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Abstract—We observe a subadditivity property for the noise
sensitivity of subsets of Gaussian space. For subsets of vol-
ume 1

2
, this leads to an almost trivial proof of Borell’s

Isoperimetric Inequality for ρ = cos( π
2�
), � ∈ N. In turn this

can be used to obtain the Gaussian Isoperimetric Inequality
for volume- 1

2
sets and also .8787-factor UG-hardness for Max-

Cut (within 10−4 of the optimum). As another corollary we
show the Hermite tail bound ‖f>k‖22 ≥ Ω(Var[f ]) · 1√

k
for

f : R
n → {−1, 1}. Combining this with the Invariance

Principle shows the same Fourier tail bound for any Boolean
f : {−1, 1}n → {−1, 1} with all its noisy-influences small. This
improves on a result of Bourgain in the Boolean setting, which
only had 1

k1/2+o(1) . Without using Invariance, we also show
how to simplify and improve Bourgain’s proof to obtain the
bound 1√

k log1.5 k
.

I. OUR RESULTS

In this paper we study noise sensitivity and Fourier and

Hermite tail bounds for Boolean-valued functions, defined

either on the discrete Boolean cube or on multidimensional

Gaussian space.

For functions on Gaussian space we define “rotation

sensitivity”, RSf (ε), a slightly different parametrization of

noise sensitivity. With a very simple proof (reminiscent

of [9]) we show that rotation sensitivity is subadditive. In

particular:

Theorem I.1. Let f : R
d → {−1, 1}. Then RSf (ε) ≥

1
�RSf (�ε) for any ε ∈ R, � ∈ N.

As a direct corollary we obtain that the ε-rotation sensi-

tivity of an unbiased function f is bounded from below by
ε
π for any ε of the form π

2� where � ∈ N. This we state as

follows:

Theorem I.2. Let A ⊆ R
d have Gaussian measure 1

2 . Then
RSA(ε) ≥ ε

π for any ε = π
2� , � ∈ N.

Theorem I.2 is an isoperimetric bound for Gaussian

space; it was proved by Borell [5] for all ε ∈ [0, π
2 ].

Taking ε → 0 in Borell’s Theorem yields the Gaussian

Isoperimetric Inequality (GII); we obtain a simple proof

*Supported by the Koshland fellowship and by the Binational Science
Foundation (BSF) grant no. 2008477.

**Supported by NSF grants CCF-0747250 and CCF-0915893, and by a
Sloan fellowship.

of the GII for volume- 12 sets by taking � → ∞ in our

Theorem I.2. Taking ε = ε0 ≈ π
3.876 in Borell’s Theorem

and combining with the Invariance Principle [19] yields the

optimal .8786-factor UG-hardness result for Max-Cut [12].

Theorem I.2 gives a simple proof of Borell’s Theorem for

ε = π
4 , and using this in place of ε0 gives .8787-factor

hardness.

Theorem I.1 is also the key to a very simple proof of

the following “Hermite tail bound”, which is optimal up to

constant factors:

Theorem I.3. Let f : Rd → {−1, 1} be a function with con-
stant variance, i.e. Var[f ] ≥ Ω(1). Then

∑
|β|>k f̂(β)

2 ≥
Ω( 1√

k
) for any k ∈ N, where the f̂(β)’s are f ’s Hermite

coefficients.

Theorem I.3 is a Gaussian version of the following well-

known result of Bourgain [6] on the Fourier tail of Boolean

functions:

Bourgain’s Theorem. Let f : {−1, 1}n → {−1, 1} satisfy
Var[f ] ≥ Ω(1) and Inf≤k

i [f ] ≤ k−O(k) for all i ∈ [n].
Then

∑
|S|>k f̂(S)

2 ≥ 1√
k
· 1

2 ˜O(
√

log k)
for any k ∈ N.

(Bourgain’s paper wrote simply 1
k1/2+o(1) ; the more precise

bound above is from [13].)

By a Central Limit Theorem argument, Bourgain’s

Theorem implies Theorem I.3 with the bound 1√
k
· 1

2 ˜O(
√

log k)
;

prior to our work, this was best known bound for Hermite

tails. Combining our Theorem I.3 with the Invariance

Principle from [19] improves Bourgain’s Theorem on

Boolean Fourier tails to the optimal Ω( 1√
k
), even assuming

only Inf≤k
i [f ] ≤ 2−O(k) for all i.

Finally, we give a simplified and improved version of

Bourgain’s proof which avoids the use of Invariance and

yields the nearly optimal Fourier tail bound
∑
|S|>k f̂(S)

2 ≥
1√
k
· 1
O(log1.5 k)

. We state here a version of the key interme-

diate theorem, a lower bound on noise sensitivity which has

an “elementary” (i.e., hypercontractivity-free) proof:

Theorem I.4. Let f : {−1, 1}n → {−1, 1} and
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let δ ∈ [0, 1
2 ]. Suppose

∑n
i=1 f̂(i)

2 ≥ Ω(1) and
|f̂(i)| 	 √

δ/ ln(1/δ) for all i ∈ [n]. Then NSf (δ) ≥
Ω(

√
δ/ ln(1/δ)).

II. GAUSSIAN SENSITIVITY AND TAILS

Throughout this section we think of Rd as being endowed

with the standard Gaussian distribution. We will mainly be

concerned with subsets A ⊆ R
d and their ±1-indicator

functions, f : R
d → {−1, 1} (we call such functions

Boolean-valued). We will use notation such as

vol(A) = Pr
X∼N(0,1)d

[X ∈ A] = E
X∼N(0,1)d

[ 12+
1
2f(X)].

We assume all functions f : R
d → R mentioned are

measurable.

A. Rotation sensitivity

Definition II.1. Let ρ ∈ [−1, 1]. We say that the R
d-valued

random variables X,Y are ρ-correlated Gaussians if they

are jointly Gaussian with mean zero, E[XiY i] = ρ for

i ∈ [n], and E[XiY j ] = 0 for i �= j.

Definition II.2. Let f : Rd → {−1, 1} and let ε ∈ R. The

rotation sensitivity of f at ε is defined to be

RSf (ε) = Pr[f(X) �= f(Y )],

where X,Y are cos(ε)-correlated Gaussians.

Usually we assume ε ∈ [0, π]. If f is the indicator of A ⊆ R
d

we also write RSA(ε), the probability that one of X,Y is

in A and the other is out.

Fact II.3. Let f : Rd → {−1, 1} be the indicator of A ⊆
R

d. Then:
1) RSf (0) = 0 since 1-correlated Gaussians are identi-

cal almost surely.
2) RSf (

π
2 ) = 2vol(A)(1 − vol(A)) = 1

2 Var[f ], since
0-correlated Gaussians are independent.
In particular, RSf (

π
2 ) = 1

2 when vol(A) = 1
2 (i.e

E[f ] = 0).
3) RSf (π) = 1 if f is odd (i.e. f(−x) = −f(x) or
−A = Ac).

The rotation sensitivity of a set A is a kind of measure

of its boundary size. The associated isoperimetric problem

was solved by Borell [5]:

Borell’s Theorem. Fix ε ∈ [0, π
2 ] and α ∈ [0, 1]. Then for

any A ⊆ R
d satisfying vol(A) = α it holds that RSA(ε) ≥

RSH(ε), where H is a halfspace of volume α.

Borell’s proof uses Ehrhard symmetrization and differen-

tial equations; in fact it gives a much stronger statement than

the above. For another proof using two-point symmetrization

on the sphere and Poincaré’s lemma, see [1], [7]. When

α = 1
2 , the minimizing halfspaces in Borell’s Theorem

pass through the origin and there is a closed form for their

rotation sensitivity. This easy result is known as Sheppard’s

Formula [20]:

Sheppard’s Formula. Let H ⊆ R
d be a halfspace through

the origin. Then RSH(ε) = ε
π .

B. Subadditivity of rotation sensitivity

We now prove that rotation sensitivity is subadditive.

Theorem II.4. Let f : Rd → {−1, 1}. Then RSf (ε1+ · · ·+
ε�) ≤ RSf (ε1) + · · ·+RSf (ε�) for ε1, . . . , ε� ∈ R.

Proof: Let X and Y be independent standard d-

dimensional Gaussians. For each θ ∈ R, define Z(θ) =
cos(θ)X + sin(θ)Y , which is also a standard Gaussian.

Note that Z(θ) and Z(θ + ε) are correlated d-dimensional

Gaussians with correlation cos(θ) cos(θ+ε)+sin(θ) sin(θ+
ε) = cos(ε). Thus

RSf (ε1 + · · ·+ ε�)

= Pr[f(Z(0)) �= f(Z(ε1 + · · ·+ ε�))]

≤ Pr[f(Z(0)) �= f(Z(ε1))]

+ Pr[f(Z(ε1) �= f(Z(ε1 + ε2))] + · · ·
+ Pr[f(Z(ε1 + · · ·+ ε�−1)) �= f(Z(ε1 + · · ·+ ε�))]

= RSf (ε1) + · · ·+RSf (ε�),

where the inequality is the union bound.

Theorem I.1 is an immediate consequence, and combining

it with Fact II.3 yields the following generalization of

Theorem I.2:

Theorem II.5. Let f : Rd → {−1, 1} and let ε = π
2� , � ∈ N.

Then RSf (ε) ≥ ε
π ·Var[f ]. In particular, if vol(A) = 1

2 then
RSA(ε) ≥ ε

π . If f is odd then we obtain the inequality for
any ε = π

� .

Thus we have recovered the α = 1
2 case of Borell’s

Theorem for any ε = π
2� , � ∈ N.

Remark II.6. It is easy to see that our proof of RSA(ε) ≥ ε
π

indeed has equality when A is a halfspace through the origin.

When we take ε1 = · · · = ε� = π
2� in Theorem II.4,

the points Z(j π
2� ), j = 0 . . . � in the proof go from

X to −X along the ellipse containing ±X , ±Y . With

probability 1, any half-ellipse thus defined will cross A’s

boundary (a hyperplane through the origin) exactly once.

Thus the union bound in the proof of Theorem II.4 will

always have equality.

C. Applications

We now mention some applications of Borell’s Theorem

which our proof is sufficient to obtain. The first is the

Gaussian Isoperimetric Inequality (GII) for sets of volume 1
2 .

Gaussian Isoperimetric Inequality [21], [3]. Fix α ∈
[0, 1]. Then for any A ⊆ R

d satisfying vol(A) = α it
holds that surf(A) ≥ surf(H), where H is a halfspace of

138



volume α. Here surf(A) denotes Gaussian surface area. In
particular, for α = 1

2 we have surf(A) ≥ 1√
2π

.

To make this theorem precise we need to define Gaussian

surface area. There are several possible choices here, all of

which coincide for sufficiently “nice” sets A. The traditional

definition of Gaussian surface area (for Borel sets A) is:

γ+(A) = lim inf
δ→0+

γ(A+δ)− γ(A)

δ
∈ [0,∞]. (1)

In the context of Gaussian space using A+δ is perhaps not

completely natural; we propose the following alternative

definition (for any measurable A ⊆ R
d):

surf(A) =
√

π
2 · lim sup

ε→0+

RSf (ε)

ε
∈ [0,∞]. (2)

In Appendix A we discuss why the definitions coincide for

nice enough sets. We also mention that Ledoux [17] has

shown surf(A) ≤ γ+(A) always and hence using surf(A)
in the GII is formally stronger.

Accepting surf(A) as the definition of Gaussian surface

area, it is immediate that the GII follows from Borell’s

Theorem. Further, it is immediate that the GII for sets of

Gaussian volume 1
2 follows from our simpler Theorem II.5,

by taking � → ∞. We remark that Ledoux [17, (8.25)] has

also given a simpler proof of the GII in the volume- 12 case.

The next application of Borell’s Theorem we mention is

in the area of hardness for approximation algorithms. We

have the following result from [12], [19]:

Theorem II.7. ([12], [19]) Fix ε ∈ (0, π
2 ). Then for any

η > 0 it is “Unique Games-hard” to ( 12 + 1
2 cos(ε), 1 −

s(ε) + η)-approximate the Max-Cut problem. Here s(ε) =
inf{RSA(ε) : A ⊆ R

d, vol(A) = 1
2}.

By applying Borell’s Theorem, we get hardness of ( 12 +
1
2 cos(ε), 1 − ε

π + δ)-approximating Max-Cut. Taking ε ∼
2
√
δ for δ → 0 yields (1− δ, 1− ( 2π + o(1))

√
δ)-hardness.

Taking ε = ε0 ≈ π
3.876 to minimize the ratio yields factor-

.8786 hardness. Both results are optimal, by the Goemans–

Williamson algorithm [8].

Using our Theorem II.5 in place of Borell’s Theorem, we

can also obtain the (1− δ, 1− ( 2π + o(1))
√
δ)-hardness for

Max-Cut. For the ratio result, we can take ε = π
4 in place

of ε0 and obtain hardness of approximating Max-Cut to any

factor exceeding 3
2+
√
2
≈ .8787.

D. Hermite tail bounds

We next describe an application of the subadditivity of

rotation sensitivity to the study of Hermite tail bounds. Re-

call (see, e.g., [17]) that any square-integrable f : Rd → R

can be expressed as

f(x) =
∑
β∈Nd

f̂(β)

d∏
i=1

hβi(xi),

where hj(t) denotes the (normalized) Hermite polynomial

of degree-j. The numbers f̂(β) are called the Hermite

coefficients of f . We often stratify them according to |β| =∑d
i=1 βi, making the following definition:

Definition II.8. For square-integrable f : R
d → R and

k ∈ N∪{0} we define Wk[f ] =
∑
|β|=k f̂(β)

2, the Hermite
weight of f at degree k, and W>k[f ] =

∑
j>k W

j [f ], the
tail weight of f beyond degree k.

Hermite tail weights are of interest in, e.g., approximation

theory and learning theory [15], since

W>k[f ] = min{E[(f−p)2] : p a polynomial, deg(p) ≤ k}.
In particular, Var[f ] = W>0[f ]. We have the following

well-known connection between rotation sensitivity and Her-

mite weights:

RSf (ε) =
1
2

∞∑
j=0

(1− cosj(ε)) ·Wj [f ]. (3)

Using this formula we get a tail bound for Boolean valued

functions over Gaussian domains. This is the Gaussian space

analogue of Bourgain’s theorem, and is a generalization

of Theorem I.3. It quantifies the extent to which indicator

functions can be approximated by low-degree polynomials:

Theorem II.9. Let f : Rd → {−1, 1}. Then W>k[f ] ≥
Ω(Var[f ]) · 1√

k
for any k ∈ N.

This theorem is sharp up to the constant in the case

when f is the indicator of a halfspace through the ori-

gin. As mentioned, the previous best lower bound was
1√
k
· 1

2 ˜O(
√

log k)
, following from the somewhat technical work

of Bourgain [6], [13].

Proof: Assume ε ∈ [0, π
4 ] and apply Theorem I.1 with

� = 2. Using (3) we deduce

∞∑
j=0

(1−cosj(ε))·Wj [f ] ≥
∞∑
j=0

1
2 (1−cosj(2ε))·Wj [f ]. (4)

We consider splitting the sums according to whether j ≤
1

4ε2 . On the right side of (4) we use

1
2 (1− cosj(2ε)) ≥ 1

2 (1− exp(−2ε2)j)
≥ 1

2 (2jε
2 − 2j2ε4) ≥ 3

4jε
2 (5)

when j ≤ 1
4ε2 . On the left side of (4) we may use

1− cosj(ε) ≤ 1− (1− ε2

2 )
j ≤ 1

2jε
2. (6)

In light of (5) and (6), if we subtract
∑

j≤ 1
4ε2

(1− cosj(ε)) ·
Wj [f ] from both sides of (4), the right side shrinks by
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a multiplicative factor no smaller than ( 34 − 1
2 )/(

3
4 ) = 1

3 .

Hence we obtain∑
j> 1

4ε2

(1− cosj(ε)) ·Wj [f ] ≥ 1
3

∞∑
j=0

1
2 (1− cosj(2ε)) ·Wj [f ]

= 1
3RSf (2ε).

The left side above is clearly at most W>4/ε2 [f ]. By

Theorem II.5 the right side is at least 2
3π Var[f ]·ε whenever

ε is of the form π
4m , m ∈ N. Thus we have W>4/ε2 [f ] ≥

2
3π Var[f ] · ε for ε of the appropriate form and the proof is

completed by suitably choosing ε = Θ( 1√
k
).

III. BOOLEAN SENSITIVITY AND TAILS

In this section we describe how the results on Gaussian

sensitivity and tails translate to the setting of Boolean-valued

functions on the discrete cube, f : {−1, 1}n → {−1, 1}.

A. Notation and definitions

Let us recall the necessary definitions. We think of

{−1, 1}n as having the uniform probability distribution. We

say that x,y are ρ-correlated random strings, ρ ∈ [−1, 1],
if the n random pairs (xi,yi) ∈ {−1, 1} × {−1, 1} are

mutually independent and satisfy E[xi] = E[yi] = 0,

E[xiyi] = ρ for each i ∈ [n]. We may still define rotation

sensitivity by RSf (ε) = Pr[f(x) �= f(y)],where x,y are

cos(ε)-correlated random strings; however in the Boolean

setting it is more usual to define the noise sensitivity of f
at δ ∈ [0, 1],

NSf (δ) = Pr[f(x) �= f(y)],

where x,y are (1− 2δ)-correlated strings.

Equivalently, we may say that x ∼ {−1, 1}n is uniformly

random and y is formed from x by negating each coordinate

independently with probability δ. Since cos(2
√
δ) = 1−2δ+

O(δ2) as δ → 0, it follows that RSf (2
√
δ) ∼ NSδ[f ].

Any f : {−1, 1}n → R can be expressed as f(x) =∑
S⊆[n] f̂(S)

∏
i∈S xi, where the real numbers f̂(S) are

called the Fourier coefficients of f . As with the Her-

mite expansion we stratify them according to |S|, defining

Wk[f ] =
∑
|S|=j f̂(S)

2 and W>k[f ] as before. We have

the formula analogous to (3),

NSf (δ) =
1
2

n∑
j=0

(1− (1− 2δ)j) ·Wj [f ]. (7)

This formula extends the definition of noise sensitivity to

functions f : {−1, 1}n → R which are not necessarily

Boolean-valued. We will use two more related quantities.

The first is the derivative of the noise sensitivity: NS′f (δ) =∑n
j=1(1− 2δ)j−1 ·Wj [f ]. The second is the noise stability

of f at ρ ∈ [−1, 1], Stabρ[f ] =
∑n

j=0 ρ
j ·Wj [f ].

We will require the notion of discrete derivatives; for i ∈
[n],

Dif(x) =
f(xi �→1)−f(xi �→−1)

2 =
∑
S
i

f̂(S)
∏
j∈S

xj .

Relatedly, we need the notion of low-degree influences and

noisy influences:

Inf≤k
i [f ] =

∑
|S|≤k, S
i

f̂(S)2,

Inf
(1−γ)
i [f ] =

∑
S
i

(1− γ)|S|−1f̂(S)2.

We also recall the notion of restrictions. For a function

f : {−1, 1}n → R, a subset of coordinates R ⊆ [n] and

a setting for the coordinates z ∈ {−1, 1}R (where R =
[n] \R), the restriction (subfunction) fR|z : {−1, 1}R → R

is naturally defined. For a fixed set R ⊆ [n] of coordinates

and a uniformly random setting z ∈ {−1, 1}R of the other

coordinates, we define the variation of f on R by

VrR[f ] = E[Var[fR|z]] =
∑

S∩R �=∅
f̂(S)2.

When R is also random, independently containing each co-

ordinate with probability δ, then (R, z) is called a δ-random
restriction. We have the following easy facts concerning

random restrictions:

Fact III.1. Let f : {−1, 1}n → {−1, 1} and let (R, z) be
a δ-random restriction. Then

E[Var[fR|z]] = 2NSf (δ/2), E[W1[fR|z]] = δNS′f (
δ
2 ).

B. An optimal result on Fourier tails

The results from Section II — e.g., Borell’s Theorem, our

Hermite tail bound Theorem II.9 — cannot hold as stated for

functions on the discrete cube. This is because of functions

like “dictators”, f(x) = xi, which have RSf (ε) ∼ 1
4ε

2 	 ε
π

(i.e., NSf (δ) = δ 	 √
δ) and W>1[f ] = 0. However it

is standard to restrict attention to functions which have all

of their noisy/low-degree influences smaller than some κ.

In this case, one can often use the Invariance Principle

technology from [19] to obtain Gaussian-like bounds. For

example, [19] established:

Majority Is Stablest Theorem. Fix ε ∈ (0, π
2 ) and let

f : {−1, 1}n → {−1, 1} satisfy E[f ] = 0. Further assume
Inf

≤1/κ
i [f ] ≤ C−κ for all i ∈ [n], where C is a large

universal constant. Then RSf (ε) ≥ ε
π − Õ(κ).

For the case of Fourier tails, we can transfer our Hermite

tail bound Theorem II.9 to the Boolean setting very easily

using Invariance:

Theorem III.2. Fix an integer k ≥ 2. Let f : {−1, 1}n →
{−1, 1} satisfy Inf≤k

i [f ] ≤ κ = Var[f ]5 · C−k for all i ∈
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[n], where C is a large universal constant. Then W>k[f ] ≥
Ω(Var[f ]) · 1√

k
.

Proof: Write g = f≤k, so Inf i[g] ≤ κ for all i ∈ [n].
Let ξ(t) = (t−sgn(t))2, measuring the �22-distance of t from

being Boolean-valued. Clearly

W>k[f ] = E[(f − g)2] ≥ E
x∼{−1,1}n

[ξ(g(x))].

We claim that∣∣∣∣ E
x∼{−1,1}n

[ξ(g(x))] − E
X∼N(0,1)n

[ξ(g(X))]

∣∣∣∣
≤ 2 ·O(10k/4κ1/4).

This follows immediately from [19, Theorem 3.19, (27)], the

Invariance Principle with absolute-value functional, because

ξ(t) = 1 + t2 − 2|t| and because E[g(x)2] = E[g(X)2] by

Parseval. Hence

W>k[f ] ≥ E
X∼N(0,1)n

[ξ(g(X))]−O(10k/4κ1/4)

= E[(h(X)− g(X))2]−O(10k/4κ1/4),

where h : Rn → {−1, 1} is defined by h(X) = sgn(g(X)).
We have E[(h(X) − g(X))2] ≥W>k[h], the Hermite tail

of h above degree k. Hence using Theorem II.9 we deduce

W>k[f ] ≥ Ω(Var[h]) · 1√
k
−O(10k/4κ1/4). (8)

The remainder of the proof is devoted to showing Var[h] ≥
Ω(Var[f ]); once we have this, the proof follows from (8)

once C is chosen appropriately.

To compare Var[h] with Var[f ], first note that

Pr[f(x) = 1],Pr[f(x) = −1] ≥ Var[f ]/2. We may

further assume Pr[g(x) ≥ 2
3 ],Pr[g(x) ≤ − 2

3 ] ≥ Var[f ]/4,

as otherwise W>k[f ] = E[(f − g)2] ≥ (Var[f ]/4)( 13 )
2 =

Var[f ]/36 and we have the desired conclusion of the

theorem. Finally, we apply [19, Theorem 3.19, (28)], the

Invariance Principle with Lévy distance. Assuming C is

chosen small enough, this lets us deduce Pr[g(X) ≥
1
3 ],Pr[g(X) ≤ − 1

3 ] ≥ Var[f ]/8. It follows that Var[h] ≥
Ω(Var[f ]), as required.

C. The junta case

In Theorem III.2 we dealt with the case where the low-

degree influences of all coordinates are small. In this section

we generalize the result to any Boolean valued function

over a Boolean domain, showing that its Fourier tail weight

is bounded below not by the variance of the function, but

instead by the L2 influence of the coordinates that do have

small low-degree influence. Since the number of coordinates

with high low-degree influence can be universally bounded,

this implies that Boolean functions with small tails are

Juntas. Quantitatively, our results are better than those of [6],

as..

Theorem III.3. Fix an integer k ≥ 2. Let f : {−1, 1}n →
{−1, 1} be any function. For a parameter κ > 0
let J = {i ∈ [n] : Inf≤k

i [f ] ≤ κ}. Then W>k[f ] ≥
Ω
(
Inf≤k

[n]\J[f ]
) · 1√

k
−O(10k/4κ1/4).

Proof: Theorem III.3 is proven via a simple adaptation

of the proof of Theorem III.2. As in the above proof, we take

g = f≤k and apply the invariance principle to g. However

we replace by Gaussians only the coordinates that have

small influence on g, namely the coordinates i ∈ [n] \ J
which have influence Inf≤k

i [f ] ≤ κ. Consider a uniformly

random element x of {−1, 1}n, and write x = (y, z) where

y contains the coordinates of x in J and z contains the

coordinates from [n] \ J. Let Z be a random Gaussian

vector distributed over the coordinates in [n] \ J. As in the

proof of Theorem III.2, it follows easily from the hybrid

argument in [19, Theorem 3.19, (27)] (applied only to the

z coordinates) that

∣∣∣∣ E
(y,z)

[ξ(g(y, z))] − E
(y,Z)

[ξ(g(y,Z))]

∣∣∣∣ ≤ 2·O(10k/4κ1/4).

Hence for h : R
n → {−1, 1} defined by h(y,Z) =

sgn(y,Z) we have

W>k[f ] ≥ E
y,Z

[ξ(g(y,Z))]−O(10k/4κ1/4)

= E[(h(y,Z)− g(y,Z))2]−O(10k/4κ1/4)

≥W>k[h]−O(10k/4κ1/4), (9)

where in the last term we have the hybrid Hermite-Fourier

tail of h above degree k.

We would now like to bound W>k[h] from below, but

at this point we need to depart somewhat from the proof

of Theorem III.2 – since (y,Z) is not Gaussian-distributed,

we cannot apply Theorem II.9 to h(y,Z) directly. Instead,

for every possible assignment y to the coordinates of J,

we consider the function hy , obtained by restricting h in

the obvious way. Since the coordinates of hy are Gaussian-

distributed, we can apply Theorem II.9 to it obtaining the

bound

W>k[hy] ≥ Ω(Var[hy]) · 1√
k

(10)

for all y’s. We now take the expectation over y of both

sides of the inequality in 10. It is a simple exercise to see

that the quantity obtained on the left-hand side is bounded

from above by W>k[h], hence we get

W>k[h] ≥ Ω(E [Var[hy]]) · 1√
k
. (11)
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We now wish to bound E [Var[hy]] from below. Indeed,

E [Var[hy]]

=

∥∥∥∥h(y,Z)− E
Z′
[h(y,Z ′)]

∥∥∥∥2
2

=
∥∥∥g(y,Z)− E

Z′
[g(y,Z ′)] +

(
h(y,Z)− g(y,Z)

)
− (

E
Z′
[h(y,Z ′)− g(y,Z ′)]

)∥∥∥2
2

≥ 1

2
·
∥∥∥∥g(y,Z)− E

Z′
[g(y,Z ′)]

∥∥∥∥2
2

−
∥∥∥∥(h(y,Z)− g(y,Z)

)− (
E
Z′
[h(y,Z ′)− g(y,Z ′)]

)∥∥∥∥2
2

,

(12)

where the last inequality follows from the fact (a − b)2 ≥
1
2a

2 − b2. The first term in (12) is equal to Inf [n]\J[g] =
Inf≤k

[n]\J[f ]. The second term in (12) is bounded from above

by O(W>k[h]). Putting this back in (11) yields

W>k[h] ≥ Ω
(
Inf≤k

[n]\J[f ]
) · 1√

k
, (13)

which when combined with (9) implies that

W>k[f ] ≥ Ω
(
Inf≤k

[n]\J[f ]
) · 1√

k
−O(10k/4κ1/4), (14)

as needed.

D. On Bourgain’s proof

In the remainder of the paper we repeat Bourgain’s proof

of his theorem, but with some variations. We believe these

make the proof cleaner; they also improve it quantitatively,

achieving the Fourier tail bound 1√
k
· 1
O(log1.5 k)

. Also this is

a polylogarithmic factor away from the optimal, we feel it

is still worth presenting. One reason is that it avoids the

use of Invariance, and thus could be considered simpler

than the proof of Theorem III.2. Another reason is that

the key intermediate result Theorem I.4 has an elementary

proof and could be of independent interest, since it has

only polynomial (not exponential) dependence on the “low-

influence parameter”.

In the proof we present, the main aim is obtaining an ana-

logue of Borell’s Theorem; i.e., NSf (δ) ≥ Ω(Var[f ]) ·√δ.

(In fact, the inapproximability applications of Bourgain’s

Theorem [11], [14] only need such noise sensitivity bounds,

not Fourier tail bounds.) Unfortunately the subadditivity of

Gaussian rotation sensitivity — the source of the “square-

root gain” for noise sensitivity — does not have an obvious

Boolean analogue. However there is one regime in which

Boolean and Gaussian domains do have similar isoperimetric

properties: that of “small sets”, i.e., ±1-valued functions

with small variance. One manifestation of this is a basic

lemma in analysis of Boolean functions:

Level 1 Inequality. Let f : {−1, 1}n → {−1, 1}. Then
W1[f ] ≤ Var[f ]2 ·O(log(2/Var[f ])).

The (nearly) quadratic dependence on Var[f ] here will be

the ultimate source of the square-root in our Boolean noise

sensitivity and Fourier tail bounds. The Level 1 Inequality

has a 5-line proof using nothing more than the Chernoff

bound; see, e.g., [22, Proposition 2.2]. One may check that

the constant in the O(·) may be taken to be 9. We add on

additional remark:

Remark III.4. The Level 1 Inequality holds for any function

f + c where f : {−1, 1}n → {−1, 1} and c is a constant.

This is because neither W1[f ] nor Var[f ] changes when f
is replaced by f + c.

We now begin the proof. We will need some slight

generalizations of the Level 1 Inequality.

Proposition III.5. Let f : {−1, 1}n → {−1, 1} and let
L : {−1, 1}n → R be linear; i.e., L=1 = L. Then

〈f, L〉 ≤ ‖L‖2 · ψ(Var[f ]), where ψ(t) = 3t
√
log(2/t).

Proof: We have 〈f, L〉 = 〈f=1, L〉 ≤ ‖f=1‖2 · ‖L‖2 =√
W1[f ]·‖L‖2 by Cauchy–Schwarz. The result now follows

by taking the square-root of the Level 1 Inequality.

Proposition III.6. Let f : {−1, 1}n → {−1, 1} and let
R ⊆ [n]. Then

∑
j∈R f̂(j)2 ≤ ψ2(VrR[f ]).

Proof: Fix L(x) =
∑

j∈R f̂(j)xj . Apply Proposi-

tion III.5 to fR|z and L, where z ∼ {−1, 1}R is uniformly

random. Taking expectations, we get

E
z
[〈fR|z, L〉] ≤ ‖L‖2 ·E

z
[ψ(Var[fR|z])]

≤ ‖L‖2 · ψ
(
E
z
[Var[fR|z]]

)
, (15)

where we used the fact that ψ is concave. We have

Ez[〈fR|z, L〉] = ‖L‖22 and Ez[Var[fR|z]] = VrR[f ].
Thus (15) is equivalent to ‖L‖22 ≤ ‖L‖2 · ψ(VrR[f ]) and

the result follows.

We remark that the Level-1 Inequality is the special case of

Proposition III.6 when J = [n].

Since ψ2 = t �→ 9t2 log(2/t) is increasing on [0, 1] it has

an inverse function, (ψ2)−1. We introduce the function Q
which is a lower bound on this inverse.

Definition III.7. Define Q : [0, 1] → R by Q (t) =
1
4

√
t/ log(8/t).

Fact III.8. We have Q ≤ (ψ2)−1 pointwise on [0, 1].
Also, Q is increasing, concave, and satisfies Q (0) = 0.
In particular, Q is subadditive.

Fact III.9. Let s ≥ 0 and t ≥ −s. Then Q (s+ t) ≥ Q (s)−
Q (|t|).
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Proof: If t is nonnegative this follows trivially from

Q (s+ t) ≥ Q (s). Otherwise we have

Q (s+ t) = Q (s− |t|)
= Q (s− |t|) +Q (|t|)−Q (|t|) ≥ Q (s)−Q (|t|)

by subadditivity.

Finally, Proposition III.6 is equivalent to the following

main lemma:

Lemma III.10. Let f : {−1, 1}n → {−1, 1} and let R ⊆
[n]. Then VrR[f ] ≥ Q

(∑
j∈R f̂(j)2

)
.

E. The intermediate theorem

We can now prove (a strengthening of) Theorem I.4:

Theorem III.11. Let f : {−1, 1}n → {−1, 1} and let δ ∈
[0, 1

2 ]. Write ω[f ] =
∑n

i=1 f̂(i)
4. Then

NSf (δ) ≥ 1
2Q

(
W1[f ] · δ)− 1

2Q
(√

δ · ω[f ]
)
.

Proof: Apply Lemma III.10 with a 2δ-random subset

R ⊆ [n]. Taking expectations we get

2NSf (δ) ≥ E
R

[
Q
(∑

j∈R
f̂(i)2

)]
= E

[
Q
(

n∑
i=1

f̂(i)2Ri

)]
,

where we’ve written Ri for the 0-1 indicator of “i ∈ R”. On

the right side above, roughly speaking we have the (1/2)th
moment of the random variable f̂(1)2R1 + · · ·+ f̂(n)2Rn;

we can estimate this in a straightforward manner. Isolating

the mean, W1[f ] · δ, we get

E

[
Q
(

n∑
i=1

f̂(i)2Ri

)]
= E

[
Q
(
W1[f ] · δ +

n∑
i=1

f̂(i)2(Ri − δ)

)]
≥ Q (

W1[f ] · δ)−E

[
Q
(∣∣∣∣ n∑

i=1

f̂(i)2(Ri − δ)

∣∣∣∣)]
≥ Q (

W1[f ] · δ)−Q(
E

[∣∣∣∣ n∑
i=1

f̂(i)2(Ri − δ)

∣∣∣∣])
where we used Fact III.9 and concavity of Q. Re-

calling that Q is increasing it remains to upper-bound

E
[∣∣∣∑ f̂(i)2(Ri − δ)

∣∣∣]. This is easy to do with Cauchy–

Schwarz; since the random variables f̂(i)2(Ri − δ) are

independent, mean-zero, and have second moment f̂(i)4 ·
δ(1− δ) ≤ f̂(i)4 · δ, we conclude

E

[∣∣∣∣ n∑
i=1

f̂(i)2(Ri − δ)

∣∣∣∣] ≤√∑
i=1

f̂(i)4 · δ =
√

δ · ω[f ].

This completes the proof.

Remark III.12. Theorem III.11 is almost sharp; e.g., for

the majority function Majn we have NSMajn(δ) = Θ(
√
δ)

(when δ � 1/
√
n), W1[Majn] = Θ(1), and ω[Majn] =

Θ(1/n).

F. A stronger noise sensitivity lower bound

We begin with a corollary of Theorem III.11.

Corollary III.13. Let f : {−1, 1}n → {−1, 1} and let δ ∈
[0, 1

2 ], γ ∈ [0, 1]. Then

NSf (γδ) ≥ γ
2NS′f (

γ
2 ) · Q (δ)− δ1/4 · E

R,z
[ω[fR|z]]1/4,

where (R, z) is a γ-random restriction.

Proof: We first weaken the statement of Theo-

rem III.11 by using Q (
W1[f ] · δ) ≥ W1[f ] · Q (δ) and

1
2Q

(√
δ · ω[f ]

)
≤ δ1/4·ω[f ]1/4. (The former holds because

Q is concave and Q (0) = 0.) Now applying this weakening

to fR|z and taking expectations yields

NSf (γδ) ≥ 1
2 E[W1[fR|z]] ·Q (δ)− δ1/4 · E

R,z
[ω[fR|z]1/4].

The proof is completed using the concavity of t �→ t1/4 and

Fact III.1.

We now want to estimate E[ω[fR|z]]; this is slightly

technical and requires hypercontractivity.

Proposition III.14. Fix γ ∈ [0, 1] and let w0 be the
random variable which is 0 with probability γ and ±1 with
probability (1−γ)/2 each. Then w0 is (2, 2+cγ, (1−γ)1/4)-
hypercontractive for some universal c > 0. In fact, c = 1/2
is acceptable.

Proof: Since w0 is a symmetric random variable,

a simple reduction to the hypercontractivity of standard

Rademachers ([4, Lemma 3.3] or [16, Lemma 4.1]) shows

that w0 is (2, q, 1√
q−1

‖w0‖2
‖w0‖q )-hypercontractive for any q ≥

2. The result follows because

1√
1 + cγ

‖w0‖2
‖w0‖2+cγ

=
1√

1 + cγ
(1−γ) 1

2− 1
2+cγ ≥ (1−γ)1/4

for c > 0 sufficiently small. In fact, the inequality holds for

c = 1/2.

Lemma III.15. Let g : {−1, 1}n → R and let w1, . . . ,wn

be independent copies of w0 from Proposition III.14. Then

E[|g(w)|2+γ/2] ≤ Stab√1−γ [g]
1+γ/4.

(Regarding the meaning of g(w), we identify g with its real
multilinear expansion.)

Proof: Define h = T(1−γ)−1/4g; then

E[|g(w)|2+γ/2] = E[|T(1−γ)1/4h(w)|2+γ/2]

= ‖T(1−γ)1/4h(w)‖2+γ/2
2+γ/2

≤ ‖h(w)‖2+γ/2
2 = E[h(w)2]1+γ/4,
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where the inequality uses the hypercontractivity result

Proposition III.14. But since the wi’s are independent, mean-

zero, and satisfy E[w2
i ] = 1− γ, it’s easy to compute

E[h(w)2] =
∑
S⊆[n]

ĥ(S)2(1− γ)|S|

=
∑
S⊆[n]

ĝ(S)2
√

1− γ
|S|

= Stab√1−γ [g],

as needed.

Corollary III.16. Let f : {−1, 1}n → {−1, 1} and let
(R, z) be a γ-random restriction. Then E[f̂R|z(i)4] ≤
γInf

(
√
1−γ)

i [f ]1+γ/4 for any i ∈ [n].

Proof: Clearly f̂R|z(i) = 0 unless i ∈ R, an event

that happens with probability γ. Conditioned on this event,

f̂R|z(i) is distributed as Dif(w), where w = (w1, . . . ,wn)
is as in Lemma III.15. Thus

E[f̂R|z(i)4] = γE[Dif(w)4]

≤ γE[|Dif(w)|2+γ/2] ≤ γInf
(
√
1−γ)

i [f ]1+γ/4,

where the first inequality is because |Dif | ≤ 1 and the

second inequality is Lemma III.15.

We can now combine our results to obtain:

Theorem III.17. Let f : {−1, 1}n → {−1, 1} and let δ ∈
[0, 1

2 ], γ ∈ [0, 1]. Assume Inf
(
√
1−γ)

i [f ] ≤ κ for all i ∈ [n].
Then

NSf (γδ) ≥ γ
2NS′f (

γ
2 ) · Q (δ)− δ1/4 · κγ/16.

Proof: Given Corollary III.13 we only need to prove

that ER,z[ω[fR|z]] ≤ κγ/4 for (R, z) a γ-random restric-

tion. From Corollary III.16,

E
R,z

[ω[fR|z]] ≤
n∑

i=1

γInf
(
√
1−γ)

i [f ]1+γ/4 ≤ γI(
√
1−γ)[f ]·κγ/4,

and the result follows from γI(
√
1−γ)[f ] ≤ 1.

This result will be our Boolean replacement for Theo-

rem I.1, the subadditivity of rotation sensitivity. If we had

NSf (
γ
2 ) in place of γ

2NS′f (
γ
2 ) then it would be essentially

the same result — ignoring the term involving κ, the only

difference would be an O(
√

log(1/δ)) factor. However The-

orem III.17 is strictly weaker because NSf (
γ
2 ) ≥ γ

2NS′f (
γ
2 )

by the concavity of NS. But as we’ll see, the difference

between the two quantities is comparable to W>1/γ [f ]. So

if this difference is large then we obtain a tail lower-bound

anyway.

G. Completing the noise sensitivity and Fourier tail bounds

Towards the proof of the Fourier tail bound, we begin by

establishing an analogue of Borell’s Theorem in the Boolean

setting:

Theorem III.18. Let f : {−1, 1}n → {−1, 1} and let δ ∈
[0, 1

2 ]. Assume Inf
(
√
1−δ)

i [f ] ≤ κ for all i ∈ [n]. Then

NSf (δ) ≥
√
δ

10 log1.5(8/δ)
·Var[f ]− δ1/4κδ/16.

Proof: Consider the quantities NSf (
1
2 ) − NSf (

1
4 ),

NSf (
1
4 )−NSf (

1
8 ), . . . , NSf (2

−r)−NSf (2
−(r+1)), where

r = �log(1/δ)�. If any of these, say the jth, is at least
1

2.5 log(8/δ) Var[f ] then we apply Theorem III.17 with γ =

2−j to deduce

NSf (2
−jδ) ≥ 2−(j+1)NS′f (2

−(j+1)) · Q (δ)− δ1/4 · κδ/16.

(Here we used γ ≥ δ.) But concavity of NS implies

2−(j+1)NS′f (2
−(j+1)) ≥ NSf (2

−j) − NSf (2
−(j+1)) ≥

1
2.5 log(8/δ) Var[f ] by assumption; the claimed result thus

follows.

On the other hand, if no such j exists then we conclude

NSf (
1
2 )−NSf (2

−(r+1)) ≤ r

2.5 log(8/δ)
Var[f ]

⇒ 1
2 Var[f ]−NSf (δ) ≤ .4Var[f ]

⇒ NSf (δ) ≥ .1Var[f ],

which is stronger than what we need.

As mentioned earlier, the difference between γ
2NS′f (

γ
2 )

and NSf (
γ
2 ) is comparable to W>1/γ [f ]:

Lemma III.19. Let f : {−1, 1}n → R and γ ∈ [0, 1]. Then
γ
2NS′γ

2
(f) ≥ 1

2eNSf (
γ
2 )− 1

4eW
>1/γ [f ].

Proof: We have

1
2eNSγ

2
(f)− 1

4eW
>1/γ [f ]

= 1
2e

⎛⎝ 1
2

n∑
j=1

(1− (1− γ)j)Wj [f ]− 1
2

∑
j>1/γ

Wj [f ]

⎞⎠
≤ 1

4e

∑
1≤j≤1/γ

(1− (1− γ)j)Wj [f ]

≤ γ
4e

∑
1≤j≤1/γ

jWj [f ]

≤ γ
4

∑
1≤j≤1/γ

j(1− γ)j−1Wj [f ]

≤ γ
4

n∑
j=1

j(1− γ)j−1Wj [f ] = γ
2NS′f (

γ
2 ).

We can now establish our improved version of Bourgain’s

Theorem.

Theorem III.20. There is a universal constant C such that
the following holds. If k ≥ 2, f : {−1, 1}n → {−1, 1}, and
Inf

(1− 1
Ck )

i [f ] ≤ κ ≤ 1
2 for all i ∈ [n], then

W>k[f ] ≥ 1√
k
· 1

C log1.5 k
·Var[f ]− κ1/(Ck).
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Proof: The proof is very similar to that of Theorem II.9.

Since Q (δ) = Θ̃(
√
δ) we may select some absolute constant

0 < δ0 < 1
2 such that δ0 ≤ 1

2 · 1−e−1

4e · Q (δ0). Let us

apply Theorem III.17 with δ = δ0 and γ = 1
k . Using also

Lemma III.19 we get

NSf (
δ0
k ) ≥ (

1
2eNSf (

1
2k )− 1

4eW
>k[f ]

)·Q (δ0)−δ1/40 κ1/(16k),

and hence

1
2e · Q (δ0) ·NSf (

1
2k )

≤ NSf (
δ0
k ) + Q(δ0)

4e ·W>k[f ] +O(κ1/(16k))

≤ 1
2

∑
1≤j≤k

(1− (1− 2 δ0
k )j) ·Wj [f ]

+ ( 12 + Q(δ0)
4e )W>k[f ] +O(κ1/(16k))

≤ δ0
k

∑
1≤j≤k

j ·Wj [f ] +W>k[f ] +O(κ1/(16k)) (16)

Observe that

1
2e · Q (δ0) ·NSf (

1
2k )

= 1
2e · Q (δ0) ·

(
1
2

∑
1≤j≤k

(1− (1− 1
k )

j) ·Wj [f ]

+ 1
2

∑
j>k

(1− (1− 1
k )

j) ·Wj [f ]

)

≥ 1
2e · Q (δ0) ·

(
1−e−1

2k

∑
1≤j≤k

j ·Wj [f ]

+ 1
2

∑
j>k

(1− (1− 1
k )

j) ·Wj [f ]

)
.

Thus if we subtract δ0
k

∑
1≤j≤1/γ j ·Wj [f ] from both sides

of (16), the left side shrinks by a factor of at most 1
2 , by

our choice of δ0. We therefore conclude

Ω(NSf (
1
2k )) ≤W>k[f ] +O(κ1/(16k)).

We now apply Theorem III.18 with δ = 1
2k , deducing

1√
k
· 1

O(log1.5 k)
·Var[f ]− ( 1

2k )
1/4κ1/(32k)

≤W>k[f ] +O(κ1/(16k)).

The result follows.

H. The junta conclusion

Theorem III.20 shows that if f : {−1, 1}n → {−1, 1} has

W>k[f ] 	 1√
k

then f must have at least one coordinate

with large noisy-influence. As in Bourgain’s paper, it is not

hard to conclude that in fact f must be close to a kO(k)-junta

(i.e., a function depending on at most kO(k) coordinates).

Herein we establish that stronger deduction.

In Theorem III.20 the hypothesis is that all coordinates

i ∈ [n] satisfy Inf
(1− 1

Ck )
i [f ] ≤ κ. We can adapt the theorem

to the case when this holds only for some of the coordinates:

Theorem III.21. Let C be the constant from Theorem III.20.
If k ≥ 2, f : {−1, 1}n → {−1, 1}, J ⊆ [n], and
Inf

(1− 1
Ck )

i [f ] ≤ κ ≤ 1
2 for all i ∈ J , then

W>k[f ] ≥ 1√
k
· 1

C log1.5 k
·VrJ [f ]− κ1/(Ck).

Before explaining how to obtain Theorem III.21, we use

it to deduce the desired conclusion:

Corollary III.22. Let C be the constant from Theo-
rem III.21. Suppose f : {−1, 1}n → {−1, 1}, k ≥ 2,
ε ∈ (0, 1), and

W>k[f ] ≤ ε

2C
√
k · log1.5 k .

Then f is ε-close to some r-junta, where r = (k/ε)O(k).

Proof: Set κ = ( ε
2C
√
k·log1.5 k

)Ck, and let J = {i ∈
[n] : Inf

(1− 1
Ck )

i [f ] ≤ κ}. A well known and simple calcu-

lation shows that |J | ≤ Ck
κ = r. Now let g = AvgJf =∑

S⊆J f̂(S)χS , a real-valued function depending only on

the coordinates in J . If we can show that E[(f − g)2] ≤ ε,
it follows that f is ε-close to the Boolean-valued r-junta

sgn(g). But by Theorem III.21,

E[(f − g)2] = VrJ [f ]

≤ (C
√
k log1.5 k) · (W>k[f ] + κ1/(Ck))

≤ ε
2 + ε

2 ,

as required.

We now sketch how to obtain the adaptation Theo-

rem III.21 of Theorem III.20. The key idea is that given the

hypotheses of Theorem III.21, we define g = f − AvgJf
and then prove Theorem III.20 for g. Note that g is not a

Boolean-valued function; nevertheless, the proof of Theo-

rem III.20 can be carried out. We now shortly explain how

this is done, beginning with the crucial Proposition III.6.

Proposition III.6. Notice that it suffices to prove Propo-

sition III.6 for g assuming R ⊆ J ; this is because ĝ(i) = 0
for i ∈ J . Now Proposition III.6 relies on Proposition III.5,

which is stated only for Boolean-valued f . However, just

as in Remark III.4, Proposition III.5 also holds for “shifted”

Boolean-valued functions; i.e., those with range {−1+c, 1+
c} for some real c. Since R ⊆ J , each restriction employed

in the proof of Proposition III.6 fixes all of the coordinates J .

And for each such restriction, our g = f −AvgJf becomes

a “shifted” function, since AvgJf only depends on the

coordinates in J . Thus we may use Proposition III.5 and

the proof goes through.

Completing the proof. After Proposition III.6, all subse-

quent steps of the proof work for any g : {−1, 1}n → R with

‖g‖22 ≤ 1. In the end, Theorem III.21 immediately follows

from applying Theorem III.20 to g, because Var[g] =
VrJ [f ] and W>k[f ] ≥W>k[g].
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APPENDIX

Here we make some comments on the definition of the

Gaussian surface area of a set A ⊆ R
d. Recall the two

definitions we have discussed so far, γ+(A) from (1) and

surf(A) from (2). There is also a third natural definition,

namely the integral of the Gaussian density over the bound-

ary of A. All of these definitions “should” coincide for “nice

enough” sets A. In particular, let us explain heuristically why

surf(A) = γ+(A) holds when, say, A has smooth boundary.

(A similar explanation is given in [10, Chap. G.1.2].)

For cos(ε)-correlated (X,Y ) we can think of Y =
cos(ε)X + sin(ε)X ′, where X ′ is an independent standard

d-dimensional Gaussian. From the definition (1) we should

have Pr[t ≤ dist(X, ∂A) < t + dt] ≈ 2γ+(A)dt. Condi-

tioned on this event, we are concerned with the probability

that

Y = cos(ε)X + sin(ε)X ′ ≈ (1− ε2

2 )X + εX ′

lands on the “other side” of ∂A. For small ε we neglect the

ε2 and think of ∂A as being locally flat near X . Thus we

would like the probability that X + εX ′ lands on the other

side of a halfspace at distance roughly t from X . Projecting

X ′ onto the line through X perpendicular to the halfspace,

we see that the probability is Pr[εN(0, 1) > t]. Thus we

conclude that

RSf (ε) = Pr[f(X) �= f(Y )]

≈
∫ ∞

0

Pr[εN(0, 1) > t] · 2γ+(A)dt

= γ+(A)E[|εN(0, 1)|] =
√

2
πγ

+(A)ε.

This heuristically justifies the claim that surf(A) = γ+(A)
for “nice” sets.

Even though this heuristic description is not rigorous,

Ledoux [17, Proposition 8.5] has shown:

Theorem A.1. (Ledoux.) For any A ⊆ R
d with smooth

boundary and any ε ∈ (0, π
2 ) it holds that

√
π
2 · RSf (ε)

ε ≤
γ+(A). Hence surf(A) ≤ γ+(A).

Further, this inequality also extends [18] to the case of all

Borel sets A using the techniques in [2, Theorem 1.1]. Thus

our proof of the GII for volume- 12 sets (using definition

surf(A)) implies the standard statement of the GII.

A final technical note: using the fact that RSf (ε) is

increasing for ε ∈ [0, π
2 ], it is easy to show that the lim sup

in our definition of surf(A) may be equivalently replaced

by a lim. We omit the details.
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