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The complete set of resonance parameters for 950 resonances of a superconducting microwave cavity
connected to three antennas has been measured. This cavity simulates the quantum mechanics of a
particle in a Bunimovich stadium. The partial widths are found to follow a Porter-Thomas distribution.
The Fourier transforms of the S-matrix autocorrelation functions decay algebraically (nonexponentially)
in time. These results agree perfectly with the predictions of random-matrix theory. They constitute
one of the most stringent tests ever of this expected connection between chaotic dynamics and random-

matrix theory.

PACS numbers: 05.45.+b

Quantum manifestations of classical chaos have re-
ceived much attention in recent years. The spectral fluc-
tuation properties of systems, which are fully chaotic in
the classical limit, were investigated both analytically and
numerically [1]. Generically, it was found that these prop-
erties coincide with those of the random matrix ensemble
having the proper symmetry. (The caveats which have
to be attached to this statement are irrelevant for what
follows and are not discussed here.) For time-reversal
invariant systems, the relevant ensemble is the Gaussian
orthogonal ensemble (GOE).

Most of the information available today on spectral
fluctuation properties relates to the statistics of energy
levels, while much less information is available on the
statistics of wave functions or decay amplitudes. Perhaps
statistically the most convincing evidence so far of the
latter type has been presented in Ref. [2], where the partial
width amplitudes of about 400 proton resonances feeding
three different exit channels were analyzed and shown to
agree with GOE predictions.

In this Letter, we present and analyze experimental re-
sults on the decay amplitudes of 950 resonances in a
superconducting microwave stadium billiard coupled to
three antennas, yielding three partial width amplitudes per
resonance. Both the quality of our data and the statisti-
cal accuracy afforded by the large number of resonances
make this data set, in our opinion, the most comprehensive
test yet for GOE fluctuation properties of decay ampli-
tudes and, hence, wave functions in a classically chaotic
system. One of the GOE tests, suggested in Ref. [3],
shows for the first time that on average, the decay in time
of the resonances is not exponential but algebraic.

The stadium billiard is known [4] to be fully chaotic
in the classical limit. Moreover, the quantum case can be
simulated [5] electromagnetically in terms of a sufficiently
flat microwave resonator. We use the superconducting
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niobium cavity as described in Ref. [6] (see inset in
Fig. 1). In our earlier experiment [6], attention was
focused on the resonance frequencies, and the coupling to
the antennas therefore minimized. Now, we are interested
in decay widths. In comparison with Ref. [6], we have
therefore increased the coupling between the cavity and
the antennas by about a factor of 10. Then, the widths
of the resonances (which are proportional to the square
of the eigenfunction at the respective location of the
antennas) are dominated by the microwave intensity fed
into the antennas: Dissipation by the walls of the cavity
contributes only 5% to the average total width of the
resonances. This low value can be attained only in a
superconducting cavity and is crucial for the statistical
accuracy of our results. Thus we are essentially dealing
with a scattering problem described by a 3 X 3 matrix.
The upper part of Fig. 1 shows the absolute value of
Si1, i.e., of the (1,1) element of the scattering matrix
versus frequency. We display only a small part of the
total frequency interval used in the experiment. Very
narrow resonances are seen to interfere destructively
with a slowly varying wavy background. The latter is
due to intensity attenuation in the cables connecting the
antennas with the network analyzer. Indeed, without
such attenuation we would have |S,,| = 8., outside the
resonances. We model the influence of the three cables
on the transmitted wave in terms of three complex
phase shifts §,, with @ = 1, 2, and 3. The data show
very clearly that in the vicinity of a resonance, we are
permitted to use the single-level Breit Wigner formula.
For frequencies w close to a resonance labeled w with
frequency w,, we therefore write the scattering matrix in
the effective form
T2 T

S (w) = e | 8ap — i—"———— |, (1)
w =~ w, t+ §F#
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FIG. 1. The S-matrix element S;; in the frequency range of
5.0 to 5.6 GHz (upper part) not corrected for absorption in the
cables (background). The density of data points can be seen
from the blown-up resonance structure in the lower part of the
figure. The solid line shows a Lorentzian fit which determines
the resonance parameters.

where

3
F/L = Zi F/J,C + I‘;1.,wall . (2)

The dissipation in the walls of the superconducting cavity
is represented by I'y, wani. In writing Eq. (1) with real de-
cay amplitudes I'}/?, we have assumed that the microwave
intensity is only attenuated and not reflected in the
cables. For the first 950 resonances, i.e., up to a fre-
quency of 16.85 GHz, we have avoided reflection by a
careful choice of the cables and connectors. At each reso-
nance, data have been taken with a step size that var-
ied between 100 Hz/step and 4 kHz/step depending on
the total width of the resonance, cf. the lower (magnified)
part of Fig. 1. The solid line is a fit to the data points
using Eq. (1). All resonance curves agree to very high
precision with Lorentzians [7]. The resonance parameters
I'ye, I'y, and w,, and the background parameters &, were
determined from magnitudes and phases of the three elas-
tic scattering matrix elements S, a = 1, 2, and 3. The
inelastic S-matrix elements were found to be consistent
with this analysis. From the three values of I',, obtained
independently for each w, we estimate the error in the
resonance parameters to be about 5%.

Figure 2 shows a plot of the total widths I', (upper
part) and of the partial widths I',, (lower part) versus
resonance frequency. The data are seen to fluctuate
randomly about a slow secular variation with frequency.
The latter has been determined by fitting a polynomial
(solid lines) of 5th order to the total widths and is caused
by the fact that the coupling of the antennas to the
cavity varies slowly with frequency. For the statistical
analysis of the fluctuations, the secular variation has
been removed by scaling all widths with this polynomial.
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FIG. 2. Total widths (upper part) and partial widths of
channel 2 (lower part) are plotted versus resonance frequency.
The secular frequency dependence is given by the solid line
(see text).

With the average total width of 154 kHz normalized to
unity, and with brackets -denoting the average over all
950 resonances, we find (I',,;) = 0.20, (I',») = 0.35, and
(T u3) = 0.40. This yields (I',, wa11) = 0.05.

The GOE predicts a Gaussian distribution for the
decay amplitudes I')/? or, equivalently, a x? distribution
with the number of degrees of freedom (») equal to 1
(this is commonly referred to as a Porter-Thomas [8]
distribution) for the I',. with fixed c. We have fitted
the measured distributions for the I',. optimizing »
and find v = 1.06 = 0.09, 1.07 = 0.09, and 1.05 * 0.09
for ¢ = 1, 2, and 3, respectively. Figure 3 shows the
distribution of the measured and scaled I',,. We have
also tested the GOE prediction that the decay amplitudes
for different channels are uncorrelated. (This obviously
requires that the distances between neighboring antennas
are larger than the maximum wavelength used in the
experiment. For this reason we had to leave out the first
12 resonances in the analysis of the correlation functions.)
The normalized cross-correlation coefficients are found
to be C(I';,I’;) = 0.01 £ 0.05, C(I';, I'3) = 0.07 = 0.07,
and C(I',,I';) = 0.07 %= 0.06, consistent with uncorrelated
amplitudes. If we neglect I', w11, the distribution of I,
should have » = 3 in the case of all three average partial
widths (I',.) being equal. Since the (I',.) are unequal,
this expectation for v is reduced to » = 2.79. Our best fit
is v = 2.82 * 0.24. The GOE predicts that the resonance
widths are statistically independent from the resonance
energies. To apply this test, it is necessary to unfold
the spectrum [6]. The experimental result C(I',w) =
0.02 £ 0.05 agrees with this prediction.

As a further test of GOE properties, we have calcu-
lated the autocorrelation function of the elastic S-matrix
elements versus frequency. To this end, we use the reso-
nance parameters determined above and construct the S

63



VOLUME 74, NUMBER 1

PHYSICAL REVIEW

LETTERS 2 JANUARY 1995

1

10"
- .
. i - L“LPUUM ]
S\ 107 =
2 1
[am
|
- =
=3 [l il | L il ) [ L L1 L
10 = =
107° 107 10"
Z:F,@/ <I >
FIG. 3. Distribution of TI',,/(T',,) on a doubly logarith-
mic scale. The solid line corresponds to a Porter-Thomas
distribution.

matrix of the cavity (i.e., without the cables) from the ex-

pression
1/2

rY2 T

Sup(@) = 84 — i p —E—F—
o — w, + 50,
From this expression, we have calculated the autocorrela-
tion functions

Cole) = Sec(@)Si (0 + €) — S “4)

for ¢ = 1, 2, and 3. Here, the overbar denotes the average
over w. The result for ¢ = 1 is shown as circles in the
upper part of Fig. 4. Since the individual experimental
points are highly correlated, we could not attribute error
bars to these points individually in a meaningful way. We
have used instead the method described by Efron [9]. We
have considered the experimental set of 5 X 938 resonance
parameters (I' 1, T'p2, T3, T'y, ) as the ensemble from
which to construct random scattering matrices. Hence,
938 parameter 5-vectors were drawn at random from the
ensemble (with the possibility of having the same vector
drawn several times). This set was used in Egs. (3) and
(4). Repeating this procedure 10 times we found that the
functions C.(€) are restricted to the shaded band.

The shape of the shaded band differs markedly but not
unexpectedly [10] from that of a Lorentzian with width
(I',.) shown as a solid line in the upper part of Fig. 4.
The contribution of each individual resonance to the cor-
relation functions (4) is, of course, Lorentzian in shape.
However, different resonances contribute Lorentzians of
different widths, so that the average over all resonances
does not have Lorentzian shape. This effect can be seen
only if the total width shows marked fluctuations. Hence,
(i) the number M of open channels must be small, and
(ii) the ratio (I'j wan)/{I'y) must be small compared
to unity. In the microwave experiment of Ref. [11]—
performed at room temperature—condition (ii) was vio-
lated. The data did not display the non-Lorentzian line
shape [12] although condition (i) was well satisfied (M =

(3)
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FIG. 4. Upper part: Autocorrelation function (circles) C,(e€);
the shaded band indicates the errors. The dashed and the
solid lines represent the GOE prediction and a Lorentzian,
respectively. Lower part: Fourier transform of C,(€), errors
indicated by the shaded band. The full line is the Fourier
transform of the Lorentzian, and the dashed curve is the GOE
prediction.

1). The non-Lorentzian shape is a quantum phenome-
non. Indeed, in the semiclassical approximation, we have
M > 1 and purely exponential decay. Moreover, in the
classical limit a chaotic billiard with a small hole shows
exponential time decay, as expected from ergodicity. For
the Sinai billiard, this was shown in Ref. [13]. For the
stadium, we have verified it numerically.

The result displayed in the upper part of Fig. 4 is
quantitatively compatible with the GOE model [14] for
resonance reactions. In the limit of isolated resonances
this model yields [cf. Eq. (8) of Ref. [15]]

3(” 7. \ €
C.(e) = Ej;) dx(m) exp (-lﬂ'dx)n. (5)

Here, d is the mean level distance. For isolated reso-
nances, the “transmission coefficients” are given by 7, =
27 (I ,.)/d. The symbol II stands for [L_,(1 + T.x)" /2,

In the analysis of the level correlation function for the
stadium billiard performed in Ref. [6], the “bouncing ball
orbits” of the stadium played a significant role: These
orbits modulate the average level density on a scale of
several mean level spacings d. In the S-matrix correlation
functions displayed in Fig. 4, the bouncing ball orbits are
conspicuously absent. This is because these correlation
functions are significantly different from zero only in an
interval much smaller than 4.

It is instructive to investigate the Fourier transform
F.(r) of the autocorrelation function C.(€) defined in
Eq. (5),

Fl) = 35,20 + (0007, (©)
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with I’ given by [T2_,(1 + 2T ,)t)~'/2. The factor 3 on
the right-hand side of Eq. (6) is the elastic enhancement
factor [16]. It is specific for the GOE. Inclusion of the
power dissipation in the cavity walls tends to improve
the agreement. This is not shown because the number
of (ficticious) channels needed to account for this process
cannot be determined unambiguously [12]. We note that
the factor 3 is confirmed by the data. The results for
¢ = 1,3 are very similar to the ones for ¢ = 2.

The function F has a simple interpretation. Suppose
that we were to excite all 938 resonances ‘in the cavity
simultaneously with a very short microwave pulse. Then,
F.(¢) is the derivative of the function which describes
the decay in time of that system [3,17]. The function
(6) decays algebraically and not exponentially, with a
characteristic decay time (T',)”! defined in terms of the
average strength of the coupling of the resonances to all
three antennas. In this sense, it is fair to say that we have
for the first time “observed” the nonexponential decay of
a quantum system with chaotic classical dynamics. This
nonexponential decay is caused by the fluctuations of the
total widths. This is seen by an argument similar to the
one used above to explain the non-Lorentzian shape in
the upper part of Fig. 4.

In summary, we have presented data on the statistics of
partial widths for the stadium billiard. All tests applied—
Porter-Thomas distribution, lack of correlations among
partial widths, lack of correlations between partial widths
and resonance energies, non-Lorentzian decay of the
S-matrix autocorrelation function, and the related nonex-
ponential time decay of the system—are in perfect agree-
ment with GOE predictions for the statistics of eigen-
functions. Because of the accuracy and the number of
our data points, we believe that these results consti-
tute one of the strongest tests ever for the assertion [1]
that upon quantization, a classically chaotic system re-
specting time-reversal symmetry attains GOE fluctuation
properties.
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