GAUSSIAN MULTIPLICATIVE CHAOS REVISITED

By Raoul Robert and Vincent Vargas
Université Grenoble and CNRS

In this article, we extend the theory of multiplicative chaos for positive definite functions in \mathbb{R}^{d} of the form $f(x)=\lambda^{2} \ln ^{+} \frac{R}{|x|}+g(x)$, where g is a continuous and bounded function. The construction is simpler and more general than the one defined by Kahane in [Ann. Sci. Math. Québec 9 (1985) 105-150]. As a main application, we provide a rigorous mathematical meaning to the Kolmogorov-Obukhov model of energy dissipation in a turbulent flow.

1. Introduction. The theory of multiplicative chaos was first defined rigorously by Kahane in 1985 in the article [13]. More specifically, Kahane constructed a theory relying on the notion of a σ-positive-type kernel: a generalized function $K: \mathbb{R}^{d} \times \mathbb{R}^{d} \rightarrow \mathbb{R}_{+} \cup\{\infty\}$ is of σ-positive type if there exists a sequence $K_{k}: \mathbb{R}^{d} \times \mathbb{R}^{d} \rightarrow \mathbb{R}_{+}$of continuous positive and positive definite kernels such that

$$
\begin{equation*}
K(x, y)=\sum_{k \geq 1} K_{k}(x, y) \tag{1.1}
\end{equation*}
$$

If K is a σ-positive-type kernel with decomposition (1.1), one can consider a sequence of Gaussian processes $\left(X_{n}\right)_{n \geq 1}$ of covariance given by $\sum_{k=1}^{n} K_{k}$. It is proved in [13] that the sequence of random measures m_{n} given by

$$
\begin{equation*}
m_{n}(A)=\int_{A} e^{X_{n}(x)-(1 / 2) E\left[X_{n}(x)^{2}\right]} d x, \quad A \in \mathcal{B}\left(\mathbb{R}^{d}\right) \tag{1.2}
\end{equation*}
$$

converges almost surely in the space of Radon measures (equipped with the topology of weak convergence) to a random measure m and that the limit measure m obtained does not depend on the sequence $\left(K_{k}\right)_{k \geq 1}$ used in the decomposition (1.1) of K. Thus, the theory enables one to give a unique and mathematically rigorous definition to a random measure m in \mathbb{R}^{d} defined formally by

$$
\begin{equation*}
m(A)=\int_{A} e^{X(x)-(1 / 2) E\left[X(x)^{2}\right]} d x, \quad A \in \mathcal{B}\left(\mathbb{R}^{d}\right) \tag{1.3}
\end{equation*}
$$

where $(X(x))_{x \in \mathbb{R}^{d}}$ is a "Gaussian field" whose covariance K is a σ-positive-type kernel. As it will appear later, the σ-positive-type condition is not easy to check in practice. Therefore it is convenient to avoid of this hypothesis.

[^0]Key words and phrases. Random measures, Gaussian processes, multifractal processes.

The main application of the theory is to give a meaning to the "limit-lognormal" model introduced by Mandelbrot in [17]. In the sequel, we define $\ln ^{+} x$ for $x>0$ by means of the following formula:

$$
\ln ^{+} x=\max (\ln (x), 0)
$$

The "limit-lognormal" model corresponds to the choice of a homogeneous K given by

$$
\begin{equation*}
K(x, y)=\lambda^{2} \ln ^{+}(R /|x-y|)+O(1) \tag{1.4}
\end{equation*}
$$

where λ^{2}, R are positive parameters and $O(1)$ is a bounded quantity as $\mid x-$ $y \mid \rightarrow 0$. This model has many applications which we will review in the following subsections.
1.1. Multplicative chaos in dimension 1 : A model for the volatility of a financial asset. If $(X(t))_{t \geq 0}$ is the logarithm of the price of a financial asset, the volatility m of the asset on the interval $[0, t]$ is, by definition, equal to the quadratic variation of X :

$$
m[0, t]=\lim _{n \rightarrow \infty} \sum_{k=1}^{n}(X(t k / n)-X(t(k-1) / n))^{2}
$$

The volatility m can be viewed as a random measure on \mathbb{R}. The choice of m for multiplicative chaos associated with the kernel $K(s, t)=\lambda^{2} \ln ^{+} \frac{T}{|t-s|}$ satisfies many empirical properties measured on financial markets, for example, lognormality of the volatility and long range correlations (see [6] for a study of the SP500 index and components, and [7] for a general review). Note that K is indeed of σ-positive type (see Example 2.3), so m is well defined. In the context of finance, λ^{2} is called the intermittency parameter, in analogy with turbulence, and T is the correlation length. Volatility modeling and forecasting is an important area of financial mathematics since it is related to option pricing and risk forecasting; we refer to [9] for the problem of forecasting volatility with this choice of m.

Given the volatility m, the most natural way to construct a model for the (log) price X is to set

$$
\begin{equation*}
X(t)=B_{m[0, t]}, \tag{1.5}
\end{equation*}
$$

where $\left(B_{t}\right)_{t \geq 0}$ is a Brownian motion independent of m. Formula (1.5) defines the multifractal random walk (MRW) first introduced in [1] (see [2] for a recent review of the financial applications of the MRW model).
1.2. Multiplicative chaos in dimension 3: A model for the energy dissipation in a turbulent fluid. We refer to [10] for an introduction to the statistical theory of three-dimensional turbulence. Consider a stationary flow with high Reynolds number. It is believed that at small scales, the velocity field of the flow is homo-
geneous and isotropic in space. By "small scales," we mean scales much smaller than the integral scale R characteristic of the time stationary force driving the flow. In the work [15] and [19], Kolmogorov and Obukhov propose to model the mean energy dissipation per unit mass in a ball $B(x, l)$ of center x and radius $l \ll R$ by a random variable ε_{l} such that $\ln \left(\varepsilon_{l}\right)$ is normal with variance σ_{l}^{2} given by

$$
\sigma_{l}^{2}=\lambda^{2} \ln \left(\frac{R}{l}\right)+A
$$

where A is a constant and λ^{2} is the intermittency parameter. As noted by Mandelbrot [17], the only way to define such a model is to construct a random measure ε by a limit procedure. Then, one can define ε_{l} by the formula

$$
\varepsilon_{l}=\frac{3\langle\varepsilon\rangle}{4 \pi l^{3}} \varepsilon(B(x, l)),
$$

where $\langle\varepsilon\rangle$ is the average mean energy dissipation per unit mass. Formally, one is looking for a random measure ε such that

$$
\begin{equation*}
\forall A \in \mathcal{B}\left(\mathbb{R}^{d}\right) \quad \varepsilon(A)=\int_{A} e^{X(x)-(1 / 2) E\left[X(x)^{2}\right]} d x \tag{1.6}
\end{equation*}
$$

where $(X(x))_{x \in \mathbb{R}^{d}}$ is a "Gaussian field" whose covariance K is given by $K(x, y)=\lambda^{2} \ln ^{+} \frac{R}{|x-y|}$. The kernel $\lambda^{2} \ln ^{+} \frac{R}{|x-y|}$ is positive definite when considered as a tempered distribution [see (2.1) below for a definition of positive definite distributions and Lemma 3.2 for a proof of this assertion]. Therefore, one can give a rigorous meaning to (1.6) by using Theorem 2.1 below.

However, it is not clear whether $\lambda^{2} \ln ^{+} \frac{R}{|x-y|}$ is of σ-positive type in \mathbb{R}^{3} and, therefore, in [13], Kahane considers the σ-positive-type kernel $K(x, y)=$ $\int_{1 / R}^{\infty} \frac{e^{-u|x-y|}}{u} d u$ as an approximation of $\lambda^{2} \ln ^{+} \frac{R}{|x-y|}$. Indeed, one can show that $\int_{1 / R}^{\infty} \frac{e^{-u|x-y|}}{u} d u=\ln ^{+} \frac{R}{|x-y|}+g(|x-y|)$, where g is a bounded continuous function. Nevertheless, it is important to work with $\lambda^{2} \ln ^{+} \frac{R}{|x-y|}$ since this choice leads to measures which exhibit generalized scale invariance properties; see Proposition 3.3.
1.3. Organization of the paper. In Section 2, we recall the definition of positive definite tempered distributions and we state Theorem 2.1, wherein we define multiplicative chaos m associated with kernels of the type $\ln ^{+} \frac{R}{|x|}+O(1)$. In Section 3, we review the main properties of the measure m : existence of moments and density with respect to Lebesgue measure, multifractality and generalized scale invariance. In Sections 4 and 5, we supply the proofs for Sections 2 and 3, respectively.

2. Definition of multiplicative chaos.

2.1. Positive definite tempered distributions. Let $\mathcal{S}\left(\mathbb{R}^{d}\right)$ be the Schwartz space of smooth, rapidly decreasing functions and $\mathcal{S}^{\prime}\left(\mathbb{R}^{d}\right)$ the space of tempered distributions (see [21]). A distribution f in $\mathcal{S}^{\prime}\left(\mathbb{R}^{d}\right)$ is positive definite if

$$
\begin{equation*}
\forall \varphi \in \mathcal{S}\left(\mathbb{R}^{d}\right) \quad \int_{\mathbb{R}^{d}} \int_{\mathbb{R}^{d}} f(x-y) \varphi(x) \overline{\varphi(y)} d x d y \geq 0 \tag{2.1}
\end{equation*}
$$

On $\mathcal{S}^{\prime}\left(\mathbb{R}^{d}\right)$, one can define the Fourier transform \hat{f} of a tempered distribution via the formula

$$
\begin{equation*}
\forall \varphi \in \mathcal{S}\left(\mathbb{R}^{d}\right) \quad \int_{\mathbb{R}^{d}} \hat{f}(\xi) \varphi(\xi) d \xi=\int_{\mathbb{R}^{d}} f(x) \hat{\varphi}(x) d x \tag{2.2}
\end{equation*}
$$

where $\hat{\varphi}(x)=\int_{\mathbb{R}^{d}} e^{-2 i \pi x \cdot \xi} \varphi(\xi) d \xi$ is the Fourier transform of φ. An extension of Bochner's theorem (Schwartz [21]) states that a tempered distribution f is positive definite if and only if its Fourier transform is a tempered positive measure.

By definition, a function f in $\mathcal{S}^{\prime}\left(\mathbb{R}^{d}\right)$ is of σ-positive type if the associated kernel $K(x, y)=f(x-y)$ is of σ-positive type. As mentioned in the Introduction, Kahane's theory of multiplicative chaos is defined for σ-positive-type functions f. The main problem stems from the fact that definition (1.1) is not practical. A key question is whether there exists a simple characterization (like the computation of a Fourier transform) of functions whose associated kernel can be decomposed in the form (1.1). If such a characterization exists, there is the further question of how one finds the kernels K_{n} explicitly.

Finally, we recall the following simple implication: if f belongs to $\mathcal{S}^{\prime}\left(\mathbb{R}^{d}\right)$ and is of σ-positive type, then f is positive and positive definite. However, the converse statement is not clear.
2.2. A generalized theory of multiplicative chaos. In this subsection, we construct a theory of multiplicative chaos for positive definite functions of type $\lambda^{2} \ln ^{+} \frac{R}{|x|}+O(1)$, without the assumption of σ-positivity for the underlying function. The theory is therefore much easier to use.

We consider, in \mathbb{R}^{d}, a positive definite function f such that

$$
\begin{equation*}
f(x)=\lambda^{2} \ln ^{+} \frac{R}{|x|}+g(x) \tag{2.3}
\end{equation*}
$$

where $\lambda^{2} \neq 2 d$ and $g(x)$ is a bounded continuous function. Let $\theta: \mathbb{R}^{d} \rightarrow \mathbb{R}$ be some continuous function with the following properties:
(1) θ is positive definite;
(2) $|\theta(x)| \leq \frac{1}{1+|x|^{d+\gamma}}$ for some $\gamma>0$;
(3) $\int_{\mathbb{R}^{d}} \theta(x) d x=1$.

The following is the main theorem of the article.

THEOREM 2.1 (Definition of multiplicative chaos). For all $\varepsilon>0$, we consider the centered Gaussian field $\left(X_{\varepsilon}(x)\right)_{x \in \mathbb{R}^{d}}$ defined by the convolution

$$
E\left[X_{\varepsilon}(x) X_{\varepsilon}(y)\right]=\left(\theta^{\varepsilon} * f\right)(y-x),
$$

where $\theta^{\varepsilon}=\frac{1}{\varepsilon^{\theta}} \theta(\dot{\bar{\varepsilon}})$. The associated random measure $m_{\varepsilon}(d x)=$ $e^{X_{\varepsilon}(x)-(1 / 2) E\left[X_{\varepsilon}(x)^{2}\right]} d x$ then converges in law in the space of Radon measures (equipped with the topology of weak convergence), as ε goes to 0 , to a random measure m, independent of the choice of the regularizing function θ with properties (1)-(3). We call the measure m the multiplicative chaos associated with the function f.

Below, we review two possible choices of the underlying function f. The first example is a d-dimensional generalization of the cone construction considered in [3]. The second example is $\lambda^{2} \ln ^{+} \frac{R}{|x|}$ for $d=1,2,3$ (the case $d=2,3$ seems never to have been considered in the literature). Both examples are, in fact, of $\sigma-$ positive type (except perhaps the crucial example of $\lambda^{2} \ln ^{+} \frac{R}{|x|}$ in dimension $d=3$) and it is easy to show that in these cases, Theorem 2.1 and Kahane's theory lead to the same limit measure m.

EXAMPLE 2.2. One can construct a positive definite function f with decomposition (2.3) by generalizing the cone construction of [3] to dimension d. This was performed in [5]. For all x in \mathbb{R}^{d}, we define the cone $C(x)$ in $\mathbb{R}^{d} \times \mathbb{R}_{+}$:

$$
C(x)=\left\{(y, t) \in \mathbb{R}^{d} \times \mathbb{R}_{+} ;|y-x| \leq \frac{t \wedge R}{2}\right\}
$$

The function f is given by

$$
\begin{equation*}
f(x)=\lambda^{2} \int_{C(0) \cap C(x)} \frac{d y d t}{t^{d+1}} \tag{2.4}
\end{equation*}
$$

One can show that f has decomposition (2.3) (see [5]). The function f is of $\sigma-$ positive type, in the sense of Kahane, since one can write $f=\sum_{n \geq 1} f_{n}$ with f_{n} given by

$$
f_{n}(x)=\lambda^{2} \int_{C(0) \cap C(x) ; 1 / n \leq t<1 /(n-1)} \frac{d y d t}{t^{d+1}}
$$

In dimension $d=1$, we get the simple formula $f(x)=\lambda^{2} \ln ^{+} \frac{R}{|x|}$.
EXAMPLE 2.3. In dimension $d=1,2$, the function $f(x)=\ln ^{+} \frac{R}{|x|}$ is of $\sigma-$ positive type, in the sense of Kahane, and, in particular, positive definite. Indeed, one has, by straightforward calculations,

$$
\ln ^{+} \frac{R}{|x|}=\int_{0}^{\infty}(t-|x|)_{+} v_{R}(d t)
$$

where $v_{R}(d t)=1_{[0, R[}(t) \frac{d t}{t^{2}}+\frac{\delta_{R}}{R}$. For all $\mu>0$, we have

$$
\ln ^{+} \frac{R}{|x|}=\frac{1}{\mu} \ln ^{+} \frac{R^{\mu}}{|x|^{\mu}}=\frac{1}{\mu} \int_{0}^{\infty}\left(t-|x|^{\mu}\right)_{+} v_{R^{\mu}}(d t)
$$

We are therefore led to consider the $\mu>0$ such that $\left(1-|x|^{\mu}\right)_{+}$is positive definite (the so-called Kuttner-Golubov problem; see [11] for an introduction).

For $d=1$, it is straightforward to show that $(1-|x|)_{+}$is of σ-positive type. One can thus write $f=\sum_{n \geq 1} f_{n}$ with f_{n} given by

$$
f_{n}(x)=\int_{R / n}^{R /(n-1)}(t-|x|)_{+} v_{R}(d t)
$$

For $d=2$, the function $\left(1-|x|^{1 / 2}\right)$ is positive definite (Pasenchenko [20]). One can thus write $f=\sum_{n \geq 1} f_{n}$, with f_{n} given by

$$
f_{n}(x)=\int_{R^{1 / 2} n}^{R^{1 / 2} /(n-1)}\left(t-|x|^{1 / 2}\right)_{+} v_{R^{1 / 2}}(d t)
$$

In dimension $d=3$, the function $\ln ^{+} \frac{R}{|x|}$ is positive definite (see Lemma 3.2), but it is an open question whether it is of σ-positive type.
3. Main properties of multiplicative chaos. In the sequel, we will consider the structure functions ζ_{p} defined for all p in \mathbb{R} by

$$
\begin{equation*}
\zeta_{p}=\left(d+\frac{\lambda^{2}}{2}\right) p-\frac{\lambda^{2} p^{2}}{2} \tag{3.1}
\end{equation*}
$$

3.1. Multiplicative chaos is equal to 0 for $\lambda^{2}>2 d$. The following proposition shows that multiplicative chaos is nontrivial only for sufficiently small values of λ^{2}.

Proposition 3.1. If $\lambda^{2}>2 d$, then the limit measure is equal to 0 .
3.2. Generalized scale invariance. In this subsection and the following, in view of Proposition 3.1, we will suppose that $\lambda^{2}<2 d$.

Let m be a homogeneous random measure on \mathbb{R}^{d}; we recall that this means that for all x, the measures m and $m(x+\cdot)$ are equal in law. We denote by $B(0, R)$ the ball of center 0 and radius R in \mathbb{R}^{d}. We say that m has the generalized scale invariance property with integral scale $R>0$ if, for all c in $] 0,1$], the following equality in law holds:

$$
\begin{equation*}
(m(c A))_{A \subset B(0, R)} \stackrel{(\text { Law })}{=} e^{\Omega_{c}}(m(A))_{A \subset B(0, R)}, \tag{3.2}
\end{equation*}
$$

where Ω_{c} is a random variable independent of m. Let ν_{t} denote the law of $\Omega_{e^{-t}}$. If m is different from 0 , then it is straightforward to prove that the laws $\left(v_{t}\right)_{t \geq 0}$
satisfy the convolution property $v_{t+t^{\prime}}=v_{t} * v_{t^{\prime}}$. Therefore, one can find a Lévy process $\left(L_{t}\right)_{t \geq 0}$ such that, for each t, v_{t} is the law of L_{t}. In the context of Gaussian multiplicative chaos, the process $\left(L_{t}\right)_{t>0}$ will be Brownian motion with drift.

In order to get scale invariance with integral scale R, one can choose $f=\ln ^{+} \frac{R}{|\cdot|}$. This is possible if and only if $\ln ^{+} \frac{R}{|\cdot|}$ is positive definite. This motivates the following lemma.

LEMMA 3.2. Let $d \geq 1$ be the dimension of the space and $R>0$ the integral scale. We consider the function $f: \mathbb{R}^{d} \rightarrow \mathbb{R}_{+}$defined by

$$
f(x)=\ln ^{+} \frac{R}{|x|} .
$$

The function f is positive definite if and only if $d \leq 3$.

The above choice of f leads to measures that have the generalized scale invariance property.

Proposition 3.3. Let d be less than or equal to 3 and m the Gaussian multiplicative chaos with kernel $\lambda^{2} \ln ^{+} \frac{R}{|x|}$. Then m is scale invariant: for all c in $\left.] 0,1\right]$, we have

$$
\begin{equation*}
(m(c A))_{A \subset B(0, R)} \stackrel{(\text { Law })}{=} e^{\Omega_{c}}(m(A))_{A \subset B(0, R)}, \tag{3.3}
\end{equation*}
$$

where Ω_{c} is a Gaussian random variable independent of m with mean $-(d+$ $\left.\frac{\lambda^{2}}{2}\right) \ln (1 / c)$ and variance $\lambda^{2} \ln (1 / c)$.

The proof of the proposition is straightforward.
REMARK 3.4. It remains an open problem to construct isotropic and homogeneous measures in dimension greater or equal to 4 which are scale invariant.
3.3. Existence of moments and multifractality. We recall that we have supposed that $\lambda^{2}<2 d$: this ensures the existence of $\varepsilon>0$ such that $\zeta_{1+\varepsilon}>d$. Therefore, there exists a unique $p_{*}>1$ such that $\zeta_{p_{*}}=d$. The following two propositions establish the existence of positive and negative moments for the limit measure.

Proposition 3.5 (Positive moments). Let p belong to $] 0, p_{*}[$ and m be the Gaussian multiplicative chaos associated with the function f given by (2.3). For all bounded A in $\mathcal{B}\left(\mathbb{R}^{d}\right)$,

$$
\begin{equation*}
E\left[m(A)^{p}\right]<\infty . \tag{3.4}
\end{equation*}
$$

Let θ be some function satisfying the conditions (1)-(3) of Section 2.2. With the notation of Theorem 2.1, we consider the random measure m_{ε} associated with θ. We have the following convergence for all bounded A in $\mathcal{B}\left(\mathbb{R}^{d}\right)$:

$$
\begin{equation*}
E\left[m_{\varepsilon}(A)^{p}\right] \underset{\varepsilon \rightarrow 0}{\longrightarrow} E\left[m(A)^{p}\right] . \tag{3.5}
\end{equation*}
$$

Proposition 3.6 (Negative moments). Let p belong to $]-\infty, 0]$ and m be the Gaussian multiplicative chaos associated with the function f given by (2.3). For all $c>0$,

$$
\begin{equation*}
E\left[m(B(0, c))^{p}\right]<\infty \tag{3.6}
\end{equation*}
$$

Let θ be some function satisfying the conditions (1)-(3) of Section 2.2. With the notation of Theorem 2.1, we consider the random measure m_{ε} associated with θ. We have the following convergence for all $c>0$:

$$
\begin{equation*}
E\left[m_{\varepsilon}(B(0, c))^{p}\right] \underset{\varepsilon \rightarrow 0}{\longrightarrow} E\left[m(B(0, c))^{p}\right] . \tag{3.7}
\end{equation*}
$$

The following proposition states the existence of the structure functions.
Proposition 3.7. Let p belong to $]-\infty, p_{*}[$. Let m be the Gaussian multiplicative chaos associated with the function f given by (2.3). There exists some $C_{p}>0$ [independent of g and R in decomposition (2.3): $C_{p}=C_{p}\left(\lambda^{2}\right)$] such that we have the following multifractal behavior:

$$
\begin{equation*}
E\left[m\left([0, c]^{d}\right)^{p}\right] \underset{c \rightarrow 0}{\sim} e^{p(p-1) g(0) / 2} C_{p}\left(\frac{c}{R}\right)^{\zeta_{p}} . \tag{3.8}
\end{equation*}
$$

In the next proposition, we will suppose that $d \leq 3$ and that $f(x)=\lambda^{2} \ln ^{+} \frac{R}{|x|}$. In this case, we can prove the existence of a C^{∞} density.

Proposition 3.8. Let d be less than or equal to 3 and m the Gaussian multiplicative chaos with kernel $\lambda^{2} \ln ^{+} \frac{R}{|x|}$. For all $c<R$, the variable $m(B(0, c))$ has a C^{∞} density with respect to the Lebesgue measure.

4. Proof of Theorem 2.1.

4.1. A few intermediate lemmas. In order to prove the theorem, we start by giving some lemmas we will need in the proof.

Lemma 4.1. Let θ be some function on \mathbb{R}^{d} such that there exist $\gamma, C>0$ with $|\theta(x)| \leq \frac{C}{1+|x|^{d+\gamma}}$. We then have the following convergence:

$$
\begin{equation*}
\sup _{|z|>A}\left|\int_{\mathbb{R}^{d}}\right| \theta(v)|\ln | \frac{z}{z-v}|d v| \underset{A \rightarrow \infty}{\longrightarrow} 0 \tag{4.1}
\end{equation*}
$$

Proof. We have

$$
\begin{aligned}
\int_{\mathbb{R}^{d}} & |\theta(v)| \ln \left|\frac{z}{z-v}\right| d v \\
\quad & =\int_{|v| \leq \sqrt{|z|}}|\theta(v)| \ln \left|\frac{z}{z-v}\right| d v+\int_{|v|>\sqrt{|z|}}|\theta(v)| \ln \left|\frac{z}{z-v}\right| d v
\end{aligned}
$$

In the remainder of the proof, we will suppose that $|z|>1$.
Considering the first term. We have $1-\frac{|v|}{|z|} \leq \frac{|z-v|}{|z|} \leq 1+\frac{|v|}{|z|}$ so that for $|v| \leq$ $\sqrt{|z|}$,

$$
1-\frac{1}{\sqrt{|z|}} \leq \frac{|z-v|}{|z|} \leq 1+\frac{1}{\sqrt{|z|}}
$$

Thus, we get $\left|\ln \frac{|z-v|}{|z|}\right| \leq \ln \left(\frac{1}{1-1 / \sqrt{|z|}}\right) \leq \frac{1}{\sqrt{|z|}-1}$. We conclude that

$$
\int_{|v| \leq \sqrt{|z|}}|\theta(v)| \ln \left|\frac{z}{z-v}\right| d v \leq \frac{1}{\sqrt{|z|}-1} \int_{\mathbb{R}^{d}}|\theta(v)| d v
$$

Considering the second term. We have

$$
\begin{aligned}
& \int_{|v|>\sqrt{|z|}}|\theta(v)| \ln \left|\frac{z}{z-v}\right| d v \\
& \quad \leq \ln |z| \int_{|v|>\sqrt{|z|}}|\theta(v)| d v+\int_{|v|>\sqrt{|z|}}|\theta(v)||\ln | z-v| | d v .
\end{aligned}
$$

The first term above is obvious. We decompose the second as follows:

$$
\begin{aligned}
& \int_{|v|>\sqrt{|z|}}|\theta(v)||\ln | z-v| | d v \\
&=\int_{\sqrt{|z|<|v|<|z|+1}}|\theta(v)||\ln | z-v| | d v+\int_{|v| \geq|z|+1}|\theta(v)||\ln | z-v| | d v
\end{aligned}
$$

For $|v| \geq|z|+1$, we have $1 \leq|z-v| \leq|z||v|$ and thus

$$
0 \leq \ln |z-v| \leq \ln |z|+\ln |v|,
$$

which enables us to handle the corresponding integral. Let us now estimate the remaining term $I=\int_{\sqrt{|z|<|v|<|z|+1}}|\theta(v)||\ln | z-v| | d v$. Applying Hölder's inequality with $\frac{1}{p}+\frac{1}{q}=1$ gives

$$
I \leq\left(\int_{\sqrt{|z|}|<|v|<|z|+1}|\theta(v)|^{p} d v\right)^{1 / p}\left(\int_{\sqrt{|z|}<|v|<|z|+1}|\ln | z-v| |^{q} d v\right)^{1 / q}
$$

from which we straightforwardly get, if p is close to 1 ,

$$
I \leq \frac{C \ln |z|}{|z|^{d / 2+\gamma / 2-d / 2 p-d / q}} \underset{|z| \rightarrow \infty}{\longrightarrow} 0
$$

We will also use the following lemma.

Lemma 4.2. Let λ be a positive number such that $\lambda^{2} \neq 2$ and $\left(X_{i}\right)_{1 \leq i \leq n}$ an i.i.d. sequence of centered Gaussian variables with variance $\lambda^{2} \ln (n)$. For all positive p such that $p<\max \left(\frac{2}{\lambda^{2}}, 1\right)$, there exists $0<x<1$ such that

$$
\begin{equation*}
E\left[\sup _{1 \leq i \leq n} e^{p X_{i}-p\left(\lambda^{2} / 2\right) \ln (n)}\right]=O\left(n^{x p}\right) \tag{4.2}
\end{equation*}
$$

Proof. By Fubini, we get

$$
\begin{align*}
& E\left[\sup _{1 \leq i \leq n} e^{p X_{i}-p\left(\lambda^{2} / 2\right) \ln (n)}\right] \\
& \quad=\int_{0}^{\infty} P\left(\sup _{1 \leq i \leq n} e^{p X_{i}-p\left(\lambda^{2} / 2\right) \ln (n)}>v\right) d v \\
& \quad=\int_{0}^{\infty} P\left(\sup _{1 \leq i \leq n} X_{i}>\frac{\ln (v)}{p}+\frac{\lambda^{2}}{2} \ln (n)\right) d v \tag{4.3}\\
& \quad=\int_{-\infty}^{\infty} p e^{p u} P\left(\sup _{1 \leq i \leq n} X_{i}>u+\frac{\lambda^{2}}{2} \ln (n)\right) d u \\
& \quad \leq 1+\int_{0}^{\infty} p e^{p u} P\left(\sup _{1 \leq i \leq n} X_{i}>u+\frac{\lambda^{2}}{2} \ln (n)\right) d u
\end{align*}
$$

where we have performed the change of variable $u=\frac{\ln (v)}{p}$ in the above identities. If we define $\bar{F}(u)=P\left(X_{1}>u\right)$, then we have

$$
P\left(\sup _{1 \leq i \leq n} X_{i}>u+\frac{\lambda^{2}}{2} \ln (n)\right)=1-e^{n \ln \left(1-\bar{F}\left(u+\left(\lambda^{2} / 2\right) \ln (n)\right)\right)} .
$$

Let x be some positive number such that $0<x<1$. Using (4.3), we get

$$
\begin{align*}
& E\left[\sup _{1 \leq i \leq n} e^{p X_{i}-p\left(\lambda^{2} / 2\right) \ln (n)}\right] \\
& \quad \leq n^{x p}+p \int_{x \ln (n)}^{\infty} e^{p u}\left(1-e^{n \ln \left(1-\bar{F}\left(u+\left(\lambda^{2} / 2\right) \ln (n)\right)\right)}\right) d u \tag{4.4}\\
& \quad \leq n^{x p}+p n^{x p} \int_{0}^{\infty} e^{p \widetilde{u}}\left(1-e^{n \ln \left(1-\bar{F}\left(\widetilde{u}+\left(\left(\lambda^{2} / 2\right)+x\right) \ln (n)\right)\right)}\right) d \widetilde{u} .
\end{align*}
$$

We have

$$
\begin{aligned}
\bar{F}\left(\widetilde{u}+\left(\frac{\lambda^{2}}{2}+x\right) \ln (n)\right) & =\frac{1}{\sqrt{2 \pi} \lambda \sqrt{\ln (n)}} \int_{\widetilde{u}+\left(\lambda^{2} / 2+x\right) \ln (n)}^{\infty} e^{-v^{2} /\left(2 \lambda^{2} \ln (n)\right)} d v \\
& =\frac{n^{-\left(\lambda^{2} / 2+x\right)^{2} /\left(2 \lambda^{2}\right)}}{\sqrt{2 \pi} \lambda \sqrt{\ln (n)}} \int_{\widetilde{u}}^{\infty} e^{-\left(1 / 2+x / \lambda^{2}\right) \widetilde{v}-\widetilde{v}^{2} /\left(2 \lambda^{2} \ln (n)\right)} d \widetilde{v}
\end{aligned}
$$

where we have performed the change of variable $\widetilde{v}=v-\left(\frac{\lambda^{2}}{2}+x\right) \ln (n)$. Thus, we get

$$
\begin{align*}
& n^{x p} \int_{0}^{\infty} e^{p \widetilde{u}}\left(1-e^{n \ln \left(1-\bar{F}\left(\tilde{u}+\left(\left(\lambda^{2} / 2\right)+x\right) \ln (n)\right)\right)}\right) d \widetilde{u} \\
& \quad \leq n^{x p+1} \int_{0}^{\infty} e^{p \widetilde{u}} \bar{F}\left(\widetilde{u}+\left(\frac{\lambda^{2}}{2}+x\right) \ln (n)\right) d \widetilde{u} \\
& \quad \leq \frac{n^{x p+1-\left(\lambda^{2} / 2+x\right)^{2} /\left(2 \lambda^{2}\right)}}{\sqrt{2 \pi} \lambda \sqrt{\ln (n)}} \int_{0}^{\infty} e^{p \widetilde{u}}\left(\int_{\widetilde{u}}^{\infty} e^{-\left(1 / 2+x / \lambda^{2}\right) \widetilde{v}-\widetilde{v}^{2} /\left(2 \lambda^{2} \ln (n)\right)} d \widetilde{v}\right) d \widetilde{u} \\
& \quad \leq \frac{n^{x p+1-\left(\lambda^{2} / 2+x\right)^{2} /\left(2 \lambda^{2}\right)}}{p \sqrt{2 \pi} \lambda \sqrt{\ln (n)}} \int_{0}^{\infty} e^{p \widetilde{v}-\left(1 / 2+x / \lambda^{2}\right) \widetilde{v}-\widetilde{v}^{2} /\left(2 \lambda^{2} \ln (n)\right)} d \widetilde{v} \tag{4.5}\\
& \quad \leq \frac{n^{x p+1-\left(\lambda^{2} / 2+x\right)^{2} /\left(2 \lambda^{2}\right)}}{p \sqrt{2 \pi} \lambda \sqrt{\ln (n)}} \int_{-\infty}^{\infty} e^{p \widetilde{v}-\left(1 / 2+x / \lambda^{2}\right) \widetilde{v}-\widetilde{v}^{2} /\left(2 \lambda^{2} \ln (n)\right)} d \widetilde{v} \\
& \quad=\frac{n^{x p+\alpha\left(x, \lambda^{2}, p\right)}}{p}
\end{align*}
$$

with $\alpha\left(x, \lambda^{2}, p\right)=1-\frac{\left(\lambda^{2} / 2+x\right)^{2}}{2 \lambda^{2}}+\left(p-\frac{1}{2}-\frac{x}{\lambda^{2}}\right)^{2} \frac{\lambda^{2}}{2}$. We have, by combining (4.4) and (4.5),

$$
E\left[\sup _{1 \leq i \leq n} e^{p X_{i}-p\left(\lambda^{2} / 2\right) \ln (n)}\right] \leq n^{x p}+n^{x p+\alpha\left(x, \lambda^{2}, p\right)}
$$

We focus on the case $p \in] \frac{1}{2}+\frac{1}{\lambda^{2}}, \max \left(\frac{2}{\lambda^{2}}, 1\right)[$. This implies inequality (4.2) for $p \leq \frac{1}{2}+\frac{1}{\lambda^{2}}$; indeed, if inequality (4.2) holds for some p, then it holds for all $p^{\prime}<p$ by applying Jensen's inequality to the concave function $u \rightarrow u^{p^{\prime} / p}$.

First case: $\lambda^{2}<2$. Note that $\alpha\left(1, \lambda^{2}, \frac{2}{\lambda^{2}}\right)=0$, so if $p<\frac{2}{\lambda^{2}}$, then there exists $0<x<1$ such that $\alpha\left(x, \lambda^{2}, p\right)<0$.

Second case: $\lambda^{2}>2$. Note that $\alpha\left(1, \lambda^{2}, 1\right)=0$, so if $p<1$, then there exists $0<x<1$ such that $\alpha\left(x, \lambda^{2}, p\right)<0$.
4.2. Proof of Theorem 2.1. For the sake of simplicity, we give the proof in the case where $d=1, R=1$ and the function $f(x)=\lambda^{2} \ln ^{+} \frac{1}{|x|}$. This is no restriction; indeed, the proof in the general case is an immediate adaptation of the following proof.
4.2.1. Uniqueness. Let $\alpha \in] 0,1 / 2[$. We consider θ and $\widetilde{\theta}$, two continuous functions satisfying properties (1)-(3). We note that

$$
m(d t)=e^{X(t)-(1 / 2) E\left[X(t)^{2}\right]} d t=\lim _{\varepsilon \rightarrow 0} e^{X_{\varepsilon}(t)-(1 / 2) E\left[X_{\varepsilon}(t)^{2}\right]} d t
$$

where $\left(X_{\varepsilon}(t)\right)_{t \in \mathbb{R}}$ is a Gaussian process of covariance $q_{\varepsilon}(|t-s|)$ with

$$
q_{\varepsilon}(x)=\left(\theta^{\varepsilon} * f\right)(x)=\lambda^{2} \int_{\mathbb{R}} \theta(v) \ln ^{+}\left(\frac{1}{|x-\varepsilon v|}\right) d v
$$

We similarly define the measure $\widetilde{m}, \widetilde{X}_{\varepsilon}$ and $\widetilde{q}_{\varepsilon}$ associated with the function $\widetilde{\theta}$. Note that we suppose that the random measures $m_{\varepsilon}(d t)=e^{X_{\varepsilon}(t)-(1 / 2) E\left[X_{\varepsilon}(t)^{2}\right]} d t$ and $\widetilde{m}_{\varepsilon}(d t)=e^{\widetilde{X}_{\varepsilon}(t)-(1 / 2) E\left[X_{\varepsilon}(t)^{2}\right]} d t$ converge in law in the space of Radon measures. This is no restriction since, using Fubini and $E\left[e^{X_{\varepsilon}(t)-(1 / 2) E\left[X_{\varepsilon}(t)^{2}\right]}\right]=1$, we get the equality $E\left[m_{\varepsilon}(A)\right]=E\left[\widetilde{m}_{\varepsilon}(A)\right]=|A|$ for all bounded A in $\mathcal{B}(\mathbb{R})$ which implies that the measures are tight (see Lemma 4.5 in [14]).

We will show that

$$
E\left[m[0,1]^{\alpha}\right]=E\left[\tilde{m}[0,1]^{\alpha}\right]
$$

for α in the interval] $0,1 / 2$ [. If we define $Z_{\varepsilon}(t)(u)=\sqrt{t} \widetilde{X}_{\varepsilon}(u)+\sqrt{1-t} X_{\varepsilon}(u)$ with $X_{\varepsilon}(u)$ and $\widetilde{X}_{\varepsilon}(u)$ independent, then we get, by using the continuous version of Lemma A.1,

$$
\begin{equation*}
E\left[\widetilde{m}_{\mathcal{E}}[0,1]^{\alpha}\right]-E\left[m_{\varepsilon}[0,1]^{\alpha}\right]=\frac{\alpha(\alpha-1)}{2} \int_{0}^{1} \varphi_{\varepsilon}(t) d t \tag{4.6}
\end{equation*}
$$

with $\varphi_{\varepsilon}(t)$ defined by

$$
\varphi_{\varepsilon}(t)=\int_{[0,1]^{2}}\left(\widetilde{q}_{\varepsilon}\left(\left|t_{2}-t_{1}\right|\right)-q_{\varepsilon}\left(\left|t_{2}-t_{1}\right|\right) E\left[\mathcal{X}_{\varepsilon}\left(t, t_{1}, t_{2}\right)\right]\right) d t_{1} d t_{2}
$$

where $\mathcal{X}_{\varepsilon}\left(t, t_{1}, t_{2}\right)$ is given by

$$
\mathcal{X}_{\varepsilon}\left(t, t_{1}, t_{2}\right)=\frac{e^{Z_{\varepsilon}(t)\left(t_{1}\right)+Z_{\varepsilon}(t)\left(t_{2}\right)-(1 / 2) E\left[Z_{\varepsilon}(t)\left(t_{1}\right)^{2}\right]-(1 / 2) E\left[Z_{\varepsilon}(t)\left(t_{2}\right)^{2}\right]}}{\left(\int_{0}^{1} e^{Z_{\varepsilon}(t)(u)-(1 / 2) E\left[Z_{\varepsilon}(t)(u)^{2}\right]} d u\right)^{2-\alpha}}
$$

We now state and prove the following short lemma which we will need in the sequel.

Lemma 4.3. For $A>0$, we let $C_{A}^{\varepsilon}=\sup _{|x| \geq A \varepsilon}\left|q_{\varepsilon}(x)-\tilde{q}_{\varepsilon}(x)\right|$. We have

$$
\lim _{A \rightarrow \infty}\left(\varlimsup_{\varepsilon \rightarrow 0} C_{A}^{\varepsilon}\right)=0
$$

Proof. Let $|x| \geq A \varepsilon$. If $|x| \geq 1 / 2$, then $q_{\varepsilon}(x)$ and $\tilde{q}_{\varepsilon}(x)$ converge uniformly to $\lambda^{2} \ln ^{+} \frac{1}{|x|}$, thus $q_{\varepsilon}(x)-\widetilde{q}_{\varepsilon}(x)$ converges uniformly to 0 (this a consequence of the fact that $\lambda^{2} \ln ^{+} \frac{1}{|x|}$ is continuous and of compact support for $|x| \geq 1 / 2$). If $|x|<1 / 2$, then we write

$$
q_{\varepsilon}(x)=\lambda^{2}\left(\ln \frac{1}{\varepsilon}+Q(x / \varepsilon)+R_{\varepsilon}(x)\right)
$$

where $Q(x)=\int_{\mathbb{R}} \ln \frac{1}{|x-z|} \theta(z) d z$ and $R_{\varepsilon}(x)$ converges uniformly to 0 (for $|x|<$ $1 / 2)$ as $\varepsilon \rightarrow 0$ [similarly, we can write $\left.\widetilde{q}_{\varepsilon}(x)=\lambda^{2}\left(\ln \frac{1}{\varepsilon}+\widetilde{Q}(x / \varepsilon)+\widetilde{R}_{\varepsilon}(x)\right)\right]$. This follows from straightforward calculations. Applying Lemma 4.1, we get that $Q(x)=\ln \frac{1}{|x|}+\Sigma(x)$ with $\Sigma(x) \rightarrow 0$ for $|x| \rightarrow \infty$. Thus, $Q(x)-\widetilde{Q}(x)$ is a continuous function such that, for $|x| \geq A \varepsilon$ and $|x| \leq 1 / 2$, we have

$$
\left|q_{\varepsilon}(x)-\widetilde{q}_{\varepsilon}(x)\right| \leq \lambda^{2} \sup _{|y| \geq A}|Q(y)-\widetilde{Q}(y)|+\lambda^{2} \sup _{|x| \leq 1 / 2}\left|R_{\varepsilon}(x)-\widetilde{R}_{\varepsilon}(x)\right| .
$$

The result follows.
One can decompose expression (4.6) in the following way:

$$
E\left[\widetilde{m}_{\varepsilon}[0,1]^{\alpha}\right]-E\left[m_{\varepsilon}[0,1]^{\alpha}\right]
$$

$$
\begin{equation*}
=\frac{\alpha(\alpha-1)}{2} \int_{0}^{1} \varphi_{\varepsilon}^{A}(t) d t+\frac{\alpha(\alpha-1)}{2} \int_{0}^{1} \bar{\varphi}_{\varepsilon}^{A}(t) d t \tag{4.7}
\end{equation*}
$$

where

$$
\varphi_{\varepsilon}^{A}(t)=\int_{[0,1]^{2},\left|t_{2}-t_{1}\right| \leq A \varepsilon}\left(\widetilde{q}_{\varepsilon}\left(\left|t_{2}-t_{1}\right|\right)-q_{\varepsilon}\left(\left|t_{2}-t_{1}\right|\right) E\left[\mathcal{X}_{\varepsilon}\left(t, t_{1}, t_{2}\right)\right]\right) d t_{1} d t_{2}
$$

and

$$
\bar{\varphi}_{\varepsilon}^{A}(t)=\int_{[0,1]^{2},\left|t_{2}-t_{1}\right|>A \varepsilon}\left(\widetilde{q}_{\varepsilon}\left(\left|t_{2}-t_{1}\right|\right)-q_{\varepsilon}\left(\left|t_{2}-t_{1}\right|\right) E\left[\mathcal{X}_{\varepsilon}\left(t, t_{1}, t_{2}\right)\right]\right) d t_{1} d t_{2}
$$

With the notation of Lemma 4.3, we have

$$
\begin{aligned}
\left|\bar{\varphi}_{\varepsilon}^{A}(t)\right| & \leq C_{A}^{\varepsilon} \int_{[0,1]^{2},\left|t_{2}-t_{1}\right|>A \varepsilon} E\left[\mathcal{X}_{\varepsilon}\left(t, t_{1}, t_{2}\right)\right] d t_{1} d t_{2} \\
& \leq C_{A}^{\varepsilon} \int_{[0,1]^{2}} E\left[\mathcal{X}_{\varepsilon}\left(t, t_{1}, t_{2}\right)\right] d t_{1} d t_{2} \\
& =C_{A}^{\varepsilon} E\left[\left(\int_{0}^{1} e^{Z_{\varepsilon}(t)(u)-(1 / 2) E\left[Z_{\varepsilon}(t)(u)^{2}\right]} d u\right)^{\alpha}\right] \\
& \leq C_{A}^{\varepsilon} .
\end{aligned}
$$

Thus, taking the limit as ε goes to 0 in (4.7) gives

$$
\begin{aligned}
& \varlimsup_{\varepsilon \rightarrow 0}\left|E\left[\tilde{m}_{\varepsilon}[0,1]^{\alpha}\right]-E\left[m_{\varepsilon}[0,1]^{\alpha}\right]\right| \\
& \quad \leq \frac{\alpha(1-\alpha)}{2} \varlimsup_{\varepsilon \rightarrow 0} C_{A}^{\varepsilon}+\frac{\alpha(1-\alpha)}{2} \varlimsup_{\varepsilon \rightarrow 0} \int_{0}^{1}\left|\varphi_{\varepsilon}^{A}(t)\right| d t .
\end{aligned}
$$

We will show that $\lim _{\varepsilon \rightarrow 0} \varphi_{\varepsilon}^{A}(0)=0$ [the general case $\varphi_{\varepsilon}^{A}(t)$ is similar]. There exists a constant $\widetilde{C}_{A}>0$, independent of ε, such that

$$
\sup _{|x| \leq A \varepsilon}\left|\widetilde{q}_{\varepsilon}(x)-q_{\varepsilon}(x)\right| \leq \widetilde{C}_{A} .
$$

Therefore, we have

$$
\begin{align*}
\left|\varphi_{\varepsilon}^{A}(0)\right| & \leq \widetilde{C}_{A} \int_{0}^{1} \int_{t_{1}-A \varepsilon}^{t_{1}+A \varepsilon} E\left[\mathcal{X}_{\varepsilon}\left(0, t_{1}, t_{2}\right)\right] d t_{2} d t_{1} \\
& =\widetilde{C}_{A} E\left[\frac{\int_{0}^{1} \int_{t_{1}-A \varepsilon}^{t_{1}+A \varepsilon} e^{X_{\varepsilon}\left(t_{1}\right)+X_{\varepsilon}\left(t_{2}\right)-(1 / 2) E\left[X_{\varepsilon}\left(t_{1}\right)^{2}\right]-(1 / 2) E\left[X_{\varepsilon}\left(t_{2}\right)^{2}\right]} d t_{1} d t_{2}}{\left(\int_{0}^{1} e^{X_{\varepsilon}(u)-(1 / 2) E\left[X_{\varepsilon}(u)^{2}\right]} d u\right)^{2-\alpha}}\right] \tag{4.8}
\end{align*}
$$

We now have

$$
\begin{aligned}
& \int_{0}^{1} \int_{t_{1}-A \varepsilon}^{t_{1}+A \varepsilon} e^{X_{\varepsilon}\left(t_{1}\right)+X_{\varepsilon}\left(t_{2}\right)-(1 / 2) E\left[X_{\varepsilon}\left(t_{1}\right)^{2}\right]-(1 / 2) E\left[X_{\varepsilon}\left(t_{2}\right)^{2}\right]} d t_{2} d t_{1} \\
& \leq \\
& \leq\left(\sup _{t_{1}} \int_{t_{1}-A \varepsilon}^{t_{1}+A \varepsilon} e^{X_{\varepsilon}\left(t_{2}\right)-(1 / 2) E\left[X_{\varepsilon}\left(t_{2}\right)^{2}\right]} d t_{2}\right) \int_{0}^{1} e^{X_{\varepsilon}\left(t_{1}\right)-(1 / 2) E\left[X_{\varepsilon}\left(t_{1}\right)^{2}\right]} d t_{1} \\
& \leq \\
& \quad 2\left(\sup _{0 \leq i<1 /(2 A \varepsilon)} \int_{2 i A \varepsilon}^{2(i+1) A \varepsilon} e^{X_{\varepsilon}\left(t_{2}\right)-(1 / 2) E\left[X_{\varepsilon}\left(t_{2}\right)^{2}\right]} d t_{2}\right) \\
& \quad \times \int_{0}^{1} e^{X_{\varepsilon}\left(t_{1}\right)-(1 / 2) E\left[X_{\varepsilon}\left(t_{1}\right)^{2}\right]} d t_{1} .
\end{aligned}
$$

In view of (4.8), this implies that

$$
\begin{aligned}
\left|\varphi_{\varepsilon}^{A}(0)\right| \leq & 2 \widetilde{C}_{A} E\left[\left(\sup _{0 \leq i<1 /(2 A \varepsilon)} \int_{2 i A \varepsilon}^{2(i+1) A \varepsilon} e^{X_{\varepsilon}\left(t_{2}\right)-(1 / 2) E\left[X_{\varepsilon}\left(t_{2}\right)^{2}\right]} d t_{2}\right)\right. \\
& \left.\times\left(\int_{0}^{1} e^{X_{\varepsilon}\left(t_{1}\right)-(1 / 2) E\left[X_{\varepsilon}\left(t_{1}\right)^{2}\right]} d t_{1}\right)^{\alpha-1}\right] \\
& \leq 2 \widetilde{C}_{A} E\left[\left(\sup _{0 \leq i<1 /(2 A \varepsilon)} \int_{2 i A \varepsilon}^{2(i+1) A \varepsilon} e^{X_{\varepsilon}\left(t_{2}\right)-(1 / 2) E\left[X_{\varepsilon}\left(t_{2}\right)^{2}\right]} d t_{2}\right)^{\alpha}\right],
\end{aligned}
$$

where we have used the inequality $\frac{\sup _{i} a_{i}}{\left(\sum_{i} a_{i}\right)^{1-\alpha}} \leq\left(\sup _{i} a_{i}\right)^{\alpha}$. For the sake of simplicity, we now replace $2 A$ by A.

To study the above supremum, the idea is to use the approximation $X_{\varepsilon}(t) \approx$ $X_{\varepsilon}(A i \varepsilon)$ for t in $[A i \varepsilon, A(i+1) \varepsilon]$. We define $\mathcal{C}_{\varepsilon}$ by

$$
\begin{equation*}
\mathcal{C}_{\varepsilon}=\sup _{\substack{0 \leq i<1 /(A \varepsilon) \\ A i \varepsilon \leq u \leq A(i+1) \varepsilon}}\left(X_{\varepsilon}(u)-X_{\varepsilon}(A i \varepsilon)\right) . \tag{4.9}
\end{equation*}
$$

By the definition of $\mathcal{C}_{\varepsilon}$, we have $X_{\varepsilon}(t) \leq X_{\varepsilon}(A i \varepsilon)+\mathcal{C}_{\varepsilon}$ for all $i<\frac{1}{A \varepsilon}$ and all t in $[A i \varepsilon, A(i+1) \varepsilon]$. We then get

$$
\begin{align*}
& E\left[\left(\sup _{0 \leq i<1 /(A \varepsilon)} \int_{A i \varepsilon}^{A(i+1) \varepsilon} e^{X_{\varepsilon}(t)-(1 / 2) E\left[X_{\varepsilon}(t)^{2}\right]} d t\right)^{\alpha}\right] \\
& \quad \leq E\left[\left(\sup _{0 \leq i<1 /(A \varepsilon)} \int_{A i \varepsilon}^{A(i+1) \varepsilon} e^{X_{\varepsilon}(A i \varepsilon)-(1 / 2) E\left[X_{\varepsilon}(A i \varepsilon)^{2}\right]} d t\right)^{\alpha} e^{\alpha \mathcal{C}_{\varepsilon}}\right] \tag{4.10}
\end{align*}
$$

$$
\begin{aligned}
& =E\left[\left(\varepsilon A \sup _{0 \leq i<1 /(A \varepsilon)} e^{X_{\varepsilon}(A i \varepsilon)-(1 / 2) E\left[X_{\varepsilon}(A i \varepsilon)^{2}\right]}\right)^{\alpha} e^{\alpha \mathcal{C}_{\varepsilon}}\right] \\
& \leq(\varepsilon A)^{\alpha} E\left[\left(\sup _{0 \leq i<1 /(A \varepsilon)} e^{X_{\varepsilon}(A i \varepsilon)-(1 / 2) E\left[X_{\varepsilon}(A i \varepsilon)^{2}\right]}\right)^{2 \alpha}\right]^{1 / 2} E\left[e^{2 \alpha \mathcal{C}_{\varepsilon}}\right]^{1 / 2}
\end{aligned}
$$

There exists some $c \geq 0$ (independent of ε) such that for all s, t in [0, 1],

$$
E\left[X_{\varepsilon}(s) X_{\varepsilon}(t)\right]=q_{\varepsilon}(|t-s|) \geq-c .
$$

Indeed, for simplicity, let us suppose that θ has compact support in $[-K, K]$ with $K>0$. The function $q_{\varepsilon}(x)$ converges uniformly to $\lambda^{2} \ln ^{+} \frac{1}{|x|}$ on $|x| \geq \frac{1}{2}$, so we can restrict to the case $|x| \leq \frac{1}{2}$. If $x=\varepsilon \widetilde{x}$, then $|\tilde{x}| \leq \frac{1}{2 \varepsilon}$ and we have

$$
\begin{aligned}
q_{\varepsilon}(x) & =\lambda^{2} \int_{-K}^{K} \theta(v) \ln \left(\frac{1}{|x-\varepsilon v|}\right) d v \\
& =\lambda^{2} \ln \left(\frac{1}{\varepsilon}\right)-\lambda^{2} \int_{-K}^{K} \theta(v) \ln (|\tilde{x}-v|) d v
\end{aligned}
$$

The quantity $\lambda^{2} \int_{-K}^{K} \theta(v) \ln (|\tilde{x}-v|) d v$ is bounded for $|\widetilde{x}| \leq K+1$ and for $|\widetilde{x}|>$ $K+1$, it can be written

$$
\begin{aligned}
\lambda^{2} \int_{-K}^{K} \theta(v) \ln (|\widetilde{x}-v|) d v & =\lambda^{2} \ln |\widetilde{x}|+\lambda^{2} \int_{-K}^{K} \theta(v) \ln \left(\frac{|\tilde{x}-v|}{|\widetilde{x}|}\right) d v \\
& \leq \lambda^{2} \ln \left(\frac{1}{2 \varepsilon}\right)+\lambda^{2} \int_{-K}^{K} \theta(v) \ln \left(\frac{|\widetilde{x}-v|}{|\widetilde{x}|}\right) d v .
\end{aligned}
$$

The conclusion follows from the fact that the second term in the right-hand side above is bounded independently of ε.

We introduce a centered Gaussian random variable Z independent of X_{ε} and such that $E\left[Z^{2}\right]=c$. Let $\left(R_{i}^{\varepsilon}\right)_{1 \leq i<1 /(A \varepsilon)}$ be a sequence of i.i.d. Gaussian random variables such that $E\left[\left(R_{i}^{\varepsilon}\right)^{2}\right]=E\left[X_{\varepsilon}(A i \varepsilon)^{2}\right]+c$. By applying Corollary A.3, we get

$$
\begin{aligned}
& E\left[\left(\sup _{0 \leq i<1 /(A \varepsilon)} e^{X_{\varepsilon}(A i \varepsilon)-(1 / 2) E\left[X_{\varepsilon}(A i \varepsilon)^{2}\right]}\right)^{2 \alpha}\right] \\
& \quad=\frac{1}{e^{2 \alpha^{2} c-\alpha c}} E\left[\left(\sup _{0 \leq i<1 /(A \varepsilon)} e^{X_{\varepsilon}(A i \varepsilon)+Z-(1 / 2) E\left[X_{\varepsilon}(A i \varepsilon)^{2}\right]-(c / 2)}\right)^{2 \alpha}\right] \\
& \quad \leq \frac{1}{e^{2 \alpha^{2} c-\alpha c}} E\left[\left(\sup _{0 \leq i<1 /(A \varepsilon)} e^{R_{i}^{\varepsilon}-(1 / 2) E\left[\left(R_{i}^{\varepsilon}\right)^{2}\right]}\right)^{2 \alpha}\right]
\end{aligned}
$$

We have $E\left[\left(R_{i}^{\varepsilon}\right)^{2}\right]=\lambda^{2} \ln \frac{1}{\varepsilon}+C(\varepsilon)$, with $C(\varepsilon)$ converging to some constant as ε goes to 0 . Since $2 \alpha<1$, by applying Lemma 4.2 , there exists some $0<x<1$ such
that

$$
E\left[\left(\sup _{0 \leq i<1 /(A \varepsilon)} e^{R_{i}^{\varepsilon}-(1 / 2) E\left[\left(R_{i}^{\varepsilon}\right)^{2}\right]}\right)^{2 \alpha}\right] \leq C\left(\frac{1}{\varepsilon}\right)^{2 \alpha x}
$$

and we therefore have

$$
\left|\varphi_{\varepsilon}^{A}(0)\right| \leq C \varepsilon^{\gamma} E\left[e^{2 \alpha \mathcal{C}_{\varepsilon}}\right]^{1 / 2}
$$

with $\gamma=\alpha(1-x)>0$.
One can write $\mathcal{C}_{\varepsilon}=\sup _{0 \leq i<1 /(A \varepsilon), 0 \leq v \leq 1} W_{\varepsilon}^{i}(v)$, where $W_{\varepsilon}^{i}(v)=X_{\varepsilon}(A i \varepsilon+$ $A \varepsilon v)-X_{\varepsilon}(A i \varepsilon)$. We have

$$
E\left[W_{\varepsilon}^{i}(v) W_{\varepsilon}^{i}\left(v^{\prime}\right)\right]=g_{\varepsilon}\left(v-v^{\prime}\right)
$$

where g_{ε} is a continuous function bounded by some constant M independent of ε. Let Y be a centered Gaussian random variable independent of W_{ε}^{i} such that $E\left[Y^{2}\right]=M$. Thus, we can write

$$
E\left[e^{2 \alpha \mathcal{C}_{\varepsilon}}\right]=\frac{E\left[e^{2 \alpha \sup _{i, v}\left(W_{\varepsilon}^{i}(v)+Y\right)}\right]}{e^{2 \alpha^{2} M}}
$$

Let us now consider a family $\left(\bar{W}_{\varepsilon}^{i}\right)_{1 \leq i<1 /(A \varepsilon)}$ of centered i.i.d. Gaussian processes of law $\left(W_{\varepsilon}^{0}(v)+Y\right)_{0 \leq v \leq 1}$. Applying Corollary A. 3 from the Appendix, we get

$$
E\left[e^{2 \alpha \mathcal{C}_{\varepsilon}}\right] \leq \frac{E\left[e^{2 \alpha \sup _{i, v} \bar{W}_{\varepsilon}^{i}(v)}\right]}{e^{2 \alpha^{2} M}}
$$

We now estimate $E\left[e^{2 \alpha \sup _{i, v} \bar{W}_{\varepsilon}^{i}(v)}\right]$. Let us write $\mathcal{X}_{i}=\sup _{0 \leq v \leq 1} \bar{W}_{\varepsilon}^{i}(v)$. Applying Corollary 3.2 of [16] to the continuous Gaussian process $\left(W_{\varepsilon}^{0}(v)+Y\right)_{0 \leq v \leq 1}$, we get that the random variable has a Gaussian tail:

$$
P\left(\mathcal{X}_{i}>z\right) \leq C e^{-z^{2} /\left(2 \sigma^{2}\right)} \quad \forall z>0
$$

for some C and σ. Using computations similar to the ones used in the proof of Lemma 4.2, the above tail inequality gives the existence of some constant $C>0$ such that

$$
E\left[e^{2 \alpha \sup _{0 \leq i<1 /(A \varepsilon)} \mathcal{X}_{i}}\right] \leq C e^{C \sqrt{\ln (1 / \varepsilon)}} .
$$

Therefore, we have $E\left[e^{2 \alpha \mathcal{C}_{\varepsilon}}\right] \leq C e^{C \sqrt{\ln (1 / \varepsilon)}}$ and then

$$
\left|\varphi_{\varepsilon}^{A}(0)\right| \leq C \varepsilon^{\gamma} e^{C \sqrt{\ln (1 / \varepsilon)}}
$$

It follows that $\overline{\lim }_{\varepsilon \rightarrow 0}\left|\varphi_{\varepsilon}^{A}(0)\right|=0$ so that for $\alpha<1 / 2$,

$$
\varlimsup_{\varepsilon \rightarrow 0}\left|E\left[\widetilde{m}_{\varepsilon}[0,1]^{\alpha}\right]-E\left[m_{\varepsilon}[0,1]^{\alpha}\right]\right| \leq \frac{\alpha(1-\alpha)}{2} \varlimsup_{\varepsilon \rightarrow 0} C_{A}^{\varepsilon}
$$

Since $\varlimsup_{\varepsilon \rightarrow 0} C_{A}^{\varepsilon} \rightarrow 0$ as A goes to infinity (Lemma 4.3), we conclude that

$$
\varlimsup_{\varepsilon \rightarrow 0}\left|E\left[\widetilde{m}_{\varepsilon}[0,1]^{\alpha}\right]-E\left[m_{\varepsilon}[0,1]^{\alpha}\right]\right|=0
$$

It is straightforward to check that the above proof can be generalized to show that for all positive $\lambda_{1}, \ldots, \lambda_{n}$ and intervals I_{1}, \ldots, I_{n}, we have

$$
E\left[\left(\sum_{k=1}^{n} \lambda_{k} m\left(I_{k}\right)\right)^{\alpha}\right]=E\left[\left(\sum_{k=1}^{n} \lambda_{k} \widetilde{m}\left(I_{k}\right)\right)^{\alpha}\right]
$$

This implies that the random measures m and \widetilde{m} are equal (see [8]).
Existence. Let $f(x)$ be a real positive definite function on \mathbb{R}^{d} (note that this implies that f is symmetric). Let us recall that a centered Gaussian field of correlation $f(x-y)$ can be constructed by means of the following formula:

$$
X(x)=\int_{\mathbb{R}^{d}} \zeta(x, \xi) \sqrt{\hat{f}(\xi)} W(d \xi)
$$

where $\zeta(x, \xi)=\cos (2 \pi x . \xi)-\sin (2 \pi x . \xi)$ and $W(d \xi)$ is the standard white noise on \mathbb{R}^{d} (to see this, one can check, using the inverse Fourier formula, that the above X has the desired correlations). This can also be written as

$$
\begin{equation*}
X(x)=\int_{] 0, \infty\left[\times \mathbb{R}^{d}\right.} \zeta(x, \xi) \sqrt{\hat{f}(\xi)} g(t, \xi) W(d t, d \xi) \tag{4.11}
\end{equation*}
$$

where $W(d t, d \xi)$ is the white noise on $] 0, \infty\left[\times \mathbb{R}^{d}\right.$ and $\int_{0}^{\infty} g(t, \xi)^{2} d t=1$ for all ξ. The significance of the expression (4.11) should be evident in what follows. Let the function θ be radially symmetric and let $\hat{\theta}$ be a decreasing function of $|\xi|$ [e.g., take $\theta(x)=\frac{e^{-|x|^{2} / 2}}{(2 \pi)^{d / 2}}$]. Let us consider $g(t, \xi)=\sqrt{-\hat{\theta}^{\prime}(t|\xi|)|\xi|}$ so that $\int_{\varepsilon}^{\infty} g(t, \xi)^{2} d t=\hat{\theta}(\varepsilon|\xi|)$ for $|\xi| \neq 0$. If we then consider the fields X_{ε} defined by

$$
\begin{equation*}
X_{\varepsilon}(x)=\int_{] \varepsilon, \infty\left[\times \mathbb{R}^{d}\right.} \zeta(x, \xi) \sqrt{\hat{f}(\xi)} g(t, \xi) W(d t, d \xi) \tag{4.12}
\end{equation*}
$$

then we will find

$$
\begin{aligned}
E\left[X_{\varepsilon}(x) X_{\varepsilon}(y)\right] & =\int_{\mathbb{R}^{d}} \cos (2 \pi(x-y) \cdot \xi) \hat{f}(\xi) \hat{\theta}(\varepsilon|\xi|) d \xi \\
& =\left(f * \theta^{\varepsilon}\right)(x-y)
\end{aligned}
$$

The significance of (4.12) is to make the approximation process appear as a martingale. Indeed, if we define the filtration $\mathcal{F}_{\varepsilon}=\sigma\{W(A, B), A \subset] \varepsilon, \infty\left[, B \in \mathcal{B}\left(\mathbb{R}^{d}\right)\right.$ and bounded $\}$, we have that for all $A \in \mathcal{B}\left(\mathbb{R}^{d}\right),\left(m_{\varepsilon}(A)\right)_{\varepsilon>0}$ is a positive $\mathcal{F}_{\varepsilon^{-}}$ martingale of expectation $|A|$, so it converges almost surely to a random variable $m(A)$ such that

$$
\begin{equation*}
E[m(A)] \leq|A| . \tag{4.13}
\end{equation*}
$$

This defines a collection $(m(A))_{A \in \mathcal{B}\left(\mathbb{R}^{d}\right)}$ of random variables such that:
(1) for all disjoint and bounded sets A_{1}, A_{2} in $\mathcal{B}\left(\mathbb{R}^{d}\right)$,

$$
m\left(A_{1} \cup A_{2}\right)=m\left(A_{1}\right)+m\left(A_{2}\right) \quad \text { a.s.; }
$$

(2) for any bounded sequence $\left(A_{n}\right)_{n \geq 1}$ decreasing to \varnothing,

$$
m\left(A_{n}\right) \underset{n \rightarrow \infty}{\longrightarrow} 0 \quad \text { a.s. }
$$

By Theorem 6.1.VI. in [8], one can consider a version of the collection $(m(A))_{A \in \mathcal{B}\left(\mathbb{R}^{d}\right)}$ such that m is a random measure. It is straightforward that m_{ε} converges almost surely to m in the space of Radon measures (equipped with the weak topology).

5. Proofs for Section 3.

5.1. Proof of Proposition 3.1. Since $\zeta_{1}=d$, we note that $\lambda^{2}>2 d$ is equivalent to the existence of $\alpha<1$ such that $\zeta_{\alpha}>d$. Let α be fixed and such that $\zeta_{\alpha}>d$. We will show that $m\left[[0,1]^{d}\right]=0$. We partition the cube $[0,1]^{d}$ into $\frac{1}{\varepsilon^{d}}$ subcubes $\left(I_{j}\right)_{1 \leq j \leq 1 / \varepsilon^{d}}$ of size ε. One has, by subadditivity and homogeneity,

$$
\begin{aligned}
& E\left[\left(\int_{[0,1]^{d}} e^{X_{\varepsilon}(x)-(1 / 2) E\left[X_{\varepsilon}(x)^{2}\right]} d x\right)^{\alpha}\right] \\
& \quad=E\left[\left(\sum_{1 \leq j \leq 1 / \varepsilon^{d}} \int_{I_{j}} e^{X_{\varepsilon}(x)-(1 / 2) E\left[X_{\varepsilon}(x)^{2}\right]} d x\right)^{\alpha}\right] \\
& \quad \leq E\left[\sum_{1 \leq j \leq 1 / \varepsilon^{d}}\left(\int_{I_{j}} e^{X_{\varepsilon}(x)-(1 / 2) E\left[X_{\varepsilon}(x)^{2}\right]} d x\right)^{\alpha}\right] \\
& \quad=\frac{1}{\varepsilon^{d}} E\left[\left(\int_{[0, \varepsilon]^{d}} e^{X_{\varepsilon}(x)-(1 / 2) E\left[X_{\varepsilon}(x)^{2}\right]} d x\right)^{\alpha}\right]
\end{aligned}
$$

Let Y_{ε} be a centered Gaussian random variable of variance $\lambda^{2} \ln \left(\frac{1}{\varepsilon}\right)+\lambda^{2} c$, where c is such that

$$
\theta^{\varepsilon} * \ln ^{+} \frac{1}{|x|} \geq \ln \frac{1}{\varepsilon}+c
$$

for $|x| \leq \varepsilon$ and ε small enough. By the definition of c, we have

$$
\forall x, x^{\prime} \in[0, \varepsilon]^{d} \quad E\left[X_{\varepsilon}(x) X_{\varepsilon}\left(x^{\prime}\right)\right] \geq E\left[Y_{\varepsilon}^{2}\right]
$$

Using Corollary (A.2) in the continuous version, this implies that

$$
\begin{aligned}
& E\left[\left(\int_{[0,1]^{d}} e^{X_{\varepsilon}(x)-(1 / 2) E\left[X_{\varepsilon}(x)^{2}\right]} d x\right)^{\alpha}\right] \\
& \quad \leq \frac{1}{\varepsilon^{d}} E\left[\left(\int_{[0, \varepsilon]^{d}} e^{Y_{\varepsilon}-(1 / 2) E\left[Y_{\varepsilon}^{2}\right]} d x\right)^{\alpha}\right]
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{\varepsilon^{d \alpha}}{\varepsilon^{d}} E\left[\left(e^{Y_{\varepsilon}-(1 / 2) E\left[Y_{\varepsilon}^{2}\right]}\right)^{\alpha}\right] \\
& =\frac{\varepsilon^{d \alpha}}{\varepsilon^{d}} e^{\alpha^{2} E\left[Y_{\varepsilon}^{2}\right] / 2-\alpha E\left[Y_{\varepsilon}^{2}\right] / 2} \\
& =e^{\left(\left(\alpha^{2}-\alpha\right) / 2\right) c} \varepsilon^{\zeta_{\alpha}-d}
\end{aligned}
$$

Taking the limit as ε goes to 0 gives $m\left[[0,1]^{d}\right]=0$.
5.2. Proof of Lemma 3.2. One has the following general formula for the Fourier transform of radial functions:

$$
\begin{equation*}
\hat{f}(\xi)=\frac{2 \pi}{|\xi|^{(d-2) / 2}} \int_{0}^{\infty} \rho^{d / 2} J_{(d-2) / 2}(2 \pi|\xi| \rho) f(\rho) d \rho \tag{5.1}
\end{equation*}
$$

where J_{v} is the Bessel function of order v (see, e.g., [21]).
First case: $d \leq 3$. It suffices to consider the case $d=3$. Indeed, consider some function φ in $\mathcal{S}\left(\mathbb{R}^{2}\right)$. We introduce the family of functions $\psi_{\varepsilon}\left(x_{1}, x_{2}, x_{3}\right)=$ $\varphi\left(x_{1}, x_{2}\right) \theta_{\varepsilon}\left(x_{3}\right)$, where θ_{ε} is a smooth function that converges to the Dirac mass δ_{0} as ε goes to 0 . If we take the limit as ε goes to 0 in inequality (2.1) applied to ψ_{ε}, then we get

$$
\int_{\mathbb{R}^{2}} \int_{\mathbb{R}^{2}} f(x-y, 0) \varphi(x) \overline{\varphi(y)} d x d y \geq 0
$$

This shows that $\left(x_{1}, x_{2}\right) \rightarrow f\left(x_{1}, x_{2}, 0\right)$ is positive definite. Similarly, one can show that $x \rightarrow f(x, 0,0)$ is positive definite.

Using the explicit formula $J_{1 / 2}(x)=\sqrt{\frac{2}{\pi x}} \sin (x)$, we conclude, by integrating by parts, that

$$
\begin{aligned}
\hat{f}(\xi) & =\frac{2}{|\xi|} \int_{0}^{T} \rho \sin (2 \pi|\xi| \rho) \ln \left(\frac{T}{\rho}\right) d \rho \\
& =\frac{1}{\pi|\xi|^{2}} \int_{0}^{T} \cos (2 \pi|\xi| \rho)\left(\ln \left(\frac{T}{\rho}\right)-1\right) d \rho \\
& =\frac{1}{2 \pi^{2}|\xi|^{3}}\left(\int_{0}^{T} \frac{\sin (2 \pi|\xi| \rho)}{\rho} d \rho-\sin (2 \pi|\xi| T)\right) \\
& =\frac{1}{2 \pi^{2}|\xi|^{3}}(\operatorname{sinc}(2 \pi|\xi| T)-\sin (2 \pi|\xi| T))
\end{aligned}
$$

where "sinc" denotes the sinus cardinal function:

$$
\operatorname{sinc}(x)=\int_{0}^{x} \frac{\sin (\rho)}{\rho} d \rho
$$

For $x \geq 0$, we introduce the function $l(x)=\operatorname{sinc}(x)-\sin (x)$. Since $\hat{f}(\xi)=$ $\frac{l(2 \pi|\xi| T)}{2 \pi^{2}|\xi|^{3}}$, the nonnegativity of \hat{f} is equivalent to the nonnegativity of l. We have
$l^{\prime}(x)=\frac{\sin (x)-x \cos (x)}{x}$. Thus, there exists some α in $] \pi, 2 \pi[$ such that l is increasing on $] 0, \alpha[$ and decreasing on $] \alpha, 2 \pi\left[\right.$. Since $l(0)=0$ and $l(2 \pi)=\int_{0}^{2 \pi} \frac{\sin (\rho)}{\rho} d \rho \geq 0$, we conclude that for all x in $[0,2 \pi], l(x) \geq 0$. A classical computation (Dirichlet integral) gives $\int_{0}^{\infty} \frac{\sin (\rho)}{\rho} d \rho=\frac{\pi}{2}$. Thus, we have, by an integration by parts,

$$
\begin{aligned}
\int_{0}^{2 \pi} \frac{\sin (\rho)}{\rho} d \rho & =\frac{\pi}{2}-\int_{2 \pi}^{\infty} \frac{\sin (\rho)}{\rho} d \rho \\
& =\frac{\pi}{2}-\int_{2 \pi}^{\infty} \frac{1-\cos (\rho)}{\rho^{2}} d \rho \\
& \geq \frac{\pi}{2}-\frac{1}{2 \pi} \\
& \geq 1
\end{aligned}
$$

Therefore, if $x \geq 2 \pi$, then we have

$$
\begin{aligned}
l(x) & =\int_{0}^{x} \frac{\sin (\rho)}{\rho} d \rho-\sin (x) \\
& \geq \int_{0}^{2 \pi} \frac{\sin (\rho)}{\rho} d \rho-\sin (x) \\
& \geq 0
\end{aligned}
$$

Second case: $d \geq 4$. Combining (5.1) with the identity $\frac{d}{d x}\left(x^{\nu} J_{v}(x)\right)=x^{v} \times$ $J_{v-1}(x)$, we get

$$
\begin{align*}
\hat{f}(\xi) & =\frac{2 \pi}{|\xi|^{(d-2) / 2}} \int_{0}^{T} \rho^{d / 2} J_{(d-2) / 2}(2 \pi|\xi| \rho) \ln \left(\frac{T}{\rho}\right) d \rho \\
& =\frac{1}{(2 \pi)^{d / 2}|\xi|^{d}} \int_{0}^{2 \pi|\xi| T} x^{d / 2} J_{(d-2) / 2}(x) \ln \left(\frac{2 \pi|\xi| T}{x}\right) d x \tag{5.2}\\
& =\frac{1}{(2 \pi)^{d / 2}|\xi|^{d}} \int_{0}^{2 \pi|\xi| T} x^{d / 2-1} J_{d / 2}(x) d x
\end{align*}
$$

One has the following asymptotic expansion as x goes to ∞ [12]:

$$
\begin{align*}
J_{\nu}(x)= & \sqrt{\frac{2}{\pi x}} \cos \left(x-\frac{(1+2 v) \pi}{4}\right) \tag{5.3}\\
& -\frac{\left(4 v^{2}-1\right) \sqrt{2}}{8 \sqrt{\pi} x^{3 / 2}} \sin \left(x-\frac{(1+2 v) \pi}{4}\right)+O\left(\frac{1}{x^{5 / 2}}\right)
\end{align*}
$$

Combining (5.2) with (5.3), we therefore get the following expansion as $|\xi|$ goes
to infinity:

$$
\begin{aligned}
\hat{f}(\xi)= & \frac{1}{(2 \pi)^{d / 2}|\xi|^{d}} \\
& \times\left(\sqrt{\frac{2}{\pi}}(2 \pi|\xi| T)^{(d-3) / 2} \sin \left(2 \pi|\xi| T-\frac{(1+2 \nu) \pi}{4}\right)+o\left(|\xi|^{(d-3) / 2}\right)\right)
\end{aligned}
$$

Thus, $\overline{\lim }_{|\xi| \rightarrow \infty}|\xi|^{d} \hat{f}(\xi)=-\underline{\lim }_{|\xi| \rightarrow \infty}|\xi|^{d} \hat{f}(\xi)=+\infty$. In particular, $\hat{f}(\xi)$ takes negative values for some ξ.

5.3. Proofs for Section 3.3.

Proof of Propositions 3.5 and 3.6. We suppose that p belongs to $] 1, p_{*}[$ or $]-\infty, 0[$. Let θ be some function satisfying the conditions (1)-(3) of Section 2.2 and m_{ε} be the random measure associated with $\theta^{\varepsilon} * f$. Following the notation of Example 2.2 for $C(x)$, we consider $\widetilde{m}_{\varepsilon}$, the random measure associated with \tilde{f}_{ε}, where $\widetilde{f}_{\varepsilon}$ is the function

$$
\widetilde{f}_{\varepsilon}(x)=\lambda^{2} \int_{C(0) \cap C(x) ; \varepsilon<t<\infty} \frac{d y d t}{t^{d+1}}
$$

One can show that there exists $c, C>0$ such that for all x, we have (see Appendix B in [5])

$$
\widetilde{f}_{\varepsilon}(x)-c \leq\left(\theta^{\varepsilon} * f\right)(x) \leq \widetilde{f_{\varepsilon}}(x)+C .
$$

By using Corollary A. 2 from the Appendix in the continuous version [with $F(x)=$ x^{p}], we conclude that there exist $c, C>0$ such that for all ε and all bounded A in $\mathcal{B}\left(\mathbb{R}^{d}\right)$,

$$
c E\left[\tilde{m}_{\varepsilon}(A)^{p}\right] \leq E\left[m_{\varepsilon}(A)^{p}\right] \leq C E\left[\tilde{m}_{\varepsilon}(A)^{p}\right] .
$$

First case: p belongs to $] 1, p_{*}[$. Proposition 3.5 is therefore established if we can show that

$$
\sup _{\varepsilon>0} E\left[\tilde{m}_{\varepsilon}(A)^{p}\right]<\infty
$$

To prove the above inequality for all bounded A, it is enough to suppose that $A=[0,1]^{d}$. This is proved in dimension 1 in [3], Theorem 3. One can adapt the dyadic decomposition performed in the proof of Theorem 3 in [3] to handle the d-dimensional case.

Second case: p belongs to $]-\infty, 0[$. Proposition 3.5 is therefore established if we can show that for all $c>0$,

$$
\sup _{\varepsilon>0} E\left[\tilde{m}_{\varepsilon}(B(0, c))^{p}\right]<\infty .
$$

The above bound can be proven by adapting the proof of Proposition 4 in [18] (this is done to prove Theorem 3 in [4], where a log-Poisson model is considered).

Proof of Proposition 3.7. For the sake of simplicity, we consider the case $R=1$ and will consider the case $p \in\left[1, p_{*}[\right.$. We consider θ, a continuous and positive function with compact support $B(0, A)$ satisfying properties (1)-(3) of Section 2.2. We note that

$$
m_{\varepsilon}(d x)=e^{X_{\varepsilon}(x)-(1 / 2) E\left[X_{\varepsilon}(x)^{2}\right]} d x
$$

where $\left(X_{\varepsilon}(x)\right)_{x \in \mathbb{R}^{d}}$ is a Gaussian field of covariance $q_{\varepsilon}(x-y)$ with

$$
q_{\varepsilon}(x)=\left(\theta^{\varepsilon} * f\right)(x)=\int_{\mathbb{R}^{d}} \theta(z)\left(\lambda^{2} \ln ^{+} \frac{1}{|x-\varepsilon z|}+g(x-\varepsilon z)\right) d z .
$$

Let c, c^{\prime} be two positive numbers in $] 0, \frac{1}{2}\left[\right.$ such that $c<c^{\prime}$. If ε is sufficiently small and u, v belong to $[0,1]^{d}$, then we get

$$
\begin{aligned}
q_{c \varepsilon}(c(v-u))= & \int_{\mathbb{R}^{d}} \theta(z)\left(\lambda^{2} \ln \frac{1}{|c(v-u)-c \varepsilon z|}+g(c(v-u)-c \varepsilon z)\right) d z \\
= & \lambda^{2} \ln \left(\frac{c^{\prime}}{c}\right)+\int_{\mathbb{R}^{d}} \theta(z)\left(\lambda^{2} \ln \frac{1}{\left|c^{\prime}(v-u)-c^{\prime} \varepsilon z\right|}\right. \\
& \quad+g(c(v-u)-c \varepsilon z)) d z \\
\leq & \lambda^{2} \ln \left(\frac{c^{\prime}}{c}\right)+q_{c^{\prime} \varepsilon}\left(c^{\prime}(v-u)\right)+C_{c, c^{\prime}, \varepsilon}
\end{aligned}
$$

where

$$
C_{c, c^{\prime}, \varepsilon}=\sup _{\substack{|z| \leq A \\|v-u| \leq 1}}\left|g(c(v-u)-c \varepsilon z)-g\left(c^{\prime}(v-u)-c^{\prime} \varepsilon z\right)\right|
$$

Let $Y_{c, c^{\prime}, \varepsilon}$ be some centered Gaussian variable with variance $C_{c, c^{\prime}, \varepsilon}+\lambda^{2} \ln \left(\frac{c^{\prime}}{c}\right)$. By using Corollary A. 2 from the Appendix in the continuous version, we conclude that

$$
\begin{aligned}
& E\left[m_{c \varepsilon}\left([0, c]^{d}\right)^{p}\right] \\
& \quad=E\left[\left(\int_{[0, c]^{d}} e^{X_{c \varepsilon}(x)-(1 / 2) E\left[X_{c \varepsilon}(x)^{2}\right]} d x\right)^{p}\right] \\
& \quad=c^{d p} E\left[\left(\int_{[0,1]^{d}} e^{X_{c \varepsilon}(c u)-(1 / 2) E\left[X_{c \varepsilon}(c u)^{2}\right]} d u\right)^{p}\right] \\
& \quad \leq c^{d p} E\left[\left(\int_{[0,1]^{d}} e^{X_{c^{\prime} \varepsilon}\left(c^{\prime} u\right)+Y_{c, c^{\prime}, \varepsilon}-(1 / 2) E\left[\left(X_{c^{\prime} \varepsilon}\left(c^{\prime} u\right)+Y_{c, c^{\prime}, \varepsilon}\right)^{2}\right]} d u\right)^{p}\right]
\end{aligned}
$$

$$
\begin{aligned}
= & c^{d p}\left(\frac{c^{\prime}}{c}\right)^{p(p-1) \lambda^{2} / 2} e^{p(p-1) C_{c, c^{\prime}, \varepsilon} / 2} \\
& \times E\left[\left(\int_{[0,1]^{d}} e^{X_{c^{\prime} \varepsilon}\left(c^{\prime} u\right)-(1 / 2) E\left[X_{c^{\prime}}\left(c^{\prime} u\right)^{2}\right]} d u\right)^{p}\right] \\
= & \left(\frac{c}{c^{\prime}}\right)^{d p-p(p-1) \lambda^{2} / 2} e^{p(p-1) C_{c, c^{\prime}, \varepsilon} / 2} E\left[\left(\int_{\left[0, c^{\prime}\right]^{d}} e^{X_{c^{\prime} \varepsilon}(x)-(1 / 2) E\left[X_{c^{\prime} \varepsilon}(x)^{2}\right]} d x\right)\right] \\
= & \left(\frac{c}{c^{\prime}}\right)^{\zeta_{p}} e^{p(p-1) C_{c, c^{\prime}, \varepsilon} / 2} E\left[m_{c^{\prime} \varepsilon}\left(\left[0, c^{\prime}\right]^{d}\right)^{p}\right] .
\end{aligned}
$$

Taking the limit $\varepsilon \rightarrow 0$ in the above inequality leads to

$$
\begin{equation*}
\frac{E\left[m\left([0, c]^{d}\right)^{p}\right]}{c^{\zeta p}} \leq e^{p(p-1) C_{c, c^{\prime}} / 2} \frac{E\left[m\left(\left[0, c^{\prime}\right]^{d}\right)^{p}\right]}{c^{\prime \zeta p}} \tag{5.4}
\end{equation*}
$$

where $C_{c, c^{\prime}}=\sup _{|v-u| \leq 1}\left|g(c(v-u))-g\left(c^{\prime}(v-u)\right)\right|$. Similarly, we have,

$$
\begin{equation*}
\frac{E\left[m\left(\left[0, c^{\prime}\right]^{d}\right)^{p}\right]}{c^{\prime \zeta p}} \leq e^{p(p-1) C_{c, c^{\prime}} / 2} \frac{E\left[m\left([0, c]^{d}\right)^{p}\right]}{c^{\zeta p}} \tag{5.5}
\end{equation*}
$$

Since $C_{c, c^{\prime}}$ goes to 0 as $c, c^{\prime} \rightarrow 0$, we conclude by inequality (5.4) and (5.5) that $\left(\frac{E\left[m\left([0, c]^{d}\right)^{p}\right]}{c^{\zeta p}}\right)_{c>0}$ is a Cauchy sequence as $c \rightarrow 0$, bounded from below and above by positive constants. Therefore, there exists some $c_{p}>0$ such that

$$
E\left[m\left([0, c]^{d}\right)^{p}\right] \underset{c \rightarrow 0}{\sim} c_{p} c^{\zeta_{p}}
$$

The same method can be applied to show that $\frac{c_{p}}{e^{p(p-1) g(0) / 2}}$ is independent of g. The proof is then concluded by setting $C_{p}=\frac{c_{p}}{e^{p(p-1) g(0) / 2}}$.

Proof of Proposition 3.8. We use the scaling relation (3.3) to compute the characteristic function of $m(B(0, c))$ for all ξ in \mathbb{R} :

$$
\begin{aligned}
E\left[e^{i \xi m(B(0, c))}\right] & =E\left[e^{i \xi e^{\Omega_{c} m(B(0, R))}}\right] \\
& =E[\mathcal{F}(\xi m(B(0, R)))]
\end{aligned}
$$

where \mathcal{F} is the characteristic function of $e^{\Omega_{c}}$. It is easy to show that for all $n \in \mathbb{N}$, there exists $C>0$ such that

$$
|\mathcal{F}(\xi)| \leq \frac{C}{|\xi|^{n}}
$$

From this, we conclude, by Proposition 3.6, that

$$
E\left[e^{i \xi m(B(0, c))}\right] \leq \frac{C}{|\xi|^{n}} E\left[\frac{1}{m(B(0, R))^{n}}\right] \leq \frac{C^{\prime}}{|\xi|^{n}}
$$

This implies the existence of a C^{∞} density.

APPENDIX

We give the following classical lemma, which was first derived in [13].

Lemma A.1. Let $\left(X_{i}\right)_{1 \leq i \leq n}$ and $\left(Y_{i}\right)_{1 \leq i \leq n}$ be two independent centered Gaussian vectors and $\left(p_{i}\right)_{1 \leq i \leq n}$ a sequence of positive numbers. If $\phi: \mathbb{R}_{+} \rightarrow \mathbb{R}$ is some smooth function with polynomial growth at infinity, then we define

$$
\varphi(t)=E\left[\phi\left(\sum_{i=1}^{n} p_{i} e^{Z_{i}(t)-(1 / 2) E\left[Z_{i}(t)^{2}\right]}\right)\right],
$$

with $Z_{i}(t)=\sqrt{t} X_{i}+\sqrt{1-t} Y_{i}$. We then have the following formula for the derivative:

$$
\varphi^{\prime}(t)=\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} p_{i} p_{j}\left(E\left[X_{i} X_{j}\right]-E\left[Y_{i} Y_{j}\right]\right)
$$

$$
\begin{equation*}
\times E\left[e^{Z_{i}(t)+Z_{j}(t)-(1 / 2) E\left[Z_{i}(t)^{2}\right]-(1 / 2) E\left[Z_{j}(t)^{2}\right]} \phi^{\prime \prime}\left(W_{n, t}\right)\right] \tag{A.1}
\end{equation*}
$$

where

$$
W_{n, t}=\sum_{k=1}^{n} p_{k} e^{Z_{k}(t)-(1 / 2) E\left[Z_{k}(t)^{2}\right]}
$$

As a consequence of the above formula, we can derive a similar formula in the continuous case. Let I be a bounded subinterval of \mathbb{R}^{d} and let $(X(u))_{u \in I},(Y(u))_{u \in I}$ be two independent centered continuous Gaussian processes. If we define

$$
\varphi(t)=E\left[\phi\left(\int_{I} e^{Z(t)(u)-(1 / 2) E\left[Z(t)(u)^{2}\right]} d u\right)\right]
$$

with $Z(t)(u)=\sqrt{t} X(u)+\sqrt{1-t} Y(u)$, then we have the following formula for the derivative:

$$
\begin{aligned}
\varphi^{\prime}(t)=\frac{1}{2} \int_{I} \int_{I} & \left(E\left[X\left(t_{1}\right) X\left(t_{2}\right)\right]-E\left[Y\left(t_{1}\right) Y\left(t_{2}\right)\right]\right) \\
& \times E\left[e^{Z(t)\left(t_{1}\right)+Z(t)\left(t_{2}\right)-(1 / 2) E\left[Z(t)\left(t_{1}\right)^{2}\right]-(1 / 2) E\left[Z(t)\left(t_{2}\right)^{2}\right]}\right. \\
& \left.\times \phi^{\prime \prime}\left(W_{t}\right)\right] d t_{1} d t_{2}
\end{aligned}
$$

where

$$
W_{t}=\int_{I} e^{Z(t)(u)-(1 / 2) E\left[Z(t)(u)^{2}\right]} d u .
$$

As a consequence of the above lemma, one can derive the following classical comparison principle.

Corollary A.2. Let $\left(p_{i}\right)_{1 \leq i \leq n}$ be a sequence of positive numbers. Consider $\left(X_{i}\right)_{1 \leq i \leq n}$ and $\left(Y_{i}\right)_{1 \leq i \leq n}$, two centered Gaussian vectors such that

$$
\forall i, j \quad E\left[X_{i} X_{j}\right] \leq E\left[Y_{i} Y_{j}\right]
$$

Then, for all convex function $F: \mathbb{R} \rightarrow \mathbb{R}$, we have

$$
\begin{equation*}
E\left[F\left(\sum_{i=1}^{n} p_{i} e^{X_{i}-(1 / 2) E\left[X_{i}^{2}\right]}\right)\right] \leq E\left[F\left(\sum_{i=1}^{n} p_{i} e^{Y_{i}-(1 / 2) E\left[Y_{i}^{2}\right]}\right)\right] \tag{A.2}
\end{equation*}
$$

Similarly, we get a comparison in the continuous case. Let I be a bounded subinterval of \mathbb{R}^{d} and $(X(u))_{u \in I},(Y(u))_{u \in I}$ be two independent centered continuous Gaussian processes such that

$$
\forall u, u^{\prime} \quad E\left[X(u) X\left(u^{\prime}\right)\right] \leq E\left[Y(u) Y\left(u^{\prime}\right)\right] .
$$

Then, for all convex functions $F: \mathbb{R} \rightarrow \mathbb{R}$, we have

$$
E\left[F\left(\int_{I} e^{X(u)-(1 / 2) E\left[X(u)^{2}\right]} d u\right)\right] \leq E\left[F\left(\int_{I} e^{Y(u)-(1 / 2) E\left[Y(u)^{2}\right]} d u\right)\right]
$$

We will also use the following corollary.
Corollary A.3. Let $\left(X_{i}\right)_{1 \leq i \leq n}$ and $\left(Y_{i}\right)_{1 \leq i \leq n}$ be two centered Gaussian vectors such that:

- $\forall i, E\left[X_{i}^{2}\right]=E\left[Y_{i}^{2}\right]$;
- $\forall i \neq j, E\left[X_{i} X_{j}\right] \leq E\left[Y_{i} Y_{j}\right]$.

Then, for all increasing functions $F: \mathbb{R} \rightarrow \mathbb{R}_{+}$, we have

$$
\begin{equation*}
E\left[F\left(\sup _{1 \leq i \leq n} Y_{i}\right)\right] \leq E\left[F\left(\sup _{1 \leq i \leq n} X_{i}\right)\right] \tag{A.3}
\end{equation*}
$$

Proof. It is enough to show inequality (A.3) for $F=1_{1 x,+\infty}$, for some $x \in \mathbb{R}$. Let β be some positive parameter. Integrating equality (A.1) applied to the convex function $\phi: u \rightarrow e^{-e^{-\beta x} u}$ and the sequences $\left(\beta X_{i}\right),\left(\beta Y_{i}\right), p_{i}=$ $e^{\left(\beta^{2} / 2\right) E\left[X_{i}^{2}\right]}$, we get

$$
E\left[e^{-\sum_{i=1}^{n} e^{\beta\left(X_{i}-x\right)}}\right] \leq E\left[e^{-\sum_{i=1}^{n} e^{\beta\left(Y_{i}-x\right)}}\right]
$$

By letting $\beta \rightarrow \infty$, we conclude that

$$
P\left(\sup _{1 \leq i \leq n} X_{i}<x\right) \leq P\left(\sup _{1 \leq i \leq n} Y_{i}<x\right) .
$$

REFERENCES

[1] Bacry, E., Delour, J. and Muzy, J. F. (2001). Multifractal random walks. Phys. Rev. E 64 026103-026106.
[2] Bacry, E., Kozhemyak, A. and Muzy, J.-F. (2008). Continuous cascade models for asset returns. J. Econom. Dynam. Control 32 156-199. MR2381693
[3] BACRY, E. and MUZY, J. F. (2003). Log-infinitely divisible multifractal processes. Comm. Math. Phys. 236 449-475. MR2021198
[4] Barral, J. and Mandelbrot, B. B. (2002). Multifractal products of cylindrical pulses. Probab. Theory Related Fields 124 409-430. MR1939653
[5] Chainais, P. (2006). Multidimensional infinitely divisible cascades. Application to the modelling of intermittency in turbulence. Eur. Phys. J. B 51 229-243.
[6] Cizeau, P., Gopikrishnan, P., Liu, Y., Meyer, M., Peng, C. K. and Stanley, E. (1999). Statistical properties of the volatility of price fluctuations. Phys. Rev. E. 60 13901400.
[7] Cont, R. (2001). Empirical properties of asset returns: Stylized facts and statistical issues. Quant. Finance 1 223-236.
[8] Daley, D. J. and Vere-Jones, D. (1988). An Introduction to the Theory of Point Processes. Springer, New York. MR950166
[9] Duchon, J., Robert, R. and Vargas, V. (2008). Forecasting volatility with the multifractal random walk model. Available at http://arxiv.org/abs/0801.4220.
[10] FRiSCH, U. (1995). Turbulence. Cambridge Univ. Press, Cambridge. MR1428905
[11] Gneiting, T. (2001). Criteria of Pólya type for radial positive definite functions. Proc. Amer. Math. Soc. 129 2309-2318 (electronic). MR1823914
[12] Gray, A., Mathews, G. B. and MacRobert, T. (1922). A Treatise on Bessel Functions, 2nd ed. Macmillan, London.
[13] Kahane, J.-P. (1985). Sur le chaos multiplicatif. Ann. Sci. Math. Québec 9 105-150. MR829798
[14] Kallenberg, O. (1986). Random Measures, 4th ed. Akademie-Verlag, Berlin. MR854102
[15] Kolmogorov, A. N. (1962). A refinement of previous hypotheses concerning the local structure of turbulence in a viscous incompressible fluid at high Reynolds number. J. Fluid Mech. 13 82-85. MR0139329
[16] Ledoux, M. and Talagrand, M. (1991). Probability in Banach Spaces. Ergebnisse der Mathematik und Ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)] 23. Springer, Berlin. MR1102015
[17] Mandelbrot, B. B. (1972). A possible refinement of the lognormal hypothesis concerning the distribution of energy in intermittent turbulence. In Statistical Models and Turbulence. Lecture Notes in Phys. 12 333-351. Springer, Berlin. MR0438885
[18] Molchan, G. M. (1996). Scaling exponents and multifractal dimensions for independent random cascades. Comm. Math. Phys. 179 681-702. MR1400758
[19] Овоикноу, A. M. (1962). Some specific features of atmospheric turbulence. J. Fluid Mech. 13 77-81. MR0139328
[20] Pasenchenko, O. Y. (1996). Sufficient conditions for the characteristic function of a two-dimensional isotropic distribution. Theory Probab. Math. Statist. 53 149-152. MR1449115
[21] Schwartz, L. (1951). Théorie des Distributions. Hermann, Paris. MR041345

InStitut Fourier
Université Grenoble 1
UMR CNRS 5582
100, RUE DES MATHÉMATIQUES
BP 74, 38402 SAINT-MARTIN D'HÈRES CEDEX
France
E-MAIL: Raoul.Robert@ujf-grenoble.fr

CNRS

UMR 7534
F-75016 PARIS
France
E-MAIL: vargas@ceremade.dauphine.fr

[^0]: Received July 2008; revised February 2009.
 AMS 2000 subject classifications. 60G57, 60G15, 60G25, 28A80.

