 0 such that ln 1

ǫ−C ≤
E[Xǫ(x)

2] ≤ ln 1
ǫ + C for all x ∈ D. In this context, Kahane introduced the set

of points
{

x ∈ D; lim
ǫ

Xǫ(x)

− ln ǫ
= γ

}

and showed that it gives full measure to the chaos Mγ , thus showing that it has

Hausdorff dimension greater or equal to d− γ2

2 . This set of points has been called
thick points of the GFF in [82] when the field X is the GFF and Xǫ corresponds
to circle averages (hence, we are not exactly in the framework of Kahane as
circle averages of the GFF do not correspond to adding independent fields;
nonetheless, the two frameworks are very similar). We stick to this terminology
as we feel that it is well-sounding. The Hausdorff dimension of thick points
is derived in [82] in the context of circle averages of the GFF. Let us further
mention that exact equality of Hausdorff dimension is well known in the closely
related context of Mandelbrot’s multiplicative cascades, see [14] and references
therein. In the next subsection, we will generalize the results in [82, 85] to
a large class of log-correlated Gaussian fields in all dimensions. After we will
discuss general multifractal analysis.

4.1. The Peyrière probability measure and the thick points

Let us first set the framework of this subsection. Consider a bounded domain
D ⊂ Rd and a positive definite kernel K (non necessarily stationary) satisfying:

∀x, y ∈ D, K(x, y) = ln+
T

|x− y| + g(x, y) (4.1)

where g is a bounded continuous function over D. We work on a fixed prob-
ability space (Ω,F ,P). On this space, we consider a centered Gaussian field
(Xǫ(x))ǫ>0,x∈D such that:

1. (ǫ, x) → Xǫ(x) is almost surely continuous on ]0,∞[×D,
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2. (Xǫ)ǫ>0 is a smooth Gaussian approximation of K (in the sense of Defi-
nition 3.4),

3. for each fixed x ∈ D, ǫ → Xǫ(x) has independent increments,
4. There exists a constant C > 0 such that for all η < ǫ:

ln+
1

|x− y|+ ǫ
− C ≤ E[Xǫ(x)Xη(y)]

≤ ln+
1

|x− y|+ ǫ
+ C, x, y ∈ D. (4.2)

5. for all γ2 < 2d, there exists a random Radon measure Mγ such that

Mǫ,γ(dx) = eγXǫ(x)− 1
2E[Xǫ(x)

2]dx

converges almost surely (possibly along some subsequence) to Mγ on D.

For γ2 < 2d and q ∈ ]0,
√
2d
γ [ , we set:

Kγ,q =

{

x∈D; lim
ǫ→0

lnMγ(B(x, ǫ))

ln ǫ
= d+

(

1

2
−q

)

γ2

2

}

∩
{

x∈D; lim
ǫ→0

Xǫ(x)

− ln ǫ
= γq

}

.

We can now state the following theorems (see appendix):

Theorem 4.1. For all γ2 < 2d, almost surely, the set Kγ,q gives full mass to
the measure Mqγ , i.e. Mqγ(

cKγ,q) = 0.

Theorem 4.2. For all γ2 < 2d, almost surely, the set Kγ,1 has Hausdorff

dimension d− γ2

2 .

A quite simple and concise proof of the above theorem is gathered in the
appendix and, to our knowledge, is new in such generality (though much more
is known in dimension 1: see [14, 24]). In dimension 2 and in the context of
circle average approximations of the GFF, another paper [82] focused on the
thick points of the GFF, improving Kahane’s result by giving the upper bound
for the Hausdorff dimension. Let us also stress here that the place of the “almost
sure” is important in Theorem 4.1 and Corollary 4.2. In the case of multiplicative
cascades, a stronger statement is proved in [15], where the “almost sure” is valid
simultaneously for all γ2 < 2d.

In case the reader wishes to skip the whole proof of Theorem 4.1, we sketch
here Kahane’s argument about the lower bound for the Hausdorff dimension of
the thick points of X . We focus on the case where q = 1 and D has Lebesgue
measure 1. The key point is to introduce the so-called Peyrière probability mea-
sure (also called rooted measure in [57, 58, 59]):

Q(F (ω, x)) := E[

∫

D

F (ω, x)Mγ(dx)]. (4.3)

This measure was introduced by Peyrière in the context of discrete cascades
(see [87]) and was used by Kahane in his work on Gaussian multiplicative chaos.
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It is obvious that under this measure the process (x, t) → Xe−t(x) is a Brownian
motion with drift γ, hence we have Mγ(

cK̃γ)) = 0 where:

K̃γ =

{

x ∈ D; lim
ǫ→0

Xǫ(x)

− ln ǫ
= γ

}

. (4.4)

In particular, it is straightforward from Theorem 2.6 that K̃γ has Hausdorff

dimension at least d − γ2

2 . Let us further stress that similar ideas are used
in [82].

4.2. General multifractal formalism: A heuristic introduction

In this section, we discuss a bit of general multifractal formalism for the mea-
sures Mγ . This discussion is essentialy based on heuristics though it
should not be very difficult to make it rigorous mathematically. Let us
mention that the study of multifractal formalism represents a very wide domain
of mathematics and physics (in particular turbulence); therefore, being exhaus-
tive in this field is way beyond the scope of this review where we only mention
the case of measures of the form eX(x)dx for some log correlated gaussian fieldX .

Multifractal analysis is based on the calculation of the Lq-spectrum of the
measure Mγ , defined as

q ∈ R 7→ τM (q) = lim inf
r→0+

log sup
{

∑

i Mγ(B(xi, r))
q
}

log(r)
,

where the supremum is taken over all the centered packing of [0, 1]d by closed
balls of radius r. This study is achieved in [14, 24] in dimension 1 and, with a bit
of effort, it should not be difficult to generalize this result to higher dimensions:

τMγ (q) =















(
√
d+ γ√

2
)2q if q ≤ −

√
2d
γ ,

ξ(q)− d if q ∈ [−
√
2d
γ ,

√
2d
γ ],

(
√
d− γ√

2
)2q if q ≥

√
2d
γ .

The so-calledmultifractal formalism holds forMγ : we can relate the Lq-spectrum
of Mγ to the local regularity of Mγ . More precisely, define

Eδ =
{

x ∈ [0, 1]d; lim inf
r→0+

lnMγ(B(x, r))

ln(r)
= δ
}

(δ ≥ 0).

The singularity spectrum of Mγ , i.e. the mapping δ ≥ 0 7→ dimEδ (dim
meaning Hausdorff dimension), is given by the celebrated Parisi-Frisch formula
(see [123]):

δ ≥ 0 7→ τ∗Mγ
(δ) = inf{δq − τMγ (q) : q ∈ R} ∧ 0. (4.5)

Note that the above formula is a Legendre transform since the formula comes
in fact from a large deviation argument (which can be made rigorous in terms
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of box counting dimensions by using the Gartner-Ellis Theorem). Multifractal
analysis is essentially focused on studying the valididity of (4.5) in the broad
context of all (random or deterministic) measures. From this and the explicit
expression on τMγ , one can deduce the following dimension result:

dimEδ =

{

d− 1
2 (

d
γ + γ

2 − δ
γ )

2, if δ ∈ [(
√
d− γ√

2
)2, (

√
d+ γ√

2
)2].

0 elsewhere.
(4.6)

In essence, multifractal formalism and computing the dimension of thick points
is the same thing (and hence we get the same associated dimensions) if we admit
the following commonly used heuristic:

Mγ(B(x, r)) ∼
r→0

C(x)rdeγXr(x)−γ2

2 ln 1
r (4.7)

where C(x) is some random constant of order 1 (nearly independent of r but
very dependent on x). Note that the notion of star scale invariance is nothing
but a rigorous formulation of the heuristic (4.7). Swithching from multifractal
formalism to thick point formalism rigorously implies handling the C(x) term
which is of order 1 but fluctuates wildely as a function of x. As an example of
application of heuristic (4.7), let us recover formula (4.6) from corollary 4.2. By
using (4.7), we get the following equivalence:

Mγ(B(x, r)) ∼
r→0

rδ ⇔ Xr(x) ∼
r→0

(
d

γ
+

γ

2
− δ

γ
) ln

1

r
,

hence leading to formula (4.6) thanks to corollary 4.2.

5. Applications of Gaussian multiplicative chaos

In this section, we review some applications in direct relation with Kahane’s
theory: some of them are well known, some of them are new. Some further
applications, rather related to recent generalizations of the theory, will be given
in Section 6.

5.1. Volatility of a financial asset or boundary Liouville measure

The main application of the theory is to give a meaning to the “limit-lognormal”
model introduced by Mandelbrot in [114]. The “limit-lognormal” model corre-
sponds to the choice of a stationary kernel K on R× R given by:

K(x, y) = ln+
T

|x− y| + g(x, y) (5.1)

where T is a positive parameters, g is a bounded continuous function and σ is
chosen to be the Lebesgue measure on R. This model has many applications:
part of them are discussed below.
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If (X(t))t≥0 is the logarithm of the price of a financial asset, the volatility Mγ

of the asset on the interval [0, t] is by definition equal to the quadratic variation
of X :

Mγ [0, t] = lim
n→∞

n
∑

k=1

(X(tk/n)−X(t(k − 1)/n))2

The volatility M can be viewed as a random measure on R. The choice for
Mγ of multiplicative chaos associated to the kernel K(x, y) = ln+ T

|x−y| satisfies

many empirical properties measured on financial markets: lognormality of the
volatility, long range correlations (see [42] for a study of the SP500 index and
components and [43] for a general review). With this kernel, the measure is
called the lognormal multifractal random measure (MRM) and is a particular
case of the log-infinitely divisble multifractal random measures (see [21, 136]
for the log-poisson case and [12] for the general case). Note that K is indeed of
σ-positive type so Mγ is well defined. In the context of finance, γ2 is called the
intermittency parameter in analogy with turbulence and T is the correlation
length. Volatility modeling and forecasting is an important field of finance since
it is related to option pricing and risk forecasting: we refer to [50] for the problem
of forecasting volatility with this choice of Mγ .

Given the volatility Mγ , the most natural way to construct a model for the
(log) price X is to set:

X(t) = BMγ [0,t] (5.2)

where (Bt)t≥0 is a Brownian motion independent of Mγ . Formula (5.2) defines
the Multifractal Random Walk (MRW) first introduced in [10] (see [11] for a
recent review of financial applications of the MRW model).

In Figure 2, observe the burst of activity (intermittency) for the SP500 index
or the MRW model. This reflects the Parisi-Frisch formalism (or multifractal
formalism): the (strong) variations of regularity are related to the non-linearity
of the power law spectrum.

5.1.1. MRM with infinite correlation length or boundary Liouville measure

Motivated by financial applications where the correlation length T is too big to
be measured on markets, the authors of [50] adressed the issue of forecasting
volatility Mγ in the limit T → ∞. More precisely, they start by forecasting
the log volatility, the 1/f noise which lives in the quotient space of distributions
defined up to some additive constant. In this context, taking the exponential, the
associated random measure Mγ is then defined up to a multiplicative constant
and is the boundary Liouville measure in the upper half plane considered in [57].

5.2. Liouville quantum gravity and KPZ

Let us first roughly explain the original motivations coming from the physics
literature. We want to define a random distribution (g,X), the partition function
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(a) SP500 returns 2001–2009 (b) Returns simulated with Black-Scholes

(c) Returns simulated with MRW (d) Returns simulated with MRW

Fig 2. Intermittency in financial markets.

of which formally writes

Z =

∫

DgDX e−SM(X,g)−µVg(Σ) (5.3)

where SM is some conformally invariant action for matter fields coupled to
a compact simply connected two dimensional surface Σ with metric g, µ is a
constant (we do not discuss its value), Vg is the volume form of g and X is an
embedding from Σ into a c-dimensional spacetime. Here we adopt standard path
integral notations: the above integral just means that we sum over all possible
embeddings and metrics.

Example 5.1. For the free bosonic string, we consider the Polyakov action

SM =
1

8π

∫

∂gX · ∂gX dVg

where X specifies the embedding of Σ into flat D-dimensional space-time.

Example 5.2. For the massive Ising model, we consider

SM =

∫

X̄
(

∂gX +mX̄X
)

dVg.
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Notice that every metric g on Σ can be decomposed as f∗g = eϕg0, where g0
is a fixed metric on Σ, f is a g-diffeomorphism and f∗g is the pullback metric
of g along f . So we may perform the path integral by gauge-fixing: we choose a
gauge defining an equivalence class over all the metrics and perform the above
integral over a slice that cuts through once each gauge equivalence class. In
view of the above factorization property, a natural choice of the gauge is the
conformal gauge. We choose a family (ĝ) of representatives of each equivalence
class of conformally equivalent metrics and we perform a sum over (ĝ) and over
the equivalence class of ĝ for all ĝ. The Jacobian of such a “change of variables”
is the so-called Faddeev-Popov determinant △FP (ĝ). We do not detail this here
but the reader is referred to [128, 127, 48] for further details and references. Let
us just say that once this determinant has been computed, it remains to make
sure that the quantity resulting from these computations does not depend on
the choice of the family of representatives (ĝ): in physics language, we have to
compute the Weyl anomaly. Performing these computations lead to considering
the Liouville action (Rg is the Ricci tensor of the metric g)

SL(ϕ, g) =
1

2πγ2

∫

(∂gϕ · ∂gϕ+QRgϕ+ µeϕ)dVg

and the matter action SM (X, ĝ) in such a way that

∫

DXDg e−S(X,g) =

∫

DXDfDϕ△FP (ĝ) e
−SM(X,ĝ)−SL(ϕ,ĝ).

For c ∈ ]−∞, 1], the value of γ ∈ [0, 2] is related to the central charge of the
matter by

γ =

√
25− c−

√
1− c√

6
.

When the cosmological constant µ is set to 0, the Liouville action reduces to that
of a free massless boson. Mathematically speaking the corresponding field ϕ is a
Gaussian Free Field. In critical Liouville quantum gravity, we are therefore led
to considering random metrics of the form eγϕĝ and an area measure eγϕdVĝ,
where ϕ is a Free Field in the background metric ĝ. Therefore, the world sheet Σ
may be equipped with two metrics: the background metric ĝ and the quantum
metric eγϕĝ.

Furthermore, conditionally on a fixed background metric ĝ (just discarding
ĝ from the randomness), the metric eγϕĝ and the matter field are independent
as may be seen from the resulting partition function. Knizhnik, Polyakov and
Zamolodchikov have derived in [94] a relation between the scaling exponents
of the background metric and the quantum metric eγϕĝ, the so-called KPZ
formula. This is a very rough description of Liouville quantum gravity and the
reader may consult [128, 94, 127, 48] for further details.

Let us now explain why this KPZ formula may be of interest in the study of
models of statistical physics at their critical point. Physicists understood a long
time ago (see [6, 7, 94, 48, 49] and certainly many others) that this continuum
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model of quantum gravity admits a discretized counterpart via random triangu-
lations (or other p-angulations) of surfaces. The prototype of such p-angulations
is the Brownian map studied in (see [106, 107, 108, 117]) and corresponds to the
pure gravity case c = 0. But we may also couple a model of statistical physics
(for instance random walks, percolation, Ising model, Potts model, . . . ) to dis-
crete quantum gravity, i.e. by considering a model of statistical physics on the
p-angulation in such a way that, as in the continuum case, the partition func-
tion involves both the p-angulation and that of the model of statistical physics.
The point is that, at their critical point, these models in two dimensions should
behave as a conformal field theory and may be thought of as the matter field
described above. By taking the limit as the discretization step goes to 0, these
models of discrete quantum gravity should converge towards Liouville quantum
gravity. Interestingly, the independence of the Liouville field and the matter
field (conditionally on the background metric) suggests that the same phenom-
ena should occur when taking the limit in the discrete model. Therefore the
KPZ formula may be applied to this “discrete matter field”, which is roughly
independent of the fluctuating quantum metric: it becomes particularly useful
when the scaling exponents of a particular model can be more easily computed in
its quantum gravity form than its background one, or vice-versa. For instance,
Duplantier [52] have used these techniques to conjecture the exact values of
the Brownian intersection exponents, which were finally rigorously derived in
[102, 103, 104] via Schramm-Loewner-Evolution (SLE) techniques. The reader
may consult [46, 47, 67] for “pure string models” with c = 0 or c = −2, and
[31, 54, 89, 90] for critical systems on random p-angulations like Q-Potts model,
percolation or tree like polymers.

Understanding Liouville quantum gravity from a mathematical rigorous angle
is a wide task, which mathematicians have tackled only recently and may take
on various aspects, some of them having obvious connections with Gaussian
multiplicative chaos theory. As explained above, the mathematical formulation
of the problem of constructing (critical) 2d-Liouville quantum gravity could be
roughly summarized as follows: construct a random metric on a two dimensional
Riemannian manifold D, say a domain of R2 (or the sphere) equipped with the
Euclidean metric dz2, which takes on the form

eγX(z)dz2 (5.4)

where X is a Gaussian Free Field (or possibly other Free Fields) on the manifold
D and γ ∈ [0, 2) is a coupling constant.

The issue of constructing the distance associated to the metric remains un-
solved. Yet recent progress are made in [72, 73, 133] concerning the Brownian
motion, Laplace-Beltrami operator or heat kernel of 2d-Liouville quantum grav-
ity. Nevertheless, we focus below on the volume form, which obviously falls
under the scope of Gaussian multiplicative chaos theory. This theory allows us
to construct a random measure of the type:

Mγ(dx) = eγX(x)−γ2

2 E[X(x)2] dx, (5.5)
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Fig 3. Simulation of a GFF on the unit torus.

which will be called Liouville measure. The points that we will address below are
the following. In order to apply Gaussian multiplicative chaos theory and define
the above measure, we have to choose a cutoff approximation of the GFF and
there are several possible choices, which we will discuss. Furthermore we will
explain why these cutoff approximations lead to the same limiting measure Mγ .

Recall that the GFF over a bounded simply connected domain D with for
instance Dirichlet boundary condition is a centered Gaussian distribution with
covariance kernel given by the Green function G of the Laplacian, i.e. △G(x·) =
−2πδx, with Dirichlet boundary condition. Actually, other types of boundary
conditions may be imposed but it suffices to detail the Dirichlet boundary con-
ditions to draw a clear picture of the techniques involved.

Decomposition of the GFF via eigenfunctions of the Laplacian

Let us consider the eigenfunctions (en)n≥1 of the Laplacian with Dirichlet
boundary conditions. They form an orthonormal basis of L2(D) with negative
associated eigenvalues (λn)n≥1. A natural choice of decomposition of the GFF
is to write (formally):

X(x) =
∑

n≥1

Yn(x)

where Yn is a smooth Gaussian field defined by

Yn(x) =
βn√−λn

en(x).
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Here (βn)n≥1 is a sequence of i.i.d standard Gaussian random variables. Observe
that the sequence (βn)n≥1 can be chosen to be measurable with respect to the
whole GFF distribution: it suffices to choose

βn = (−λn)
1
2

∫

D

X(x)en(x) dx.

The covariance kernel of Yn matches

kn(x, y) = (−λn)
−1en(x)en(y).

It is well known that the eigenfunctions are smooth so that Yn is a smooth
Gaussian field. The important point here is that the approximating sequence

∀n ≥ 1, Xn(x) =

n
∑

k=1

Yk(x)

is almost surely defined as a function of the whole GFF distribution X . Further-
more, the sequence (Yn)n are independent Gaussian processes. Though elegant
and simple, this decomposition also possesses drawbacks because the covariance
kernel of each Yn is not nonnegative and, generally speaking, it is hard to get a
tractable expression of kn (or rather their partial sums), except maybe in terms
of lattice approximations (discrete GFF, see [137]).

Remark 5.3. Actually, any orthonormal basis of H1
0 (D) produces a decom-

position of the GFF function à la Kahane, i.e. a sum of independent Gaussian
processes with continuous covariance kernels. Another very important decom-
position relying on an H1

0 (D)-basis is the projection of the GFF onto the Haar
basis. In that case, the corresponding kernels kn are continuous and positive.

White noise decomposition of the GFF

Another possible decomposition of the Green function is based on the formula:

GD(x, y) = π

∫ ∞

0

pD(t, x, y)dt.

where pD is the (sub-Markovian) semi-group of a Brownian motion B killed
upon touching the boundary of D, namely

pD(t, x, y) = P x(Bt ∈ dy, TD > t)

with TD = inf{t ≥ 0, Bt 6∈ D}. Note that the π term ensures that:

GD(x, y) ∼
|x−y|→0

ln
1

|x− y| .

Hence we can write:

G(x, y) =
∑

n≥0

Kn(x, y) with Kn(x, y) = π

∫ 1

2n−1

1
2n

pD(t, x, y)dt, n ≥ 1

(5.6)
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and K0(x, y) = π
∫∞
1 pD(t, x, y)dt. The continuity of pD implies that Kn is

continuous. The symmetry of pD implies that Kn is positive definite. Indeed,
for each smooth function ϕ with compact support in D, we have for n ≥ 1:

∫

D

∫

D

ϕ(x)Kn(x, y)ϕ(y) dx dy

= 2π

∫

D

∫

D

∫ 1

2n−1

1
2n

ϕ(x)pD(t, x, y)ϕ(y) dt dx dy

= π

∫

D

∫

D

∫

D

∫ 1

2n−1

1
2n

ϕ(x)pD(t/2, x, z)pD(t/2, z, y)ϕ(y) dt dz dx dy

= π

∫ 1

2n−1

1
2n

∫

D

(

∫

D

ϕ(x)pD(t/2, x, z) dx
)2

dt dz

≥ 0.

Since Kn is obviously positive, we can apply Kahane’s theory of Gaussian multi-
plicative chaos to define the Liouville measure (5.5). We further stress that this
argument implies a white noise decomposition of the underlying GFF: the most
direct way to construct a GFF is then to consider a white noise W distributed
on D × R+ and define

X(x) =
√
π

∫

D×R+

pD(
s

2
, x, z)W (dz, ds).

One can check that E[X(x)X(y)] = π
∫∞
0

pD(s, x, y) ds = GD(x, x′). One can
even work with a continous parameter ǫ and define the Liouville measure as

the almost sure limit as ǫ → 0 of Mǫ(dx) = eγXǫ(x)− γ2

2 E[Xǫ(x)
2] dx where the

corresponding cut-off approximations Xǫ are given by:

Xǫ(x) =
√
π

∫

D×[ǫ2,∞[

pD(
s

2
, x, z)W (dz, ds).

Indeed, within this framework introduced in [131], the sequence (Mǫ(A))ǫ>0 is
a positive martingale for all compact set A. Note the following expression for
the covariance of Xǫ:

E[Xǫ(x)Xǫ(y)] = π

∫ ∞

ǫ2
pD(s, x, y) ds

Once we define the Liouville measure with this white noise construction, it is
not hard to see that we fall in fact under the scope of Theorem 3.6 (see our
Theorem 5.5 below). In particular, we claim:

Lemma 5.4. The sequence Xǫ is a smooth Gaussian approximation of GD.

We will sketch a proof of this point in the appendix.
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Circle average

As explained in subsection 3.3, the authors in [57] have suggested a slightly
different approach: instead of using the σ-positivity of the covariance kernel
of the GFF to construct an approximating sequence (2.2) that is a martingale,
they regularize the GFF along circles to construct their approximating sequence.
More precisely, consider a GFF X and defineXǫ(z) as the mean value ofX along
the circle centered at z with radius ǫ, formally understood as:

Xǫ(x) =
1

2π

∫ 2π

0

X(x+ ǫeiθ) dθ.

The covariance kernel is given by

Gǫ(z, z
′) =

∫ ∫

GD(x, y)µx
ǫ (du)µ

y
ǫ (dv)

where µx
ǫ (du) stands for the uniform probability measure on the circle centered

at x with radius ǫ. This expression can be given a rigorous sense [57]. The main
advantage of this construction is that it is well fitted to play with the spatial
Markov property of the GFF. Nevertheless, the increments (Xǫ −Xǫ′)ǫ<ǫ′ are
not independent, getting trickier the proof of the almost sure convergence of the
chaos. On the other hand, this circle average construction falls under the scope
of the regularization procedures developed in [135] in order to get convergence
and uniqueness in law.

Equivalence of the constructions

The first question that you must have in mind is: “To which extent do the above
cut-off approximations yield the same limiting multiplicative chaos?” We claim:

Theorem 5.5. The law of the limiting chaos does not depend on the cutoff ap-
proximations listed above, namely white noise decomposition, eigenvalues of the
Laplacian, H1

0 (D) expansions or circle average (or more generally convolution
by C1 functions or averages on smooth domains, like ball-averages. . . ).

Before proving this theorem, let us make some further comments. In dimen-
sion 2, the Lebesgue measure is obviously in the class R+

2−ǫ for all ǫ > 0 and the
Green function can be rewritten as

GD(x, y) = ln+
1

|x− y| + g(x, y) (5.7)

for some bounded continuous function g. Therefore, all the Kahane machinery
applies. In particular, Theorem 2.5 ensures that the Liouville measure is non
trivial if and only if γ2 < 4, whatever the choice of the cut-off approximation.

Proof of Theorem 5.5. Almost sure equivalence between a given H1
0 (D) expan-

sion and circle average is already proved in [57], and therefore equivalence in
law holds.
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First proof: Therefore, it suffices to prove equivalence in law between the white
noise decomposition and the circle average construction to get Theorem 5.5. In
view of Theorem 3.6, one could for instance establish:

• For all δ > 0 and A > 0,

sup
x,y∈D(δ),
|x−y|≤Aǫ

∣

∣

∣

∣

∫ ∫

GD(x, y)µx
ǫ (du)µ

y
ǫ (dv)− π

∫ ∞

ǫ2
pD(s, x, y) ds

∣

∣

∣

∣

≤ C̄A.

where C̄A > 0 is some constant independent from ǫ.
• For all δ > 0,

CA = lim
ǫ→0

sup
x,y∈D(δ),
|x−y|≥Aǫ

∣

∣

∣

∣

∫ ∫

GD(x, y)µx
ǫ (du)µ

y
ǫ (dv)− π

∫ ∞

ǫ2
pD(s, x, y) ds

∣

∣

∣

∣

goes to 0 as A goes to infinity.

in order to prove equivalence between circle average and white noise decomposi-
tion. These two estimates are not very difficult to obtain but we will not detail
this point since a second very direct proof is possible.

Second proof: Therefore, it suffices to prove equivalence in law between the white
noise decomposition and one H1

0 (D) expansion. Just notice that the white noise
decomposition and the expansion along the Haar basis correspond to two σ-
finite decompositions (2.1) of the Green function. Hence, by Theorem 2.3, the
two constructions are equivalent in law.

KPZ formula: Almost sure Hausdorff version

As explained above, the KPZ formula has been introduced in Liouville quan-
tum gravity and can be thought of as a bridge between the values of the scaling
exponents computed with the quantum metric eγX(z) dz2 and the scaling ex-
ponents computed with the standard Euclidian metric. Dealing with metrics is
convenient to have a direct definition of the scaling exponents but, as previously
explained, a rigorous construction of the quantum metric has not been achieved
yet. Nevertheless, a definition of scaling exponents via measures instead of met-
rics is also possible, and this is what we discuss below.

We consider the Liouville measure over a bounded domain D ⊂ R2:

Mγ(dx) = eγX(x)−γ2

2 E[X(x)2] dx (5.8)

where γ2 < 4 and X is a GFF on D, say with Dirichlet boundary conditions.
If M were a random metric, we could associate a notion of (random) Hausdorff
dimension to this metric. Since M is only a measure, the associated notion
of Hausdorff dimension is not straightforward, except maybe in dimension 1
[27, 131]. We can nevertheless associate to the measure M a notion of Hausdorff
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dimension: this just consists in replacing carefully quantities related to distances
in the standard definition of Hausdorff dimension with similar quantities defined
in terms of measures. This yields: given a Radon measure µ on Rd and s ∈ [0, 1],
we define for a Borelian set A of Rd:

Hs,δ
µ (A) = inf

{

∑

k

µ(Bk)
s
}

where the infimum runs over all the covering (Bk)k of A with open Euclidean
balls with radius rk ≤ δ. Since the mapping δ > 0 7→ Hs,δ

µ (A) is decreasing, we
can define the s-dimensional µ-Hausdorff metric outer measure:

Hs
µ(A) = lim

δ→0
Hs,δ

µ (A).

The limit exists but may be infinite. Since Hs,δ
µ is metric, all the Borelian sets

are Hs
µ-measurable. The µ-Hausdorff dimension of the set A is then defined as

the value
dimµ(A) = inf{s ≥ 0; Hs

µ(A) = 0}. (5.9)

Notice that dimµ(A) ∈ [0, 1]. When µ is diffuse (without atoms), the µ-Hausdorff
dimension of a set A can also be expressed as:

dimµ(A) = sup{s ≥ 0; Hs
µ(A) = +∞}. (5.10)

Therefore, when µ is diffuse, the above relations allow us to characterize the
µ-Hausdorff dimension of the set A as the critical value at which the mapping
s 7→ Hs

µ(A) jumps from +∞ to 0.
For a given compact setK ofD (or a random compact set independent ofM),

the KPZ formula establishes a relation between the Hausdorff dimension of K
computed with µ = M , call it dimM (K), and the Hausdorff dimension of K
computed with µ equal to the Lebesgue measure, call it dimLeb(K). We claim
(see [131] for a proof of this statement, or also [17]):

Theorem 5.6. KPZ formula (Rhodes and Vargas, 2008). Let K be a
compact set of D. Almost surely, we have the relation:

dimLeb(K) = (1 +
γ2

4
)dimM (K)− γ2

4
dimM (K)2.

We develop below a heuristic to understand what is behind the KPZ formula,
mainly the power law spectrum of the measure as explained in Theorem 2.14.
To begin with, we recall the definition of the s-dimensional M -Hausdorff metric
outer measure

Hs
M (K) = lim

δ→0
inf
{

∑

n

M(B(xn, rn))
s; K ⊂

⋃

n

B(xn, rn), rn ≤ δ
}

.

Take the expectation and perform an outrageous inversion of limits:

E[Hs
M (K)] = lim

δ→0
inf
{

∑

n

E[M(B(xn, rn))
s]; K ⊂

⋃

n

B(xn, rn), rn ≤ δ
}

.
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Now compute the expectations via Theorem 2.14 to get:

E[Hs
M (K)] ≍ Cs lim

δ→0
inf
{

∑

n

rξ(s)/2n ; K ⊂
⋃

n

B(xn, rn), rn ≤ δ
}

= CsH
ξ(s)/2
Leb (K).

Because

ξ(s)/2 =
(

1 +
γ2

4

)

s− γ2

4
s2,

we recover at least heuristically the KPZ formula. Nevertheless, we draw atten-
tion to the fact that we do not claim that the relation

E[Hs
M (K)] ≍ H

ξ(s)/2
Leb (K)

is true. There are possibly logarithmic corrections in the choice of the gauge
function involved in the definition of the s-dimensional Hausdorff measures for
such a relation to be true.

KPZ formula: Expected box counting version

In this subsection, we summarize the KPZ statements proved in [57]. The KPZ
Theorem of [57] relies on the notion of expected box counting dimension as a
definition of scaling exponents. To state the theorem, one must introduce the
following definition:

Definition 5.7. Isothermal quantum ball. For any fixed measure µ onD, let
Bδ(z) be the Euclidean ball centered at z with radius given by µ(Bδ(z)) = δ.
If there does not exist a unique δ with this property, take the radius to be
sup{ε : µ(Bε(z)) ≤ δ}.

When µ is the measure M of (5.8), the ball Bδ(z) is called the isothermal
quantum ball of area δ centered at z. When µ is the Lebesgue measure then
Bδ(z) is nothing but the Euclidean ball centered at z and radius ǫ where δ = πǫ2,
denoted by Bǫ(z).

Given a subset K ⊂ D, the ǫ-neighborhood of K is defined by:

Bǫ(K) = {z : Bε(z) ∩K 6= ∅}.

The isothermal quantum δ-neighborhood of K is defined by:

Bδ(K) = {z : Bδ(z) ∩K 6= ∅}.

Finally, the authors of [57] introduce the notion of scaling exponent. Fix
γ ∈ [0, 2) and let λ denote Lebesgue measure on D. A fractal subset K of D has
Euclidean expectation dimension 2− 2x and Euclidean scaling exponent x if the
expected area of Bǫ(K) decays like ǫ2x = (ǫ2)x, i.e.,

lim
ε→0

logEλ(Bε(X))

log ε2
= x.
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The set K has quantum scaling exponent ∆ if we have

lim
δ→0

logEM(Bδ(X))

log δ
= ∆.

Theorem 5.8. (Duplantier and Sheffield, 2008). Fix γ ∈ [0, 2) and a
compact subset K of D. If K has Euclidean scaling exponent x ≥ 0 then it has
quantum scaling exponent ∆, where ∆ is the non-negative solution to

x =
γ2

4
∆2 +

(

1− γ2

4

)

∆. (5.11)

This theorem also extends to the case where K is a random compact set
independent of M .

In the physics litterature, the KPZ relation is usually stated under this form
(5.11) in which case x and ∆ are the weights of conformal operators. To get a
formulation in terms of dimensions, one must make the correspondence 2−2x↔
dimLeb(K) and 2− 2∆ ↔ dimM (K).

Let us finally mention that in [57] is also proved a one dimensional boundary
version of KPZ. This corresponds to proving the theorem with the lognormal
MRM measure of section 5.1.

Remark 5.9. Further comments and references on KPZ. The KPZ for-
mula has been proved in [27] in the case of multiplicative cascades in dimension 1
(see also [13] for a multidimensional version), in [57] in the case where X is a
2-dimensional GFF, and in [131] (see also [17]) in the case where X is a log-
correlated infinitely divisible field in any dimension. Roughly speaking, infinitely
divisible fields are to the family of random distributions what Lévy processes
are to the family of stochastic processes. Log-correlated Gaussian fields, like two
dimensional Free Fields, are a subclass of log-correlated infinitely divisible fields.
Therefore, the main point here is to draw attention to the fact that the KPZ
formula is a property specific to log-correlated fields: it is neither specific to the
dimension, nor to the conformal invariance of the 2d-GFF, nor to the Gaussian
nature: the only point that makes 2d-Liouville quantum gravity (i.e. Gaussian
multiplicative chaos with respect to the 2d-GFF) satisfy a KPZ relation is the
fact that the Green function of the Laplacian in dimension 2 (and in dimension
2 only) has a logarithmic singularity. Also, it may be interesting to know if a
“Liouville quantum gravity” picture can be drawn for log-correlated infinitely
divisible fields instead of Gaussian Free Fields.

Liouville quantum gravity and KPZ on Riemannian surfaces

One may wonder what becomes Liouville quantum gravity and the KPZ formula
on a n-dimensional Riemannian manifold (S, g) where g is the Riemannian ten-
sor of the manifold. By Liouville quantum gravity, we mean here a Gaussian
multiplicative chaos with respect to a Gaussian distribution X defined on the
manifold. As long as the random Gaussian distribution X possesses a kernel
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of σ-positive type, Kahane’s theory allows to define a Gaussian multiplicative
chaos associated to this Gaussian distribution. If the covariance kernel of the
Gaussian distribution is of the type (2.5) (where ρ is the distance associated
to the Riemannian metric) and the measure σ in (2.4) is the volume form on
S, then the non-degeneracy conditions of the chaos is γ2 < 2n (Theorem 2.5).
Since a n-dimensional Riemann surface is locally isometric to the unit ball of
Rn, we deduce from [131] (or [17]) that the KPZ formula holds for the Gaussian
multiplicative chaos M on this Riemann surface: it reads

Theorem 5.10. KPZ formula on Riemann manifolds ([131], 2008). Let
K be a compact set of S. Almost surely, we have the relation:

dimσ(K) = (1 +
γ2

2n
)dimM (K)− γ2

2n
dimM (K)2.

In particular, we see that the curvature of the surface does not affect the
KPZ relation. For instance, we can consider a 2-dimensional Riemann surface,
like a sphere or an hyperbolic half-plane, and the GFF on a domain of this
surface with appropriate boundary conditions in order to define the associated
Liouville measure. As explained above, in dimensions different from 2, the GFF
does not possess logarithmic correlations so that it does not make sense to
look for KPZ relations based on the GFF. Nevertheless, in dimensions different
from 2, it is plain to construct other log-correlated Gaussian distributions X :
various examples of log-correlated Gaussian fields are described in the present
manuscript but also in [60]).

Another situation of interest is to consider massive or generalized Free Fields.
On a domain D ⊂ R

2, the Massive Free Field (MFF) with Dirichlet boundary
conditions is defined as a standard Gaussian in the Hilbert space defined as the
closure of Schwartz functions over D with respect to the inner product

(f, g)h = m2(f, g)L2(D) − (f,△g)L2(D).

The real m > 0 is called the mass. Its action on L2(D) can be seen as a Gaus-
sian distribution with covariance kernel given by the Green function GD

m of the
operator m2 −△, i.e.:

(m2 −△)GD
m(x, ·) = 2πδx

with Dirichlet boundary conditions. When D is the whole plane, the massive
Green kernel is a star scale invariant kernel in the sense of [5]. We may also
consider Generalized Free Fields as defined in [76].

Definition 5.11. A Generalized Free Field with Dirichlet boundary conditions
over a domain D ⊂ R2 is defined as a random centered Gaussian distribution
(say on the space of Schwartz functions on D) the covariance kernel of which is
given by

GD
̺ (x, y) =

∫ +∞

0

GD
m(x, y) ̺(dm).
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where GD
m is the massive Green function on D with mass m and ̺ is a Radon

measure on R+, called the Källen-Lehmann weight, satisfying

∫ 1

0

− lnm̺(dm) < +∞

and

∀k ∈ N,

∫ +∞

0

mk ̺(dm) < +∞.

The construction of such a field can be straightforwardly adapted from the
previous white noise decomposition of the free field. Denote by pD(t, x, y) the
transition densities of a Brownian motion killed upon touching the boundary of
D. Consider a Gaussian noise, white in space and time and ̺-colored in mass,
i.e. a Gaussian random measure W (dx, ds, dm) distributed on D × R+ × R+

such that for all Borel sets A,A′ ⊂ D, B,B′, C, C′ ⊂ R+

E[W (A,B,C)W (A′, B′, C′)] = |A ∩ A′| |B ∩B′| ̺(C ∩ C′),

where |A| stands for the Lebesgue measure of A. The generalized free field can
then be defined

X(x) =
√
π

∫

D×R+×R+

e−
m2

4 spD(
s

2
, x, y)W (dy, ds, dm),

and cutoff approximations:

∀ǫ ≥ 0, Xǫ(x) =
√
π

∫

D×[ǫ,+∞[×R+

e−
m2

4 spD(
s

2
, x, y)W (dy, ds, dm).

For all these fields, theory of Gaussian multiplicative chaos and Theorem 5.10
apply. Let us just stress that the result of the KPZ formula remains unchanged
for Massive Free Fields whereas γ2 must be replaced with γ2̺(R+) for Gener-
alized Free Fields.

A last example of interest is the boundary Liouville measure introduced
in [57]. The authors suggests to consider a smooth domain D of R2 together
with a GFF X on D with free boundary conditions and to define the boundary
Liouville measure on ∂D as

ν(dx) = lim
ǫ→0

∫

·
e

γ
2 Xǫ(x)− γ2

4 ln 1
ǫ dx

where dx stands for the length measure on ∂D and Xǫ(x) is the mean value of
X over ∂B(x, ǫ) ∩ D. Actually, the boundary Liouville measure is nothing but
a Gaussian multiplicative chaos over a 1-dimensional Riemannian manifold (in
fact C1 is enough). By noticing that the correlations are given by

E[
γ

2
Xǫ(x)

γ

2
Xǫ(y)] =

γ2

2
ln+

1

|x− y| + g(x, y) (5.12)
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for some continuous bounded function g, Theorem 2.5 ensures that the boundary
Liouville measure is non-degenerate provided that γ2 < 4. Furthermore, the
boundary KPZ holds: just take care of replacing γ2 in Theorem 5.10 by γ2/2

because of the unusual normalization in 5.12 (the term in front of the log is γ2

2 ,
averaging along semi-circles yields an extra factor 2). The expected box counting
KPZ formula for the boundary Liouville measure is proved in [57] whereas the
Hausdorff dimension version of the KPZ formula for boundary Liouville measure
is proved in [131].

5.3. Convergence of discrete Liouville measures on isoradial graphs

Here we consider a planar (isoradial) graph. We weight the vertices of this graph
by the exponential of the Discrete Gaussian Free Field (DGFF for short) to
obtain a discrete Liouville measure: the measure having as density exponential
of the DGFF with respect to the discrete canonical volume measure on the
graph. We will prove that this measure weakly converges in law towards the
Liouville measure as the mesh size of the graph converges to 0.

Before stating a clear theorem, we need to explain the framework in further
details. The reader may find in [38] all the basic tools (and much more) about
isoradial graphs described below. We stick to the notations used in [38]. A planar
graph Γ embedded in C is called isoradial iff each face is inscribed into a circle
of common radius ǫ. If all circle centers are inside the corresponding faces, then
one can naturally embed the dual graph Γ∗ in C isoradially with the same ǫ,
taking the circle centers as vertices of Γ∗. The name rhombic lattice is sometimes
used for these graphs because all the quadrilateral faces of the corresponding
bipartite graph Λ (having vertices Γ∪Γ∗) are rhombi with sides of length ǫ. We
will make the following assumption (see [38])

the rhombi half-angles are uniformly bounded away from 0 and
π

2
. (5.13)

Roughly speaking, Λ does not possess too flat rhombi. This entails that the
Euclidean distance between the vertices of Γ is comparable to the graph distance.
For such graphs, the canonical volume measure µΓ(A) of a subset A ⊂ Γ is given
by

µΓ(A) =
∑

z∈A

Wz

where the weight Wz of z ∈ Γ is the Lebesgue measure of the face of the dual
graph containing z.

We consider a sequence (Γn)n of isoradial graphs as indicated above with
radius (ǫn)n. For all the quantities defined above, the subscript n means that it
is related to the graph Γn. For instance, µn stands for the volume measure of
the graph Γn. We also assume that the radius ǫn of Γn goes to 0 as n → ∞.

Let us now consider a bounded simply connected domain D of C. Let us
denote by Dn the graph D∩Γn, i.e. we keep the vertices and edges that entirely
lie in D. We consider a DGFF Xn on the vertices of D ∩ Γn. Recall that the
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DGFF is a collection (Xn(z))z∈Dn of centered Gaussian random variables with
covariance kernel given by 2πGDn , where GDn denotes the Green function on
Dn with 0-boundary condition (see [38, Definition 2.6]).

Then, for γ ∈ [0, 2[, we define the discrete Liouville measure on Dn:

Mn,γ(dz) = eγXn(z)− γ2

2 E[Xn(z)
2] µn(dz). (5.14)

Theorem 5.12. Let D be a bounded simply connected open domain in C. For
γ ∈ [0, 2[, the discrete Liouville measures (Mn,γ(dz))n on Dn weakly converge
in law towards the Liouville measure on D (see subsection 5.2), that is the
Gaussian multiplicative chaos:

Mγ(dx) = eγX(x)−γ2

2 E[X(x)2] dx

where X is a GFF on D with 0-boundary condition.

The proof can be found in Appendix B. In fact, we will prove the result for
the discrete GFF on the square lattice with mesh ǫ going to 0. It turns out that
the proof of Theorem 5.12 also works at criticality (see subsection 6.1 for further
details and references), yielding the following:

Theorem 5.13. For γ = 2, the discrete critical Liouville measures

(
√

ln 1
ǫn
Mn,2(dz))n on Dn weakly converge in law towards the critical Liou-

ville measure on D (see [58, 59] or subsection 6.1 below), that is the Gaussian
multiplicative chaos:

M ′(dx) =

√

2

π
(2E[X(x)2]−X(x))e2X(x)−2E[X(x)2] dx

where X is the GFF on D with Dirichlet boundary condition.

5.4. Kolmogorov-Obhukov model in turbulence

We refer to [66] for an introduction to the statistical theory of 3 dimensional
turbulence. Consider a stationary flow at high Reynolds number, that is when
the velocity of the fluid is large in comparison with the viscosity forces. It is
believed that at small scales the velocity field of the flow is homogeneous and
isotropic in space. By small scales we mean scales much smaller than the integral
scale R characteristic of the time stationary force driving the flow. In the works
[96] and [121], Kolmogorov and Obhukov proposed to model the mean energy
dissipation per unit mass in a ball B(x, l) of center x and radius l ≪ R by a
random variable El such that ln(El) is normal with variance σ2

l given by:

σ2
l = λ2 ln(

R

l
) +A

where A is a constant and λ2 is the intermittency parameter. As noted by
Mandelbrot ([114]), the only way to define such a model is to construct a random
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measure ǫ by a limit procedure. Then, one can define El by the formula:

El =
3〈E〉
4πl3

E(B(x, l))

where 〈E〉 is the average mean energy dissipation per unit mass. Formally, one
is looking for a random measure E such that:

∀A ∈ B(Rd), E(A) =

∫

A

eγX(x)−γ2

2 E[X(x)2]dx (5.15)

where (X(x))x∈Rd is a “Gaussian field” whose covariance kernel K is given by
(2.12). Therefore, one can give a rigorous meaning to energy dissipation (5.15)
by using Gaussian multiplicative chaos theory. Let us mention here that the
objective of describing a stochastic representation of the velocity field is a much
more ambitious task (see subsection 6.5 for more comments and perspectives on
this topic).

5.5. Decaying Burgers turbulence

Consider the Burgers equation

∂tv + v∇v = ν∇v + f(x, t) with initial condition v(x, 0) = v0(x). (5.16)

ν is the viscosity parameter. When f 6= 0, this equation is called (randomly)
forced Burgers equation. When f = 0 and v0(x) 6= 0, this equation is called
decaying Burgers turbulence.

We consider here the case f = 0 with random initial data v0. The solution
of decaying Burgers turbulence, via Hopf-Cole transform, is given by v(t, x) =
∇(−2ν lnZ(t, x)), where

Z(t, x) =

∫

R

e−
1
2ν

|y−x|2
2t − 1

2ν V (y) dy√
4πνt

. (5.17)

where v0 = ∇V . If we choose V as a log-correlated Gaussian random potential,
i.e. with covariance kernel of the type (2.12) then Z appears as a Gaussian
multiplicative chaos of the type (2.4) and integrating measure σ given by the
standard heat kernel on R. This situation corresponds to a power law correlated
random profile of Gaussian distributed initial velocities:

E[v0(x)v0(y)] ∼ |x− y|−2.

Gaussian distributed initial velocities with power law correlations is a subject
of interest in Burgers turbulence. The reader may consult [70] for an account of
physical motivations, further references and a study of the present situation.

It is shown in [70] that this equation exhibits a phase transition at a critical
viscosity parameter νc, which is related to the phase transition of Gaussian
multiplicative chaos (see Theorem 2.5). For ν < νc, freezing phenomena occur,
highlighting a glassy phase conjecturally as that explained in subsection 6.2
(frozen phase).
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6. Generalizations of the theory

In this section, we review some generalizations of Kahane’s theory while making
connections with possible applications.

6.1. Gaussian multiplicative chaos at criticality

Kahane’s construction of Gaussian multiplicative chaos makes sense when the
factor γ appearing in (2.11) satisfies γ2 < 2d. This gives rise to the issue of
constructing random measures in the same spirit for γ2 ≥ 2d. Necessarily these
measures will present a different structure. The case γ2 = 2d is of special interest
since it corresponds to a phase transition. We call this situation the critical
case. Kahane’s theory ensures that the associated martingale (Mn)n appearing
in (2.2) almost surely converges towards 0. Several approaches are possible in
order to make sense of a suitable random measure corresponding to criticality
γ2 = 2d. It turns out that all these approaches are conjecturally the same.

The first approach is based on the convergence of a fundamental object that
is called derivative martingale. Such an object has been intensively studied in
the case of multiplicative cascades, branching random walks [28, 99] or branch-
ing Brownian motions [119]. The convergence is achieved in [58] in the con-
text of Gaussian multiplicative chaos associated to star scale invariant kernels
(2.23) and may be achieved for other type kernels provided that one can use a
white-noise decomposition cutoff (see [59]), for instance including the GFF in
a bounded domain (see previous subsection White noise decomposition of
the GFF). The limiting measure can formally be written as

M ′(A) =

∫

A

(

γ E[X2(x)] −X(x)
)

eγX(x)−γ2

2 E[X
2(x)] dx with γ =

√
2d. (6.1)

The reader may object that this construction should be possible for every value
γ2 ≤ 2d and therefore argue that the interest for the only value γ2 = 2d is not
natural. It turns out that there is an abrupt change in the behaviour of this
object at the critical value: the exponential term penalizes those points x where
the “value” of the process X(x) lies above the expectation term γE[X(x)2] with
a strength that depends on γ: for γ2 < 2d the measure may be well defined
but the penalization term is not strong enough so that the sign of the term
(

γE[X2(x)] −X(x)
)

alternates. For γ2 = 2d, the exponential term is strongly
penalizing, forcing the measure M ′ to be nonnegative, which is not straightfor-
ward at first sight. Furthermore, in the situation when the random distribution
X possesses a star scale invariant kernel, the limit of the derivative martin-
gale M ′ yields a solution to the star equation (2.17)+(2.18) for the only value
γ2 = 2d. Indeed, when trying to derive this scaling relation for M ′, you are left
with an unusual extra term proportional to the standard chaos M . For γ2 < 2d,
this term does not vanish whereas for γ2 = 2d Kahane’s theory ensures that
this extra term disappear, making the measure M ′ star scale invariant. It is also
proved in [58] that the random measure M ′ has almost surely full support and
no atom. Further improvements are made in [20]: the authors determine the
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Fig 4. Height landscape of the derivative martingale measure plotted with a logarithmic scale
color-bar, showing that the measure is very “peaked” (for t = 12, a multiplicative factor of
about 108 stands between extreme values, i.e., between warm and cold colors).

exact asymptotics of the right tail of the distribution of the total mass of the
measure, and an almost sure upper bound for the modulus of continuity of the
cumulative distribution function of the measure. A lower bound for the incre-
ments of the measure is also investigated, showing that the measure is supported
on a set of Hausdorff dimension 0.

Another possible approach is to find a suitable renormalization of (2.2) in
order to get a non trivial limit. This approach is carried out in [59], based on
the works [100] for branching Brownian motions or [1, 83] for branching random
walks. The renormalization turns out to be the square root of the variance of the
Gaussian field Xn, the convergence holds in probability and the limit measure
is the derivative measure M ′, up to a perfectly explicit multiplicative factor.

This approach is very convenient in order to use Kahane’s convexity inequali-
ties with the measure M ′, which is not obvious at first sight when looking at the
expression (6.1). In particular, a complete description of the moments of M ′ is
achieved in [58, 59] as well as the computation of the power-law spectrum of M ′.

Let us point out that another approach of criticality via a KPP equation has
been investigated in the case of multiplicative cascades [19] or branching Brow-
nian motion [100]. No Gaussian multiplicative chaos counterpart has ever been
derived rigorously. The main reason is the structure of correlations, which are



362 R. Rhodes and V. Vargas

more intricate than in the discrete framework. But this is clearly a perspective
of interest.

In Liouville quantum gravity, the Liouville measure at criticality γ = 2 cor-
responds to a central charge c = 1. It is expected, for instance, to be the scaling
limit of the O(n = 2) loop model or the Q = 4- Potts model (see [120] for a
description of these models). Let us mention that, in the standard physics lit-
erature about c = 1 Liouville field theory [33, 74, 75, 79, 88, 92, 122, 126], the
Tachyon field ϕe2ϕ presents an unusual dependence on the Liouville field (or
GFF) ϕ (compare with the usual form eγϕ for c < 1). This is clearly in relation
with the mathematical formulation (6.1). The KPZ formula (Theorem 5.6) has
been proved in [59] at criticality, i.e. for γ = 2.

6.2. Atomic Gaussian multiplicative chaos

We know review some recent progress motivated by the super-critical regime
γ2 > 2d. They have been mainly inspired by the seminal paper [61] in the
context of multiplicative cascades. Typically, a new class of multiplicative chaos
emerges, called atomic multiplicative chaos, which can be split in two parts.

Dual phase

Before coming to mathematical considerations, let us first briefly outline the
physics motivations for considering the dual phase. The name dual phase comes
from physics literature about Liouville quantum gravity. Remind that the cou-
pling constant γ appearing in (5.4) or (5.5) is determined by the underlying
model coupled to gravity. It is related to the so-called central charge of the
model by the relation [94]

c = 1− 6

4

(

γ − 4

γ

)2

.

The central charge belongs to ]−∞, 1]. The special case c = 1 (and γ = 2) corre-
sponds to criticality. Otherwise, the central charge belongs to ]−∞, 1[ yielding
two possible γ > 0. The first solution γ belongs to ]0, 2[ and is given by

γ =

√
25− c−

√
1− c√

6
. (6.2)

It corresponds to the standard branches of Liouville gravity detailed in subsec-
tion 5.2. The second solution, call it γ̄, belongs to ]2,+∞[:

γ =

√
25− c+

√
1− c√

6
. (6.3)

Observe that γγ = 4.
In a series of papers [9, 45, 53, 91, 92, 93, 97], physicists have investigated what

they called the other/non-standard/unconventional/dual branches of gravity ini-
tially via modified random matrix models generating random surfaces in order
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to interpret these other possible values of the coupling constant γ ∈ ]2,+∞[ .
They have noticed several intriguing relations between the standard and dual
branches of the Liouville action, laying the foundations of what they called Du-
ality of Liouville quantum gravity. More recently, duality of Liouville quantum
gravity has been digged up in [56, 51] at an heuristic yet interesting level.

The purpose of what follows is to present mathematical results and heuristics
on the mechanisms involved in this dual phase. To understand mathematically
how to handle the dual phase, let us continue this pedagogical introduction in
the context of Liouville quantum gravity. So we consider a bounded domain D of
R2 and a GFF X on D with Dirichlet boundary conditions. The first observation
is that Theorem 2.10 tells us that the standard chaos

Mγ̄(dx) = eγ̄X(x)− γ̄2

2 E[X(x)2] dx

reduces to 0 because γ̄2 > 4. Therefore another construction has to be found.
To understand which construction is involved, let us assume for a while that
the chaos Mγ̄ does not reduce to 0 (though it does). Then, as explained in
Theorem 2.14 (and in its proof), the chaos Mγ̄ would then satisfy the scaling
relation

Mγ̄(B(x, r)) = r2eγ̄Ωr− γ̄2

2 E[Ω
2
r ]Mγ̄(B(x, 1)) (6.4)

for some Gaussian random variable Ωr independent of Mγ̄ and variance ln 1
r .

A straightforward computation shows that this relation may be rewritten as:

Mγ̄(B(x, r)) =
(

r2eγΩr− γ2

2 E[Ω
2
r ]
)1/α

Mγ̄(B(x, 1)) (6.5)

where α = 4
γ̄2 (recall that γγ̄ = 4). This relation suggests that if Mγ̄ were non

degenerate, it should scale for small r like

Mγ̄(B(x, r)) ≃
(

Mγ(B(x, r))
)1/α

. (6.6)

The convenient fact of the above relation is that the Gaussian multiplicative
chaos Mγ in the right-hand side is non trivial since γ2 < 4. Therefore, we are
heuristically looking for a measure that may be interpreted as the 1

α -th root
of the standard chaos Mγ . From the mathematical angle, this 1

α -th root per-
fectly makes sense in terms of independently scattered random measures with
prescribed control measure: roughly speaking, this consists in throwing a stable
point process over a landscape described by the standard Gaussian multiplica-
tive chaos Mγ . More precisely, the law of this measure can be generated as
follows:

• sample the standard Gaussian multiplicative chaos

Mγ(dx) = eγX(x)−γ2

2 E[X(x)2] dx.

• sample a random measure Mγ̄ whose law, conditionally to Mγ , is that of
an independently scattered random measure characterized by

∀q ≥ 0, E[e−qMγ̄(A)|Mγ ] = e−qαMγ (A).
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Fig 5. Chaos and dual chaos for the value γ2 = 0, 25 (and then α = 0.051). Left: “density”
of the standard chaos. Middle: position and weights of the atoms of the dual measure. Right:
position and weights of the atoms of the dual measure with a logarithmic ordinate scale.

This construction is called subordination procedure and yields purely atomic
random measure, as suggested in the physics literature.

Until now, we have identified, at least in law, what kind of object we are
looking for to model the dual branch of Liouville quantum gravity. Let us also
mention here that we recover the suggestion made in [51] concerning the dual
measure. It seems that the arguments used in [51] to guess the exact form of
the dual Liouville measure are based on the knowledge of the scaling exponents
involved in the dual branch of gravity.

From the theoretical angle, this is the beginning of interesting questions. For
instance, we mention that the scaling relation (6.6) has an exact equivalent in
the context of branching random walks [61, 29, 109], the solutions of which are
called “the fixed points of the smoothing transform”. Interestingly, it is proved
that the corresponding scaling relation has a unique solution in law, which is
the exact equivalent for branching random walks of the measure Mγ̄ described
above. This is a strong argument to validate the law of the above measure. The
question of uniqueness in the context of Gaussian multiplicative chaos theory
can be formulated in terms of star scale invariance and will be discussed in
subsection 6.2.

Furthermore, the measure Mγ̄ may be seen as the volume form associated to
a Riemann tensor of the form

eγ̄X(x)−αγ̄2

2 E[X(x)2] (nα(dx))
2

This can be seen by regularizing the measure nα with a sequence of mollifiers
(ρn)n: Mγ̄ appears as the limit as n → ∞ of the volume forms associated
to the smooth metric tensors obtained by mollifying the measure nα with the
sequence (ρn)n. For instance, consider the setup drawn in subsection 5.3. Instead
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of considering the canonical volume form µn on Dn, meaning each vertice z of
Dn has a weight corresponding to the Lebesgue measure of the face of the dual
graph containing z, we assign to each vertex z of Dn the weight Wα

z of the
nα-measure of the dual face of Dn containing z. We define the measure

µn,α(A) =
∑

z∈A

Wα
z .

This is some kind of Bouchaud trap model on isoradial graphs. We now consider
this kind of “Bouchaud trap model” in the gravitational dressing, i.e. we consider
the discrete GFF Xn on Dn and define the discrete dual Liouville measure for
γ̄ ∈ ]2,+∞[

Mn,γ̄(dz) = eγ̄Xn(z)−αγ̄2

2 E[Xn(z)2] µn,α(dz).

It is straightforward to see that the sequence of measures (Mn,γ̄)n converges in
law towards the measure Mγ̄ . The same conclusion holds if, instead of assigning
a stable law on each face of the dual graph, we assign a Random Energy Model
at low temperature on the collection of faces of the dual graph of Dn.

Let us further mention that the construction of atomic Gaussian multiplica-
tive chaos carried out in [17] is more general than the situation explained here:
it is valid in any dimension d for log-correlated Gaussian fields X , and also for
all possible values of α ∈ ]0, 1[ and γ̄2 > 2d, meaning that we do not impose
α = 2d

γ̄2 (= 4
γ̄2 in dimension d = 2). Also, a rigorous proof of the KPZ formula

for dual measures appears in [17]. Special care must be taken here to handle
purely atomic measures.

In Figure 6, we simulate for different value of γ a few atoms of the dual mea-
sure (the biggest ones). The colored background stands for the height profile of
the associated sub-critical measure M plotted with a logarithmic intensity scale:
red for areas with large mass and blue for areas with small mass. Localization
of atoms is plotted in black. The larger γ is, the more localized on areas with
large potential the atoms are.

Frozen phase

The second part of the super-critical regime consists in throwing a stable point
process over a landscape described by the critical measure M ′ of subsection 6.1:

1. sample the critical measure M ′

M ′(dx) =

∫

A

(

γ E[X2(x)] −X(x)
)

eγX(x)−γ2

2 E[X
2(x)] dx with γ =

√
2d,

2. sample a point process N ′
α whose law, conditionally to M ′, is that of an

independently scattered random measure characterized by

∀q ≥ 0, E[e−qN ′
α(A)|M ] = e−qαM ′(A).

This phase is called frozen due to a linearization of the free energy involved
in models converging towards these measures. Nevertheless, the term frozen
may also be understood by the fact that the landscape on which points are
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(a) γ2 = 0.01 (b) γ2 = 1

(c) γ2 = 3.6

Fig 6. Influence of γ on the spatial localization of the atoms of the dual measure.

thrown is “frozen” and matches the critical measure M ′: only the height of the
atoms varies with the parameter α. Furthermore, these family of measures is
conjectured to be involved in the glassy phase and freezing phenomena observed
in log-correlated random potentials. The reader may consult [34, 68, 69] for
an account of physics motivations and results, [19, 23, 110, 142] for rigorous
results in the case of discrete models and [17, 58] for precise conjectures in the
context of Gaussian multiplicative chaos theory. More precisely, the glassy phase
of log-correlated Gaussian potentials is concerned with the renormalization of
measures beyond the critical value γ2 > 2d. For γ2 > 2d, consider the measure:

Mn,γ(dx) = eγXn(x)− γ2

2 E[Xn(x)
2] dx,

where (Xn)n is your favorite cutoff approximation of the Gaussian distribution
X with covariance kernel of the type (1.2). The limiting measure, as n → ∞,
vanishes as shown by Theorem 2.10. Therefore, it is natural to wonder how
to renormalize the sequence of measures (Mn,γ)n in order to get a non trivial
limiting measure. As pointed out in [58], the sequence

(

c
3γ

2
√

2d
n e

cn

(

γ√
2
−
√
d
)2

Mn,γ(dx)
)

t≥0
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is tight and every converging subsequence is non trivial, where cn = Var(Xn).
This argument is based on the results in [110, 142]. Let us stress that the defini-
tion of cn is clear when Xn is stationary. If Xn is not stationary, there is usually
a clear candidate for the definition of cn, since the behaviour of the variance
usually does not depend too much on the spatial localization, like in the case of
the GFF. Of course, if one chooses the cutoff approximations in a very bad way,
it may happen that the renormalization constant cn does not straightforwardly
make sense. We do not discuss here in further details these technical consider-
ations. Based on heuristics on star scale invariance, it is conjectured in [17, 58]
that this renormalized sequence actually admits only one possible limit if the
kernel of X is star scale invariant:

Conjecture 6.1. If X is a star scale invariant log-correlated Gaussian field
then

c
3γ

2
√

2d
n e

cn

(

γ√
2
−
√
d
)2

Mn,γ(dx)
law→ dγNα(dx), as t → ∞ (6.7)

where dγ is a positive constant depending on γ and the law of the random mea-

sure Nα is that described above with α =
√
2d
γ .

Since the first version of this review, the above conjecture has in fact been
proved in [112] for star scale invariant kernels but also for massive free fields
and the Gaussian Free Field (in the case of the GFF, a variant of M ′ appears
in the definition of Nα due to the Dirichlet boundary conditions). However, the
authors of [112] work with specific cutoff approximations; it is natural to expect
that, up to the multiplicative constant dγ , the result (6.7) does not depend
on the cutoff approximation but it is not obvious to prove such a universality
statement.

In particular, physicists are interested in the behaviour of the Gibbs measure
associated to Mn,γ(dx) on a ball B. It is the measure renormalized by its total
mass:

Gγ
n(dx) =

Mn,γ(dx)

Mn,γ(B)
.

From (6.7), we deduce

Gγ
t (dx)

law→ Nα(dx)

Nα(B)
, as n → ∞. (6.8)

The size reordered atoms of the latter object form a Poisson-Dirichlet process
as conjectured by physicists [34]. This Poisson-Dirichlet approach was recently
made rigorous in the important work [8]. However, a convergence result such
as (6.7) offers a more complete picture of the underlying phenomena than the
Poisson-Dirichlet approach. The main reason is that it makes precise the spa-
tial localization of the atoms together with their heights whereas the Poisson-
Dirichlet approach only focuses on the heights of the atoms. We stress that this
conjecture has also been proved in the context of lognormal Mandelbrot’s cas-
cades in [19, 142] and in the context of branching random walks in [23], based
on results appearing in [110].
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(a) α = 0.2 (b) α = 0.5

Fig 7. Localization of atoms in the frozen phase for different values of α.

In Figure 7, we simulate for different values of γ a few atoms of the frozen
measure N ′

α (the biggest ones). The colored background stands for the height
profile of the derivative measure M ′ plotted with a logarithmic intensity scale:
red for areas with large mass and blue for areas with small mass. Localiza-
tion of atoms is plotted in black. The reader may observe the strong clustering
appearing here in comparison with Figure 6.

6.3. Conjectures in connection with lognormal star scale invariance

Several questions remain open about star scale invariance as mentioned in
[17, 58], inspired by the discrete multiplicative cascades case [61]. It is con-
jectured that all the non-trivial ergodic lognormal star scale invariant random
measures (actually, we need to impose a stronger dependence decay than ergod-
icity) belong to one of the families listed below, up to a constant multiplicative
factor. At least, we ask for ergodicity to get rid of the irrelevant random factor
Y of Theorem 2.19. First there must be an α ∈ ]0, 1] such that

E[eαωε(r)] = εd.

Assuming this, it is proved in (see [5, 129]) that the Gaussian process αωe−t can
be rewritten as

ωe−t(x)− E[ωe−t(x)] =
γ

α
Xt(x)

where γ2 ≤ 2d and Xt is a centered stationary Gaussian field with covariance
structure given by:

Cov
(

Xt(0), Xt(x)
)

=

∫ et

1

k(ux)

u
du (6.9)

for some continuous covariance kernel k with k(0) = 1. Four situations may then
occur, each attached with structurally different types of solutions (situations
2,3,4 are conjectures):
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Conjecture 6.2. Solutions to the ⋆-equation.

1. If α = 1 and γ2 < 2d then the law of the solution M is the standard
Gaussian multiplicative chaos, as stated in Theorem 2.19.

2. If α = 1 and γ2 = 2d, then the law of the solution M is that of the
derivative martingale M ′ described in section 6.1.

3. If α < 1 and γ2 < 2d, then M is an atomic Gaussian multiplicative chaos
of the dual phase as described in subsection 6.2.

4. If α < 1 and γ2 = 2d, then M is an atomic Gaussian multiplicative chaos
of the frozen phase.

6.4. About the maximum of log-correlated Gaussian fields and the
discrete GFF

Another active field of research concerning log-correlated Gaussian fields is the
study of their maximum, say over a unit square. More precisely, given a cutoff
approximation (Xn)n of a centered Gaussian distribution X with logarithmic
covariance kernel of the form (2.12), the question is to know how to renormalize
the quantity

sup
x∈[0,1]d

Xn(x) (6.10)

in order to get a non trivial limit. Let us set

cn = Var(Xn)

with the same discussion about the definition of cn as in the “frozen part” of
section 6.2. It is readily seen that the quantity (6.10) goes to ∞ as n goes to
∞, and actually, Kahane’s result about the criticality of the value γ2 = 2d
for Gaussian multiplicative chaos already tells you the first order term of this
quantity, i.e.

sup
x∈[0,1]d

Xn(x)−
√
2dcn = o(cn), as n → ∞.

Technically much more involved, you may even find the second term in the
asymptotic expansion of this quantity: more precisely, the family

(

sup
x∈[0,1]d

Xn(x) −
√
2dcn +

3

2
√
2d

ln cn
)

n≥0

converges in law as n → ∞ and the limiting law is non trivial. This is proved
in [32] (to be precise, the case of the discrete GFF is treated in dimension d = 2
in [32] but this result is very likely to hold in generality). By analogy with the
branching random walk case ([4]), it is conjectured in [58] :

Conjecture 6.3. If X is a star scale invariant log-correlated Gaussian field
then

sup
x∈[0,1]d

Xn(x)−
√
2dcn +

3

2
√
2d

ln cn → Gd, in law as n → ∞
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where the distribution of Gd is given in terms of the distribution of the derivative
chaos M ′([0, 1]d) of subsection 6.1. More precisely, there exists some constant
c > 0 such that:

E[e−qGd ] =
1

cq
Γ(1 +

q√
2d

)E
[(

M ′([0, 1]d)
)− q√

2d
]

(6.11)

where Γ is the standard Γ-function.

The discussion leading to this conjecture in [58] is related to star scale in-
variance as the limiting law Gd can be related to the limit at zero temperature
of the frozen phase. In fact, since the first version of this review, conjecture 6.3
was recently proved in [111] when the kernel k in (2.10) has compact support.
It is natural to wonder if similar results should hold for the discrete GFF in
a domain D on the vertices of a graph with mesh size going to 0, thus giving
a precise candidate for the limiting law appearing in [32]. In view of the con-
vergence of the discrete Liouville measure at criticality on isoradial graphs (see
subsection 5.3), it is clear that the limiting distribution in [32] can be noth-
ing but that described in conjecture 6.3, where one should see a variant of the
derivative chaos M ′ associated to the (continuous) GFF in D as constructed in
[58, 59]. In fact, recently, the authors of [30] have proved a variant of (6.11); in

their paper, the law of Gd satisfies E[e−qGd ] = 1
cq Γ(1+

q√
2d
)E
[(

Z([0, 1]d)
)− q√

2d
]

with Z a random measure which is contectured to satisfy the equality in law
Z(dx) = C(x,D)2M ′(dx) where C(x,D) is the conformal radius (the conformal
radius appears because of the Dirichlet boundary conditions on the GFF).

6.5. Matrix-valued Gaussian multiplicative chaos

The main motivation of the Kolmogorov K41 theory ([95]) in fully developed
turbulence and it’s extensions ([96]) is to define a realistic statistical theory of
an incompressible, homogeneous, isotropic and fully developed turbulent flow
(see for example [65, 66]). This ambitious program consists in defining a proba-
bilistic model for the velocity field which satisfies the main statistical signatures
observed experimentally, such as the mean energy transfer towards the small
scales and the intermittency (or multifractal) phenomenon ([95]). Ideally, one
looks for a field as close as possible to an invariant measure of the equations
of motion. In [41], the authors propose a probabilistic construction of such a
velocity field. Their construction, which requires a limiting procedure, is math-
ematically non rigorous and is based on the short time dynamics of the Euler
flow, as well as further multifractal considerations. One of the key step of this
construction is the introduction of the exponential of an isotropic trace-free
matrix whose entries are Gaussian variables with logarithmic correlations. So,
this gives rise to the issue of constructing a theory of multiplicative chaos for
Gaussian symmetric isotropic matrices, which has been studied in [40].

The setup is the following. Consider a log-correlated field (Xx)x of centered
Gaussian symmetric matrices and apply a cut-off to the correlation kernel to
regularize the logarithmic singularity (in the spirit of (2.2)) to obtain a field
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(Xn
x )x of centered Gaussian symmetric matrices. The main purpose is to define

a matrix-valued measure of the type

M(dx) = lim
n→∞

∫

eX
n
x−cn dx (6.12)

where cn is a suitable renormalization sequence. This procedure is in essence
similar to the scalar case. Nevertheless, the context is highly non-commutative
so that finding a proper renormalizing sequence cn is, in general, fairly tricky,
to put it mildly. Of course, things can be much simplified by assuming that
the field Xn takes values in a commutative sub-algebra of matrices but there
is a big loss of generality in that case and furthermore, this does not fit to the
fields observed in 3d-turbulence: there are some experimental evidences that
the field must be symmetric and isotropic. Isotropy turns out to be a crucial
advantage from the theoretical angle. Indeed, isotropic Gaussian matrices are
invariant under the action of the orthogonal group so that the expectation of
the matrix exponential eX

n
x must be proportional to the identity matrix, making

expression (6.12) tractable: the exact computation of cn is possible thanks to
well established formula for eigenvalues of isotropic Gaussian matrices.

The convergence of the matrix-valued integrals
∫

eX
n
x −cn dx is not straight-

forward since the martingale property is lost as soon as the field is not scalar.
So L2 computations are used in [40] to prove the convergence. It results that the
method is not optimal: it does not give necessary and sufficient condition for
convergence. Interestingly, the computations made in [40] suggest a logarithmic
correction to the power-law spectrum, which does not appear in the scalar case.
This seems to be related to non-commutativity. To sum up, there are several
intriguing novelties appearing with matrix-valued multiplicative chaos, which
deserved to be explored. This research field is widely open.

6.6. Beyond Gaussianity

The question of star scale invariance may be raised in quite a more general
framework than the lognormal one:

Definition 6.4. A stationary random measure M on Rd is said to be star scale
invariant if for all 0 < ǫ ≤ 1, M obeys the cascading rule

(

M(A)
)

A∈B(Rd)

law
=
(

∫

A

eωǫ(r)M ǫ(dr)
)

A∈B(Rd)
(6.13)

where ωǫ is a stochastically continuous stationary process and M ǫ is a random
measure independent from ωǫ satisfying the relation

(

M ǫ(A)
)

A∈B(Rd)

law
=
(

M(
A

ǫ
)
)

A∈B(Rd)
.

This is a quite general statement since nothing is required about the nature
of the randomness of the process ωǫ. In [129], it is proved that such a scaling
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relation entails infinite divisibility of the process ωǫ provided that it possesses
enough exponential moments. This suggests the connection with random mea-
sures defined as

Q(dx) =

∫

eXx dx (6.14)

where X is an infinitely divisible process, suitably normalized, with “logarith-
mic dependence”. One is therefore led to considering multiplicative chaos with
respect to infinitely divisible random processes. There has been several works in
this direction [12, 21, 64, 130], each of which focuses on a specific situation that
is of interest for some given property. Multifractal random measures, not neces-
sarily lognormal, were first mathematically introduced in [21]: the construction
is geometric and produces a specific example of star scale invariant random mea-
sure in the sense of (6.13). Many tools that can be used to study measures of
the type (6.14) are also developed. In [12], the authors adapt Barral and Man-
delbrot’s construction [21] in order to construct 1-dimensional exact stochastic
scale invariant random measures (non necessarily lognormal). This construction
is generalized in [130] to overcome the problem of dimension and to construct
exact stochastic scale invariant random measures in any dimension. The case
where X is a stable infinitely divisible random field is investigated in [64]. In
[129], the authors construct a unified theory containing all the possible solu-
tions to (6.13). Based on a general decomposition for stochastically continuous
infinitely divisible processes [116], they define a generalized multiplicative chaos
that gives sense to random measures of the form (6.14) where X is a general
infinitely divisible process with “logarithmic dependence”. Their main purpose
is to characterize all the solutions to (6.13) possessing a moment of order 1 + δ
for some δ > 0. Once again, the continuous nature of the problem imposes
strong constraints on the structure of the field X in the spirit of the lognormal
case (2.23).

The infinitely divisible case offers several perspectives too: as soon as a crit-
ical point exists (the existence depends on the nature of the process ωǫ) the
same picture as Conjecture 6.2 can be drawn, giving rise to corresponding no-
tions/issues of duality, freezing, statistics of extreme values... But the situation
is technically much more involved and most of the picture remains conjectural.

Appendix A: Proof of Lemma 5.4

Fix δ > 0 and A > 0. We have the following for x, y ∈ D(δ):

E[(Xǫ(x)−Xǫ(y))
2]

= π

∫ ∞

ǫ2
pD(t, x, x) dt+ π

∫ ∞

ǫ2
pD(t, y, y) dt− 2π

∫ ∞

ǫ2
pD(t, x, y) dt

= π

∫ ∞

ǫ2
pD(t, x, x)− pD(t, x, y) dt+ π

∫ ∞

ǫ2
pD(t, y, y)− pD(t, x, y) dt

≤ π

∫ 1

ǫ2
pD(t, x, x) − pD(t, x, y) dt+ π

∫ 1

ǫ2
pD(t, y, y)− pD(t, x, y) dt+ C|y − x|



Gaussian multiplicative chaos and applications: A review 373

where C is some absolute constant (depending on δ). Recall the following ex-
pression for pD: if (Bs)s≥0 is a Brownian motion starting from 0, we get:

pD(t, x, y) = P (∀s ≤ t, Bs −
s

t
Bt + x+

s

t
(y − x) ∈ D)

e−
|y−x|2

2t

2πt

For the sake of simplicity, we will take D = B(0, 1) the Euclidean ball of radius
1 and x = 0. For |y| ≤ Aǫ, we get:

π

∫ 1

ǫ2
pD(t, x, x)− pD(t, x, y) dt

≤ π

∫ 1

ǫ2

1

2πt

(

P (sup
s≤t

|Bs −
s

t
Bt| ≤ 1)− P (sup

s≤t
|Bs −

s

t
Bt +

s

t
y| ≤ 1)

)

dt

+ π

∫ 1

ǫ2
P (sup

s≤t
|Bs −

s

t
Bt +

s

t
y| ≤ 1)| 1

2πt
− e−

|y|2
2t

2πt
| dt

≤ π

∫ 1

ǫ2

1

2πt

(

P (sup
s≤t

|Bs −
s

t
Bt| ≤ 1)− P (sup

s≤t
|Bs −

s

t
Bt| ≤ 1− |y|)

)

dt

+ π

∫ 1

ǫ2
| 1

2πt
− e−

|y|2
2t

2πt
| dt

Now we have
∫ 1

ǫ2
| 1
2πt − e−

|y|2
2t

2πt | dt ≤ C |y|2
ǫ2 . We know turn to the second term.

We consider the random variable X = sups≤1 |Bs − sB1|. We have by scaling

of Brownian motion (recall also that |y|√
t
≤ A for all t ≥ ǫ2):

≤ π

∫ 1

ǫ2

1

2πt

(

P (sup
s≤t

|Bs −
s

t
Bt| ≤ 1)− P (sup

s≤t
|Bs −

s

t
Bt| ≤ 1− |y|)

)

dt

= π

∫ 1

ǫ2

1

2πt
P (

1√
t
− |y|√

t
≤ X ≤ 1√

t
) dt

≤ CA|y|
∫ 1

ǫ2

1

t3/2
dt

≤ CA
|y|
ǫ
.

In conclusion, we can find a CA > 0 such that for all x, y ∈ D(δ) with |y−x| ≤ Aǫ:

E[(Xǫ(x)−Xǫ(y))
2] ≤ CA

|y − x|
ǫ

.

Appendix B: Proof of convergence of Theorem 5.12

Let us carry out the proof in the case of the square lattice for simplicity. The
reader may then adapt the proof to the general case using subsubsection B
below.
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Let D be the standard square [0, 1]2. We let Dǫ stand for the ǫ−1-dilation of
D, i.e. Dǫ = D

ǫ and Lǫ for the lattice ǫZ2 ∩ D. For simplicity, let us suppose
that ǫ = 1

2N where N is an integer. We partition D into the squares

∆ǫ,i,j := [(i− 1

2
)ǫ, (i+

1

2
)ǫ]× [(j − 1

2
)ǫ, (j +

1

2
)ǫ].

We fix δ ∈ ]0, 1[ and we will work in D(δ) = {x ∈ D; d(x, ∂D) ≥ δ} the points
in D which are at distance δ from the boundary.

We introduce, for all t ∈ [0, 1], the Gaussian process Zǫ(t, x) =
√
tXǫ(x) +√

1− tX̄ǫ(x) where Xǫ(x) is the discrete GFF on Lǫ (that we extend to the
square D by setting it constant in each ∆ǫ,i,j) and X̄ǫ(x) is an independent
Gaussian process with covariance π

∫∞
ǫ2

pD(t, x, y) dt. In view of the techniques
of generalized Gaussian multiplicative chaos [135], one must show the following
three points:

1. For all A > 0,

sup
x,y∈D(δ),
|x−y|≤Aǫ

|E[Xǫ(x)Xǫ(y)]− π

∫ ∞

ǫ2
pD(t, x, y)dt| ≤ C̄A.

where C̄A > 0 is some constant independent from ǫ.
2. If we set:

CA = lim
ǫ→0

sup
x,y∈D(δ),
|x−y|≥Aǫ

|E[Xǫ(x)Xǫ(y)]− π

∫ ∞

ǫ2
pD(t, x, y)dt|

then CA goes to 0 as A goes to infinity.
3. For all α < 1, we have the following convergence uniformly in t ∈ [0, 1]:

lim
ǫ→0

E

[(

sup
δǫ≤i,j≤ 1−δ

ǫ

∫

∆ǫ,i,j

eγZǫ(t,x)−γ2

2 E[Zǫ(t,x)
2]dx

)α]

= 0 (B.1)

in the subcritical case γ < 2 or

lim
ǫ→0

E

[(

√

ln
1

ǫ
sup

δǫ≤i,j≤ 1−δ
ǫ

∫

∆ǫ,i,j

e2Zǫ(t,x)−2E[Zǫ(t,x)
2]dx

)α]

= 0 (B.2)

in the critical case γ = 2.

Proof of items 1, 2

Proof of item 1 is straightforward.
The covariance of Xǫ is given by:

∀x, y ∈ Lǫ, E[Xǫ(x)Xǫ(y)] = E
⌊x

ǫ ⌋[

τ∂Dǫ
∑

i=1

1Si=⌊ y
ǫ ⌋]
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where (Si)i≥1 is the simple random walk in Z2 starting from ⌊x
ǫ ⌋ and τ∂Dǫ

stands for the first exit time of the random walk out of Dǫ. By [101], we have
the following expression:

E[Xǫ(x)Xǫ(y)] =
∑

z∈∂Dǫ

P ⌊x
ǫ ⌋(Sτ∂Dǫ

= z)a(z − ⌊y
ǫ
⌋)− a(⌊x

ǫ
⌋ − ⌊y

ǫ
⌋)

where x, y ∈ Lǫ and a(x) is the potential kernel for the simple random walk:

a(x) =
2

π
ln |x|+ 2γ̄ + ln 8

π
+O(

1

|x|2 )

and γ̄ is the Euler constant. Now, recall the following expression for the Green
function of Brownian motion in D killed upon touching the boundary:

GD(x, y) =

∫

∂D

pD(x, z) ln
|z − y|
|x− y|dz

where pD is the Poisson kernel. Let A > 0. We set pǫ(x, z) = P ⌊ x
ǫ ⌋(Sτ∂Dǫ

=
⌊ z
ǫ ⌋)/ǫ, then we get for |x− y| ≥ ǫA (see [101]) and x, y ∈ [δ, 1− δ]2:

E[Xǫ(x)Xǫ(y)]

=
∑

z∈∂Dǫ

P ⌊x
ǫ ⌋(Sτ∂Dǫ

= z) ln |z − ⌊y
ǫ
⌋| − ln |⌊x

ǫ
⌋ − ⌊y

ǫ
⌋|+O(

1

A2
)

=
∑

z∈∂Dǫ

P ⌊x
ǫ ⌋(Sτ∂Dǫ

= z) ln |ǫ(z − ⌊y
ǫ
⌋)| − ln |ǫ(⌊x

ǫ
⌋ − ⌊y

ǫ
⌋)|+O(

1

A2
)

=

∫

∂D

pǫ(x, z) ln |ǫ(⌊
z

ǫ
⌋ − ⌊y

ǫ
⌋)|dz − ln |ǫ(⌊x

ǫ
⌋ − ⌊y

ǫ
⌋)|+O(

1

A2
)

By lemma B.1 in [140], we have that
∑

z∈∂Dǫ
P ⌊ x

ǫ ⌋(Sτ∂Dǫ
= z) ln |ǫ(z − ⌊ y

ǫ ⌋)|
converges uniformly to

∫

∂D
pD(x, z) ln |z − y|dz. Therefore, the quantity

lim
ǫ→0

sup
x,y∈[δ,1−δ]2,

|x−y|≥Aǫ

|E[Xǫ(x)Xǫ(y)]−GD(x, y)|

converges to 0 as A goes to infinity. Observe also that

lim
ǫ→0

sup
x,y∈[δ,1−δ]2,

|x−y|≥Aǫ

|π
∫ ∞

ǫ2
pD(t, x, y)dt−GD(x, y)|

converges to 0 as A goes to infinity and therefore CA goes to 0 as A goes to
infinity.

Proof of item 3

We will work in the critical case γ = 2 as the subcritical case is a straightforward
adaptation of the proof in [135].
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We have the following inequality:

E

[(

√

ln
1

ǫ
sup

δǫ≤i,j≤ 1−δ
ǫ

∫

[iǫ,(i+1)ǫ]×[jǫ,(j+1)ǫ]

e2Zǫ(t,x)−2E[Zǫ(t,x)
2]dx

)α]

≤ E

[(

√

ln
1

ǫ
ǫ2 sup

δǫ≤i,j≤ 1−δ
ǫ

sup
x∈[iǫ,(i+1)ǫ]×[jǫ,(j+1)ǫ]

e2Zǫ(t,x)−2E[Zǫ(t,x)
2]

)α]

Let us fix t. If x ∈ ∆ǫ,i,j , we decompose the process Zǫ(t, x) = Zǫ(t, i, j) +
Z̄ǫ(t, x) where:

Zǫ(t, i, j) =
√
tXǫ(x) +

√
1− t

√
π

∫

D×[ǫ2,∞[

inf
x∈∆ǫ,i,j

pD(
s

2
, x, y)W (dy, ds).

and (Z̄ǫ(t, x))x∈∆ǫ,i,j is a remaining Gaussian process. Note that the process
Z̄ǫ(t, x) has the following properties:

• It is continuous on ∆ǫ,i,j

• There exists some constant C > 0 independent from ǫ, i, j, t and such that:

∀x ∈ ∆ǫ,i,j , E[Z̄ǫ(t, x)
2] ≤ C

• There exists some constant C > 0 independent from ǫ, i, j, t and such that:

∀x ∈ ∆ǫ,i,j , 0 ≤ E[Zǫ(t, i, j)Z̄ǫ(t, x)] ≤ C

We can then introduce the standard 2d discrete cascade (Zi,j)1≤i,j≤ 1
ǫ
(trun-

cated at generation 1
ǫ ) independent from Z̄ǫ (see the appendix of [58]). Recall

that there exists a constant C > 0 independent from ǫ, i, j, t such that for all
(i, j), (i′, j′) ∈ [| δǫ , 1−δ

ǫ |]:

E[Zi,jZi′,j′ ] ≤ E[Zǫ(t, i, j)Zǫ(t, i
′, j′)] + C (B.3)

From above, we deduce that one can find a fixed random variable Y inde-
pendent from Zǫ of bounded variance (with respect to all variables ǫ, i, j, t) and
centered Gaussian processes (Yǫ,i,j(t, x))i,j such that the following holds:

• For each i, j, the process Yǫ,i,j(t, x) is continuous in ∆ǫ,i,j and there exists
some constant C > 0 independent from ǫ, i, j, t and such that:

∀x ∈ ∆ǫ,i,j , 0 ≤ E[Yǫ,i,j(t, x)
2] ≤ C

• The processes Zǫ+Y and Z̃ǫ have same variance, where Z̃ǫ = Zi,j +Yǫ,i,j.
Thus, we have:

E[(Zǫ(t, x) + Y )2] = E[Z̃ǫ(t, x)
2]

• The process Zǫ + Y is more correlated than the process Z̃ǫ:

E[(Zǫ(t, x) + Y )(Zǫ(t, x) + Y )] ≥ E[Z̃ǫ(t, x)Z̃ǫ(t, y)]
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We detail a bit the construction of Yǫ,i,j(t, x) for t = 0 and we will also show
that

E

[(

√

ln
1

ǫ
ǫ2 sup

δǫ≤i,j≤ 1−δ
ǫ

sup
x∈[iǫ,(i+1)ǫ]×[jǫ,(j+1)ǫ]

e2Zǫ(t=0,x)−2E[Zǫ(t=0,x)2]

)α]

→
ǫ→0

0.

This is no restriction as the general case is similar by interpolation; hence if we
show the above convergence to 0 we are done. First, we introduce independent
variables (Yi,j)i,j such that for all (i, j) the variables Zi,j + Yi,j and Zǫ(t =
0, i, j) + Y have same law (we choose Y with variance C in (B.3)). Then, we
introduce a sequence of processes ((Z̄i,j

ǫ (t = 0, x))x∈∆ǫ,i,j )i,j such that for each
(i, j) the processes (Zi,j + Yi,j + Z̄i,j

ǫ (t = 0, x))x∈∆ǫ,i,j and (Zǫ(t = 0, x) +
Y )x∈∆ǫ,i,j ) have same law. This sequence is introduced in the following way:
first note that

Z̄ǫ(t = 0, x)

=
E[Z̄ǫ(t = 0, x)Zǫ(t = 0, i, j)] + C

E[Zǫ(t = 0, i, j)2] + C
(Zǫ(t = 0, i, j) + Y ) + Z̄ǫ,ind(t = 0, x)

where the process (Z̄ǫ,ind(t = 0, x))x∈∆ǫ,i,j is independent from Zǫ(t = 0, i, j).

Now, we introduce a family of independent processes ((Z̄i,j
ǫ,ind(t = 0, x))x∈∆ǫ,i,j )i,j

where for each (i, j) (Z̄i,j
ǫ,ind(t = 0, x))x∈∆ǫ,i,j and (Z̄ǫ,ind(t = 0, x))x∈∆ǫ,i,j have

same law. Then, we set

Z̄i,j
ǫ (t = 0, x) =

E[Z̄ǫ(t = 0, x)Zǫ(t = 0, i, j)] + C

E[Zǫ(t = 0, i, j)2] + C
(Zi,j + Yi,j) + Z̄i,j

ǫ,ind(t = 0, x)

Finally, we set Yǫ,i,j(t = 0, x) = Yi,j + Z̄i,j
ǫ (t = 0, x). Now, the process Zǫ(t =

0, x)+Y is stochastically dominated by the process Z̃ǫ(t = 0, x) by the standard
Slepian lemma (see [58] for example). In conclusion, we get that:

E

[(

√

ln
1

ǫ
ǫ2 sup

δǫ≤i,j≤ 1−δ
ǫ

sup
x∈[iǫ,(i+1)ǫ]×[jǫ,(j+1)ǫ]

e2Zǫ(t=0,x)−2E[Zǫ(t=0,x)2]

)α]

≤ CE

[(

√

ln
1

ǫ
ǫ2 sup

δǫ≤i,j≤ 1−δ
ǫ

Z̄i,je
C

ln 1
ǫ

(Zi,j+Yi,j)
e2Zi,j−2E[Z2

i,j ]

)α]

where Z̄i,j = supx∈∆ǫ,i,j
e2Z̄

i,j
ǫ,ind(t=0,x)−2E[Z̄i,j

ǫ,ind(t=0,x)2]. First observe that one

can safely suppose that e
C

ln 1
ǫ

(Zi,j+Yi,j) ≈ 1 hence we will discard this term in
the sequel. Now, it is plain to see that the random measure µǫ which gives a

mass
√

ln 1
ǫ ǫ

2Z̄i,je
2Zi,j−2E[Zi,j ] to each square ∆ǫ,i,j converges (possibly along

subsequences) in law to a measure which is absolutely continuous with respect
to the critical cascade measure (which correponds to taking Z̄i,j = 1). Indeed,
since the critical cascade measure has no atoms (see [19]), the measure µǫ and
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the random measure which gives a mass
√

ln 1
ǫ ǫ

2
E[Z̄i,j ]e

2Zi,j−2E[Zi,j ] to each

square ∆ǫ,i,j converge to the same limits. Once again, since the critical cascade
measure has no atoms (see [19]), we deduce that

E

[(

√

ln
1

ǫ
ǫ2 sup

δǫ≤i,j≤ 1−δ
ǫ

Z̄i,je
2Zi,j−2E[Zi,j ]

)α]

→
ǫ→0

0

and hence

E

[(

√

ln
1

ǫ
ǫ2 sup

δǫ≤i,j≤ 1−δ
ǫ

sup
x∈[iǫ,(i+1)ǫ]×[jǫ,(j+1)ǫ]

e2Zǫ(t=0,x)−2E[Zǫ(t=0,x)2]

)α]

→
ǫ→0

0.

General case

To adapt the above proof to the general class of isoradial graphs, one just need
the following properties of the Green function, which can be found in [38] with
the minor difference that we define the Green function as −2π times the Green
function of [38]. The minus serves to have a positive definite function and the 2π
is the standard normalization in Liouville quantum gravity to have the Green
function that asymptotically behaves like a normalized log. In what follows,
GΓn stands for the discrete Green function on Γn and GΩn for the discrete
Green function on Ωn with 0 boundary condition. In particular, from Definition
2.3+Theorem 2.5 in [38], we have:

1. GΓn(x, x) = ln 1
ǫn

+ c for some explicit constant c, which does not depend
on relevant quantities.

2. ∀x 6= y ∈ Γn,

GΓn(x, y) = ln
1

|x− y| +O
( ǫ2n
|x− y|2

)

uniformly w.r.t. the shape of Γn and x 6= y ∈ Γn.
3. GΩn = GΓn −G∗

Ωn
where (G∗

Ωn
)n is a sequence of functions that uniformly

converges on the closed balls included in Ω towards the function G∗ defined
by

△G∗(·, y) = 0 on Ω, G∗(·, y) = ln
1

| · −y| on ∂Ω.

4. for each closed ball B ⊂ Ω, there is a constant CB > 0 such that ∀x, y ∈ B
and n ≥ 0

ln
1

ǫn
− C ≤ GΩn ≤ ln

1

ǫn
+ C.

Appendix C: Multifractal formalism

Proof of Theorem 4.1

We will prove Theorem 4.1 in dimension d = 2 though the proof can easily
be adapted to all dimensions (we will indicate when appropriate how to adapt
the proof to all dimensions). The proof that we will provide is robust, i.e. it is
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enough to show the result for one special Gaussian sequence satisfying the above
conditions to deduce the result for all Gaussian sequences by using Kahane’s
convexity inequalities. Therefore, let us choose the exact scale invariant field X̄
with covariance kernel given by:

∀x, y ∈ U, E[X̄(x)X̄(y)] = ln+
1

|x− y| .

Let us also consider a white noise decomposition (X̄ǫ)ǫ∈]0,1] of X̄ as constructed
in [135] (in all dimensions, one can work with the exact stochastic scale invariant
kernels introduced in [130]). In particular, the process ǫ → X̄ǫ has independent
increments and X̄ǫ,ǫ′ := X̄ǫ − X̄ǫ′ has a correlation cutoff of length ǫ′ (i.e. if the
Euclidean distance between two sets A,B is greater than ǫ′ then (X̄ǫ,ǫ′(x))x∈A

and (X̄ǫ,ǫ′(x))x∈B are independent). The correlation structure of (X̄ǫ)ǫ∈]0,1] is
given for ǫ ∈ ]0, 1] by:

E[X̄ǫ(x)X̄ǫ(y)] =











0 if |x− y| > 1
ln 1

|x−y| if ǫ ≤ |x− y| ≤ 1

ln 1
ǫ + 2(1− |x−y|1/2

ǫ1/2
) if |y − x| ≤ ǫ

.

In particular, we have the following exact stochastic scale invariant relation for
all λ < 1:

(X̄λǫ(λx))|x|≤1
(Law)
= (X̄ǫ(x))|x|≤1 +Ω 1

λ

where Ω 1
λ
is a centered Gaussian random variable of variance ln 1

λ independent

of X̄ǫ.

Preliminary lemma

Now we begin the proof. Recall that we work in dimension d = 2.

Lemma C.1. Let γ ∈ [0, 2[. If a ∈ ]0, 1] satisfies (2 − γ2

2 )a − γ2a2

2 > 0 then
there exists a constant C > 0 such that:

sup
ǫ∈]0,1]

E

[(

∫

[0, 12 ]
2

eγX̄ǫ(v)− γ2

2 E[X̄ǫ(v)
2]

(|v|+ ǫ)γ2 dv
)a]

≤ C. (C.1)

Proof. By stochastic scale invariance, we have the following property:

E

[(

∫

[0, 12 ]
2

eγX̄ǫ(v)− γ2

2
E[X̄ǫ(v)

2]

(|v|+ ǫ)γ2 dv
)a]

≤ E

[(

∫

[0, 14 ]
2

eγX̄ǫ(v)− γ2

2 E[X̄ǫ(v)
2]

(|v|+ ǫ)γ2 dv
)a]

+ E

[(

∫

[0, 12 ]
2\[0, 14 ]2

eγX̄ǫ(v)− γ2

2 E[X̄ǫ(v)
2]

(|v|+ ǫ)γ2 dv
)a]
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≤ 1

2a(2−
γ2

2 )− γ2a2

2

E

[(

∫

[0, 12 ]
2

eγX̄2ǫ(v)− γ2

2 E[X̄2ǫ(v)
2]

(|v|+ 2ǫ)γ2 dv
)a]

+ 4aγ
2

sup
ǫ

E

[(

∫

[0, 12 ]
2

eγX̄ǫ(v)− γ2

2 E[X̄ǫ(v)
2]dv

)a]

,

where in the last inequality we have used stochastic scale invariance. By as-
sumption, we have ρ = 1

2a(2− γ2

2
)− γ2a2

2

< 1. Since γ ∈ [0, 2[, we also have:

C
def
= 4aγ

2

sup
ǫ

E

[(

∫

[0, 12 ]
2

eγX̄ǫ(v)− γ2

2 E[X̄ǫ(v)
2]dv

)a]

< +∞.

Set:

un = E

[(

∫

[0, 12 ]
2

eγX̄ǫn (v)− γ2

2 E[X̄ǫn (v)2]

(|v|+ ǫn)γ
2 dv

)a]

where ǫn = 1
2n . We have just proved that un+1 ≤ ρun + C hence the sequence

(un)n is bounded, thus giving the result.

C.1. Proof of Theorem 4.1

In what follows, the value of α is fixed and given by α = 2 + (12 − q)γ2.

Lower bound

Lemma C.2. Fix β > 0. There exist two constants D > 0 and η > 0 such that
for all r > 0, we have:

E

[

∫

[0,1]2
1{Mγ(B(x,r))≥rα−β}Mqγ(dx)

]

≤ Drη.

Proof. We fix ǫ, ǫ′ > 0 such that ǫ′ < rǫ. Let Ω1/r denote a centered Gaussian

random variable of variance ln 1
r . We write Ω1/r =

√

ln 1
rN whrere N is a

standard Gaussian. By using the Girsanov transform, we get:

E

[

1
{
∫
B(x,r)

eγX̄rǫ(u)− γ2

2
E[X̄rǫ(u)2]du≥rα−β}

eqγX̄ǫ′ (x)− q2γ2

2 E[X̄ǫ′ (x)
2]
]

= P

[

eC
∫

B(x,r)

e
¯γXrǫ(u)− γ2

2 E[X̄rǫ(u)
2]

(|u− x|+ rǫ)qγ2 du ≥ rα−β
]

≤ P

[

eCeγΩ1/r

∫

B(0,1)

eγX̄ǫ(v)− γ2

2 E[X̄ǫ(v)
2]

(|v|+ ǫ)qγ2 dv ≥ r−β
]

≤ P
[

eCeγΩ1/r ≥ r−
β
2

]

+ P

[

∫

B(0,1)

eγX̄ǫ(v)− γ2

2 E[X̄ǫ(v)
2]

(|v|+ ǫ)qγ2 dv ≥ r−
β
2

]



Gaussian multiplicative chaos and applications: A review 381

≤ P
[

N ≥ β

2γ

√

ln
1

r
− C
√

ln 1
r

]

+ P

[

∫

B(0,1)

eγX̄ǫ(v)− γ2

2 E[X̄ǫ(v)
2]

(|v|+ ǫ)qγ2 dv ≥ r−
β
2

]

≤ eCβγ−2

r
β2

8γ2 + r
aβ
2 E

[(

∫

B(0,1)

eγX̄ǫ(v)− γ2

2
E[X̄ǫ(v)

2]

(|v|+ ǫ)γ2 dv
)a]

≤ eCβγ−2

r
β2

8γ2 + C′r
aβ
2 ,

where C is the constant appearing in (4.2) and C′ comes from Lemma C.1.
Therefore, by integrating this identity with respect to dx, we get that:

E

[

∫

[0,1]2
1
{
∫
B(x,r)

eγX̄rǫ(u)− γ2

2
E[X̄rǫ(u)2]du≥rα−β}

eqγX̄ǫ′ (x)− q2γ2

2 E[X̄ǫ′ (x)
2]dx

]

≤ Drη

where D and η are independent of ǫ, ǫ′. One can take the limit as ǫ′ → 0 and
conclude that:

E

[

∫

[0,1]2
1
{
∫
B(x,r)

eγX̄rǫ(u)− γ2

2
E[X̄rǫ(u)2]du≥rα−β}

Mqγ(dx)
]

≤ Drη.

Now one can use Fatou twice to get that:

E[

∫

[0,1]2
1{Mγ(B(x,r))≥2rα−β}Mqγ(dx)

]

≤ E

[

∫

[0,1]2
lim inf
ǫ→0

1
{
∫
B(x,r)

eγX̄rǫ(u)− γ2

2
E[X̄rǫ(u)2]du≥rα−β}

Mqγ(dx)
]

≤ lim inf
ǫ→0

E

[

∫

[0,1]2
1
{
∫
B(x,r)

eγX̄rǫ(u)− γ2

2
E[X̄rǫ(u)2]du≥rα−β}

Mqγ(dx)
]

≤ Drη.

Upper bound

Here, we prove the following result:

Lemma C.3. Fix β > 0. There exist two constants D > 0 and η > 0 such that
for all r > 0, we have:

E[

∫

[0,1]2
1{Mγ(B(x,r))≤rα+β}Mqγ(dx)

]

≤ Drη.

Proof. Along the same lines as the proof of the lower bound, we get that:

E

[

1
{
∫
B(x,r)

eγX̄rǫ(u)− γ2

2
E[X̄rǫ(u)2]du≤rα+β}

eqγX̄ǫ′ (x)− q2γ2

2 E[X̄ǫ′ (x)
2]
]

≤ P

[

e−CeγΩ1/r ≤ r
β
2 ] + P

[

∫

B(0,1)

eγX̄ǫ(v)− γ2

2 E[X̄ǫ(v)
2]

(v + ǫ)qγ2 dv ≤ r
β
2

]
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≤ eCβγ−2

r
β2

8γ2 + r
β
2 E

[(

∫

B(0,1)

eγX̄ǫ(v)− γ2

2 E[X̄ǫ(v)
2]

(|v|+ ǫ)qγ2 dv
)−1]

≤ eCβγ−2

r
β2

8γ2 + r
β
2

[(

∫

B(0,1)

eγX̄ǫ(v)− γ2

2 E[X̄ǫ(v)
2]dv

)−1]

≤ eCβγ−2

r
β2

8γ2 + r
β
2

where, in the last inequality, we have used finiteness of the negative moments
(see [135]).

We can now prove Theorem 4.1. Fix β > 0. By using lemmas C.2, C.3 and
the Borel-Cantelli lemma, we get that Mqγ(K

c
(β)) = 0 where:

K(β) =
⋃

N≥1

⋂

n≥N

{

x ∈ U ;
1

2n(α+β)
≤ Mγ(B(x,

1

2n
)) ≤ 1

2n(α−β)

}

.

We conclude by setting

K =
⋂

j≥1

K(1/j) ∩
{

x ∈ U ; lim
ǫ→0

Xǫ(x)

− ln ǫ
= γq

}

since it is obvious that Mqγ(
{

x ∈ U ; limǫ→0
Xǫ(x)
− ln ǫ = γq

}c
) = 0. By taking

q = 1, we have proved that

Mγ

({

x ∈ U ; lim
ǫ→0

lnMγ(B(x, ǫ))

ln ǫ
= d− γ2

2

}c)

= 0,

and therefore

Mqγ

({

x ∈ U ; lim
ǫ→0

lnMqγ(B(x, ǫ))

ln ǫ
= d− q2γ2

2

}c)

= 0.

Therefore Mqγ(K̄
c) = 0 where we have set

K̄ = K(β)∩
{

x ∈ U ; lim
ǫ→0

lnMqγ(B(x, ǫ))

ln ǫ
= d− q2γ2

2

}

.

Proof of Theorem 4.2

Finally, we adress the issue of the Hausdorff dimension of Kγ,1. By proposition

4.9 (a) in [62], we have dimH(Kγ,1) ≥ d− γ2

2 . Fix β > 0. We cut [0, 1]2 into the
standard 4n dyadic intervals Inj = xn

j + [0, 1
2n [

2 of size length 1
2n . We introduce

the following random variables:

µn
j = lim

η→0
4n
∫

In
j

eγ(Xη(x)−X1/2n (xn
j ))− γ2

2 ln(2n/η)dx,
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and
αn
j = sup

x∈In
j

|X1/2n(x)−X1/2n(x
n
j )|.

By using Kahane’s convexity inequalities and the fact that the Mγ(O) has neg-
ative moments when O is an open set (see [135]), we get the existence for all
q > 0 of a constant Cq (independent of n) such that:

E[
1

(µn
j )

q
] ≤ Cq, n ≥ 1, 1 ≤ j ≤ 4n.

By using the fact that (Xǫ)ǫ>0 is a smooth Gaussian approximation, we also
get the existence of some constant Cq (independent of n) such that (see [105]
for example):

E[eqα
n
j ] ≤ Cq, n ≥ 1, 1 ≤ j ≤ 4n.

Therefore, one easily gets that:

P(∪N≥1 ∩n≥N { inf
1≤j≤4n

µn
j e

−3γαn
j ≥ 1

2nβ
}) = 1.

For all x in Inj , we get that Mγ(I
n
j ) ≥ µn

j e
−3γαn

j 4neγX1/2n (x)−γ2

2 ln 2n ; hence,
we deduce that on Kγ,1 we have:

lim
r→0

Mγ(B(x, r))

rd−γ2/2+β
= ∞

Since this is valid for all β > 0, proposition 4.9 (b) in [62] gives dimH(Kγ,1) ≤
d− γ2

2 .
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martingales de Mandelbrot. Probab. Theory Related Fields 113, 4, 535–
569. MR1717530

[15] Barral, J. (2000). Continuity of the multifractal spectrum of a random
statistically self-similar measure. J. Theoret. Probab. 13, 4, 1027–1060.
MR1820501

[16] Barral, J., Fan, A. H., and Peyrière, J. (2010). Mesures engendrées
par multiplications. In Quelques interactions entre analyse, probabilités et
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[134] Robert, R. and Vargas, V. (2008). Hydrodynamic turbulence and
intermittent random fields. Comm. Math. Phys. 284, 3, 649–673.
MR2452591

[135] Robert, R. and Vargas, V. (2010). Gaussian multiplicative chaos
revisited. Ann. Probab. 38, 2, 605–631. MR2642887

[136] Schmitt, F., Lavallee, D., Schertzer, D., and Lovejoy, S. (1992).
Empirical determination of universal multifractal exponents in turbulent
velocity fields. Phys. Rev. Lett. 68, 305–308.

[137] Sheffield, S. (2007). Gaussian free fields for mathematicians. Probab.
Theory Related Fields 139, 3–4, 521–541. MR2322706

[138] Sheffield, S. (2005). Random surfaces. Astérisque 304, vi+175.
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