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Gaussian Particle Filtering
Jayesh H. Kotecha and Petar M. Djuric´, Senior Member, IEEE

Abstract—Sequential Bayesian estimation fornonlinear dy-
namic state-space models involves recursive estimation of filtering
and predictive distributions of unobserved time varying signals
based on noisy observations. This paper introduces a new filter
called the Gaussian particle filter1. It is based on the particle
filtering concept, and it approximates the posterior distributions
by single Gaussians, similar to Gaussian filters like the extended
Kalman filter and its variants. It is shown that under the Gaus-
sianity assumption, the Gaussian particle filter is asymptotically
optimal in the number of particles and, hence, has much-improved
performance and versatility over other Gaussian filters, especially
when nontrivial nonlinearities are present. Simulation results are
presented to demonstrate the versatility and improved perfor-
mance of the Gaussian particle filter over conventional Gaussian
filters and the lower complexity than known particle filters. The
use of the Gaussian particle filter as a building block of more
complex filters is addressed in a companion paper.

Index Terms—Dynamic state space models, extended Kalman
filter, Gaussian mixture, Gaussian mixture filter, Gaussian
particle filter, Gaussian sum filter, Gaussian sum particle filter,
Monte Carlo filters, nonlinear non-Gaussian stochastic systems,
particle filters, sequential Bayesian estimation, sequential sam-
pling methods, unscented Kalman filter.

I. INTRODUCTION

NONLINEAR filtering problems arise in many fields in-
cluding statistical signal processing, economics, statistics,

biostatistics, and engineering such as communications, radar
tracking, sonar ranging, target tracking, and satellite navigation.
The problem consists of estimating a possibly dynamic state of
a nonlinear stochastic system, based on a set of noisy obser-
vations. Many of these problems can be written in the form of
the so-called dynamic state space (DSS) model [3]. The DSS
model represents the time-varying dynamics of an unobserved
state variable , as the distribution , where in-
dicates time (or any other physical parameter). The observations

in the application are usually noisy and distorted versions
of . The distribution represents the observation
equation conditioned on the unknown state variable, which
is to be estimated. Alternatively, the model can be written as

process equation

observation equation) (1)
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where and are some known functions, and and
are random noise vectors of given distributions. The process
equation represents a system evolving with time, where
the system is represented by the hidden state, and the
prior knowledge of the initial state is given by the probability
distribution . Our aim is to learn more about the unknown
state variables, given the observations as time evolves.

We denote by and the signal and observations up
to time , respectively, i.e., and

. In a Bayesian context, our aim is to estimate
recursively in time

• the filtering distribution at time given all the
observations up to time;

• the predictive distribution at time given
all the observations up to time.

From these distributions, an estimate of the state can be deter-
mined for any performance criterion suggested for the problem.
The filtering distribution or the marginal posterior of the state at
time can be written as

(2)

where is the normalizing constant given by

Furthermore, the predictive distribution can be expressed as

(3)

When the model is linear with Gaussian noise and the prior
knowledge about given by is Gaussian, the filtering
and predictive distributions are Gaussian, and the Kalman filter
provides the mean and covariance sequentially, which is the
optimal Bayesian solution [4]. However, for most nonlinear
models and non-Gaussian noise problems, closed-form analytic
expression for the posterior distributions do not exist in general.
Numerical solutions often require high-dimensional integra-
tions that are not practical to implement. As a result, several
approximations that are more tractable have been proposed.

A class of filters calledGaussian filtersprovide Gaussian ap-
proximations to the filtering and predictive distributions, exam-
ples of which include the extended Kalman filter (EKF) and its
variations [4]–[8]. Equivalently, each recursive update propa-
gates only the mean and covariance of the densities. The jus-
tifications are that under this assumption, only the mean and
covariance need to be tracked and that given just the mean and
covariance, the Gaussian maximizes the entropy of the random
variable, i.e., it is the least informative distribution. The appli-
cability of Gaussian filters to nonlinear problems depends on
the nature of the nonlinearities and has to be established on a
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case-by-case basis. For some general guidelines, see, for ex-
ample, [5] and [9]. Other approaches that propagate approxima-
tions of the first two moments of the densities include [10]–[12].
These filters, including the EKF, have been successfully imple-
mented in some problems, but in others, they diverge or provide
poor approximations. This is especially emphasized when the
model is highly nonlinear or when the posterior distributions are
multimodal. In such cases, however, significant improvements
are possible. Efforts to improve on the EKF have led to the new
filters recently, like the unscented Kalman filter (UKF) by Julier
et al. [13] and similar filters proposed by Itoet al. [14], which
use deterministic sets of points in the space of the state variable
to obtain more accurate approximations to the mean and covari-
ance than the EKF. However, note the following.

• The improvement of these filters over the EKF can be sig-
nificant, depending on the problem. However, divergence
can still occur in some nonlinear problems. An example of
such undesirable divergence is shown in the simulations.

• More importantly, in problems where the above filters do
not diverge, improvement in the estimates of the mean and
covariance are desirable. The aim is not only to minimize
the mean square error but also to provide accurate esti-
mates of the covariance that are a measure of the confi-
dence in the estimates.

• Finally, the versatility of the filter can be improved if the
restrictive assumption of additive Gaussian noise made in
the EKF like filters is removed.

There have also been other attempts to propagate filtering
densities, most of them based on Gaussian sum filters (GSFs)
[15], where the posterior distributions are approximated as
finite Gaussian mixtures (GMs). The GM approximation is
generally more accurate, especially for multimodal systems.
Other methods evaluate the required densities over grids [7],
[16]–[19], but they are computationally intense especially for
high-dimensional problems.

Recently, importance sampling-based filters have been used
to update the posterior distributions [20]–[23]. There, a distri-
bution is represented by a weighted set of samples (or parti-
cles) from the distribution, which are propagated through the
dynamic system using importance sampling to sequentially up-
date the posterior distributions. These methods are collectively
called sequential importance sampling (SIS) filters, or particle
filters, and provide optimal results asymptotically in the number
of particles. However, a major disadvantage of particle filters
is the computational complexity (in a serial implementation), a
large part of which comes from a procedure called resampling.
Particle filters are, however, amenable to parallel implementa-
tion, which provides possibilities for processing signals sampled
at high sampling rates.

In this paper, we introduce a new Gaussian filter called the
Gaussian particle filter (GPF). Essentially, the GPF approxi-
mates the posterior mean and covariance of the unknown state
variable using importance sampling. The proposed filter is
analyzed theoretically and studied by computer simulations.
Comparisons are made with the EKF, UKF, and the standard
sequential importance sampling resampling (SISR) filters. It
is important to note that unlike the EKF, the assumption of

additive Gaussian noise can be relaxed for the GPF and can,
in general, benon-Gaussianand nonadditive. The GPF has
improved performance compared with the EKF and UKF, as
demonstrated by simulations. It is shown analytically that the
estimates of the unknowns converge asymptotically with prob-
ability one to the minimum mean square estimates (given that
the Gaussian assumption holds true). The GPF is quite similar
to the SIS filter by the fact that importance sampling is used to
obtain particles. However, unlike the SIS filters, resampling is
not required in the GPF. This results in a reduced complexity
of the GPF as compared with the SIS with resampling and is
a major advantage.

The GPF only propagates the mean and covariance; however,
note that the importance sampling procedure makes it simple to
propagate higher moments as well. This gives rise to a new class
of filters, where the posterior distributions are approximated by
distributions other than Gaussian simply by propagating the re-
quired moments (or functions thereof).

An example of the above is given in a companion paper [24],
where we introduce three types of Gaussian sum particle fil-
ters (GSPFs), which are built from banks of GPFs, and de-
velop a general framework for Bayesian inference for nonlinear
and non-Gaussian additive noise DSS models using Gaussian
mixtures.

To facilitate readability of the paper, we provide a list of ab-
breviations used in the sequel.

List of Abbreviations:
BOT Bearings-only tracking.
DSS Dynamic state space.
EKF Extended Kalman filter.
EM Expectation–maximization.
GS Gaussian sum.
GM Gaussian mixture.
GMF Gaussian mixture filter.
GMM Gaussian mixture model.
GPF Gaussian particle filter.
GSF Gaussian sum filter.
GSPF Gaussian sum particle filter.
MMSE Minimum mean square error.
MSE Mean square error.
SIS Sequential importance sampling.
SISR Sequential importance sampling with resampling.
UKF Unscented Kalman filter.
VLSI Very large scale integration.

II. GAUSSIAN PARTICLE FILTERING

The GPF approximates the filtering and predictive distribu-
tions in (2) and (3) by Gaussian densities using the particle
filtering methodology [20], [22], [25]. The basic idea of
Monte Carlo methods is to represent a distribution of a
random variable by a collection of samples (particles) from
that distribution. particles from
a so-called importance sampling distribution (which
satisfies certain conditions; see [25] for details) are generated.
The particles are then weighted as .
If , then the set represents
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samples from the posterior distribution . Monte Carlo
integration suggests then that the estimate of

can be computed as

(4)

Using the Strong Law of Large Numbers, it can be shown that

(5)

almost surely as ; see, for example, [25]. The posterior
distribution can be approximated as

(6)

where is the Dirac delta function.
In the sequel, the density of a Gaussian random variableis

written as

where the -dimensional vector is the mean, and the covari-
ance is the positive definite matrix. Assume that at time
we have , where and are
chosen based on prior information. As new measurements are
received, measurement and time updates are performed to ob-
tain the filtering and predictive distributions as discussed in the
following sections.

A. Measurement Update

After receiving the th observation , the filtering distribu-
tion in (2) is given by

(7)

The GPF measurement update step approximates the above den-
sity as a Gaussian, i.e.,

(8)

In general, analytical expressions for the meanand covari-
ance of are not available. However, for the GPF
update, Monte Carlo estimates of and can be computed
from the samples and their weights, where the samples are
obtained from an importance sampling function .
This allows for the measurement update algorithm in Table I.

The updated filtering distribution is now approximated as
.

TABLE I
GPF—MEASUREMENTUPDATE ALGORITHM

Now, we recall a standard theorem of importance sampling,
following which we provide a corollary that underscores the
improvements obtained by the GPF in comparison to other
Gaussian filters.

Theorem 1: Assume that at time, (the analytical form of)
is known up to a proportionality constant. On

receiving the th observation , the GPF measurement updates
the filtering distribution using Monte Carlo integration defined
in (4). Then, the th moment (or the th central moment) of

estimated using (4) converges almost surely to
[or to ].
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Proof: From (10) and (11), theth moment is estimated
as

where the convergence is with probability one as [see
(5)] and is due to the Strong Law of Large Numbers. A similar
proof holds for the th central moment.

Corollary 1: Assume that at time ,
. On receiving the th observation , the GPF

measurement updates the filtering distribution, as shown by the
algorithm above. Then, computed in (11) converges to the
MMSE estimate of almost surely as . In addition,
the MMSE estimate given by in (11) converges to the true
MMSE estimate almost surely as .

Proof: The corollary follows straightforwardly from The-
orem 1 since the MMSE estimate of is given by

, and the MMSE is .
The above corollary shows that, given the validity of the

Gaussian approximation, the GPF provides the MMSE estimate
asymptotically during the measurement update, which is clearly
not true for the EKF and UKF. Hence, the GPF is expected to
perform better than the EKF and UKF, which is validated by
simulations.

1) Choice of : The choice of the importance sampling
function depends on the problem; see [23] and [25] for de-
tails. For the GPF, a simple choice for is

since samples from this density can be easily
obtained. Alternatively, instead of generating completely new
samples from samples obtained in the time up-
date step (presented in the next section) in step 2 can be used.
However, this choice can be inadequate in some applications.
Another choice is , where and are
obtained from the measurement update step of the EKF or from
the unscented Kalman filter [26].

B. Time Update

Assume that at time it is possible to draw samples from
. With approximated as a Gaussian,

we would like to obtain the predictive distribution
and approximate it as a Gaussian. We recall (3), that is

A Monte Carlo approximation for the predictive distribution is
given by

(14)

where are particles from . Following this
observation, samples from ,
are obtained and are denoted as , from which the mean
and covariance of is computed as

The GPF time update approximates as a
Gaussian, or

Alternatively, we can use the weighted samples of
obtained in the measurement update to get the following

Monte Carlo approximation of

Following this observation, samples from ,
are obtained and denoted as , from which

the mean and covariance of is computed as

The GPF time update steps are summarized in Table I.
Similar to Theorem 1, it can be shown that as

and given the observations until time, converges almost
surely to the MMSE estimate of .

III. D ISCUSSION

From Corollary 1 (and its counterpart in the time update),
we may deduce that the GPF provides better approximations
to the integrations involved in the update processes than other
Gaussian filters in the presence of severe nonlinearities. Two
conclusions can be obtained from this observation. One is
that divergence can be avoided by using the GPF unlike other
Gaussian filters. The other is that the GPF provides more
accurate estimates of the mean and covariance (confidence
intervals) as a function of the number of particles than the other
Gaussian filters. Simulations results in Section IV show that
in general, the GPF has better performance than the EKF and
UKF when the mean square errors are compared.

The EKF and its variants assume that the process and obser-
vation noise processes areadditiveand Gaussian. However, as
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long as the posterior distributions can be approximated as Gaus-
sians, these assumptions can be relaxed for the GPF, and the pro-
posed filter can be applied for a nonadditive and non-Gaussian
noise DSS model. The measurement and time updates indicate
that this is possible if required in the weight update
(9) can be evaluated and that a sample from can
be obtained.

As with most Gaussian filters, it is possible that bias accu-
mulation may occur in certain applications. Particle filters with
resampling also have bias due to resampling; see [27] for details.
However, this phenomenon has not occurred in our simulation
examples. A theoretical analysis of bias accumulation due to the
approximations involved and finite samples is of interest but is
left for future work.

SIS filters essentially obtain particles and their weights from
the posterior distributions in a recursive manner. However, a
phenomenon calledsample degenerationoccurs wherein only
a few particles representing the distribution have significant
weights. A procedure calledresampling[22], [28] has been
introduced to mitigate this problem, but it may give limited
results and may be computationally expensive. Since the GPF
approximates posterior distributions as Gaussians, particle
resampling is not required. This results in a computational
advantage of the GPF over SIS filters. Removal of resampling
has another important advantage in implementation. Resam-
pling is a nonparallel operation in an otherwise parallel SIS
algorithm; hence, the GPF is more amenable for fully parallel
implementation in VLSI.

The GPF propagates only the mean and covariance of the
posterior densities. However, Theorem 1 shows that all mo-
ments can be estimated using importance sampling. This sug-
gests a natural extension, wherein even higher moments are
propagated. Alternatively, it may be motivating to approximate
the posterior distributions by distributions other than Gaussian,
which may be more accurate. This results in a new and much
richer class of filters following our methodology. An example
is given in the companion paper [24], where Gaussian mixtures
approximate the distributions. Other distributions can also be
considered, for example, the Student-t distribution, which has a
heavier tail than the Gaussian; this may be motivating in certain
applications. The mathematic tractability of propagating Gaus-
sians has motivated researchers in the past to provide Gaussian
approximations to posterior densities. However, the framework
provided here makes it possible to obtain better approximations,
albeit at the cost of computational power. We do not elaborate
more on this new class of filters in this paper since the resulting
filtering algorithms are straightforward extensions of ones pro-
vided in this paper.

IV. SIMULATION RESULTS

The GPF proposed in this paper was applied to numerical ex-
amples, and here, we present the results for two models: the uni-
variate nonstationary growth model, which is popular in econo-
metrics and has been used previously in [17], [20], and [29], and
the bearing only tracking model, which is of interest in defense
applications [20], [30].

A. Univariate Nonstationary Growth Model (UNGM)

We choose this model because it is highly nonlinear and is
bimodal in nature. The DSS equations for this model can be
written as

where , and the distribution of is speci-
fied below. Data were generated using , ,

, , and . Notice the term in the
process equation that is independent ofbut varies with time

and that it can be interpreted as time-varying noise. The like-
lihood has bimodal nature when and when

, it is unimodal. The bimodality makes the problem more
difficult to address using conventional methods.

We compare the estimation and prediction performance of the
EKF, UKF, GPF, and SIS filters based on the following metrics.
MSE is defined by

MSE (15)

where , and it is obtained from the filtering
distribution. MSE is defined similarly with

and

MSE (16)

where the estimate is obtained from the predictive distribution.
MSE is the mean square error computed from the predictive
distribution of , i.e., . The MMSE estimate of

is given by or

For this example, we obtain

When the ratio is small, the bimodality of the
problem is more severe, and we expect to see improved perfor-
mance of the GPF over that of the EKF in the presence of this
high nonlinearity. The process noise , where

. The initial distribution was . For both
GPF and SIS, the IS function was given by (in
SIS terminology, the IS function is written as ).
The applied SIS filter was the one from [31], where resampling
was performed at every step using the systematic resampling
scheme [32]. For the EKF, we get . For the
GPF, since we draw particles from in the measure-
ment update, we obtain a Monte Carlo estimate for.

A large number of simulations were performed to compare
the four filters. In Figs. 1 and 2, we show plots for the first 100
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Fig. 1. Plot of the true state and estimate of the EKF.

Fig. 2. Plot of the true state and estimate of the GPF.

states and the estimates obtained using the EKF and GPF with
, respectively, for a single simulation. Note the ten-

dency of the EKF to track the opposite mode of the bimodality,
especially when is small. This behavior was ob-
served in general for most simulation runs.

In Figs. 3 and 4, we plot the error and the 3 in-
tervals, where was the estimated standard deviation of the
prediction error. As expected, the errors lie mostly within this
interval for the GPF, which is not the case for the EKF. In ad-
dition, the values of for the EKF are much higher, pointing
to the occurrence of divergence of the filter. All of the above
observations were made in most of the simulation runs. Clearly,
the GPF outperforms the EKF significantly for this highly non-
linear example.

Fig. 5 shows the MSE for 50 random realizations with
particles. In Fig. 7, the average MSEis plotted

for 20, 100, and 1000 particles. Even for a small number

Fig. 3. Plot of the prediction error and3� interval for the EKF.

Fig. 4. Plot of the prediction error and3� interval for the GPF.

of particles 20, the GPF and SISR filters perform signifi-
cantly better than the EKF and UKF, whereas the MSE for the
GPF is marginally higher than that of SISR. An increase in the
number of particles reduced the MSE even further for the GPF
and SISR filters; however, the change in performance is neg-
ligible as the number of particles was increased from 100. As
observed from the figures, for 100 and 1000, there is in-
significant difference in the MSEs for the GPF and the SISR.
Similar behavior was observed for the MSE(see Fig. 6) and
the MSE metrics.

A comparison of the computation times is also shown in Fig. 7
for simulations implemented on a 450-MHz Intel Pentium III
processor using MATLAB. Note that as expected, the computa-
tion time for GPF and SISR filters is much higher than the EKF
and UKF. However, as noted in the Section III, these times in-
dicate those obtained on a serial computer and much reduction
in computation times can be expected for the GPF and SISR
when implemented in parallel. For the EKF, UKF, and GPF, a
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Fig. 5. Performance comparison of EKF, UKF, GPF, and SISR filters; MSEx

is plotted for 50 random realizations.M = 100 for both GPF and SISR filters.

Fig. 6. Performance comparison of EKF, UKF, GPF, and SISR filters. Average
MSEx of 50 random realizations. M=20, 100, and 1000 for both GPF and SISR
filters.

clear performance-computational time tradeoff can be seen in
the figure. More importantly, the GPF has much less of a com-
putation time than the SISR, and the difference increases as the
number of particles increases. This is due to the additional re-
sampling required in the SISR filter, which has computational
complexity of for the systematic resampling scheme used
here.

B. Bearings Only Tracking (BOT)

The bearings-only model is well motivated and arises in de-
fense applications and in engineering problems. The bearings
only tracking problem considers tracking an object moving in a
2-D space. The measurements taken by the sensor at fixed in-
tervals to track the object are the bearings or angles (subject to
noise) with respect to the sensor. The range of the object, that
is, the distance from the sensor, is not measured.

Fig. 7. Performance comparison of EKF, UKF, GPF, and SISR filters.
Computation time (per realization) and average MSEx of 50 random
realizations.M = 20, 100, and 1000 for both GPF and SISR filters.

We employ a change of notation here to better facilitate un-
derstanding of the mechanics of the problem. Let the sensor be
stationary and located at the origin in the— plane. The ob-
ject moves in the – plane according to the following process
model:

where ,

Here, and denote the Cartesian coordinates of the target,
and denote the velocities in the and directions, respec-
tively. The system noise is a zero mean Gaussian white noise,
that is, , where is the 2 2 identity ma-
trix. The initial state describes the targets initial position and
velocity. A prior for the initial state also needs to be spec-
ified for the model; we assume .

The measurements consist of the true bearing of the target
corrupted by a Gaussian error term. The measurement equation
can be written as

(17)

where the measurement noise is a zero mean Gaussian white
noise, that is, .

It is important to note that from (17), we obtain no informa-
tion about the range of the object from the measurement. Thus,
given a series of measurements, we can only detect in general
the shape of the trajectory but not its location or distance from
the point of measurement. In particular, if we consider the like-
lihood associated with a single measurementas a function
of and , that is , it is clear that the likeli-
hood consists of a modal ridge along the line .
The prior describes our knowledge about the position and
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Fig. 8. Tracking of a moving target in two dimensions with the EKF, UKF,
GPF, and SISR filters.

velocity of the target at the initial stage. This prior and the like-
lihood of the series of measurements are combined to obtain an
estimate of the trajectory.

A target trajectory and associated measurements over
24 time steps was generated with initial state vector

. The process and
measurement noise were as specified above with
and . Note that for this particular trajectory, in
the initial stages, the bearing of the target with respect to the
observer remains almost constant. As the object passes the ob-
server, the change in the angle is large. For the prior, the param-
eters assumed were
(which is the same as the initial vector) and

The EKF, UKF, GPF, and SISR filters were applied to get an
estimate of the trajectory. The number of particles used for the
GPF and SISR filters was 1000. Systematic random re-
sampling was used for the SISR filter. Observe that due to the
nonlinearity of the observation equation, it is not straightfor-
ward to sample from the optimal importance function. Hence,
we use the prior and as the IS
function for the GPF and SISR, respectively.

Fig. 8 displays a representative trajectory and the tracking ob-
tained by all four filters. Fig. 9 shows the MSE for 100 random
realizations for all the state variables. The EKF diverged in more
than 50 realizations, whereas the UKF diverged for three real-
izations. Fig. 10 shows the average MSE obtained for same 100
random realizations for all the state variables on a logarithmic
scale. Fig. 11 displays a trajectory where the EKF and UKF
both diverged. In cases where divergence was not observed, the
MSEs of EKF and UKF were much higher compared to the
MSEs of the GPF and SISR filters. On an average, the UKF per-
formed better than the EKF; however, the MSE of the was

Fig. 9. Performance comparision of EKF, UKF, GPF, and SISR filters. MSEs
for position and velocities inx andy directions. M= 1000 for both GPF and
SISR filters.

Fig. 10. Performance comparision of EKF, UKF, GPF, and SISR filters.
Average MSEs for position and velocities inx andy directions. M= 1000

for both GPF and SISR filters.

much higher for the UKF. Comparison of the GPF and SISR fil-
ters shows that the GPF has marginally better performance then
the SISR filter.

In another experiment, all the above simulations were repli-
cated for a varying number of particles. For 500, the GPF
and SISR filters diverged, implying that a greater number of par-
ticles was required for stability. It was observed that increasing

from 500 to 1000 improved the performance. Increasing
further gave minor improvements.

Computation times are shown in Fig. 12. As expected, the
EKF and UKF have very small computation time compared
with the particle filters. However, the high use of computational
power is justified for the GPF and SISR since in most cases, the
target is tracked well. Again, since resampling is required in the
SISR, it is more computationally expensive, and a large differ-
ence is observed in the computation times of the GPF and SISR.
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Fig. 11. Example of divergence of the EKF and UKF in the bearings-only
tracking example, whereas the GPF and SISR filters do not diverge.

Fig. 12. Performance comparison of EKF, UKF, GPF, and SISR filters;
computation time (per realization) versus number of particles for both GPF
and SISR filters.

V. CONCLUSION

The Gaussian particle filter provides much better perfor-
mance than the EKF and UKF. Moreover, the additive Gaussian
noise assumption can be relaxed without any modification to
the filter algorithm. The update of the filtering and predictive
distributions as Gaussians by particle-based approaches has
the advantages of easier implementation than standard SIS
algorithms and better performance than algorithms that are also
based on Gaussian approximations. The GPF is more computa-
tionally expensive than the EKF. However, the parallelizibility
of the GPF and the absence of resampling makes it convenient
for VLSI implementation and, hence, feasible for practical
real-time applications. In a companion paper [24], we exploit
the GPF to build Gaussian sum particle filters that can be used
for models where the the filtering and predictive distributions
cannot be approximated successfully with a single Gaussian
distribution and for models with non-Gaussian noise. The latter
models can be approximated as a weighted bank of Gaussian

noise models, and hence, the GPF developed here can also be
used to solve the non-Gaussian noise problem.
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